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Abstract

The NIST Special Publication (SP) 800-90 series of documents supports the generation of high-
quality random bits for cryptographic and non-cryptographic use. SP 800-90A, Recommendation
for Random Number Generation Using Deterministic Random Bit Generators, specifies several
deterministic random bit generator (DRBG) mechanisms based on cryptographic algorithms. SP
800-90B, Recommendation for the Entropy Sources Used for Random Bit Generation, provides
guidelines for the development and validation of entropy sources. This document (SP 800-90C)
specifies constructions for the implementation of random bit generators (RBGs) that include
DRBG mechanisms as specified in SP 800-90A and that use entropy sources as specified in SP 800-
90B. Constructions for four classes of RBGs — namely, RBG1, RBG2, RBG3, and RBGC — are
specified in this document.

Keywords

deterministic random bit generator (DRBG); entropy; entropy source; random bit generator
(RBG); randomness source; RBG1 construction; RBG2 construction; RBG3 construction; RBGC
construction; subordinate DRBG (sub-DRBG).

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance
the development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines
for the cost-effective security and privacy of other than national security-related information in
federal information systems. The Special Publication 800-series reports on ITL’s research,
guidelines, and outreach efforts in information system security, and its collaborative activities
with industry, government, and academic organizations.
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Note to Readers

1. SP 800-90Ar1 requires a nonce to be used during DRBG instantiation that is either 1) a value
with at least (security strength/2) bits of entropy or 2) a value that is expected to repeat no
more often than a (security strength/2)-bit random string would be expected to repeat.
However, SP 800-90C requires security strength/2 bits of randomness to be obtained from a
randomness source in place of a nonce in addition to the randomness required to establish
a DRBG's security strength. Legacy implementations of DRBGs may continue to use a nonce
in accordance with the Implementation Guidance for FIPS 140-3 and the Cryptographic
Module Validation Program [FIPS_140IG].

2. SP 800-90Ar1l specified an optional request for prediction resistance when invoking the
generation of pseudorandom bits by a DRBG (i.e., prediction resistance and generation could
be accomplished in a single request). Instead, SP 800-90C requires two separate requests: a
reseed request followed by a generate request. Legacy implementations of DRBGs may
continue to request generation and prediction resistance in a single request in accordance
with [FIPS_140IG].

3. SP 800-90Ar1 will be revised as SP 800-90Ar2 to address inconsistencies with SP 800-90C.

4. Notices of additional material (e.g., additional vetted conditioning functions) may be posted
at [SP800_90WebSite].

5. Other random bit generation standards of interest include [AIS20], [AIS31], [BSIFunc], and
[1ISO_18031].
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Patent Disclosure Notice

NOTICE: ITL has requested that holders of patent claims whose use may be required for
compliance with the guidance or requirements of this publication disclose such patent claims to
ITL. However, holders of patents are not obligated to respond to ITL calls for patents and ITL has
not undertaken a patent search in order to identify which, if any, patents may apply to this
publication.

As of the date of publication and following call(s) for the identification of patent claims whose
use may be required for compliance with the guidance or requirements of this publication, no
such patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.
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1. Introduction and Purpose

Cryptography and security applications make extensive use of random bits. However, the
generation of random bits is challenging in many practical applications of cryptography. The
National Institute of Standards and Technology (NIST) developed the Special Publication (SP) 800-
90 series to support the generation of high-quality random bits for both cryptographic and non-
cryptographic purposes. The SP 800-90 series consists of three parts:

1. SP 800-90A, Recommendation for Random Number Generation Using Deterministic
Random Bit Generators [SP_800-90A], specifies several approved deterministic random
bit generator (DRBG) mechanisms based on approved cryptographic algorithms that —
once provided with seed material® that contains sufficient randomness — can be used to
generate random bits suitable for cryptographic applications.

2. SP 800-90B, Recommendation for the Entropy Sources Used for Random Bit Generation
[SP_800-90B], provides guidance for the development and validation of entropy sources,
which are mechanisms that generate entropy from physical or non-physical noise sources
and that can be used to generate the input for the seed material needed by a DRBG or for
input to an RBG.

3. SP 800-90C, Recommendation for Random Bit Generator (RBG) Constructions, specifies
constructions for random bit generators (RBGs) using 1) randomness sources (either
entropy sources that comply with SP 800-90B or RBGs that comply with SP 800-90C) and
2) DRBGs that comply with SP 800-90A. Four classes of RBGs are specified in this
document (see Sec. 4—7). SP 800-90C also provides high-level guidelines for testing RBGs
for conformance to this recommendation.

Throughout this document, the phrase “this recommendation” refers to the aggregate of SP 800-
90A, SP 800-90B, and SP 800-90C (the SP 800-90 series), while the phrase “this document” refers
only to SP 800-90C.

The RBG constructions defined in this recommendation are based on two components: the
entropy sources that generate true random variables (i.e., variables that may be biased, where
each possible outcome does not need to have the same chance of occurring) and DRBGs that
ensure that the outputs of the RBG are indistinguishable from the ideal distribution to a
computationally bounded adversary.

SP 800-90C has been developed in coordination with NIST’s Cryptographic Algorithm Validation
Program (CAVP) and Cryptographic Module Validation Program (CMVP). The document uses
“shall” and “must” to indicate requirements and “should” to indicate an important
recommendation. The term “shall” is used when a requirement is testable by a testing lab during
implementation validation using operational tests or a code review. The term “must” is used for
requirements that may not be testable by the CAVP or CMVP. An example of such a requirement
is one that demands certain actions and/or considerations from a system administrator. A CMVP

1 An input bitstring from a randomness source that provides an assessed minimum amount of randomness (e.g., entropy) for a DRBG.

1
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review of the cryptographic module’s documentation can verify whether these requirements
have been met. If the requirement is determined to be testable at a later time (e.g., after SP 800-
90C is published and before it is revised), the CMVP will so indicate in the Implementation
Guidance for FIPS 140-3 and the Cryptographic Module Validation Program [FIPS_140IG].

1.1. Audience

The intended audience for this recommendation includes 1) developers who want to design and
implement RBGs that can be validated by NIST’s CMVP and CAVP, 2) testing labs that are
accredited to perform the validation tests and the evaluation of the RBG constructions, and 3)
users who install RBGs in systems.

1.2. Document Organization

This document is organized as follows:

e Section 2 provides background and preliminary information for understanding the
remainder of the document.

e Section 3 provides guidance on accessing and handling entropy sources, including the
external conditioning of entropy-source output to reduce bias and obtain full entropy
when needed.

e Sections 4, 5, 6, and 7 specify the RBG constructions, namely the RBG1, RBG2, RBG3, and
RBGC constructions, respectively.

e Section 8 discusses health and implementation validation testing.
e The References contain a list of papers and publications cited in this document.
The following informative appendices are also provided:

e Appendix A provides discussions on entropy versus security strength, generating output
using the RBG3(RS) construction, and computing platforms, as required by DRBG trees
using the RBGC construction.

e Appendix B provides an example of each RBG construction.

e Appendix C provides a list of abbreviations, symbols, functions, and notations used in this
document.

e Appendix D provides a glossary with definitions for terms used in this document.
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2. General Information

2.1. RBG Security

Ideal randomness sources generate identically distributed and independent uniform random bits
that provide full-entropy outputs (i.e., one bit of entropy per output bit). Real-world RBGs are
designed with a security goal of indistinguishability from the output of an ideal randomness
source. That is, given some limits on an adversary’s data and computing power, it is expected
that no adversary can reliably distinguish between RBG outputs and outputs from an ideal
randomness source.

Consider an adversary that can perform 2" computations (typically, these are guesses of the
RBG’s internal state) and is given an output sequence from either an RBG with a security strength
of s bits (where s > w) or an ideal randomness source. It is expected that an adversary has no
better probability of determining which source was used for its random bits than

1242751+ ¢

where ¢is negligible. In this recommendation, the size of the RBG output is limited to 2%* output
bits and ¢ < 2732, NIST Internal Report (IR) 8427 [NISTIR_8427] provides a justification for the
selection of &.

An RBG that has been designed to support a security strength of s bits is suitable for any
application with a targeted security strength that does not exceed s. An RBG that is compliant
with this recommendation can support requests for output with a security strength of 128, 192,
or 256 bits, except for an RBG3 construction (as described in Sec. 6), which can provide full-
entropy output.?

A bitstring with full entropy has an amount of entropy equal to its length. Full entropy bitstrings
are important for cryptographic applications, as these bitstrings have ideal randomness
properties and may be used for any cryptographic purpose. They may be truncated to any length
such that the amount of entropy in the truncated bitstring is equal to its length. However, due to
the difficulty of generating and testing full-entropy bitstrings, this recommendation assumes that
a bitstring has full entropy if the amount of entropy per bit is at least 1 — &, where ¢is at most
2732,

2.2. RBG Constructions

A construction is a method of designing an RBG to accomplish a specific goal. Four classes of RBG
constructions are defined in this document: RBG1, RBG2, RBG3, and RBGC (see Table 1). Each
RBG includes a DRBG from SP 800-90A and is based on the use of a randomness source that is
validated for compliance with SP 800-90B or SP 800-90C. Once instantiated (i.e., initialized with

2 See Appendix A.1 for a discussion of entropy versus security strength.
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seed material), a DRBG can generate output at a security strength that does not exceed the
DRBG’s instantiated security strength.

Table 1. RBG capabilities

Available
Internal Randomness o Type of
Construction Entropy Source for Prefi":tw“ Full Entropy | Randomness
Source . Resistance Source
Reseeding

RBG2(P) or RBG3
RBG1 No No No No or Root RBGC
construction

Physical entropy

RBG2(P) Yes Yes Optional No
source

Non-physical

RBG2(NP) Yes Yes Optional No
entropy source

RBG3(XOR) or Physical entropy

Yes Yes Yes Yes

RBG3(RS) source
RBG2 or RBG3
(Root) RBGC Yes Yes Optional No construction or
Full-entropy
source
(Non-root) Parent RBGC
RBGC No Yes No No construction

In Table 1:
e Column 1 lists the RBG constructions specified in this document.
e Column 2 indicates whether an entropy source is present within the construction.
e Column 3 indicates whether the DRBG has an available randomness source for reseeding.

e Column 4 indicates whether prediction resistance can be provided for the output of the
RBG (see Sec. 2.4.2 for a discussion of prediction resistance).

e Column 5 indicates whether full-entropy output can be provided by the RBG.

e Column 6 indicates the types of randomness sources that are allowed for initializing the
RBG construction.

An RBG1 construction does not have access to a randomness source after instantiation. It is
instantiated once in its lifetime over a physically secure channel from an external RBG2(P), RBG3,
or root RBGC construction with appropriate security properties. An RBG1 construction does not
support reseeding requests, prediction resistance cannot be provided for the output, and the
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construction cannot provide output with full entropy. The construction can be used to initialize
subordinate DRBGs (sub-DRBGs) (see Sec. 4).

An RBG2 construction includes one or more entropy sources that are used to instantiate the
DRBG and may (optionally) be used for reseeding if a reseed capability is implemented. Prediction
resistance may be provided to the RBG output when reseeding is performed. The construction
has two variants: an RBG2(P) construction uses a physical entropy source to provide entropy,
while an RBG2(NP) construction uses a non-physical entropy source. An RBG2 construction
cannot provide full-entropy output (see Sec. 5).

An RBG3 construction includes one or more physical entropy sources and is designed to provide
an output with a security strength equal to the requested length of its output by producing
outputs that have full entropy. Prediction resistance is provided for all outputs (see Sec. 6).

There are two types of RBG3 constructions:

1. An RBG3(XOR) construction combines the output of one or more validated entropy
sources with the output of an instantiated, approved DRBG using an exclusive-or (XOR)
operation (see Sec. 6.4).

2. An RBG3(RS) construction uses one or more validated entropy sources to provide seed
material for the DRBG by continuously reseeding.

An RBGC construction (see Sec. 7) allows the use of a tree of RBGs that consists of only RBGC
constructions on the same computing platform. The initial RBGC construction in the tree is called
the root RBGC construction. The root accesses an initial randomness source for instantiation and
reseeding. A non-root RBGC construction obtains seed material from its parent RBGC for
instantiation but may obtain seed material for reseeding from the parent RBGC or a select set of
other RBGC constructions on the same computing platform (see Sec. 7.1.2.2). Prediction
resistance may be provided for the root RBGC but not for non-root RBGC constructions (see Sec.
7).

This document also provides procedures for acquiring entropy from an entropy source and
conditioning the output to provide a bitstring with full entropy (see Sec. 3.2). SP 800-90A
provides constructions for instantiating and reseeding DRBGs and requesting the generation of
pseudorandom bitstrings [SP_800-90A].

All constructions in SP 800-90C are described in pseudocode as well as text. The pseudocode
conventions are not intended to constrain real-world implementations but to provide a
consistent notation to describe the constructions.

For any of the specified processes, equivalent processes may be used. Two processes are
equivalent if the same output is produced when the same values are input to each process (either
as input parameters or as values made available during the process).

By convention and unless otherwise specified, integers are unsigned 32-bit values. When used as
bitstrings, they are represented in the big-endian format.
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2.3. Sources of Randomness for an RBG

The RBG constructions specified in this document are based on the use of validated entropy
sources — mechanisms that provide entropy for an RBG. Some RBG constructions access these
entropy sources directly to obtain entropy. Other constructions fulfill their entropy requirements
by accessing another RBG as a randomness source, in which case the RBG used as a randomness
source may include an entropy source or have a predecessor RBG that includes an entropy
source.

SP 800-90B provides guidance for the development and validation of entropy sources [SP_800-
90B]. Validated entropy sources (i.e., entropy sources that have been successfully validated by
the CMVP as complying with SP 800-90B) reliably provide fixed-length outputs and a specified
minimum amount of entropy for each output (e.g., each 8-bit output has been validated as
providing at least five bits of entropy).3

One or more validated, independent entropy sources may be used to provide entropy for
instantiating and reseeding the DRBGs in RBG2, RBG3, and (root) RBGC constructions or used by
an RBG3 construction to generate output upon request by a consuming application. Appropriate
validated RBGs may be used to provide seed material for RBG1 and (non-root) RBGC
constructions.

Entropy sources may be classified as either physical or non-physical. An entropy source is a
physical entropy source if the primary noise source within the entropy source is physical — that
is, the entropy source uses a dedicated hardware design to provide entropy (e.g., from ring
oscillators, thermal noise, shot noise, jitter, or metastability). Similarly, a validated entropy
source is a non-physical entropy source if the primary noise source within the entropy source is
non-physical — that is, entropy is provided by system data (e.g., system time or the entropy
present in the RAM data) or human interaction (e.g., mouse movements). The entropy source
type (i.e., physical or non-physical) is certified during entropy source validation (see [FIPS_140IG],
Annex D.J%).

This recommendation assumes that the entropy produced by a validated physical entropy source
is generally more reliable than the entropy produced by a validated non-physical entropy source
since non-physical entropy sources are typically influenced by human actions or network events,
the unpredictability of which is difficult to accurately quantify.

An implementation could be designed to use a combination of physical and non-physical entropy
sources. When requests are made to these sources, bitstring outputs may be concatenated until
the amount of entropy in the concatenated bitstring meets or exceeds the request. Two methods
are provided for counting the entropy provided in the concatenated bitstring:

Method 1 (physical only): The RBG implementation includes one or more independent,
validated physical entropy sources; one or more validated non-physical entropy sources may
also be included in the implementation. Only the entropy in a bitstring that is provided from

3 This document also discusses the use of non-validated entropy sources. When discussing such entropy sources, “non-validated” will always
precede “entropy sources.” The use of the term “validated entropy source” may be shortened to just “entropy source” to avoid repetition.
4 See [FIPS_140IG]
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physical entropy sources is counted toward fulfilling the amount of entropy requested in an
entropy request. Any entropy in a bitstring that is provided by a non-physical entropy source
is not counted, even if bitstrings produced by the non-physical entropy source are included
in the concatenated bitstring that is used by the RBG.

Method 2 (non-physical inclusive): The RBG implementation includes one or more
independent, validated non-physical entropy sources; one or more independent, validated
physical entropy sources may also be included in the implementation. The entropy from both
non-physical entropy sources and (if present) physical entropy sources is counted when
fulfilling an entropy request.

Example: Let pes; be the i output of a physical entropy source, and let npes; be the /" output
of a non-physical entropy source. If an implementation consists of one physical and one non-
physical entropy source, and a request has been made for 128 bits of entropy, the
concatenated bitstring might be something like:

pesi || pesz || npesi || pess || ... || npesm || pesn,
which is the concatenated output of the physical and non-physical entropy sources.

According to Method 1, only the entropy in pesi, pes, ..., pes, would be counted toward
fulfilling the 128-bit entropy request. Any entropy in npesi, ..., npesn is not counted, even
though it may be used.

According to Method 2, all of the entropy in pesi, pes», ..., pesn,and in npesi, npesa, ..., npesm
is counted.

When multiple entropy sources are used, there is no requirement regarding the order in which
the entropy sources are accessed or the number of times that each entropy source is accessed
to fulfill an entropy request. For example, if two physical entropy sources are used, a request
could be fulfilled by only one of the entropy sources because entropy is not available at the time
of the request from the other entropy source. However, the Method 1 or Method 2 criteria for
counting entropy still applies, provided that the entropy sources are independent.

2.4. Deterministic Random Bit Generators (DRBGs)

Approved DRBGs are specified in SP 800-90A [SP_800-90A]. A DRBG includes instantiate,
generate, and health-testing functions and may also include reseed and uninstantiate functions.
The instantiation of a DRBG involves acquiring sufficient randomness to initialize the DRBG to
support a targeted security strength and establish the internal state, which includes the secret
information for operating the DRBG. The generate function produces output upon request and
updates the internal state. Health testing is used to determine whether the DRBG continues to
operate correctly. Reseeding introduces fresh randomness into the DRBG’s internal state and is
used to recover from a potential (or actual) compromise (see Sec. 2.4.2). An uninstantiate
function is used to terminate a DRBG instantiation and destroy the information in its internal
state.
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2.4.1. DRBG Instantiations

A DRBG implementation consists of the software, hardware, and/or firmware that are used to
implement a DRBG design. The same implementation can be used to create multiple (logical)
“copies” of the same DRBG (e.g., for different purposes) without replicating the software,
hardware, or firmware. Each “copy” is a separate instantiation of the DRBG with its own internal
state that is accessed via a state handle (e.g., a pointer) that is unique to that instantiation (see
Fig. 1). Each instantiation may be considered a different DRBG, even though it uses the same
software, hardware, or firmware.

state handle 1 state handle 2

Internal Internal
State 1 State 2
DRBG Code
DRBG
Implementation

DRBG output

Fig. 1. DRBG instantiations

Each DRBG instantiation is initialized with input from some randomness source that establishes
the security strengths that can be supported by the DRBG. During this process, an optional but
recommended personalization string may also be used to differentiate between instantiations in
addition to the output of the randomness source. The personalization string could, for example,
include information particular to the instantiation or contain entropy collected during system
activity (e.g., from a non-validated entropy source). An implementation should allow the use of
a personalization string. More information on personalization strings is provided in [SP_800-90A].

A DRBG may be implemented to accept additional input during operation from the randomness
source (e.g., to reseed the DRBG) and/or additional input from inside or outside of the
cryptographic module that contains the DRBG. This additional input could, for example, include
information particular to a request for generation or reseeding or could contain entropy collected
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during system activity (e.g., from a validated or non-validated entropy source).> A capability to
handle additional input is recommended for an implementation.

2.4.2. Reseeding, Prediction Resistance, and Compromise Recovery

Under some circumstances, the internal state of an RBG (containing the RBG’s secret
information) could be leaked to an adversary. This might happen as the result of a side-channel
attack or a serious compromise of the computer on which the DRBG runs and may not be
detected by the DRBG or any consuming application.

In order to limit damage due to a compromised state, all DRBGs in SP 800-90A are designed with
backtracking resistance — that is, learning the DRBG’s current internal state does not provide
knowledge of previous outputs. Since all RBGs in SP 800-90C are based on the use of the DRBGs
in SP 800-90A, the RBGs specified in this document also inherit this property.

DRBGs with a reseed capability and access to an appropriate randomness source may be
reseeded at any time to allow for recovery from a potential compromise. An adversary who
knows the internal state of the DRBG before the reseed but who does not learn the seed material
used for the reseed knows nothing about its internal state after the reseed. Reseeding allows a
DRBG to recover from a leak of its internal state.

In order to reseed a DRBG at a security strength of s bits, new seed material is provided to the
DRBG from either an entropy source or an RBG. If the seed material is provided by an entropy
source, it must contain at least s bits of min-entropy. If the seed material is provided by an RBG,
the RBG must support a security strength of at least s bits, and the seed material must be at least
s bits long. Seed material from an entropy source will always be unpredictable; seed material
from an RBG will be unpredictable if that RBG has not been compromised.

A DRBG output is said to have prediction resistance when the DRBG is reseeded with at least s
bits of min-entropy immediately before the output is generated by the DRBG. The entropy for
this reseeding process needs to be provided by either an entropy source or an RBG3 construction
for prediction resistance to be provided.

When a target DRBG is reseeded using another DRBG as a randomness source, the target DRBG
is not guaranteed to have prediction resistance. If the source and target DRBGs are both
compromised, then reseeding the target DRBG from the other DRBG will allow the adversary to
know the target DRBG’s internal state. However, it is often a good idea to reseed a target DRBG
from a source DRBG. If the source DRBG was not compromised, then the target DRBG’s state will
be unknown to the adversary after the reseed.

The RBG3 construction provides prediction resistance for its outputs so that every output has full
entropy. The RBG2 construction can provide prediction resistance on its outputs when reseeding
is supported. The RBG1 construction never provides prediction resistance since it cannot be
reseeded. Prediction resistance may be provided for the root RBGC construction but not for any

5 Entropy provided in additional input does not affect the instantiated security strength of the DRBG instantiation. However, it is good practice
to include any additional entropy when available to provide more security.
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subsequent non-root RBGC construction. However, subsequent RBGC constructions can (and
generally should) be reseeded periodically.

The RBG1, RBG2, and RBGC constructions provide output with a security strength that depends
on the security strength of the DRBG instantiation within the RBG and the length of the output.
These constructions do not provide output with full entropy and must not be used by applications
that require a higher security strength than has been instantiated in the DRBG of the
construction. See Appendix A.1 for a discussion of entropy versus security strength.

Although reseeding provides fresh randomness that is incorporated into an already instantiated
DRBG at a security strength of s bits, the reseed process does not increase the DRBG’s security
strength. For example, a reseed of a DRBG that has been instantiated to support a security
strength of 128 bits does not increase the DRBG’s security strength to 256 bits when reseeding
with 128 bits of fresh entropy.

2.5. RBG Security Boundaries

An RBG exists within a conceptual RBG security boundary that should be defined with respect to
one or more threat models that include an assessment of the applicability of an attack and the
potential harm caused by the attack. The RBG security boundary must be designed to assist in
the mitigation of these threats using physical or logical mechanisms or both.

The primary components of an RBG are a randomness source, a DRBG, and health tests for the
RBG. RBG input (e.g., entropy bits and a personalization string during instantiation) shall enter
an RBG only as specified in the functions described in Sec. 2.8. The security boundary of a DRBG
is discussed in [SP_800-90A], and the security boundary for an entropy source is discussed in
[SP_800-90B]. Both the entropy source and the DRBG contain their own health tests within their
respective security boundaries.

Figure 2 shows an example RBG implemented within a FIPS-140-validated cryptographic module.
In this figure, the RBG security boundary is completely contained within the cryptographic
module boundary. The data input may be a personalization string or additional input (see Sec.
2.4.1). The data output is status information and possibly random bits or a state handle. Within
the RBG security boundary of the figure are an entropy source and a DRBG, each with its own
conceptual security boundary. An entropy-source security boundary includes a noise source,
health tests, and (optionally) a conditioning component. A DRBG security boundary contains the
chosen DRBG, memory for the internal state, and health tests. An RBG security boundary contains
health tests and an (optional) external conditioning function. The RBG2 and RBG3 constructions
in Sec. 5 and 6, respectively, use this model.

10
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Entropy Source
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RBG Security Boundary

Cryptographic Module Boundary

Fig. 2. Example of an RBG security boundary within a cryptographic module

In the case of the RBG1 construction in Sec. 4, the security boundary containing the DRBG does
not include a randomness source (shown as an entropy source in Fig. 2). For an RBGC
construction, the security boundary is the computing platform on which the tree of DRBGs is
used.

A cryptographic primitive (e.g., an approved hash function or block cipher) used by an RBG may
be used by other applications within the same cryptographic module. However, these other
applications shall not modify or reveal the RBG’s output, intermediate values, or internal state.

2.6. Assumptions and Assertions

The RBG constructions in SP 800-90C are based on the use of validated entropy sources and the
following assumptions and assertions for properly functioning entropy sources:

1. An entropy source is independent of another entropy source if their security boundaries do
not overlap (e.g., they reside in separate cryptographic modules, or one is a physical entropy
source, and the other is a non-physical entropy source).

2. Entropy sources that have been validated for conformance to SP 800-90B are used to provide
seed material for seeding and reseeding a DRBG or providing entropy for an RBG3
construction. The output of non-validated entropy sources is only used in a personalization
string or as additional input.

11
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The following assumptions and assertions pertain to the use of validated entropy sources for
providing entropy bits:

3.

An entropy source or DRBG is assumed to output no more than 2% bits. In the case of an
RBG1 construction with one or more subordinate DRBGs, the output limit applies to the total
output provided by the RBG1 construction and its subordinate DRBGs.

Each entropy-source output is assumed to have a fixed length ES /en (in bits).

Each entropy-source output is assumed to contain at least a known amount of entropy,
denoted as ES entropy, that was assessed during entropy-source implementation validation.
See [SP_800-90B] for entropy estimation.

Each entropy source has been characterized as either a physical entropy source or a non-
physical entropy source upon successful validation.

The outputs from a single entropy source can be concatenated. The entropy of the resultant
bitstring is the sum of the entropy from each entropy-source output. For example, if m
outputs are concatenated, then the length of the bitstring is m x ES len bits, and the entropy
for that bitstring is assumed to be m X ES entropy bits. This is a consequence of the model of
entropy used in [SP_800-90B].

The output of multiple independent entropy sources can be concatenated in an RBG. The
entropy in the resultant bitstring is the sum of the entropy in each independent entropy-
source output that is contributing to the entropy in the bitstring (see Methods 1 and 2 in Sec.
2.3). For example, suppose that the outputs from independent physical entropy sources A
and B and non-physical entropy source C are concatenated. The length of the concatenated
bitstring is the sum of the lengths of the component bitstrings (e.g., ES lens + ES lenp +
ES lenc).

e Using Method 1 (physical only) in Sec. 2.3, the amount of entropy in the
concatenated bitstring is ES entropys + ES entropys.

e Using Method 2 (non-physical inclusive) in Sec. 2.3, the amount of entropy in the
concatenated bitstring is the sum of all entropy in the bitstrings (i.e., ES entropy
+ ES entropys + ES _entropyc).

Under certain conditions, the output of one or more entropy sources can be externally
conditioned to provide full-entropy output. See Sec. 3.2.2.2, 6.4, and 7 for the use of this
assumption and [NISTIR_8427] for the rationale.

10. When entropy is requested, the entropy source is assumed to respond as follows:

e If the entropy source provides the requested amount of entropy, a status
indication of success is returned along with a bitstring that contains the requested
amount of entropy.

12
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e [f the entropy source detects a failure of the primary noise source (e.g., an error
from which it cannot recover), the entropy source returns a status indicating a
failure. Other output is not provided.

e [fthe entropy source indicates an error other than failure (e.g., entropy cannot be
obtained in a timely manner, or there is an intermittent problem), the entropy
source returns a status indicating that the entropy source cannot provide output
at this time. Other output is not provided.

The following assumptions and assertions pertain to the use of DRBGs and the RBG constructions:

11.

12.
13.

14.
15.

16.
17.

Full entropy bits can be extracted from the output of a DRBG specified in [SP_800-90A] (e.g.,
a hash function or block cipher) when the amount of fresh entropy inserted into the algorithm
exceeds the number of bits that are extracted by at least 64 bits. In particular, for a DRBG
that has been instantiated at a security strength of s bits, s full-entropy bits can be extracted
from the output of that DRBG when at least s + 64 bits of fresh entropy are inserted into the
DRBG immediately before the output is generated (see [NISTIR_8427] for details).

Instantiating a DRBG with security strength s from an entropy source (e.g., the entropy
source for the DRBG in an RBG2 or RBG3 construction or the initial randomness source
for the DRBG in a root RBGC construction) requires at least 3s/2 bits of min-entropy.®
Instantiating a DRBG from another RBG (e.g., the DRBG in an RBG1, RBG1 sub-DRBG, or
any non-root RBGC construction) requires at least 3s/2 bits of seed material and requires
that the DRBG providing the seed material supports at least an s-bit security strength.

One or more of the constructions provided herein are used in the design of an RBG.

All components of an RBG2 and RBG3 construction (as specified in Sec. 5 and 6) reside within
the same security boundary.

All RBGC constructions in a DRBG tree reside on the same computing platform.

The DRBGs specified in [SP_800-90A] are assumed to meet their explicit security claims (e.g.,
backtracking resistance or claimed security strength).

A sub-DRBG is considered to be part of the RBG1 construction that initializes it.

The RBG1 construction and its sub-DRBGs reside within the same security boundary.

2.7. General Implementation and Use Requirements and Recommendations

When implementing the RBG constructions specified in this recommendation, an
implementation:

1. Shall destroy intermediate values before exiting the function or routine in which they are
used,

6 See note 1 of the [Note to Readers] for a change to DRBG instantiation.
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2. Shall employ an “atomic” generate operation whereby a generate request is completed
before using any of the requested bits, and

3. Should be implemented with the capability to support a security strength of 256 bits or
to provide full-entropy output.

When using RBGs, the user or application requesting the generation of random or pseudorandom
bits should request only the number of bits required for a specificimmediate purpose rather than
generating bits to be stored for future use. Since, in most cases, the bits are intended to be secret,
the stored bits (if not properly protected) are potentially vulnerable to exposure, thus defeating
the requirement for secrecy.

2.8. General Function Calls

Functions used within this document for accessing the DRBGs, the entropy sources, and the RBG3
constructions are identified in Fig. 3.

DRBG_Instantiate (Section 2.8.1.1)
DRBG Functions DRBG_Generate (Section 2.8.1.2)
DRBG_Reseed (Section 2.8.1.3)

Generate_randomness-source_input
(Section 2.8.1.4)

General
Function Calls

Entropy Source Get_entropy_bitstring (Section 2.8.2)

RBG3(XOR)_Instantiate (Section 2.8.3.1)
RBG3(RS)_Instantiate (Section 2.8.3.1)
RBG3(XOR)_Generate (Section 2.8.3.2)
RBG3(RS)_Generate (Section 2.8.3.2)

RBG3 Construction

Fig. 3. General function calls

Each function returns a status code that must be checked (e.g., a status of success or failure by
the function).

e [f the status code indicates a success, then additional information may also be returned,
such as a state handle from an instantiate function or the bits that were requested to be
generated during a generate function.

e |f the status code indicates the failure of an RBG component, then any other output
returned shall be considered invalid.
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A distinction between a function within a DRBG or RBG and the request for the execution of that
function by a requesting entity (e.g., an application) is needed for clarity. The requesting entity
may not include an implementation of the function itself but needs to be able to request the
DRBG or RBG to execute that function to obtain random values for its use. As used in this
document, the request needs to provide some or all of the input needed for the associated
function. Relevant information output by that function needs to be returned in response to the
request.

2.8.1. DRBG Functions

[SP_800-90A] specifies several functions within a DRBG that indicate the input and output
parameters and other implementation details. In some cases, some of the input parameters
identified in SP 800-90A may be omitted, and some output information may not be returned
(e.g., because the requested information was not generated).

At least two functions are required in a DRBG:

1. Aninstantiate function that seeds the DRBG using the output of a randomness source and
other optional input (see Sec. 2.8.1.1) and

2. A generate function that produces output for use by a consuming application (see Sec.
2.8.1.2).

A DRBG may also support a reseed function (see Sec. 2.8.1.3).

A Get randomness_source_input call is used in [SP_800-90A] to request output from a
randomness source during instantiation and reseeding (see Sec. 2.8.1.4). The behavior of this
function is specified in this document based on the type of randomness source(s) used and the
RBG construction.

SP 800-90C does not explicitly discuss the use of the DRBG_Uninstantiate function specified in
[SP_800-90A] but may be required by an implementation.

2.8.1.1. DRBG Instantiation

A DRBG is instantiated prior to the generation of pseudorandom bits at the highest security
strength to be supported by the DRBG instantiation using the following function:

(status, state_handle) = DRBG _Instantiate (requested_instantiation_security strength,
personalization_string).
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requested_instantiation_security_strength —__} b status

DRBG_Instantiate

(Optional) personalization StriNQ e — State_handle

Fig. 4. DRBG_Instantiate function

The DRBG Instantiate function (shown in Fig. 4) is used to instantiate a DRBG at the
requested_instantiation_security strength using the output of a randomness source’ and an
optional but strongly recommended personalization_string to create a seed (see Sec. 2.4.1).
Details about the DRBG _Instantiate function are provided in [SP_800-90A].

If the status code returned for the DRBG _Instantiate function indicates a success (i.e., the DRBG
has been instantiated at the requested security strength), a state handle may?® be returned to
indicate the particular DRBG instance (e.g., pointing to the internal state to be used by this
instance). When provided by the DRBG_Instantiate function, the state handle is used in
subsequent calls to the DRBG (e.g., during a DRBG_Generate call) to reference the internal state
information for the instantiation. The information in the internal state includes the security
strength of the instantiation and other information that changes during DRBG execution (see
[SP_800-90A] for each DRBG design).

When the DRBG has been instantiated at the requested security strength, the DRBG will operate
at that security strength even if the security strength requested in subsequent DRBG_Generate
calls (see Sec. 2.8.1.2) is less than the instantiated security strength. For example, if a DRBG has
been instantiated at a security strength of 256 bits, all output will be generated at that strength
even when a request is received to generate bits at a strength of 128 bits.

If the status code indicates an error and an implementation is designed to return a state handle,
an invalid state handle (e.g., Null) is returned.

The DRBG_Instantiate function is requested by an application using a
DRBG _Instantiate_request:

(status, state_handle) = DRBG_Instantiate request(requested instantiation_security strength,
personalization_string).

As shown in Fig. 5, a DRBG _Instantiate request received by a DRBG results in the execution of
the DRBG’s instantiate function, providing the input parameters for that function. The
DRBG _Instantiate function within the DRBG then obtains seed _material from the randomness
sources, instantiates a DRBG, and returns the status of the process and (if there is no error) a
state_handle for the internal state to the application.

7 The randomness source provides the seed material required to instantiate the security strength of the DRBG.
8 If only one instantiation of a DRBG will ever exist, a state handle need not be returned since only one internal state will be created.
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Randomness DRBG_Instantiate_
request request
Randomness««— DRBG_Instantiate Application
Source(s) seed_ status,
material state_handle
DRBG

Fig. 5. DRBG_Instantiate request

2.8.1.2. DRBG Generation Request

Pseudorandom bits are generated after DRBG instantiation using the following function:

(status, returned bits) = DRBG_Generate (state_handle, requested number of bits,
requested_security strength, additional_input).

state_handle

requested_number_of_bits b——— status

DRBG_Generate

requested_security_strength . returned_bits

L]

(Optional) additional_input

Fig. 6. DRBG_Generate function

The DRBG_Generate function (shown in Fig. 6) is used to generate a specified number of bits.
If a suitable state handle is provided during instantiation, it is included as input to indicate the
DRBG instance to be used. The number of bits to be returned and the security strength that the
DRBG needs to support for generating the bitstring are provided with (optional) additional input.
As stated in Sec. 2.4.1, the ability to accept additional input is recommended.

The DRBG_Generate function returns status information — either an indication of success or
an error. If the returned status code indicates a success, the generated bits are returned.

o |If requested number of bits is equal to or greater than the instantiated security strength,
the security strength that the returned bits can support (if used as a key) is:

ss_key = the instantiated security strength,
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where ss_key is the security strength of the key.

o If the requested number of bits is less than the instantiated security strength, and the
returned_bits are to be used as a key, the key is capable of supporting a security strength
of:

ss_key = requested_number_of bits.

e [f the output is used to form multiple keys, the security strength that can be supported
by each key is:

ss_of each_key = min(key length, instantiated security strength).

If the status code indicates an error, the returned_bits consists of a Null bitstring. An example of
a condition in which an error indication may be returned is a request for a security strength that
exceeds the instantiated security strength for the DRBG.

Details about the DRBG_Generate function are provided in [SP_800-90A].

The DRBG_Generate function is requested by an application using a
DRBG_Generate_request:

(status, returned_bits) = DRBG_Generate_request(state_handle, requested number of bits,
requested_security strength, additional input).

As shown in Fig. 7, a DRBG_Generate request received by a DRBG results in the execution of
the DRBG’s DRBG_ Generate function, providing the input parameters for that function. The
DRBG_Generate function generates the requested number of bits and returns the status of the
process and (if there is no error) the newly generated bits.

| DRBG_Generate_request
DRBG_Generate | Application

status, returned_bits

DRBG

Fig. 7. DRBG_Generate_request
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2.8.1.3. DRBG Reseed

The reseeding of a DRBG instantiation is intended to insert additional randomness into that DRBG
instantiation (e.g., to recover from a possible compromise or to provide prediction resistance).
This is accomplished using the following function:®

status = DRBG_Reseed (state handle, additional input).

state_handle =———

| . DRBG_Reseed [~ Sfat®
(Optional) additional_input —,| o

Fig. 8. DRBG_Reseed function

A DRBG_Reseed function (shown in Fig. 8) is used to acquire at least s bits of fresh randomness
for the DRBG instance indicated by the state handle (or the only instance if no state handle has
been provided), where s is the security strength of the DRBG to be reseeded.? In addition to the
seed material provided from the DRBG’s randomness sources during reseeding, optional
additional input may be incorporated into the reseed process. As discussed in Sec. 2.4.1, the
capability for handling and using additional input is recommended. Details about the
DRBG_Reseed function are provided in [SP_800-90A].

An indication of the status is returned.
The DRBG_Reseed function is requested by an application using a DRBG_Reseed_request:
status = DRBG_Reseed_request(state_handle, additional input).

As shown in Fig. 9, a DRBG_Reseed_request received by a DRBG results in the execution of the
DRBG’s DRBG_Reseed function, providing the input parameters for that function. The
DRBG _Reseed function then obtains seed material from a randomness source, reseeds the
DRBG instantiation, and returns the status of the process to the application.

° This does not increase the security strength of the DRBG.
10 The value of s may be available in the DRBG’s internal state [SP_800-90A].
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Randomness
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st sl DRBG_Reseed Application
Source(s) ]
Seed status
material DRBG

Fig. 9. DRBG_Reseed_request

2.8.1.4. Get_randomness_source_input Call

In [SP_800-90A], a Get_randomness_source_input call is used in the DRBG_Instantiate
function and DRBG_Reseed function to indicate when a randomness source needs to be
accessed to obtain seed material. SP 800-90C provides guidelines on how the
Get_randomness_source_input call is to be implemented based on various situations (e.g., the
randomness source or the RBG construction used). Sections 3.2.2, 4, 5, 6, and 7 provide
instructions  for  obtaining input from a randomness source when the
Get_randomness_source_input call is encountered in SP 800-90A.

2.8.2. Interfacing With Entropy Sources

A single entropy source request may not be sufficient to obtain the entropy required for seeding
and reseeding a DRBG or for providing input for the exclusive-or operation in an RBG3(XOR)
construction (see Sec. 6.4.1). SP 800-90C uses the term Get_entropy_bitstring to identify the
process of obtaining the required entropy from one or more entropy sources. For convenience
in describing the RBG constructions, this process is represented as a function whose input
includes an indication of the amount of entropy that is needed from the entropy sources and
whose output includes a status report on the success or failure of the process. If the process is
successful, a bitstring containing the requested entropy is produced (see Fig. 10). The
Get_entropy_bitstring function is invoked herein as:

(status, entropy bitstring) = Get_entropy_bitstring(bits of entropy, counting method,
entropy source ID),

where bits_of entropy is the amount of entropy requested for return in the entropy bitstring,
counting method is the method to be used for counting entropy in the entropy sources (see Sec.
2.3), entropy_source _ID is an optional parameter that indicates the specific entropy source to be
used, and status indicates whether the request has been satisfied.
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GetEntropy
bits_of_entro
counting_method,
entropy_source_ID)
status
entropy_bitstring

(

bits_of_entropy e
counting_method ——1 Get_entropy_bitstring

(Optional) entropy_source_ID ————

— stafus

L, entropy_bitstring

Fig. 10. Get_entropy_bitstring function

The Get _entropy_bitstring process requests entropy from any available validated entropy
sources or the entropy source identified by entropy source ID (if present). Acquiring entropy
from non-validated entropy sources is handled separately (e.g., by a different process) to avoid
misuse. See Sec. 3.1 for additional discussion about the Get_entropy_bitstring process.

2.8.3. Interfacing With an RBG3 Construction

An RBG3 construction requires functions to instantiate its DRBG (see Sec. 2.8.3.1) and request
the generation of full-entropy bits (see Sec. 2.8.3.2). The functions needed to access the DRBG
itself are provided in Sec. 2.8.1.

2.8.3.1. Instantiating a DRBG Within an RBG3 Construction

The security strength of the DRBG within an RBG3 construction shall be the highest security
strength that can be supported by the DRBG design (see Sec. 6).

The instantiate functions for the DRBG within the RBG3 constructions use the following functions:

(status, state_handle) = RBG3(XOR) Instantiate(requested security strength,
personalization_string)

and

(status, state_handle) = RBG3(RS) Instantiate(requested security strength,
personalization_string).
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(Optional)
requested_security_strength ——, RBG3(XOR)_DRBG_Instantiate ———  stafus
(Optional) —_— or . |, state_handle
personalization_string RBG3(RS)_DRBG_Instantiate -

Fig. 11. RBG3 instantiate function

The instantiate function of the RBG3 construction (shown in Fig. 11) will result in the execution
of the DRBG’s instantiate function (provided in Sec. 2.8.1.1). A requested_security strength may
optionally be provided as an input parameter to indicate the minimum security strength to be
supported by the DRBG within the RBG3 construction. An optional but recommended
personalization_string (see Sec. 2.4.1) may be provided as an input parameter. If included as
input to the RBG3 instantiation function, the personalization string is passed to the DRBG that is
instantiated by the instantiate function (see Sec. 6.4.1.1 and 6.5.1.1).

If the returned status code indicates a success, a state handle may be returned to indicate the
DRBG instance that is to be used by the construction (e.g., the state handle points to the internal
state used by this instance of the DRBG within the RBG3 construction). If multiple instances of
the DRBG are used (in addition to the DRBG instance used by the RBG3 construction), a separate
state handle is returned for each instance. When provided, the state handle is used in subsequent
calls to that RBG (e.g., during a call to the RBG3 generate function; see Sec. 2.8.3.2) or when
accessing the DRBG directly (e.g., during a reseed of the DRBG; see Sec. 6.4.1.4). If the status
code indicates an error (e.g., entropy is not currently available or the entropy source has failed),
an invalid (e.g., Null) state handle is returned.

The instantiation of the DRBG within an RBG3(XOR) or RBG3(RS) construction is requested by an
application using an Instantiate. RBG3 DRBG_request:

(status, state_handle) = Instantiate. RBG3_DRBG_request(requested security strength,
personalization_string).

Both the requested security strength and a personalization_string are optional in the
Instantiate. RBG3_DRBG_request. An Instantiate. RBG3_DRBG_request received by an
RBG3 construction results in the execution of the DRBG’s instantiate function, as shown in Fig.
12.

If no error is detected in the request, the Instantiate RBG3_DRBG function obtains
seed material from the entropy source(s), instantiates the DRBG, and returns the status of the
process and (possibly) a state_handle for the internal state to the application.
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Fig. 12. RBG3(XOR) or RBG3(RS) instantiation request

In the case of the RBG3 construction, the (optional) requested security strength parameter in the
Instantiate. RBG3 DRBG_request should be interpreted as the minimum security strength
that is required by the consuming application if entropy-source failures are undetected.
Therefore, if the requested security strength parameter is provided as input, it is compared to
the value of the highest security strength that can be supported by the DRBG. If the
requested_security strength exceeds the security strength that can be supported by the DRBG,
then an error indication is returned as the status in response to the
Instantiate. RBG3 DRBG _request.

If no error is detected in the request, the Instantiate RBG3 DRBG function obtains
seed material from the entropy sources, instantiates the DRBG, and returns the status of the
process and (possibly) a state_handle for the internal state to the application.

2.8.3.2. Generation Using an RBG3 Construction

The RBG3(XOR) and RBG3(RS) generate function calls are essentially the same, but the function
designs are very different (see Sec. 6.4 for the RBG3(XOR)_ Generate function and Sec. 6.5 for
the RBG3(RS)_ Generate function):

(status, returned_bits) = RBG3(XOR)_Generate(state_handle, requested number of bits,
additional input)

and

(status, returned_bits) = RBG3(RS) Generate(state_handle,
requested number of bits, additional input).
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Fig. 13. RBG3 generate functions

The RBG3 generate functions are requested to use the DRBG indicated by the state handle to
generate the requested number of bits using any (optional) additional input provided. If the
returned status code from the RBG3(XOR) Generate or RBG3(RS) Generate function
indicates a success, a bitstring that contains the newly generated bits is also returned. If the
status code indicates an error (e.g., the entropy source has failed), a Null bitstring is returned as
the returned_bits.

The generation of random bits by an RBG3 construction is requested using the following:

(status, returned_bits) = RBG3_Generate_request(state_handle, requested number of bits,
requested_security strength, additional input).

If a suitable state handle was provided during instantiation (e.g., returned in response to an
Instantiate. RBG3 DRBG_request within an RBG3 instantiate function; see Sec. 2.8.3.1), it is
included in the RBG3 Generate request.
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Fig. 14. Generic RBG3 generation process
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As shown in Fig. 14, an RBG3 generate request received by an RBG3 construction results in the
execution of the RBG’s generate function, providing the input parameters for that function. The
entropy source is accessed, the requested number of bits are generated, and the status of the
process and the newly generated bits are returned to the application. The RBG3 generate process
for the RBG3(XOR) and RBG3(RS) construction are provided in Sec. 6.4 and 6.5, respectively.
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3. Accessing Entropy Source Output

The security provided by an RBG is based on the use of validated entropy sources. Section 3.1
discusses the use of the Get_entropy_bitstring process to request entropy from one or more
entropy sources. Section 3.2 discusses the conditioning of the output of one or more entropy
sources before further use by an RBG.

3.1. Get_entropy_bitstring Process

The Get_entropy_bitstring process introduced in Sec. 2.8.2 obtains entropy from one or more
validated entropy sources in whatever manner is required (e.g., polling the entropy sources,
waiting for an entropy source to provide output, or extracting bits that contain entropy from a
pool of collected bits). The method for counting entropy from one or more entropy sources is
indicated as an input parameter. An optional input parameter (when used) indicates a particular
entropy source that is to be used.

In many cases, the Get_entropy_bitstring process will need to query an entropy source (or a set
of entropy sources) multiple times to obtain the amount of entropy requested. The details of the
process are not specified in this document but are left to the developer to implement
appropriately for the selected entropy sources. However, the behavior of the
Get_entropy_bitstring process includes the following:

1. The Get_entropy_bitstring process shall only be used to access one or more validated
entropy sources. Any non-validated entropy sources shall be accessed by a separate
process to avoid possible misuse.

2. Each validated entropy source shall be independent of all other validated or non-
validated entropy sources used by the RBG.

3. The output produced from multiple entropy-source calls to a single validated entropy
source or by calls to multiple independent, validated entropy sources shall be
concatenated into a single bitstring. The entropy in the bitstring is the sum of the entropy
provided by the validated entropy sources that are to be credited for contributing entropy
to the process. For Method 1 (see Sec. 2.3), only entropy contributed by one or more
validated physical entropy sources is counted. For Method 2, the entropy from all
validated entropy sources is counted.
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4. If afailure is reported during the Get_entropy_bitstring process by any physical or non-
physical entropy source whose entropy is counted toward fulfilling an entropy request,
the Get_entropy_bitstring process shall behave as follows:!!

a. Method 1 is used for counting the entropy from one or more physical entropy

sources:

1)

2)

3)

4)

If a physical entropy source reports a failure, the error shall be reported
to the consuming application as soon as possible. Any entropy collected
by the failed entropy source during the execution of the
Get_entropy_bitstring process in which the error is reported shall not
be used. Entropy provided by a “healthy” entropy source may be used if
the entropy can be distinguished from the output of the failed entropy
source. The failed entropy source shall not be accessed to obtain entropy
until the condition that caused the failure has been corrected and
operational tests have been successfully passed.

If multiple physical entropy sources are used, the report shall identify
the entropy source that reported the failure.

If a non-physical entropy source reports a failure, the failure should be
reported to the consuming application along with a notification of the
entropy source that failed. The RBG operation may continue.

If all physical entropy sources report failures, the RBG operation shall be
terminated (i.e., stopped). The RBG must not be returned to normal
operation until at least one validated physical entropy source has had its
failure corrected and its operational tests have been successfully passed.
The output of other entropy sources that have not successfully passed
operational tests shall not be used.

If any physical entropy source is still “healthy” (e.g., the entropy source
has not reported a failure), the RBG operations may continue using any
healthy physical entropy source.

b. Method 2 in Sec. 2.3 is used to count the entropy from one or more non-physical
and/or physical entropy sources:

1)

A failure from any entropy source shall be reported to the consuming
application. If multiple entropy sources are used, the report shall identify
the entropy source that reported the failure. This failed entropy source
shall not be accessed to obtain entropy until the condition that caused
the failure has been corrected and operational tests have been
successfully passed.

11 A bitstring containing entropy should not have been provided by that entropy source when a failure was reported (see Sec. 2.6, item 10).
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5.

2) If all entropy sources have reported failures, the RBG operation shall be
terminated. The RBG must not be returned to normal operation until the
conditions that caused the failures have been corrected and operational
tests have been successfully passed.

3) If any physical or non-physical entropy source is still “healthy” (e.g., the
entropy source has not reported a failure), RBG operations may continue
using any healthy entropy sources.

The Get_entropy_bitstring process shall not provide output for RBG operations unless
the bitstring contains sufficient entropy to fulfill the entropy request.

3.2. External Conditioning

Entropy bits produced by one or more entropy sources are required for seeding and reseeding
the DRBG in the RBG constructions specified in this document. Whether or not entropy-source
output was conditioned within a validated entropy source prior to output, the entropy provided
by the validated entropy sources may need to be conditioned prior to subsequent use by the
RBG. For example:

The entropy source(s) within an RBG2 or RBG3 construction (see Sec. 5 or 6, respectively)
is used to seed and reseed its DRBG. The entropy source(s) may, for example, produce
bitstrings that are too long for the specific DRBG implementation.

Seed material with full entropy is required when the CTR_DRBG is implemented without
a derivation function and the entropy source(s) is used for seeding and reseeding the
DRBG. If the entropy source(s) does not provide full-entropy output, the output needs to
be conditioned prior to subsequent use by the DRBG to obtain full-entropy input for the
DRBG.

When the root RBGC construction in a DRBG tree uses a full-entropy source as its initial
randomness source (see Sec. 7), the output from the entropy source may need to be
conditioned to provide a full-entropy bitstring for seeding and reseeding the root (i.e., the
entropy source itself may not provide full-entropy output).

If both physical and non-physical entropy sources are used to provide seed material, the
entropy within the concatenated bitstring produced by these sources may not be
distributed uniformly throughout the bitstring.

Since this conditioning is performed outside of an entropy source, the output is said to be
externally conditioned. The conditioning function operates on a bitstring that is produced by the
Get_entropy_bitstring process to produce an entropy bitstring. Reasons to perform
conditioning might include:

Reducing the bias in the entropy bitstring,

Distributing entropy uniformly across the entropy bitstring,
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e Reducing the length of the entropy bitstring and compressing the entropy into a smaller
bitstring, and/or

e Ensuring the availability of full-entropy bits.

When external conditioning is performed, a vetted conditioning function listed in [SP_800-90B]
shall be used. Additional vetted conditioning functions may be approved in the future (see
[SP800_90WebSite]).

The conditioning functions operate on bitstrings that are obtained using the
Get_entropy_bitstring process (see Section 3.1) to obtain an entropy bitstring from one or more
entropy sources.

The following format is used in Sec. 3.2.2 for a conditioning function call:
conditioned output_block = Conditioning_function(input parameters),

where the input _parameters for the selected conditioning function are discussed in Sec. 3.2.1.2
and 3.2.1.3, and conditioned_output_block is the output returned by the conditioning function.
The length of the conditioned output block is the length of the output block of the conditioning
function used and indicated as output len in subsequent sections.

3.2.1.1. Keys Used in External Conditioning Functions

The HMAC, CMAC, and CBC-MAC vetted conditioning functions require the input of a Key
of a specific length (keylen), depending on the conditioning function and its primitive. Unlike
other cryptographic applications, keys used in these external conditioning functions do not
require secrecy to accomplish their purpose, so they may be hard-coded, fixed, or all zeros.

For the CMAC and CBC-MAC conditioning functions, the length of the key shall be an
approved key length for the block cipher used (e.g., keylen =128, 192, or 256 bits for AES).

For the HMAC conditioning function, the length of the key shall be equal to the length of the
hash function’s output (i.e., output len).

Table 2. Key lengths for the hash-based conditioning functions

Length of the output (output_len)

Hash Function sl e e

SHA-256, SHA-512/256, SHA3-256 256
SHA-384, SHA3-384 384
SHA-512, SHA3-512 512

Using randomly chosen keys (e.g., by obtaining bits directly from the entropy source and inserting
them into the key or by providing entropy-source bits to a conditioning function with a fixed key
to derive the new key) may provide some additional security in case the input is more predictable
than expected. Any entropy used to randomize the key shall not be used for any other purpose.
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3.2.1.2. Hash Function-Based Conditioning Functions

Conditioning functions may be based on approved hash functions. One of the following calls shall
be used for external conditioning when the conditioning function is based on a hash function:

1. Using an approved hash function (as specified in [FIPS_180] or [FIPS_202]) directly:
conditioned output_block = Hash(entropy bitstring),
where the hash function operates on the entropy_bitstring provided as input.
2. Using HMAC (as specified in [SP_800_224]) with an approved hash function:
conditioned output _block = HMAC(Key, entropy bitstring),

where HMAC operates on the entropy bitstring using a Key that is determined as
specified in Sec. 3.2.1.1.

In both cases, the length of the conditioned output is equal to the length of the output block of
the selected hash function (i.e., output len).

3. Using Hash_df, as specified in SP 800-90A:
conditioned output_block = Hash_df(entropy bitstring, output len),

where the derivation function operates on the entropy bitstring provided as input to
produce a bitstring of output len bits.

3.2.1.3. Block Cipher-Based Conditioning Functions

Conditioning functions may be based on approved block ciphers. TDEA shall not be used as the
block cipher.

For block-cipher-based conditioning functions, one of the following calls shall be used for
external conditioning:

1. Using CMAC (as specified in [SP_800-38B]) with an approved block cipher:
conditioned_output_block = CMAC(Key, entropy_bitstring),

where CMAC operates on the entropy bitstring using a Key that is determined as
specified in Sec. 3.2.1.1.

2. Using CBC-MAC (specified in [SP_800-90B]) with an approved block cipher:
conditioned_output block = CBC-MAC(Key, entropy bitstring),

where CBC-MAC operates on the entropy bitstring using a Key that is determined as
specified in Sec. 3.2.1.1.
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CBC-MAC shall only be used as an external conditioning function under the following
conditions:

1. Thelength of the inputis an integer thatis a multiple of the size of the block cipher
(e.g., a multiple of 128 bits for AES). No padding is done by CBC-MAC itself.*?

2. If the CBC-MAC conditioning function is used for the external conditioning of an
entropy source output for CTR _DRBG instantiation or reseeding:

e A personalization string shall not be used during instantiation.

e Additional input shall not be used during the reseeding of the
CTR _DRBG but may be used during the generate process.

CBC-MAC is not approved for any use other than in an RBG.
3. Using the Block_cipher_df as specified in [SP_800-90A] with an approved block cipher:
conditioned_output_block = Block _cipher_df(entropy bitstring, block length),

where Block_cipher_df operates on the entropy bitstring using a key that is specified
within the function, and the block length is defined for the block cipher (e.g., 128 for
AES).

In all three cases, the length of the conditioned output is equal to the length of the output block
(e.g., 128 bits for AES).

3.2.2. Using a Vetted Conditioning Function

There are several cases in which the use of an external conditioning function is required to
prepare the entropy-source output for use by a DRBG mechanism. Either the procedure in
Section 3.2.2.1 or 3.2.2.2 shall be used for external conditioning. The procedure in Section 3.2.2.1
obtains entropy from one or more entropy sources and subsequently processes it using an
external conditioning function when full-entropy output is not required from the conditioning
function (e.g., the conditioning function is used to compress the entropy into a shorter bitstring
or to distribute the entropy across the output). Section 3.2.2.2 provides a procedure for obtaining
full entropy from the entropy source(s) when needed. When full entropy is not required, either
procedure may be used.

3.2.2.1. External Conditioning When Full Entropy is Not Required

The Get_conditioned_input procedure specified below iteratively requests entropy from the
Get_entropy_bitstring process (represented as a Get_entropy_bitstring procedure; see Sec.
2.8.2 and 3.1) and distributes the entropy in the newly acquired entropy bitstring across the
conditioning function’s output block. The output of the Get_conditioned_input procedure is the
concatenation of the conditioning function output blocks. The entire output of the

12 Any padding required could be done before submitting the entropy_bitstring to the CBC-MAC function.
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Get_conditioned_input procedure shall be provided as input to the DRBG mechanism (i.e., the
output of the Get_conditioned_input function shall not be truncated).
Let output len be the length of the conditioning function’s output block.
Get_conditioned_input:
Input:
1. n: The amount of entropy to be obtained.

2. counting method: The counting method to be used (i.e., either Method 13 or Method
2, as described in Sec. 2.3).

3. target entropy source: An optional parameter that indicates the specific entropy
source to be queried. If the target entropy source is not indicated, output is to be
obtained from any validated entropy sources producing output that have not
reported a failure.

Output:
1. status: The status returned from the Get_conditioned_input process.

2. Conditioned entropy bitstring: A bitstring containing conditioned entropy or the Null
string.

Process:
1. v= |_n/0utput_len—|.
2. w=[nwvl
3. Conditioned _entropy bitstring = the Null string.
4, Fori=1,..,v

4.1  (status, entropy bitstring) = Get_entropy_bitstring(w, counting method,
target entropy source).

4.2 If (status # SUCCESS), then return (status, Null).
4.3 conditioned output block = Conditioning_function(input parameters).

4.4 Conditioned _entropy bitstring = Conditioned_entropy bitstring ||
conditioned output block.

5. Return (SUCCESS, Conditioned_entropy bitstring).

Step 1 determines the number of output blocks (v) required to hold the requested amount of
entropy.

13 With Method 1, entropy is only counted from validated physical entropy sources.
14 With Method 2, entropy is counted from both physical and non-physical entropy sources.
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Step 2 determines the amount of entropy (w) that will be requested for each of the v output
blocks.

Step 3 sets the bitstring into which conditioned output will be collected (i.e.,
Conditioned_entropy bitstring) to the Null string.

Step 4 is iterated v times to obtain and condition the requested amount of entropy for each
output block of the conditioning function.

e Step 4.1 requests w bits of entropy from the entropy sources using the
Get_entropy_bitstring call (see Sec. 2.8.2 and 3.1) and indicates the method to be used
for counting entropy (i.e., Method 1% or Method 2% in Sec. 2.3) and (if provided as input)
the only entropy source to be used (indicated by the target entropy source input
parameter).

e Step 4.2 checks whether the status returned in step 4.1 indicated a success. If the status
did not indicate a success, the status is returned with a Null string as the
Conditioned_entropy bitstring.

e Step 4.3 invokes the conditioning function for processing the entropy bitstring obtained
from step 4.1 to distribute the entropy throughout the conditioning function’s output
block. The input parameters for the selected Conditioning_function are specified in Sec.
3.2.1.2 and 3.2.1.3 or at [SP800_90WebSite], depending on the conditioning function
used.

e Step 4.4 concatenates the conditioned output block from step 4.3 to the
Conditioned _entropy bitstring.

e If all of the requested entropy has not been obtained and conditioned, then go to step
4.1 with an updated value of v.

Step 5 returns a status of SUCCESS and the value of Conditioned_entropy bitstring.

3.2.2.2. Conditioning Function to Obtain Full-Entropy Bitstrings

The Get_conditioned_full_entropy_input procedure specified below produces a bitstring with
full entropy using a vetted conditioning function whenever a bitstring with full entropy is
required. This process is unnecessary if full-entropy output is provided by the entropy sources.

The approach used by this procedure is to acquire sufficient entropy from the entropy sources to
iteratively produce output len bits with full entropy in the conditioning function’s output block,
where output len is the length of the output block. The amount of entropy required for each use
of the conditioning function is output len + 64 bits (see item 11 in Sec. 2.6). This process is
repeated until the requested number of full-entropy bits has been produced.

15 With Method 1, entropy is only counted from validated physical entropy sources.
16 With Method 2, entropy is counted from both physical and non-physical entropy sources.
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The Get_conditioned_full_entropy_input procedure obtains entropy from either 1) a
designated entropy source (if a specific entropy source is identified as the target _entropy source)
or 2) any available entropy source using the Get_entropy_bitstring process (represented as a
Get_entropy_bitstring procedure; see Sec. 2.8.2 and 3.1) and conditions the newly acquired
entropy_bitstring to provide an n-bit string with full entropy.

Get_conditioned_full entropy input:
Input:
1. n: The amount of entropy to be obtained.

2. counting method: The counting method to be used (i.e., either Method 1 or Method
2, as described in Sec. 2.3).

3. target entropy source: An optional parameter that indicates the specific entropy
source to be queried. If the target entropy source is not indicated, output is to be
obtained from any validated entropy source producing output that has not reported
a failure.

Output:
1. status: The status returned from the Get_conditioned_full entropy input process.
2. Full entropy bitstring: An n-bit string with full entropy or the Null string.
Process:
1. temp =the Null string.
2. ctr=0.
3. While ctr <mn, do

3.1 (status, entropy bitstring) = Get_entropy_bitstring(output len + 64,
counting method, target _entropy source).

3.2 If (status # SUCCESS), then return (status, Null).
33 conditioned output block = Conditioning_function(input parameters).
3.4  temp = temp || conditioned output block.
3.5 ctr = ctr + output_len.
4. Full entropy bitstring = leftmost(temp, n).
5. Return (SUCCESS, Full entropy bitstring).

Steps 1 and 2 initialize the temporary bitstring (temp) for storing the full-entropy bitstring being
assembled and the counter (ctr) that counts the number of full-entropy bits produced.

Step 3 obtains and processes the entropy for each iteration.
e Step3.1requestsoutput len + 64 bits of entropy from the validated entropy sources using

the indicated method (i.e., Method 1 or Method 2) for counting entropy and (if present)
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using only the entropy source identified as the farget entropy source. If the entropy
source to be used is not identified, the entropy is to be obtained from all available entropy
sources that have not reported a failure.

Step 3.2 checks whether the status returned in step 3.1 indicated a success. If the status
did not indicate a success, the status is returned along with a Null bitstring as the
Full entropy bitstring.

Step 3.3 invokes the conditioning function for processing the entropy bitstring obtained
from step 3.1. The input parameters for the selected Conditioning function are
specified in Sec. 3.2.1.2 or 3.2.1.3 or at [SP800 90WebSite], depending on the
conditioning function used.

Step 3.4 concatenates the conditioned output block received in step 3.3 to the temporary
bitstring (temp).

Step 3.5 increments the counter for the number of full-entropy bits that have been
produced so far.

If less than n full-entropy bits have been produced, repeat the process starting at step 3.1.

Step 4 truncates the full-entropy bitstring to » bits.

Step 5 returns an n-bit full-entropy bitstring as the Full entropy bitstring.
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4. RBG1 Construction Based on RBGs With Physical Entropy Sources

An RBG1 construction provides a source of cryptographic random bits from a device that has no
internal randomness source. Its security depends entirely on its DRBG being instantiated securely
from an RBG that resides outside of the device and has access to a physical entropy source.

The DRBG in an RBG1 construction is instantiated (i.e., seeded) only once using either an RBG2(P)
construction (see Sec. 5), an RBG3 construction (see Sec. 6), or (under certain conditions) the
root of an RBGC tree (see Sec. 7). Since a randomness source is not available after DRBG
instantiation, the DRBG within an RBG1 construction cannot be reseeded (e.g., prediction
resistance and recovery from a compromise cannot be provided).

An RBG1 construction may be useful for constrained devices in which an entropy source cannot
be implemented or in any device in which access to a suitable source of randomness is not
available after instantiation. Since the DRBG within an RBG1 construction cannot be reseeded,
the use of the DRBG is limited to the DRBG’s seedlife (see [SP_800-90A]).

Optionally, subordinate DRBGs (i.e., sub-DRBGs) may be implemented for implementations that
use flash memory for the internal state (e.g., when the number of write operations to the
memory is limited, resulting in short device lifetimes) or when there is a need to use different
DRBG instantiations for different purposes (see Sec. 4.2).

As shown in Fig. 15, an RBG1 construction consists of a DRBG contained within a DRBG security
boundary in one cryptographic module and an RBG (serving as a randomness source) contained
within a separate cryptographic module from that of the RBG1 construction. For convenience
and clarity, the DRBG within the RBG1 construction will sometimes be referred to as DRBG;. The
required health tests are not shown in the figure.
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Fig. 15. Generic structure of the RBG1 construction

The RBG for instantiating DRBG; must be either 1) an RBG2(P) construction that supports a
reseed request from the RBG1 construction (see Sec. 5), 2) an RBG3 construction (see Sec. 6), or
3) the root of a tree of RBGC constructions with an RBG3 construction or a physical full-entropy
source as the initial randomness source (see Sec. 7). The root is immediately reseeded before
generating the seed material. A physically secure channel between the randomness source and
DRBG; is used to securely transport the seed material required for DRBG instantiation. An
optional recommended personalization string and optional additional input may be provided
from within the DRBG’s cryptographic module or from outside of that module (see Sec. 2.4.1).

An external conditioning function is not needed for this design because the output of the RBG
used as the randomness source has already been cryptographically processed. The output from
an RBG1 construction may be used within the cryptographic module (e.g., to seed a sub-DRBG,
as specified in Sec. 4.3) or by an application outside of the RBG1 security boundary. The security
strength of the output produced by the RBG1 construction is the minimum of the security
strengths provided by the DRBG within the construction and the RBG used as the randomness
source to seed the DRBG. Examples of RBG1 and sub-DRBG constructions are provided in
Appendices B.2 and B.3, respectively.

4.1. Conceptual Interfaces

Interfaces to the DRBG within an RBG1 construction include requests for instantiating the DRBG
and generating pseudorandom bits (see Sec. 4.2.1 and 4.2.2, respectively). A reseed of the RBG1

37



NIST SP 800-90C Recommendation for RBG Constructions
September 2025

construction cannot be performed because the randomness source is not available after
instantiation.

4.1.1. Instantiating the DRBG in the RBG1 Construction

The DRBG within the RBG1 construction (DRBG1) may be instantiated by an application at any
security strength possible for the DRBG design using the DRBG_Instantiate_request discussed
in Sec. 2.8.1.1:

(status, RBGI _DRBGI state_handle) =
DRBG _Instantiate request (s, personalization_string).

The DRBG Instantiate request received by DRBG: from an application shall result in the
execution of the DRBG _Instantiate function within DRBG; (see Sec. 2.8.1.1):

(status, RBG1 _DRBGI state handle) =
DRBG _Instantiate(s, personalization_string).

The status returned by the DRBG_Instantiate function shall be returned to the requesting
application in response to the DRBG _Instantiate request. RBG! DRBGI state handle is the
state handle for DRBG:'s internal state; the state handle may be Null.

The DRBG _Instantiate function within DRBG; shall use an external RBG (i.e., the randomness
source) to obtain the seed material necessary for establishing the DRBG’s security strength.

In SP 800-90A, the DRBG Instantiate function specifies the use of a
Get_randomness_source_input call to obtain seed material from the randomness source for
instantiation (see Sec. 2.8.1.4 in this document and [SP_800-90A]). For an RBG1 construction, an
approved external RBG2(P), RBG3, or root RBGC construction must be used as the randomness
source (see Sec. 5, 6, and 7, respectively).

If the randomness source is an RBG2(P) construction (see Fig. 16), the RBG2(P) construction must
be reseeded using its internal entropy source(s) before generating bits to be provided to DRBG3.
The Get_randomness_source_input call in the DRBG_Instantiate function of DRBG; shall be
replaced by a reseed request followed by a generate request to the RBG2(P) construction that is
serving as the randomness source (see steps 1a and 2a below).
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Fig. 16. Instantiation using an RBG2(P) construction as a randomness source

If the randomness source is an RBG3 construction (as shown in Fig. 17), the
Get_randomness_source_input call in the DRBG_Instantiate function of DRBG: shall be
replaced by the appropriate call to the RBG3 generate function (see Sec. 2.8.3.2, 6.4.1.2, and
6.5.1.2 and steps 1b and 2b below).

DRBG_
RBG3_Generate_ Instantiate_

RBG3(...) le request . request .
Construction | status, DRBG; | Application
(with DRBGg) seed_material ] status,

state_handle)
Randomness
Source RBG1
Cryptographic Module Cryptographic Module

Fig. 17. Instantiation using an RBG3(XOR) or RBG3(RS) construction as a randomness source

If the randomness source for RBG1 is the root of a tree of RBGC constructions (see Fig. 18), its
initial randomness source must be an RBG3 construction or a physical full-entropy source (see
Sec. 7) that is used to reseed the root before the root generates seed material for the RBG1
construction. The Get_randomness_source_input call in the DRBG_Instantiate function of
DRBG; shall be replaced by a reseed request and a generate request that is sent to the root RBGC
construction (see Sec. 7.2.1.2).
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Fig. 18: Instantiation using the root of a tree of RBGC constructions as a randomness source

Let DRBG; be the DRBG to be instantiated within the RBG1 construction, and let DRBGr be the
DRBG used within the randomness source (i.e., an RBG2(P), RBG3, or RBGC construction). Let s
be the security strength to be instantiated for DRBGi. DRBG_ Reseed request and
DRBG_Generate request are used by an application to request the generation and reseed of
the DRBG within the randomness source (i.e., DRBGRr). Let DRBGR state handle be the state
handle for DRBGr. Let keylen be the length of the key used by the cryptographic primitive, and
let output len be the length of the cryptographic primitive’s output block.

Upon receiving the instantiation request from the application, DRBG; is instantiated as follows:

1. When an RBG1 construction is instantiating a CTR_DRBG without a derivation function,
keylen + output len bits shall be obtained from the randomness source as follows:

a. Ifthe randomness source is an RBG2(P) or root RBGC construction (see Fig. 16 and
Fig. 18, respectively), the Get randomness source input call in the
DRBG _Instantiate function of DRBG; is replaced by a request to reseed DRBGr
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(i.e., the DRBG within the RBG2(P) or root RBGC construction) and followed by a
request to generate bits:

o status = DRBG_Reseed_request(DRBGR state handle,
additional input).

o If (status # SUCCESS), then return (status, Invalid state handle).

o (status, seed material) =
DRBG_Generate_request(DRBGR_state_handle,
keylen + output len, s, additional input).

o If (status # SUCCESS), then return (status, Invalid state handle).

DRBG_Reseed request and DRBG_Generate request are used here to
indicate requests for the DRBG within the randomness source (DRBGg) to execute
the DRBG_Reseed function and DRBG_Generate function within DRBGr (see
Sec. 2.8.1.3, and 2.8.1.2, respectively).’

b. If the randomness source is an RBG3(XOR) or RBG3(RS) construction (see Fig. 17),
the Get_randomness_source_input call in the DRBG_Instantiate function of
DRBG; is replaced by a request for the generation of random bits:

o (status, seed_material) =
RBG3_Generate _request(DRBGr_state handle,
keylen + output len, additional input).

o If (status # SUCCESS), then return (status, Invalid state_handle).

RBG3_Generate_request is intended to result in the execution of the
DRBG_Generate function in DRBGr (see Sec. 2.8.3.1).18

2. When an RBG1 construction is instantiating any other DRBG (including a CTR_DRBG
with a derivation function?'?), 3s/2 bits shall be obtained from a randomness source that
provides a security strength of at least s bits.

a. If the randomness source is an RBG2(P) or root RBGC construction (see Fig. 16 and
Fig. 18, respectively), the Get randomness source input call in DRBG;: is
replaced by a request to reseed DRBGg, followed by a request to generate bits:

o status = DRBG_Reseed_request(DRBGR state handle,
additional input).
o If (status # SUCCESS), then return (status, Invalid _state_handle).

o (status, seed material) =
DRBG_Generate_request(DRBGR_state _handle,

17 See Sec. 5.2.3 and 5.2.2 for the handling of the reseed and generate requests by the RBG2(P) construction and Sec. 7.2.3 and 7.2.2 for the
handling of the reseed and generate requests by the root RBGC construction.

18 See Sec. 6.4.1.2 and 6.5.1.2 for the handling of the generate request by the RBG3(XOR) and RBG3(RS) constructions, respectively.

19 Although the use of a derivation function with the CTR_DRBG is allowed in an RBG1 construction, it is not needed to process output from
the randomness source, since the randomness source is an RBG2(P), RBG3, or root RBGC construction.
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3s/2, s, additional input).
o If (status # SUCCESS), then return (status, Invalid _state_handle).

DRBG_Reseed_request and DRBG_Generate_request are used here to
indicate requests for the DRBG within the randomness source (DRBGg) to execute
the DRBG_Reseed function and DRBG_Generate function within DRBGr (see
Sec. 2.8.1.3 and 2.8.1.2, respectively).?°

b. If the randomness source is an RBG3(XOR) or RBG3(RS) construction (see Fig. 17),
the Get_randomness_source_input call in DRBG: is replaced by a request for the
generation of random bits:

o (status, seed material) =
RBG3 DRBG_Generate request(DRBGr_state _handle, 3s/2,
additional input).

o If (status # SUCCESS), then return (status, Invalid state handle).

RBG3_DRBG_Generate request is intended to result in the execution of the
DRBG_Generate function in DRBGk (see Sec. 2.8.3.1).%!

4.1.2. Requesting Pseudorandom Bits

As discussed in Sec. 2.8.1.2, an application requests the RBG1 construction to generate bits as
follows:

(status, returned bits) = DRBG_Generate _request(RBGI DRBGI state handle,
requested_number_of bits, s, additional input).

The DRBG_Generate_request results in the execution of the DRBG_Generate function within
DRBGa:

(status, returned_bits) = DRBG_Generate(RBGI DRBGI state handle,
requested number of bits, s, additional input).

The status returned by the DRBG_Generate function shall be returned to the requesting
application. If the status indicates a successful process, the returned bits shall also be provided
to the application in response to the request.

4.2. Using an RBG1 Construction With Subordinate DRBGs (Sub-DRBGS)

Figure 19 depicts an example of the use of optional subordinate DRBGs (sub-DRBGs) within the
security boundary of an RBG1 construction. The DRBGs used by the RBG1 construction and each
sub-DRBG shall use different instantiations of the same DRBG implementation (i.e., each
instantiation is considered as a separate DRBG and has a different internal state (see Sec. 2.4.1).

20 See Sec. 5.2.3 and 5.2.2 for the handling of the reseed and generate requests by the RBG2(P) construction.
21 See Sec. 6.4.1.2 and 6.5.1.2 for the handling of the generate request by the RBG3(XOR) and RBG3(RS) constructions, respectively.
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The DRBG used by the RBG1 construction is used as the randomness source to provide separate
outputs to instantiate each of the sub-DRBGs.

RBG1 Security Boundary

RBG1
(Randomness
source-- with

DRBG;)

Sub-DRBG Sub-DRBG
i n

Fig. 19. RBG1 construction with sub-DRBGs

Let DRBG1 be the DRBG used by the RBG1 construction itself, with RBGI DRBGI1 state handle
used as the state handle for the internal state of DRBG1. Let sub-DRBGx_state handle be the
state handle for the internal state of sub-DRBGx.

The sub-DRBGs have the following characteristics:
1. Only one layer of sub-DRBGs is allowed.
2. Sub-DRBG outputs are considered as outputs of the RBG1 construction.

3. The security strength that can be provided by a sub-DRBG is no more than the security
strength of DRBG; (i.e., the DRBG of the RBG1 construction that is serving as the
randomness source for the sub-DRBG).

4. Sub-DRBGs cannot provide output with full entropy.

5. The number of sub-DRBGs that can be instantiated is limited only by the practical
considerations associated with the implementation or application.

4.2.1. Instantiating a Sub-DRBG

An application may request the RBG1 construction to instantiate a sub-DRBG. Let
RBGI DRBGI state handle be the state handle for the DRBG used by the RBG1 construction.
The following represents the form of the application’s request for sub-DRBG instantiation:

(status, sub-DRBGx_state _handle) =
Instantiate_sub-DRBG_request(RBG! DRBGI state handle, s, personalization_string).
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DRBG: executes an Instantiate_sub-DRBG function. The status of the process is returned to the
application with a state handle if the status indicates success.
The value of max_personalization_string length is specified in [SP_800-90A] for the DRBG type.
Instantiate_sub-DRBG:
Input:
1. s:The requested security strength for the sub-DRBG.
2. (Optional) personalization_string: An input that provides personalization information.
Output to a consuming application:

1. status: The status returned from the Instantiate_sub-DRBG function (see steps 2, 3,
6, and 10). If any status other than SUCCESS is returned, an invalid _state handle shall
be returned.

2. sub-DRBGx_state handle: Used to identify the internal state for this sub-DRBG
instantiation in subsequent calls to the generate function (see Sec. 4.3.2).

Information retained within the DRBG boundary after instantiation:
The internal states for DRBG1 and the sub-DRBG instantiation.
Process:

1. Obtain the current internal state of DRBG; to get its instantiated security strength
(shown as RBGI DRBGI security strength in step 2).

2. If (s > RBGI DRBGI security strength), then return (ERROR FLAG,
Invalid_state_handle).

3. If the length of the personalization string > max_personalization_string length,
return (ERROR_FLAG, Invalid state_handle).

4. If (s>192), thens =256
Else, if (s < 128), then s = 128.
Else, s = 192.

Comment: See the instructions below for the value
of number of bits to generate.

5. (status, seed material) = DRBG_Generate(RBGI DRBGI state handle,
number_of bits to_generate, s).

6. If (status # SUCCESS), return (status, Invalid_state handle).

7. working state values = Instantiate_algorithm(seed material,
personalization_string).

8. Get the sub-DRBGx state handle for a currently empty internal state. If an empty
internal state cannot be found, return (ERROR FLAG, Invalid state handle).
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9. Set the internal state for the new instantiation (e.g.,, as indicated by
sub-DRBGx_state_handle):
9.1 Record the working state_values returned from step 7.
9.2 Record any administrative information (e.g., the value of s).

10. Return (SUCCESS, sub-DRBGX state handle).

Step 1 obtains DRBG1’s security strength. A description of the internal state for each DRBG type
is provided in [SP_800-90A].

Steps 2 and 3 check the validity of the requested security strength s and the length of any
personalization string provided for the instantiation request. An ERROR FLAG and an invalid
state handle are returned to the requesting application if either is unacceptable.

Step 4 sets the security strength to be established for the sub-DRBG instantiation based on the
requested security strength s.

Step 5 requests the generation of seed material at a security strength of s bits using DRBG1. The
number_of bits to generate depends on DRBG1's type:

e When CTR DRBG without a derivation function is implemented for DRBGy,
number _of bits to_generate = keylen + output len.

e Otherwise, number of bits to generate = 3s/2.

Step 6 checks the status returned from step 5. If a status of SUCCESS is not returned, the status
and an invalid state handle are returned to the requesting application.

Step 7 invokes the appropriate instantiate algorithm in [SP_800-90A] for DRBG1’s design. Values
for the working state portion of the sub-DRBG’s internal state are returned by the instantiate
algorithm.

Step 8 assigns a state handle for an available internal state. If no internal state is currently
available, an ERROR_FLAG and invalid state handle are returned to the requesting application.

Step 9 enters the required values into the assigned internal state for the sub-DRBG.
Working state values will need to be parsed into the appropriate values used for the DRBG
algorithm in SP 800-90A.

Step 10 returns a status of SUCCESS and the assigned state handle to the requesting application.

4.2.2. Requesting Random Bits From a Sub-DRBG

As discussed in Sec. 2.8.1.2, pseudorandom bits may be requested from a sub-DRBG by an
application:

(status, returned bits) = DRBG_Generate request(sub DRBGx_state handle,

requested_number of bits, requested_security strength,
additional input).
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The generate request received by the sub-DRBG shall result in the execution of the
DRBG_Generate function:

(status, returned_bits) = DRBG_Generate(sub DRBGx_state_handle,
requested number of bits, requested security strength,
additional input).

The status returned by the DRBG_Generate function shall be returned to the application in
response to the request. If the process is successful, the newly generated bits (returned_bits)
shall also be provided to the application in response to the DRBG_Generate request.

4.3. Requirements

4.3.1. RBG1 Construction Requirements

An RBG1 construction being instantiated has the following testable requirements (i.e., capable
of being tested by the FIPS 140 validation labs):

1. An approved DRBG from [SP_800-90A] whose components can provide the targeted
security strength for the RBG1 construction shall be employed.

2. The components of the RBG1 construction shall be successfully validated for compliance
with [SP_800-90A], SP 800-90C, [FIPS_140], and the specification of any other approved
algorithm used within the RBG1 construction, as applicable.

The RBG1 construction shall not produce any output until it is instantiated.

The RBG1 construction shall not include a capability to be reseeded.

The RBG1 construction shall not permit itself to be instantiated more than once.??

The randomness source shall be in a separate device from that of the RBG1 construction.

For CTR_DRBG with a derivation function, Hash DRBG, or HMAC DRBG, 3s/2 bits
shall be obtained from a randomness source, where s is the targeted security strength for
the DRBG used in the RBG1 construction (DRBG3).

N o u rWw

8. For CTR_DRBG without a derivation function in the RBG1 construction, keylen +
output_len bits shall be obtained from the randomness source, where keylen is the length
of the key used by the block cipher used in the RBG1 construction (DRBG3).

9. An implementation of an RBG1 construction shall verify that the internal state has been
updated before the generated output is provided to the requesting entity.

10. The RBG1 construction shall not provide output for generating requests that specify a
security strength greater than the instantiated security strength of its DRBG.

22 While it is technically possible to reseed the DRBG, doing so outside of very controlled conditions (e.g., “in the field”) might result in seeds
with less than the required amount of randomness.
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11.

12.

13.

If the RBG1 construction can be used to instantiate a sub-DRBG, the RBG1 construction
may directly produce output for an application in addition to instantiating a sub-DRBG.

Seed material produced by the RBG1 construction to instantiate a sub-DRBG shall not be
used to instantiate other sub-DRBGs nor be provided directly to a consuming application.

If the seedlife of the DRBG within the RBG1 construction (DRBG3) is ever exceeded or a
health test of the DRBG fails, the use of the RBG1 construction shall be terminated.

The non-testable requirements for the RBG1 construction are listed below. If these requirements
are not met, no assurance can be obtained about the security of the implementation.

14.

15.

16.

17.

18.

19.

The randomness source for the DRBG within an RBG1 construction (DRBG;1) must be
either 1) a validated RBG2(P) construction with support for reseeding requests, 2) a
validated RBG3 construction, or 3) a root RBGC construction that has support for reseed
requests using either an RBG3 construction or a physical full-entropy source as its initial
randomness source.

The randomness source must provide the requested number of bits at a security strength
of s bits or higher, where s is the targeted security strength for the DRBG within the RBG1
construction (DRBG1).

The specific output of the randomness source (or portion thereof) that is used for the
instantiation of an RBG1 construction must not be used for any other purpose, including
for seeding a different instantiation.

If an RBG2(P) construction is used as the randomness source for the RBG1 construction,
the RBG2(P) construction must be reseeded immediately before generating bits for each
RBG1 instantiation.

If a root RBGC construction is used as the randomness source for the RBG1 construction,
the initial randomness source for the root must be an RBG3 construction or a physical full-
entropy source, and the root RBGC construction must be reseeded immediately before
generating bits for each RBG1 instantiation.

A physically secure channel must be used to insert the seed material from the
randomness source into the DRBG of the RBG1 construction (DRBG1).

4.3.2. Sub-DRBG Requirements

A sub-DRBG has the following testable requirements (i.e., capable of being tested by the FIPS 140
validation labs):

1.
2.

The randomness source for a sub-DRBG shall be the DRBG used by the RBG1 construction.

A sub-DRBG shall use the same implementation as its randomness source (i.e., the DRBG
used by the RBG1 construction).

The internal states used by the DRBG within the RBG1 construction and each sub-DRBG
shall be separate.
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4. A sub-DRBG shall not serve as a randomness source for another sub-DRBG.

5. The output from the RBG1 construction that is used for sub-DRBG instantiation shall not
be output from the security boundary that contains the RBG1 construction and sub-
DRBG(s).

6. The output from the RBG1 construction that is used for sub-DRBG instantiation shall not
be used for any other purpose, including for seeding a different sub-DRBG.

7. The security strength for a target sub-DRBG shall not exceed the security strength that is
supported by the RBG1 construction.

8. For CTR _DRBG with a derivation function, Hash DRBG, or HMAC DRBG, 3s/2 bits
shall be obtained from the RBG1 construction for instantiation of the sub-DRBG, where s
is the requested security strength for the target sub-DRBG.

9. For CTR _DRBG without a derivation function used by the sub-DRBG, keylen + output len
bits shall be obtained from the RBG1 construction for instantiation, where keylen is the
length of the key to be used by the block cipher in the target sub-DRBG.

10. A sub-DRBG shall not produce output until it is instantiated.

11. A sub-DRBG shall not provide output for generating requests that specify a security
strength greater than the instantiated security strength of the sub-DRBG.

12. An implementation of a sub-DRBG shall verify that the internal state has been updated
before the generated output is provided to the requesting entity.

13. The sub-DRBG shall not be reseeded.

14. If the seedlife of a sub-DRBG is ever exceeded or a health test of the sub-DRBG fails, the

use of the sub-DRBG shall be terminated.

A non-testable requirement for a sub-DRBG (i.e., not capable of being tested by the FIPS 140
validation labs) is:

15.

The output of a sub-DRBG must not be used as seed material for other DRBGs (e.g., the
DRBGs in other RBGs) or sub-DRBGs.
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5. RBG2 Constructions Based on Physical and/or Non-Physical Entropy Sources

An RBG2 construction is a cryptographically secure RBG with continuous access to one or more
validated entropy sources within its RBG security boundary. The RBG is instantiated before use
and generates outputs on demand. An RBG2 construction may (optionally) be implemented to
support reseeding requests from a consuming application (e.g., providing prediction resistance
for the next output of the RBG2 construction to mitigate a possible compromise of previous
internal states) and/or to (optionally) be reseeded in accordance with implementation-selected
criteria.

If a consuming application requires full-entropy output, an RBG3 construction from Sec. 6 needs
to be used rather than an RBG2 construction.

An RBG2 construction may be useful for all devices in which an entropy source can be
implemented.

5.1. RBG2 Description

The DRBG for an RBG2 construction is contained within the same RBG security boundary and
cryptographic module as its validated entropy sources (see Fig. 20).

Externally provided input

RBG security boundary

= -

DRBG
;- Request Request
Entropy ™ Conditioning| seed | DRBG e cation
Source(S)*_T Function®™* ™ material | status,
------------------ r output

|
Internally provided input

Cryptographic Module

* As shown in Figure 1 of SP 800-90B
** Required by a CTR_DRBG without a derivation function when
the entropy source does not provide full-entropy output

Fig. 20. Generic structure of the RBG2 construction

One or more entropy sources are used to provide the entropy bits for both DRBG instantiation
and any reseeding of the DRBG. The use of a personalization string and additional input is optional
and may be provided from within the cryptographic module or from outside of that module. The
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output from the RBG may be used within the cryptographic module or by an application outside
of the module.

An example of an RBG2 construction is provided in Appendix B.4.

An RBG2 construction may be implemented to use one or more validated physical and/or non-
physical entropy sources for instantiation and reseeding. Two variants of the RBG2 construction
may be implemented:

1. An RBG2(P) construction uses the output of one or more validated physical entropy
sources and (optionally) one or more validated non-physical entropy sources, as discussed
in Method 1 of Sec. 2.3 (i.e., only the entropy produced by one or more validated physical
entropy sources is counted toward the entropy required for instantiating or reseeding the
RBG). Any amount of entropy may be obtained from a non-physical entropy source as
long as sufficient entropy has been obtained from the physical entropy sources to fulfill
an entropy request. An RBG2(P) construction may exist as part of an RBG3 construction
(see Sec. 6).

2. An RBG2(NP) construction uses the output of any validated non-physical or physical
entropy sources, as discussed in Method 2 of Sec. 2.3 (i.e., the entropy produced by both
validated physical and non-physical entropy sources is counted toward the entropy
required for instantiating or reseeding the RBG).

These variants may affect the implementation of a Get_entropy_bitstring process (represented
as a Get_entropy_bitstring procedure; see Sec. 2.8.2 and 3.1) by accessing the entropy sources
directly or via the Get_conditioned_input or Get_conditioned_full entropy_input procedures
specified in Sec. 3.2.2 during instantiation and reseeding (see Sec. 5.2.1 and 5.2.3). That is, when
seeding and reseeding an RBG2(P) construction (including a DRBG within an RBG3 construction,
as discussed in Sec. 6), Method 1 in Sec. 2.3 is used to combine the entropy from the entropy
sources, and Method 2 is used when instantiating and reseeding an RBG2(NP) construction.

5.2. Conceptual Interfaces

The RBG2 construction includes requests for instantiating the DRBG (see Sec. 5.2.1) and
generating pseudorandom bits (see Sec. 5.2.2). If a reseed capability has been implemented (see
Sec. 5.2.3), an RBG2 construction is reseeded when requested by a consuming application or
when determined by implementation-selected criteria.
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5.2.1. RBG2 Instantiation

An RBG2 construction may be instantiated by an application at any valid?3 security strength
possible for the DRBG design and its components using an instantiation request (see Sec. 2.8.1.1):

(status, RBG2 DRBG state handle) =
DRBG Instantiate request(s, personalization_string).

The request results in the execution of the DRBG_Instantiate function within the DRBG:
(status, RBG2 DRBG state handle) = DRBG _Instantiate(s, personalization_string).

The DRBG _Instantiate function returns the status of the process, which is then provided to the
application in response to the request. If the process is successful, a state handle for the
instantiation (e.g., RBG2 DRBG state handle) is also returned from the DRBG_Instantiate
function and may be forwarded to the application.?*

An RBG2 construction obtains entropy for its DRBG from one or more validated entropy sources
within its boundary, either directly or using an external conditioning function to obtain and
process the output of the entropy sources.

[SP_800-90A] uses a Get_randomness_source_input call in the DRBG_Instantiate function to
obtain the entropy needed for instantiation. Let counting method indicate the method for
counting entropy from the entropy sources (i.e., Method 1 only counts entropy provided by
physical entropy sources, and Method 2 counts entropy from both non-physical and physical
entropy sources; see Sec. 2.3). Let keylen be the length of the key to be used by the cryptographic
primitive, and let output len be the length of its output block.

1. When the DRBG is a CTR_DRBG without a derivation function, seed material shall be
obtained from the entropy sources as follows:

a. If all entropy sources provide full-entropy output or meet the requirements in
[SP_800-90A], the Get_randomness_source_input call is replaced by:

o (status, seed _material) = Get_entropy_bitstring(keylen + output len,
counting method).

o |If (status # SUCCESS), then return (status, Invalid _state_handle).

The output of the entropy source(s) shall be concatenated to obtain the keylen+
output len full-entropy bits to be returned as seed material.

b. If one or more entropy sources do not provide full-entropy output, the
Get_randomness_source_input call is replaced by: 2°

o (status, seed_material) = Get_conditioned_full entropy input(keylen +
output_len, counting method).

2 The security strength must be 128, 192, or 256 bits.
24 |f there is never more than one DRBG instantiation possible, then a state handle is not required.
% See Sec. 3.2.2.2 for a specification of the Get_conditioned_full_entropy_input function.
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o |If (status # SUCCESS), then return (status, Invalid _state_handle).

3. For CTR_DRBG with a derivation function, Hash DRBG, or HMAC DRBG used as the
DRBG, the entropy sources shall provide 3s/2 bits of entropy to establish the security
strength.

a. If the implementer wants full entropy in the bitstring to be provided to the DRBG,
the Get_randomness_source_input call is replaced by:

o (status, seed_material) = Get_conditioned full entropy input(3s/2,
counting method).

o If (status # SUCCESS), then return (status, Invalid _state_handle).
b. Otherwise, the Get_randomness_source_input call is replaced by:
o (status, seed material) = Get_entropy_bitstring(3s/2, counting method)
OR

(status, seed_material) = Get_conditioned_input(3s/2,
counting_method).

o If (status # SUCCESS), then return (status, Invalid state handle).

5.2.2. Requesting Pseudorandom Bits From an RBG2 Construction?®

If prediction resistance is desired by a consuming application for the next RBG output to be
generated so that previous internal states that may have been compromised cannot be used to
determine the next RBG output, the application requests a reseed of the DRBG (see Sec. 5.2.3)
before requesting the generation of pseudorandom bits. Figure 21 depicts an (optional) reseed
request before requesting the generation of pseudorandom bits.

26 See note 2 of the [Note to Readers] for a description of changes in requesting prediction resistance in conjunction with generating keying
material.
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Fig. 21. RBG2 generate request following an optional reseed request

If a reseed of the RBG was not requested by the application prior to requesting the generation of
pseudorandom bits, or a status of SUCCESS was returned by the DRBG_Reseed function in
response to a reseed request, pseudorandom bits are requested as follows (see Sec. 2.8.1.2):

(status, returned bits) = DRBG_Generate _request(RBG2 DRBG state handle,
requested_number of bits, requested_security strength,
additional input).

The request shall result in the execution of a DRBG_Generate function by the DRBG (see Sec.
2.8.1.2) and checking the status returned by the DRBG_Generate function:

o (status, returned_bits) = DRBG_Generate(RBG2 DRBG state handle,
requested number of bits, requested_security strength,
additional input).

o If (status # SUCCESS), then return (status, Null).

The DRBG_Generate function returns the status of the process, which shall also be returned to
the application in response to the DRBG_Generate_request. If the stafus indicates that the
generation was successful, the requested random bits (returned_bits) are also provided by the
DRBG_Generate function and forwarded to the application.

5.2.3. Reseeding an RBG2 Construction

The capability to reseed an RBG2 construction is optional. If implemented, the reseeding of the
DRBG may be performed in one or both of the following ways:

1. Upon request from a consuming application or
2. Based on implementation-selected criteria, such as time, number of outputs, events, or

the availability of sufficient entropy.
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However, the DRBG shall either be reseeded or re-instantiated before executing the
DRBG_Generate function if it has output 27 or more bits since instantiation or the last reseed
process. A request does not need to be interrupted if that output threshold is exceeded while
completing a DRBG_Generate_request. For example, if 217—1 bits have already been output
from the DRBG when a DRBG_Generate_request is received for any amount up to the
maximum number of bits that may be requested in a single invocation (see SP 800-90A), the
generate process may be fulfilled without interruption. The DRBG shall then be reseeded or re-
instantiated before the next execution of a DRBG_Generate function.

Application

U|
S
g3 |3
=
R @
om
04
a
Entropy request L
Entropy [~} Conditioning ! _—DRBG
Source(s) ———  Function® ,
L seed_material

* For a CTR_DBG without a derivation function when the
entropy source does not provide full-entropy output.

Fig. 22. Reseed request from an application

An application may request a reseed of the RBG2 construction (see Sec. 2.8.1.3):
status = DRBG_Reseed_request(RBG2 DRBG state_handle, additional input).

If the DRBG receives a DRBG_Reseed_request or if the DRBG is scheduled for a reseed based
on implementation-selected criteria, the DRBG_Reseed function shall be executed (see Sec.
2.8.1.3):

status = DRBG_Reseed(RBG2_DRBG state_handle, additional input).

The DRBG_Reseed function returns the status of the reseed process, which shall be returned to
the application if requested using a DRBG_Reseed_request.

The DRBG_Reseed function uses a Get_randomness_source_input call to obtain the entropy
needed for reseeding the DRBG (see Sec. 2.8.1.3 and [SP_800-90A]). The DRBG is reseeded at the
instantiated security strength recorded in the DRBG’s internal state. The
Get_randomness_source_input call in SP 800-90A shall be replaced with the following:
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1. For CTR _DRBG without a derivation function, use the appropriate replacement, as
specified in step 1 of Sec. 5.2.1.

2. For CTR_DRBG with a derivation function, Hash. DRBG, or HMAC DRBG, replace the
Get_randomness_source_input callin the DRBG_Reseed function with the following:?’

a. If the implementer wants full entropy in the returned bitstring, the
Get_randomness_source_input call is replaced by:

(status, seed _material) = Get_conditioned_full _entropy input(s,
counting method).

b. Otherwise, the Get_randomness_source_input call is replaced by:
(status, seed_material) = Get_entropy_bitstring(s, counting method)
or

(status, seed material) = Get_conditioned_input(s, counting method).

5.3. RBG2 Construction Requirements

An RBG2 construction has the following requirements in addition to those specified in [SP_800-
90A] and [SP_800-908B]:

1. The RBG shall employ an approved and validated DRBG from [SP_800-90A] whose
components are capable of providing the targeted security strength for the RBG.

2. The RBG and its components shall be successfully validated for compliance with [SP_800-
90A], [SP_800-90B], SP 800-90C, [FIPS_140], and the specification of any other approved
algorithm used within the RBG, as appropriate.

3. One or more validated entropy sources shall be used to instantiate and reseed the DRBG.
A non-validated entropy source shall not be used for this purpose.

4. The DRBG shall be instantiated before first use (i.e., before providing output for use by a
consuming application).

5. If a reseed capability is implemented, the DRBG shall be reseeded using any healthy
validated entropy source(s) used for instantiation.

6. The DRBG shall be reseeded before generating output if the DRBG has produced 27 or
more bits of output since instantiation or the last reseeding process.

7. When instantiating and reseeding CTR_DRBG without_a derivation function, keylen +
output_len bits with full entropy (where keylen is the length of the key to be used by the
cryptographic primitive and output len is the length of its output block) or as otherwise
specified in [SP_800-90A] shall be obtained either directly from the entropy sources or

27 see Sec. 2.8.2 and 3.1 for discussions of the Get_entropy_bitstring function.
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9.

10.

11.

12.

via an external vetted conditioning function that provides full-entropy output (see Sec.
3.2.2.2).

For CTR_DRBG with a derivation function, Hash DRBG, or HMAC DRBG, a bitstring
with at least 3s/2 bits of entropy shall be obtained from the entropy sources to instantiate
the DRBG at a security strength of s bits. When reseeding is performed, a bitstring with at
least s bits of entropy shall be obtained from the entropy source(s). The entropy may be
obtained directly from the entropy source(s) or via an external vetted conditioning
function (see Sec. 3.2.2).

The entropy source(s) used for the instantiation and reseeding of the DRBG within an
RBG2(P) construction shall include one or more validated physical entropy sources; the
inclusion of one or more validated non-physical entropy sources is optional. A bitstring
that contains entropy shall be assembled and the entropy in that bitstring determined as
specified in Method 1 of Sec. 2.3 (i.e., only the entropy provided by validated physical
entropy sources shall be counted toward fulfilling the amount of entropy in an entropy
request).

The entropy source(s) used for the instantiation and reseeding of the DRBG within an
RBG2(NP) construction shall include one or more validated non-physical entropy sources;
the inclusion of one or more validated physical entropy sources is optional. A bitstring
containing entropy shall be assembled and the entropy in that bitstring determined as
specified in Method 2 of Sec. 2.3 (i.e., the entropy provided by both validated non-
physical entropy sources and any validated physical entropy sources included in the
implementation shall be counted toward fulfilling the requested amount of entropy).

A specific entropy-source output (or portion thereof) shall not be reused (e.g., it is
destroyed after use).

When a validated entropy source reports a failure, the failure shall be handled as
discussed in item 10 of Sec. 2.6.
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6. RBG3 Constructions Based on the Use of Physical Entropy Sources

An RBG3 construction is designed to provide full entropy and can be used to support all security
strengths. An RBG3 construction is useful when bits with full entropy are required or a higher
security strength than RBG1 and RBG2 constructions can support is needed.

6.1. RBG3 Description

The RBG3 constructions specified in this recommendation include one or more physical entropy
sources and an approved DRBG from [SP_800-90A]. The output of one or more non-physical
entropy sources may optionally be included, but any entropy they provide is not counted. That
is, Method 1 (i.e., physical only) of Sec. 2.3 is used for counting entropy during RBG3 operation.
Upon receipt of a request for random bits from a consuming application, the RBG3 construction
accesses its entropy source(s) to obtain sufficient bits for the request.?®

An implementation may be designed so that the DRBG implementation used within an RBG3
construction can be directly accessed by a consuming application using the same internal state
as the RBG3 construction. The DRBG within an RBG3 construction is instantiated (i.e., seeded) at
the highest security strength possible for its design (see Table 3). This is the fallback security
strength if the entropy source fails in an undetected manner. Details about the use of additional
approved cryptographic primitives may be discussed at [SP800_90WebsSite].

Table 3. Highest security strength for the DRBG’s cryptographic primitive

Cryptographic Primitive Highest Security Strength
AES-128 128
AES-192 192
AES-256 256
SHA-256/SHA3-256 256
SHA-384/SHA3-384 256
SHA-512/SHA3-512 256

If a failure of all physical entropy sources is detected, the RBG operation is terminated. Operation
must not be resumed until repair and successful testing have been performed, and the DRBG has
been instantiated with new entropy from the entropy source(s).

If all physical entropy sources fail in an undetected manner, the RBG continues to operate at the
security strength of the underlying RBG2(P) construction, providing outputs at the security
strength instantiated for its DRBG (see Sec. 5). Although security strengths of 128 and 192 bits
are allowed for the DRBG (depending on its cryptographic primitive), a DRBG that is capable of
supporting a security strength of 256 bits and is instantiated at that strength is recommended so
that the RBG will continue to operate at a security strength of 256 bits in the event of an
undetected failure of the physical entropy source(s).

28 See Sec. 3.1 for further discussion about accessing entropy sources.
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6.2. RBG3 Construction Types and Their Variants

Two basic RBG3 constructions are specified:

1.

RBG3(XOR) — This construction is based on combining the output of one or more
validated entropy sources with the output of an instantiated, approved DRBG using an
exclusive-or operation (see Sec. 6.4).

RBG3(RS) — This construction is based on using one or more validated entropy sources
to continuously reseed the DRBG (see Sec. 6.5).

6.3. General Requirements

RBG3 constructions have the following general security requirements:

1.

An RBG3 construction shall be designed to provide outputs with full entropy using one or
more validated, independent, physical entropy sources, as specified for Method 1 in Sec.
2.3. Only the entropy provided by validated physical entropy sources shall be counted
toward fulfilling entropy requests, although entropy provided by one or more validated
non-physical entropy sources may be used but not counted.

The RBG shall employ an approved and validated DRBG from [SP_800-90A] or listed at
[SP800_90WebSite] whose highest possible security strength is the targeted fallback
security strength for the DRBG (see Sec. 6.1).

An RBG3 construction and its components shall be successfully validated for compliance
with the corresponding requirements in [SP_800-90A], [SP_800-90B], SP 800-90C,
[FIPS_140], and the specification of any other approved algorithm used within the RBG,
as appropriate.

The DRBG shall be instantiated at its highest possible security strength before the first
use of the RBG3 construction or direct access of the DRBG. A DRBG should be selected to
support a security strength of 256 bits.

When instantiating and reseeding CTR_DRBG without a derivation function, keylen +
output_len bits with full entropy or as otherwise specified in SP 800-90A shall be obtained
either directly from the entropy source(s) or via an external vetted conditioning function
that provides full-entropy output (see Sec. 3.2.2.2).

For CTR_DRBG with a derivation function, Hash DRBG, or HMAC DRBG, a bitstring
with at least 3s/2 bits of entropy?® shall be obtained from the entropy sources to
instantiate the DRBG at a security strength of s bits. When reseeding is performed, a
bitstring with at least s bits of entropy shall be obtained from the entropy source(s). The
entropy may be obtained directly from the entropy source(s) or via an external vetted
conditioning function (see Sec. 3.2.2).

29 See note 2 of the [Note to Readers] for changes in the instantiation process.
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7. A specific entropy-source output (or portion thereof) shall not be reused (e.g., the same
entropy-source output shall not be used for an RBG3 request and for seeding or reseeding
the DRBG).

8. If the DRBG within the RBG3 construction is directly accessible, the requirements in Sec.
5.3 for RBG2(P) constructions shall apply to the direct access of the DRBG.

9. |If afailure is detected within the RBG, see Sec. 2.6 (item 10) and 3.1.

See Sec. 6.4.2 and 6.5.2 for additional requirements for the RBG3(XOR) and RBG3(RS)
constructions, respectively.

6.4. RBG3(XOR) Construction

An RBG3(XOR) construction contains one or more validated entropy sources and a DRBG whose
outputs are XORed to produce full-entropy output during the generate process (see Fig. 23).

Externally provided input

Cryptographic Module

Internally provided input

Opt ! Full-entropy may or
Entropy + (Opt.) i seed_  may not be required
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Request status, Full-entropy Output
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Application

Fig. 23. Generic structure of the RBG3(XOR) construction

In order to provide the required full-entropy output, the input to the XOR (shown as “@” in Fig.
23) from the entropy-source side of the figure shall consist of bits with full entropy (see Sec. 2.1).
If the entropy sources cannot provide full-entropy output, then an external conditioning function
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shall be used to condition the output of the entropy sourc(s) to a full-entropy bitstring before
XORing with the output of the DRBG (see Sec. 3.2.2.2).

When 7 bits of output are requested from an RBG3(XOR) construction, n bits of output from the
DRBG are XORed with n full-entropy bits that are obtained directly from the entropy source(s) or
from a combination of validated entropy source(s) and an external vetted conditioning function
that provides full-entropy output (see Sec. 3.2.2.2). When the entropy sources are working
properly,3° an n-bit output from the RBG3(XOR) construction is said to provide 7 bits of entropy
or to support a security strength of z bits. Appendix B.5 provides an example of an RBG3(XOR)
design.

6.4.1. Conceptual Interfaces

The RBG interfaces include function calls for instantiating the DRBG (see Sec. 6.4.1.1), generating
random bits on request (see Sec. 6.4.1.2), and reseeding the DRBG instantiation (see Sec. 6.4.1.3).

6.4.1.1. Instantiation of the DRBG

As discussed in Sec. 2.8.3.1, before the RBG3(XOR) construction can be used to generate bits, an
application instantiates the DRBG within the construction:

(status, state _handle) = Instantiate. RBG3_DRBG _request(requested security strength,
personalization_string),

where requested security strength and personalization_string are optional. If the
requested_security strength parameter is provided and exceeds the highest security strength
that can be supported by the DRBG, an error indication shall be returned with an invalid
state_handle (see Sec. 2.8.3.1).

If the requested security strength is provided and acceptable (i.e., requested security strength
does not exceed the highest security strength that can be supported by the DRBG; see Sec.
2.8.3.1) or if the requested security strength parameter is not provided, the
Instantiate. RBG3_DRBG_request received by the RBG3(XOR) construction shall result in the
execution of the RBG3(XOR) Instantiate function below. The stafus returned by the
RBG3(XOR) Instantiate function shall be returned to the application in response to the
Instantiate. RBG3_DRBG_request. The return of the state handle is optional if only a single
instantiation is allowed by an implementation.

30 The entropy sources provide at least the amount of entropy determined during the entropy-source validation process.
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Let s be the highest security strength that can be supported by the DRBG. The DRBG in the
RBG3(XOR) construction is instantiated as follows:
RBG3(XOR)_Instantiate:
Input:
1. personalization_string: An optional (but recommended) personalization string.
Output:
1. status: The status returned by the RBG3(XOR)_Instantiate function.

2. RBG3 DRBG state handle: The returned state handle for the internal state of the
DRBG or an invalid state handle.

Process:

1. (status, RBG3 _DRBG state handle) =
DRBG _Instantiate(s, personalization_string).

2. |If (status # SUCCESS), then return (status, Invalid _state_handle).
3. Return (SUCCESS, RBG3 DRBG state handle).

In step 1, the DRBG is instantiated at a security strength of s bits. RBG3 _DRBG state _handle (if
returned) is the state handle for the internal state of the DRBG used within the RBG3(XOR)
construction.

In step 2, if the status returned from step 1 does not indicate a success, then return the status
with an invalid state handle.

In step 3, the status and RBG3 _DRBG state_handle that were obtained in step 1 are returned to
the requesting application.

The handling of status codes is discussed in item 10 of Sec. 2.6 and in Sec. 2.8.3, 3.1, and 8.1.2.

6.4.1.2. Random Bit Generation Using the RBG3(XOR) Construction
As discussed in Sec. 2.8.3.2, an application may request the generation of random bits from the
RBG3(XOR) construction:

(status, returned_bits) = RBG3_DRBG_Generate request(RBG3 _DRBG state_handle, n,
additional input),
where RBG3 DRBG state handle was provided during instantiation (see Sec. 6.4.1.1), n is the
number of bits to be generated and returned to the application, and additional input is optional.

The RBG3 _DRBG_Generate request received by the RBG3(XOR) construction shall result in
the execution of the RBG3(XOR)_ Generate function below. The output of that function shall
be returned to the application in response to the RBG3 DRBG_Generate_request.
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Let s be the security strength instantiated for the DRBG (i.e., the highest security strength that
can be supported by the DRBG; see Sec. 6.4.1.1), and let the RBG3_DRBG state_handle be the
value returned by the instantiation function for RBG3(XOR)’s DRBG instantiation. Random bits
with full entropy shall be generated by the RBG3(XOR) construction using the following generate
function with the values of n and additional input provided in the DRBG_Generate_request as
input:

RBG3(XOR) Generate:
Input:

1. RBG3 DRBG state handle: The state handle of the DRBG used by the RBG3
construction.

2. n:The number of bits to be generated.

3. additional input: Optional additional input.
Output:

1. status: The status returned by the RBG3(XOR)_Generate function.

2. returned bits: The n bits generated by the RBG3(XOR) construction or a Null string.
Process:

1. (status, ES bits) = Request_entropy(n). (See the notes below for
customizing this step.)

2. |If (status # SUCCESS), then return (status, Null).

3. (status, DRBG bits) = DRBG_Generate(RBG3 DRBG state handle, n, s,
additional input).

4. |If (status # SUCCESS), then return (status, Null).
5. returned bits = ES bits © DRBG _bits.
6. Return (SUCCESS, returned_bits).

Step 1 requests that the entropy source(s) generate n bits. Since full-entropy bits are required,
the (placeholder) Request_entropy call shall be replaced by one of the following:

e [f full-entropy output is provided by all validated physical entropy sources used by the
RBG3(XOR) implementation, and non-physical entropy sources are not used, step 1
becomes:

(status, ES bits) = Get_entropy_bitstring(n, Method I).

The Get_entropy_bitstring function3! shall use Method 132 to obtain the 7 full-entropy
bits that were requested to produce ES-bits.

31 See Sec. 2.8.2 and 3.2.
32With Method 1, only validated physical entropy sources are credited with providing entropy (see Sec. 2.3).
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e [f full-entropy output is not provided by all physical entropy source(s), or the output of
both physical and non-physical entropy sources is used by the implementation, step 1
becomes:

(status, ES bits) = Get_conditioned_full entopy input(n, Method I).

The Get_conditioned_full entropy input procedure is specified in Sec. 3.2.2.2. It
requests entropy from the entropy sources in step 3.1 of that procedure with a
Get_entropy_bitstring call. The Get_entropy_bitstring call shall use Method 1 (as
specified in Sec. 2.3) when collecting the output of the entropy source(s) (i.e., only the
entropy provided by one or more physical entropy sources is counted).

In step 2, if the request in step 1 is not successful, abort the RBG3(XOR)_Generate function,
returning the status received in step 1 and a Null bitstring as the returned bits. If status indicates
a success, ES bits is the full-entropy bitstring to be used in step 5.

In step 3, the RBG3(XOR)’s DRBG instantiation is requested to generate n bits at a security
strength of s bits. The DRBG instantiation is indicated by the RBG3 _DRBG state_handle, which
was obtained during instantiation (see Sec. 6.4.1.1). If additional input is provided in the
RBG3(XOR) Generate call, it shall be included in the DRBG_Generate function call to the
DRBG. The DRBG may require reseeding during the DRBG_ Generate function call in step 3 (e.g.,
because the end of the seedlife of the DRBG has been reached).

In step 4, if the DRBG_Generate function request is not successful, the RBG3(XOR) Generate
function is aborted, and the status received in step 3 and a Null bitstring are returned to the
consuming application. If status indicates a success, DRBG bits is the pseudorandom bitstring to
be used in step 5.

Step 5 combines the bitstrings returned from the entropy source(s) (from step 1) and the DRBG
(from step 3) using an XOR operation. The resulting bitstring is returned to the consuming
application in step 6.

6.4.1.3. Pseudorandom Bit Generation Using a Directly Accessible DRBG

If prediction resistance is desired by a consuming application for the next DRBG output to be
generated so that a previous internal state that may have been compromised cannot be used to
determine the next DRBG output, the application requests a reseed of the DRBG before
requesting the generation of pseudorandom bits directly from the DRBG, as discussed in Sec.
6.4.1.4. This is the same process shown in Fig. 21 in Sec. 5.2.2.

If a reseed of the DRBG was not requested by the application, or a status of SUCCESS was returned
by the DRBG_Reseed function when the application requested a reseed, pseudorandom bits
may be requested as follows:

(status, returned_bits) = DRBG_Generate_request(RBG3(XOR) DRBG state_handle,
requested number of bits, requested security strength,
additional input),
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where RBG3(XOR) state_handle was provided during instantiation, and additional input is
optional.

The DRBG_Generate _request received by the DRBG shall result in the execution of the
DRBG_Generate function in the DRBG:

(status, returned_bits) = DRBG_Generate(RBG3 _DRBG state_handle,
requested number of bits, requested_security strength,
additional input),

where:

e RBG3 DRBG state handle is the state handle used by the DRBG within the RBG3(XOR)
construction.

o requested security strength is provided in the DRBG_Generate request and must be <
the instantiated security strength of the DRBG.

e Any additional input provided in a DRBG_Generate _request shall be provided as input
to the DRBG_Generate function. Otherwise, the use of additional input is optional
when invoking the DRBG_Generate function.

The output of the DRBG_Generate function shall be returned to the application in response to
the DRBG_Generate request.

6.4.1.4. Reseeding the DRBG Instantiation

As discussed in Sec. 2.4.2, the reseeding of the DRBG may be performed 1) upon request from a
consuming application or 2) based on implementation-selected criteria, such as time, number of
outputs, events, or the availability of sufficient entropy.

An application may request the reseeding of the DRBG within the RBG3(XOR) construction:
status = DRBG_Reseed _request(RBG3(XOR) DRBG state handle, additional input),

where RBG3(XOR) state handle (if used) was provided during instantiation, and
additional input is optional.

The DRBG executes a DRBG_Reseed function in response to a DRBG_Reseed_request from an
application or in accordance with implementation-selected criteria:

status = DRBG_Reseed(RBG3_DRBG state_handle, additional input),

where RBG3 _DRBG state_handle (if used) was returned by the DRBG_Instantiate function
(seeSec.2.8.1.1and 6.4.1.1). RBG3_DRBG state _handle is the state handle for the internal state
of the DRBG within the RBG3(XOR) construction. Any additional input provided in a
DRBG_Reseed_request shall be provided as input to the DRBG_Reseed function. Otherwise,
the use of additional input is optional when invoking the DRBG_Reseed function.
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6.4.2. RBG3(XOR) Requirements

An RBG3(XOR) construction has the following requirements in addition to those provided in Sec.
6.3:

1. Bitstrings with full entropy shall be provided to the XOR operation either directly from
the concatenated output of one or more validated physical entropy sources or by an
external conditioning function that provides full-entropy output using the output of one
or more validated physical entropy sources.

2. Entropy source output used for the RBG’s XOR operation shall not also be used to
instantiate and reseed the RBG’s DRBG.?>3

3. The DRBG shall be reseeded before generating output if the DRBG has produced 27 or
more bits of output since instantiation or the last reseeding process.

6.5. RBG3(RS) Construction

The second RBG3 construction specified in this document is the RBG3(RS) construction shown in
Fig. 24. An example of this construction is provided in Appendix B.6.
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Fig. 24. Generic structure of the RBG3(RS) construction

External conditioning of the outputs from the entropy source(s) during instantiation and
reseeding is required to provide bitstrings with full entropy when the DRBG is CTR_DRBG

33 However, the same entropy source(s) may be used to provide entropy for the XOR operation and to seed and reseed the RBG’s DRBG.
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without a derivation function and the entropy source(s) does not provide output with full
entropy. Otherwise, the use of a conditioning function is optional.

6.5.1. Conceptual Interfaces

The RBG interfaces include function calls for instantiating the DRBG (see Sec. 6.5.1.1), generating
random bits on request (see Sec. 6.5.1.2 and 6.5.1.3), and reseeding the DRBG instantiation (see
Sec. 6.5.1.4).

6.5.1.1. Instantiation of the DRBG Within an RBG3(RS) Construction

Before the RBG3(RS) construction can be used to generate bits, an application shall request the
instantiation of the DRBG within the construction (see Sec. 2.8.3.1):

(status, RBG3 _DRBG state handle) =
Instantiate. RBG3 DRBG _request(requested security strength,
personalization_string),

where requested security strength and personalization string are optional. If the
requested_security strength parameter is provided and exceeds the highest security strength
that can be supported by the DRBG design, an error indication shall be returned with an invalid
state_handle (see Sec. 2.8.3.1).

If the requested security strength is provided and acceptable (see Sec. 2.8.3.1) or the
requested_security strength information is not provided, the
Instantiate. RBG3 DRBG_request received by the RBG3(RS) construction shall result in the
execution of the RBG3(RS) Instantiate function below. The status returned by that function
shall be returned to the application in response to the Instantiate. RBG3_DRBG _request.

Let s be the highest security strength that can be supported by the DRBG, and let
personalization_string be the value provided in the Instantiate. RBG3 DRBG _request (if any).
The DRBG in the RBG3(RS) construction is instantiated as follows:

RBG3(RS) Instantiate:
Input:
1. personalization string: An optional (but recommended) personalization string.
Output:
1. status: The status returned from the RBG3(RS) Instantiate function.

2. RBG3 DRBG state handle: A pointer to the internal state of the DRBG if the status
indicates a success. Otherwise, an invalid state handle is returned.

Process:

1. (status, RBG3_DRBG state handle) = DRBG_Instantiate(s,
personalization_string).
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2. |If (status # SUCCESS), then return (status, Invalid_state_handle).
3. Return (SUCCESS, RBG3 _DRBG state handle).

In step 1, the DRBG is instantiated at a security strength of s bits.

In step 2, if the status returned from step 1 does not indicate a success, then return the status
and an invalid state handle.

In step 3, the status and the RBG3 DRBG state handle are returned.
RBG3 _DRBG state_handle is the state handle for the internal state of the DRBG used within the
RBG3(RS) construction.

The handling of status codes is discussed in Sec. 2.8.3 and 6.5.1.2.

6.5.1.2. Random and Pseudorandom Bit Generation

When the DRBG within an RBG3(RS) construction is instantiated at a security strength of s bits, s
bits with full entropy can be extracted from its output if at least s + 64 bits of fresh entropy are
inserted into the DRBG’s internal state before generating the output (see item 11 in Sec. 2.6). Per
requirement 4 in Sec. 6.3, the security strength and resulting length of the full entropy bitstring
(s) are the highest security strength possible for the cryptographic primitive used by the DRBG. If
a consuming application requests more than s bits, multiple iterations of this process are
required.

Fig. 25 depicts a sequence of RBG3(RS) generate operations.

S + 64 bits s full-entropy S + 64 bits sfull-entropy s+ 64 bits s full-entropy
of entropy bits of entropy bits of entropy bits

\ ] |\ )
|

Reseed Reseed
RBG3(RS) generate request 1 RBG3(RS) generate request 2

Fig. 25. Sequence of RBG3(RS) generate requests

Full-entropy output from this construction is generated in s-bit strings, where s is the instantiated
security strength of the DRBG used in an implementation. For each s bits of generated output, s
+ 64 bits of fresh entropy are obtained by reseeding (shown in red in Fig. 25) and then inserted
into the DRBG’s internal state before generating an s-bit string (shown in blue). Figure 25 also
shows two generate requests using the RBG3(RS) construction. The first generate request
requires the generation of two iterations of the reseed-generate process (e.g., two strings of s
bits are generated, each preceded by obtaining s + 64 bits of fresh entropy). The second generate
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request requires only a single string of s full-entropy bits to be generated (preceded by obtaining
s + 64 bits of fresh entropy).

Figure 26 provides a flow of the steps of the RBG3(RS)_Generate function.

[ Receive generate request for n bits]

¥

sum = 0, temp = Null

¥

Reseed with
s+64 bits of entropy

Generate s bits

temp = temp || (the s bits)
sum = sum + s

No

sum = n?

Yes

[ Output n bits of temp]

Fig. 26. Flow of the RBG3(RS)_Generate function

The DRBG used by the RBG3(RS) construction may be implemented to be directly accessible by
an application. In this case, the directly accessible DRBG has the same state handle and internal
state as that used by the RBG3(RS) construction, and additional steps are required when
accessing the DRBG directly.

Figure 27 depicts a sequence of RBG3(RS) generate requests followed by a sequence of requests
directly to a DRBG that has the same internal state and state handle (shown in green) and another
sequence of RBG3(RS) generate requests.
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S+ 64 bits  sfull-entropy s+ 64 bits n bits m bits s + 64 bits
of entropy bits of entropy generated generated of entropy

|

Y Y
RBG3(RS) One or more DRBG RBG3(RS)
generate request generate requests generate request

Fig. 27. Direct DRBG generate requests

In this scenario, an RBG3(RS) generate request is preceded by obtaining s + 64 bits of fresh
entropy. The first generate request directly to the DRBG following one or more RBG3(RS)
generate requests is preceded by obtaining s + 64 bits of fresh entropy. Successive DRBG requests
do not require the insertion of fresh entropy (except, for example, if requested by the consuming
application or some event triggers the need for a reseed of the DRBG). When a consuming
application later requests that the RBG3(RS) construction generate full-entropy bits again, the
reseed-generate process is resumed by first reseeding with s + 64 bits of entropy before the
generation of each s-bit string by the RBG3(RS) construction.

All requests to the RBG3 construction need to be atomic and sequential. Each generate request
to the RBG3 construction — either for RBG3(RS) output or directly from the DRBG — shall
complete fully and return its answer before another request starts. The implementation shall
ensure that only one generate request is being serviced at a time, even when the RBG is
implemented in an environment that allows concurrent access to the RBG3 construction. These
restrictions also apply to the initial request for output directly from the DRBG.

As discussed in Sec. 2.8.3.2, an application may request the generation of random bits as follows:

(status, returned_bits) = RBG3_ Generate request(RBG3 _DRBG state_handle, n,
additional input),

where RBG3 _DRBG state_handle was provided during instantiation (see Sec. 6.5.1.1), n is the
number of bits to be generated and returned to the application, and additional input is optional.

The RBG3_Generate request received by the RBG3(RS) construction shall result in the
execution of the RBG3(RS) Generate function below. The output of that function shall be
returned to the application in response to the RBG3_DRBG_Generate_request.

Let the input parameters provided in the request above also be provided as input to the
RBG3(RS)_Generate function. Appendix A.2 is a reference for the appropriate values for each
DRBG type (e.g., CTR_DRBG, Hash DRBG, or HMAC DRBG).
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Random bits with full entropy shall be generated as follows:
RBG3(RS)_ Generate:
Input:

1. RBG3 DRBG state handle: A pointer to the internal state of the DRBG used by the
RBG3(RS) construction.

2. n:The number of full-entropy bits to be generated.
3. «additional input: Optional additional input.
Output:
1. status: The status returned by the RBG3(RS) Generate function.
2. returned_bits: The n full-entropy bits requested or a Null string.

Process:
1. temp = Null.
2. sum=0.

3. While (sum < n),

3.1 Reseed with at least s + 64 bits of fresh entropy (see the notes below for
customizing this step).

3.2 (status, full entropy bits) = DRBG_Generate(RBG3 DRBG state handle, s,
s, additional _input).

33 If (status # SUCCESS), then return (status, Null).
3.4  temp = temp || full entropy bits.
3.5 sum = sum + s.
3.6 additional input = Null string.
4. Return (SUCCESS, leftmost(temp, n)).

In steps 1 and 2, the bitstring intended to collect the generated bits (femp) is initialized to the
Null bitstring, and the counter for the number of bits obtained for fulfilling the request (sum) is
initialized to zero.

Step 3 is iterated until at least # full-entropy bits have been generated. Let keylen be the length
of the key to be used by the cryptographic primitive, and let output len be the length of its output
block.

Step 3.1 obtains at least s + 64 bits of fresh entropy and inserts it into the internal state.
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e For CTR DRBG without a derivation function, keylen + output len bits of seed
material are requested during reseeding using a full-entropy source that provides full-
entropy output or as otherwise specified in [SP_800-90A]. Step 3.1 becomes:

o status = DRBG_Reseed(RBG3 _DRBG state_handle, additional input).
o If (status # SUCCESS), then return (status, Null)

with the Get randomness source input call in the DRBG_Reseed function
replaced by:

o (status, seed _material) = Get_entropy_bitstring(keylen + output len,
Method_1).

o If (status # SUCCESS), then return (status, Null),

where Method I indicates that only the entropy from physical entropy sources is
counted.

e For Hash DRBG, HMAC DRBG, or CTR DRBG with a derivation function, s bits of
fresh entropy are usually inserted into the internal state during a DRBG_Reseed
function. To insert s + 64 bits into the internal state, two methods are provided:

Method A is a modification of the DRBG_Reseed function that requests s + 64 bits
of entropy from the entropy source(s) rather than (the usual) s bits (see Fig. 28).
Making this change is straightforward, given access to the internals of a DRBG
implementation.

Request at least

s+64 bits of
“Conditioning| entropy DRBG_Reseed
R PY Source(s) ! | (seed = seed_material
I_ Function |  seed_material || additional_inpiut)

*Required when full entropy is needed but not provided by the entropy source(s)

Fig. 28. Modification of the DRBG_Reseed function
Step 3.1 becomes:
o status = DRBG_Reseed(RBG3 DRBG state handle, additional input)
o If (status # SUCCESS), then return (status, Null)

with the Get randomness_source input call in the DRBG_Reseed function
replaced by:

o (status, seed material) = Get_entropy_bitstring(s + 64, Method 1).
o If (status # SUCCESS), then return (status, Null).
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Method_1 indicates that only the entropy from physical entropy sources is to be
counted.

Method B (depicted in Fig. 29) first obtains a bitstring with 64 bits of entropy directly
from the entropy source(s). The DRBG_Reseed function is then invoked using this
bitstring as additional input (called extra bits below to avoid confusion with the
additional input  provided by the application when invoking the
DRBG _Generate request above). The DRBG_Reseed function will obtain s bits of
entropy from the entropy source(s),3* combine it with the 64 bits of entropy provided
as the extra bits and any additional input provided in the reseed request, and
incorporate the result into the DRBG’s internal state. This method is appropriate when
the RBG3(RS) construction is being implemented using an existing DRBG
implementation that cannot be altered.

Request 64 bits of entropy ;.
Get_entropy_bitstring
extra_bits
extra_bits
¥
Request s bits of entropy DRBG Reseed
Entropy Source(s) | »| (seed = seed_material || extra_bits
seed_material with s bits || additional_input)
of entropy —

Fig. 29. Request extra bits before reseeding

Step 3.1 becomes:
3.1.1 (status, extra_bits) = Get_entropy_bitstring(64, Method 1).
3.1.2 If (status # SUCCESS), then return (status, Null).

3.1.3 status = DRBG_Reseed(RBG3 DRBG state_handle, extra_bits ||
additional input).

3.1.4 If (status # SUCCESS), then return (status, Null).

In step 3.1.3, the Get_randomness_source input call in the DRBG_Reseed
function is replaced by:

o (status, seed _material) = Get_entropy_bitstring(s, Method 1).
o If (status # SUCCESS), then return (status, Null).

Method_1 indicates that only the entropy from physical entropy sources is to be
counted.

34 The value of s is recorded in the DRBG’s internal state (see SP 800-90A).
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In step 3.2, request the generation of full entropy bits using the DRBG_Generate function,
where:

e The RBG3 DRBG state handle was obtained during DRBG instantiation (see Sec.
6.5.1.1).

e sis both the number of full-entropy bits to be produced during the DRBG_Generate
function call and the security strength of the DRBG instantiation (see Sec. 2.8.1.2 and
Table 4 in Appendix A.2). That is, the value of s is shown as two inputs in step 3.2.

e additional input is the current value of the additional input string (initially provided
in the DRBG_Generate call, used in the first iteration of step 3.2, and subsequently
set to the Null string in step 3.6).

In step 3.3, if step 3.2 returned a status value indicating that the DRBG_Generate function
was not successful, then return the status to the calling application with a Null bitstring.
Otherwise, go to step 3.4.

In step 3.4, concatenate the full entropy bits obtained in step 3.2 to the temporary bitstring
(temp).

In step 3.5, increment the output-length counter (sum) by s bits (i.e., the number of full-
entropy bits obtained in step 3.2).

In step 3.6, to avoid reusing the additional input, set its value to a Null string for subsequent
iterations of step 3.

If sum <mn, go to step 3.1.

Step 4 returns a status indicating SUCCESS to the calling application along with the leftmost # bits
of temp as the returned bitstring.

6.5.1.3. Random Bit Generation Using a Directly Accessible DRBG

As discussed in Sec. 2.8.1.2, the DRBG used by the RBG3(RS) construction may be requested to
generate output directly using the following request:

(status, returned_bits) = DRBG_Generate_request(RBG3 _DRBG state handle,
requested number of bits, requested_security strength,
additional input),

where RBG3 _DRBG state_handle was provided during instantiation (see Sec. 6.5.1.1), and
additional input is optional.

Before generating the requested output, the DRBG needs to be reseeded in the following
circumstances:

1. Asdiscussed in Sec. 6.5.1.2, accessing a DRBG directly to generate output by the DRBG in
the RBG3(RS) construction requires that the DRBG be reseeded with at least s + 64 bits of
entropy from the entropy source(s) when the DRBG was previously used as a component
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of the RBG3(RS) generate function. This requires that the RBG3(RS) implementation
keep track of the type of generate request that was made previously (e.g., including this
information in the DRBG’s internal state) so that the reseeding of the DRBG is
automatically performed before generating the requested DRBG output.

2. During a sequence of generate requests, the DRBG may reseed itself in response to some
event or to a reseed request from an application.

Reseeding is accomplished as specified in Sec. 6.5.1.4.

If a reseed of the DRBG was not performed, or a status of SUCCESS was returned by the
DRBG_Reseed function when performed under conditions 1 or 2 above, the
DRBG _Generate request invokes the DRBG_Generate function (see Sec. 5.2.2), obtains the
status of the operation and any generated bits (i.e., returned bits), and forwards them to the
application in response to the DRBG_Generate_request.

6.5.1.4. Reseeding

Reseeding the DRBG may be performed:
1. When explicitly requested by the consuming application,

2. During an RBG3(RS) generate request (see Sec. 6.5.1.2) or in response to a direct DRBG
generate request when the previous use of the DRBG was as a component of the
RBG3(RS) Generate function (see Sec. 6.5.1.3), or

3. Based on implementation-selected criteria, such as time, number of outputs, events, or
the availability of sufficient entropy.

Case 1: An application sends a reseed request to the RBG:
status = DRBG_Reseed _request(RBG3 DRBG state handle, additional input),

where RBG3 DRBG state handle was obtained during instantiation (see Sec. 6.5.1.1), and
additional input is optional.
Any additional input provided by the DRBG_Reseed_request from the application shall be

used as input to the DRBG_Reseed function. Otherwise, the use of additional input is
optional when invoking the DRBG_Reseed function.

The DRBG_Reseed_request results in the invocation of the DRBG_Reseed function (see
Sec. 5.2.3). The status returned from the DRBG_Reseed function is forwarded to the
application in response to the DRBG_Reseed_request.

Case 2: The DRBG is reseeded during an RBG3(RS) generate process as follows:

e For CTR _DRBG without a derivation function, keylen + output len bits of seed material
are requested during reseeding in the same manner as for instantiation (see step 3.1 of
Sec. 6.5.1.2).

74



NIST SP 800-90C Recommendation for RBG Constructions
September 2025

e ForHash DRBG, HMAC DRBG, or CTR DRBG with a derivation function, use Method
A or Method B (as specified in step 3.1 of Sec. 6.5.1.2) to obtain s + 64 bits of fresh entropy
in the DRBG.

Case 3: Areseed of the DRBG is invoked based on implementation-selected criteria:
status = DRBG_Reseed(RBG3_DRBG state_handle, additional input).

For CTR_DRBG, the DRBG is reseeded with keylen + output len bits of fresh seed material.
Otherwise, the DRBG is reseeded with either s or s + 64 bits of fresh entropy, depending on
whether Method A or Method B was used in step 3.1 of Sec. 6.5.1.2.

6.5.2. Requirements for an RBG3(RS) Construction

An RBG3(RS) construction has the following requirements in addition to those provided in Sec.
6.3:

1. For each s bits generated by the RBG3(RS) construction, s + 64 bits of fresh entropy shall
be acquired either directly from independent, validated entropy sources or from an
external conditioning function that processes the output of the validated entropy sources
to provide full-entropy, as specified in Sec. 3.2.2.2.

2. Each RBG3(RS) generate request shall be completed before executing another request.

3. If a directly accessible DRBG uses the same internal state as the RBG3(RS) construction
and the previous use of the DRBG was by the RBG3(RS) construction, a reseed of the DRBG
instantiation with at least s + 64 bits of entropy shall be performed before generating
output. This reseed-generate process shall be completed before executing another
RBG3(RS) request or a request for generating bits directly from the DRBG.

4, The DRBG shall be reseeded in accordance with Sec. 6.4.1.4.
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7. RBGC Construction for DRBG Trees

The RBGC construction allows for the use of a tree of DRBGs in which one DRBG is used to provide
seed material for another DRBG. This design is common on many computing platforms and allows
some level of modularity (e.g., an operating system RBG can be designed and validated without
knowing the randomness source that will be available on the particular hardware on which it will
be used, or a software application can be designed with its own RBG but without knowing the
operating system or hardware used by the application).

7.1. RBGC Description

7.1.1. RBGC Environment

Figure 30 depicts RBGC constructions and the environment in which they will be used.

o ——————————————o—— e |
e RBGC, |
| Root) RBGC RBGC | |
| initiat | (R°°Y 1 | i
i : Randomness : I
i | Source DRBG; -DRBGZ—V—‘{DRBGg :
I (RBG2, RBGS3, | I
| Full- Entropy | :
o Source) I I
N ! |
: I :
Sl NSS! B !
DRBG,
RBGC,

Fig. 30. DRBG tree using the RBGC construction

An RBGC construction consists of an approved DRBG mechanism (see [SP_800-90A]) and the
randomness source used for seeding and (optional) reseeding. Figure 30 illustrates a tree of RBGC
constructions that consists of two DRBG chains: 1) a chain consisting of DRBG1, DRBG;, and DRBG3
and 2) a chain consisting of DRBG1 and DRBG4. The core of this type of construction is called the
root and is shown as RBGC: within the solid red rectangle in the figure. Its DRBG is labeled as
DRBG3, and its randomness source for seeding and (optionally) reseeding is labeled as the initial
randomness source.

For each of the other RBGC constructions (i.e., RBGC,, RBGCs, and RBGC4), the DRBG within the
construction is seeded by a DRBG within a “parent” RBGC construction (i.e., the parent is the
randomness source used for seeding the DRBG). For RBGC; (shown in Fig. 30 as a box outlined
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with long green dashes [-——]), the parent randomness source is the root (i.e., RBGC;). For RBGC3
(shown as a box with black dashes and dots [—« «—+«—]), the parent randomness source is RBGCo.
For RBGCs (shown as a box outlined with a solid blue rectangle), the parent randomness source
is RBGC; (i.e., the root).

An RBGC construction may be used to instantiate and reseed other non-root RBGC constructions
or to provide output for one or more applications (not shown in Fig. 30). All components of an
RBGC tree — including the initial randomness source and the DRBGs in that tree — reside on the
same computing platform. The initial randomness source is not physically removable while the
computing platform is operational, and the contents of the internal state of any DRBG in the tree
are never relocated to another computer platform or output for external storage. See Appendix
A.3 for a discussion about the intended meaning of a computing platform and implementation
considerations.

Each RBGC construction may be a parent for one or more child RBGC constructions. Each of the
child RBGC constructions has only one parent that serves as its randomness source for seeding
the DRBG within it. Using Fig. 30 as an example, RBGC; is the only parent of both RBGC; and
RBGCs4, and RBGC; is the parent of RBGCs. Reseeding of a non-root RBGC construction may be
accomplished using the parent or — if the parent is not available (e.g., the non-root RBGC
construction being reseeded has been moved to a different CPU core than its parent) — an
ancestor (i.e., predecessor),3 a sibling of the parent,3® or the initial randomness source under
certain conditions (see Sec. 7.1.2.2 for further discussion).

An RBGC construction cannot have itself as a predecessor (i.e., an ancestor) randomness source
for reseeding. That is, there must not be “seed loops” in which an RBGC construction provides
seed material for a predecessor RBGC construction (e.g., a parent or grandparent). For example,
in Fig. 30, RBGC; can be used as the randomness source for RBGCs, but RBGCs cannot be used as
the randomness source for reseeding RBGC: or RBGC,. However, additional input provided to
the DRBG during a reseed or generate request may be anything, including the output of any RBGC
construction of the tree.

7.1.2. Instantiating and Reseeding Strategy

7.1.2.1. Instantiating and Reseeding the Root RBGC Construction

The root RBGC construction is instantiated using an initial randomness source, which is either a
validated full-entropy source or a validated RBG2(P), RBG2(NP), RBG3(XOR), or RBG3(RS)
construction. A reseed capability for the root is optional but if implemented, is reseeded using
the initial randomness source. An RBG2(P) or RBG2(NP) construction used as the initial
randomness source should have the capability of being reseeded on demand by the root. A
validated full-entropy source is a validated entropy source that provides full-entropy output or
the combination of a validated entropy source and an external vetted conditioning function that

35 In Fig. 30, RBGC: (with DRGG;) is an ancestor of RBGCs (with DRBG3).
36 DRBG: and DRBGs are siblings since they share DRBG; as a parent.
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provides full-entropy output (see Sec. 3.2.2.2). The root may provide prediction resistance if
reseeded by the initial random source.

7.1.2.2. Instantiating and Reseeding a Non-Root RBGC Construction

Each non-root RBGC construction in a tree is instantiated by a single RBGC construction (i.e., its
parent) using that parent as its randomness source. If the child RBGC construction has a reseed
capability, the parent normally serves as the randomness source during the reseeding process.
However, if the parent is not available for reseeding (e.g., the non-root RBGC construction being
reseeded has been moved to a different CPU core than its parent), an ancestor (including the
root RBGC construction), a sibling of the parent, or the initial randomness source may be used as
an alternative randomness source provided that:

1. The ancestor or sibling of the parent has been validated for compliance with an RBGC
construction, and

2. The initial randomness source, ancestor, or sibling supports the security strength of the
DRBG to be reseeded.

Using Fig. 30, consider RBGC;s as the target RBGC construction to be reseeded. RBGC; is the parent
of RBGCs3 and would normally be used as the randomness source for reseeding RBGCs. If RBGC;
is not available when RBGC; needs to be reseeded, then RBGC; (an ancestor) or RBGC; (a sibling
of the parent) may be used as a randomness source for reseeding if they meet conditions 1 and
2 above. Alternatively, the initial randomness source may be used for reseeding if it supports the
security strength of the DRBG to be reseeded.

Implementers of an RBGC tree that use a randomness source other than the parent for reseeding
the DRBG of an RBGC construction will require a means of recognizing that the parent
randomness source is not available and for the alternative randomness source to recognize the
validity of the request for the generation of seed material and the internal state (if appropriate)
to be used for the generation process. Non-root RBGC constructions cannot guarantee prediction
resistance since their randomness sources may not provide fresh entropy. However, non-root
RBGC constructions should be reseeded periodically to defend against a potential undetected
compromise of their internal states.

7.2. Conceptual Interfaces

An RBGC construction can support instantiation and generation requests (see Sec. 7.2.1 and
7.2.2, respectively) and may provide a capability to be reseeded (see Sec. 7.2.3).

7.2.1. RBGC Instantiation

The DRBG within an RBGC construction may be instantiated by an application at any security
strength possible for the DRBG design that does not exceed the security strength of its
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randomness source. This is accomplished using the DRBG_Instantiate function discussed in Sec.
2.8.1.1 and [SP_800-90A].

The (target) DRBG in an RBGC construction is instantiated by an application using the following
request:

(status, RBGCx_DRBG state _handle) = DRBG_Instantiate request(s,
personalization_string),

where s is the requested security strength for the DRBG. The DRBG_Instantiate request
received by the DRBG results in the execution of the DRBG_Instantiate function in the DRBG
with the input in the DRBG_Instantiate_request provided as input to the DRBG_Instantiate
function:

(status, RBGCx_DRBG state _handle) = DRBG _Instantiate(s, personalization_string).

The target DRBG in the RBGC construction cannot be instantiated at a higher security strength
than that which is supported by its randomness source. If the target DRBG is successfully
instantiated, RBGCx_DRBG state_handle is the state handle returned to the application for
subsequent access to the internal state of the DRBG instantiation within the RBGC construction.
If the DRBG is implemented to only allow a single internal state, then a state handle is not
required. If the instantiation request is invalid (e.g., the requested security strength cannot be
provided by the DRBG design or the randomness source; see [SP_800-90A]), an error indication
is returned as the status with an invalid state handle.

7.2.1.1. Instantiation of the Root RBGC Construction

The randomness source for the root RBGC construction (also referred to as the initial randomness
source) is:

e Avalidated RBG3(XOR) or RBG3(RS) construction, as specified in Sec. 6;
e Avalidated RBG2(P) or RBG2(NP) construction, as specified in Sec. 5; or
e Avalidated full-entropy source that is either:

o An entropy source that provides output with full entropy (as specified in [SP_800-
90B]) or

o The output of an SP 800-90B-compliant entropy source that has been externally
conditioned by a vetted conditioning function (as specified in Sec. 3.2.2.2) to
provide output with full entropy.

When used as the initial randomness source, an RBG3 construction or a full-entropy source can
support any valid security strength for the DRBG within the root RBGC construction (e.g., 128,
192, or 256 bits).

When used as the initial randomness source, an RBG2(P) or RBG2(NP) construction can support
any security strength for the DRBG within the root RBGC construction that does not exceed the
instantiated security strength of the DRBG within the RBG2(P) or RBG2(NP) construction. For
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example, if the initial randomness source is an RBG2(P) construction whose DRBG is instantiated
at a security strength of 128 bits, then the DRBG within the root RBGC construction can only be
instantiated at a security strength of 128 bits.

An RBGC designer must consider how to find an available randomness source and how to access
it.

7.2.1.1.1. Instantiating the DRBG in the Root Using an RBG2 or RBG3 Construction as the
Initial Randomness Source

Figure 31 depicts a request for instantiation of the root RBGC construction by an application.

[ e e e e e e e e e — DRBG_
| Initial Generate | Instantiate_
t
| | Randomness = reques | request -
| Source status DRBG,| | TAppllca’uon
RBG3(XOR), - |
| RBG3(RS) (seed_material) | status,
| RBG2(P). | (state_handle)
| RBG2(NP)
| (Root) RBGC1_!

Fig. 31. Instantiation of the DRBG in the root RBGC construction using an RBG2 or RBG3 construction as the
randomness source

Let RBGC; be the root, and let DRBG; be its DRBG. In this section, the initial randomness source
is either an RBG2 or RBG3 construction.

Upon receiving a valid instantiation request from an application (see Sec. 7.2.1), the
DRBG _Instantiate function within DRBG1 processes the request by obtaining seed material
from the initial randomness source. Within the DRBG_Instantiate function (in DRBG1), the
randomness source is accessed using a Get_randomness_source_input call (see [SP_800-90A]),
which is replaced as specified below.

Let keylen be the length of the key to be used by the cryptographic primitive in DRBGy, and let
output len be the length of its output block.

1. When the DRBG in the root RBGC construction uses CTR_DRBG without a derivation
function, keylen + output_len bits shall be obtained from the initial randomness source.

a. If the randomness source is an RBG2(P) or RBG2(NP) construction, the RBG2
construction should be reseeded before requesting seed material. The
Get_randomness_source_input call becomes:

1) If the initial randomness source can handle requests for reseeding:

o status = DRBG_Reseed_request(RBG2 DRBG state handle,
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additional input).
o If (status # SUCCESS), then return (status, invalid_state _handle).
2) Request the generation of seed material:

o (status, seed material) =

DRBG_Generate_request(RBG2 DRBG state handle,
keylen + output len, s, additional input).

o If (status # SUCCESS), then return (status, invalid state handle).

RBG2 DRBG state_handle is the state handle for the internal state of the
DRBG within the RBG2 construction of the initial randomness source.

Reseed and generate requests received by an RBG2 construction are
discussed in Sec. 5.2.3 and 5.2.2, respectively.

b. If the randomness source is an RBG3(XOR) or RBG3(RS) construction, the
Get_randomness_source_input call becomes:

o (status, seed_material) =

RBG3 DRBG_Generate request(RBG3 _DRBG state handle,
keylen + output len, additional input).

o If (status # SUCCESS), then return (status, invalid_state handle).

RBG3 DRBG state handle is the state handle for the internal state of the DRBG
within the RBG3 construction of the initial randomness source. An
RBG3_DRBG_Generate_request received by an RBG3 construction is discussed

in Sec. 6.4.1.2 and 6.5.1.2 (i.e.,, the RBG3(XOR) and RBG3(RS) constructions,
respectively).

2. For CTR_DRBG with a derivation function, Hash DRBG, and HMAC DRBG, 3s/2 bits

shall be obtained from a randomness source that provides a security strength of at least
s bits.

a. If the randomness source is an RBG2(P) or RBG2(NP) construction, the RBG2
construction should be reseeded before requesting seed material. The
Get_randomness_source_input call becomes:

1) If the initial randomness source can handle requests for reseeding:
o status = DRBG_Reseed_request(RBG2 DRBG state_handle,
additional input).
o If (status # SUCCESS), then return (status, invalid_state _handle).
2) Request the generation of seed material.

o (status, seed_material) =
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DRBG_Generate_request(RBG2 DRBG state handle,
3s/2, s, additional input).

o If (status # SUCCESS), then return (status, invalid state handle).

RBG2 DRBG state handle is the state handle for the internal state of the
DRBG within the RBG2 construction. Reseed and generate requests
received by an RBG2 construction are discussed in Sec. 5.2.3 and 5.2.2,
respectively.

b. If the randomness source is an RBG3(XOR) or RBG3(RS) construction, the
Get_randomness_source_input call becomes:

o (status, seed material) =
RBG3 DRBG_Generate request(RBG3 DRBG state_handle,
3s/2, additional input).

o If (status # SUCCESS), then return (status, invalid_state handle).

RBG3 _DRBG state_handle is the state handle for the internal state of the DRBG
within the RBG3 construction. An RBG3_DRBG_Generate_request received by
an RBG3 construction is discussed in Sec. 6.4.1.2 and 6.5.1.2 (i.e., the RBG3(XOR)
and RBG3(RS) constructions, respectively).

7.2.1.1.2. Instantiating the Root RBGC Construction Using a Full-Entropy Source as the
Initial Randomness Source

Figure 32 depicts a request for instantiation of the root RBGC construction by an application.

L __E___E it __E___§__§E A

| |

| Initial Randomness | DRBG_

: Source Entropy | Instantiate_

[ (Opt) request ! request

| | | Entropy - DRBG; | Application
|| |Source(s) Cond. status, K PP
l Func. Miseed material) I status,

| | (state_handle)

: Full-entropy source : -

: (Root) RBGC; |

Fig. 32. Instantiation of the DRBG in the root RBGC construction using a full-entropy source as the initial
randomness source

Let RBGC; be the root, and let DRBG1 be its DRBG. In this section, the initial randomness source
is a full-entropy source (see Sec. 7.2.1.1).
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Upon receiving a valid instantiation request from an application, the DRBG_Instantiate function
within DRBG1 continues processing the request by obtaining seed material from the full-entropy
source. The full-entropy source may consist of physical or non-physical entropy sources or both,
and either Method 1 (i.e., physical only) or Method 2 (i.e., non-physical inclusive) may be used to
count entropy (see Sec. 2.3). Instantiation is performed for an RBG2 construction, as specified in
Sec. 5.2.1.

7.2.1.2. Instantiating an RBGC Construction Other Than the Root

Figure 33 depicts a request by an application for the instantiation of the DRBG within an RBGC
construction that is not the root.

Application

— = o

(DI o 3 s S
------------------------------- pE Sl--|$8,
| X aocdg ® |

| Randomness source for RBGC a7 o = O
I ; ........................................................................................... H E (75} E |
g DRBG_ | B |
| Generate :
: (Initial Randomness DRBG, DRBGRS requeSt DRBG,, I
| : Source) H |
¥ status, :
| i i (seed_ |
s s —asan RBGCrsi  Material) |
| RBGC, |

Fig. 33. Instantiation of the DRBG in RBGC, using RBGCrs as the randomness source

Let RBGC, be the RBGC construction receiving the instantiation request, and let DRBG, be its
DRBG. RBGC, needs to determine the RBGC construction that will serve as its randomness source.
The randomness source for a DRBG in an RBGC construction that is not the root of the DRBG tree
is the RBGC construction that will immediately precede it in the tree as its parent. Let RBGCgs be
the randomness source for RBGC,, and let DRBGgs be its DRBG. RBGgs could be the root RBGC
construction. RBGC; (the root) is outlined in gray in Fig. 33.

Upon receiving a valid instantiation request from an application, such as

(status, RBGC _DRBGn_state handle) = DRBG_Instantiate request(s,
personalization_string),

DRBG, executes its DRBG_Instantiate function within DRBG, and processes the request by
obtaining seed material from its intended parent randomness source (RBGCgs). The
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Get_randomness_source_input call in the DRBG_Instantiate function in DRBG, is replaced as
specified below.

Let keylen be the length of the key used by the cryptographic primitive in RBGC,'s DRBG (shown
as DRBGy, in Fig. 33), and let output len be the length of its output block.

1. When RBGC, is instantiating CTR_DRBG without a derivation function, keylen +
output len bits shall be obtained from the randomness source (i.e., RBGCgs) by replacing
the Get_randomness_source_input call with:

o (status, seed_material) =
DRBG_Generate request(RBGCrs DRBG state_handle, keylen +
output_len, s, additional input).

o If (status # SUCCESS), then return (status, invalid_state handle).

RBGCrs DRBG state_handle is the state handle for the internal state of the DRBG within
RBGCrs. Upon receiving the DRBG_Generate request, RBGCrs executes its
DRBG_Generate function (see Sec. 2.8.1.2 and 7.2.2) and checks its output. That is,

o (status, seed material) = DRBG_Generate(RBGCrs DRBG state handle
keylen + output len, s, additional _input).

o If (status # SUCCESS), then return (status, invalid_state handle).

2. For CTR_DRBG with a derivation function, Hash DRBG, and HMAC DRBG, 3s/2 bits
shall be obtained from the randomness source (RBGCgs) by replacing the
Get_randomness_source_input call with:

o (status, seed material) =
DRBG_Generate_request(RBGCrs DRBG state _handle, 3s/2, s,
additional input).

o If (status # SUCCESS), then return (status, invalid state handle).

RBGCrs _DRBG state_handle is the state handle for the internal state of the DRBG within
RBGCrs. Upon receiving the DRBG_Generate request, RBGCrs executes its
DRBG_Generate function (see Sec. 2.8.1.2 and 7.2.2) and checks its output. That is,

o (status, seed_material) = DRBG_Generate(RBGCrs DRBG state handle,
3s/2, s, additional input).

o |If (status # SUCCESS), then return (status, invalid_state handle).

Section 7.2.2 specifies the behavior of the DRBG in an RBGC construction when it receives a
generate request. The status and any generated seed material are returned to the requesting
DRBG (DRBGy) in response to the DRBG_Generate_request.

84



NIST SP 800-90C Recommendation for RBG Constructions
September 2025

7.2.2. Requesting the Generation of Pseudorandom Bits From an RBGC Construction

Figure 34 depicts a generate request received by the DRBG in an RBGC construction (i.e., DRBG,
in RBGC,) from a requesting entity — either an application or a DRBG in another RBGC
construction (shown as DRBG,, and RBGC, in the figure).

Application
DRBG_Generate | 1{status,
request (pseudorandom bits)
o e e e _J\pseudorandom bits)
| wni2ndomness source for RBGG, b enenses :
| |
| i DRBG_ |
: v i  Generate |
¥ i request :
| Initial Randomness h |
| Sou = DRBG, | : DRBG,, | |
: : status, :
| RBGC ! (pseudorandom |
: vvvvvvvvvvvvvv Bt bits) RBGC,, :

Fig. 34. Generate request received by the DRBG in an RBGC construction

When the requesting entity is DRBG, (rather than an application), DRBGn, is attempting to be
seeded or reseeded with seed material. In this case, DRBG, shall be either 1) the parent
randomness source for DRBGp, or 2) an alternative randomness source (see Sec. 7.1.2.2).

The generate request from the requesting entity for this example is:

(status, returned_bits) = DRBG_Generate_request(RBGCn_DRBG state_handle,
requested number of bits, requested_security strength, additional input),

where RBGCn_DRBG state_handle is the state handle for the internal state of the DRBG in the
RBGC construction receiving the generate request (RBGCy). If the DRBG_Generate request
received by RBGC, can be handled, the DRBG_Generate function in DRBG, is executed:

(status, returned bits) = DRBG_Generate(RBGCn_DRBG state_handle,
requested_number_of bits, requested_security strength, additional input).

The DRBG_Generate function within DRBG, processes the generate request.

1. If the generate request cannot be fulfilled (e.g., the requested security strength cannot
be provided by the DRBG design used in DRBG,; see [SP_800-90A]), only an error status is
returned to the requesting entity. No other output is provided.
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2. Otherwise, DRBG, generates the requested number of bits and provides them to the
requesting entity in response to the DRBG_Generate_request with a status of SUCCESS.

7.2.3. Reseeding an RBGC Construction

The reseeding of an RBGC construction is optional. If a reseed capability is implemented within
the DRBG of an RBGC construction, the RBGC construction may receive a reseed request from an
application, or the DRBG within the construction may reseed itself based on implementation-
selected criteria. Examples of such criteria include time, number of outputs, events, or — in the
case of the root RBGC construction using a full-entropy source — the availability of sufficient
entropy.

Section 7.2.3.1 discusses the reseeding of the DRBG in the root RBGC construction. Section
7.2.3.2 discusses the reseeding of the DRBG in an RBGC construction other than the root.

A reseed request from an application is:
(status) = DRBG_Reseed_request(RBGCx DRBG state handle, additional input),

where RBGCx _DRBG state handle is the state handle for the internal state of the DRBG in the
RBGC construction receiving the reseed request (RBGCy).3’ The DRBG_Reseed_request received
by RBGCx results in the execution of DRBGx's DRBG_Reseed function (see Sec. 2.8.1.3). The
status returned from the DRBG_ Reseed function shall be returned to the application in response
to the DRBG_Reseed_request.

If the reseed request is invalid (e.g., the state handle is not correct, or the DRBG does not have a
reseed capability), an error indication is returned as the status to the application (i.e., indicating
that the DRBG has not been reseeded).

Reseeding based on implementation-selected criteria is not initiated by a
DRBG_Reseed_request from an application but is addressed in Sec. 7.2.3.1 and 7.2.3.2.

37 For Fig. 35 in Sec. 7.2.3.1, x = 1. For Fig. 36 in Sec. 7.2.3.2, x = n.
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7.2.3.1. Reseed of the DRBG in the Root RBGC Construction

m———— DRBG
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I Initial _Generate request : request

| | Randomness DRBG; | | Application
' Source status, :

: (seed_material) : status

|
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Fig. 35. Reseed request received by the DRBG in the root RBGC construction

If the root RBGC construction includes a reseed capability (as shown in Fig. 35), the DRBG in the
root RBGC construction (e.g., RBGC1) may receive a request from an application for reseeding.

Upon the receipt of a valid reseed request or when reseeding is to be performed based on
implementation-selected criteria, the DRBG in the root RBGC construction (e.g., DRBG1) executes
its DRBG_Reseed function to obtain randomness from the initial randomness source for
reseeding itself. This process results in fresh entropy provided by the initial randomness source
so that the next output generated by DRBG; has prediction resistance.

1. When the DRBG in the root RBGC construction uses CTR_DRBG without a derivation
function, reseeding is performed in the same manner as for instantiation.

e [f the initial randomness source is an RBG3(XOR), RBG3(RS), RBG2(P), or RBG2(NP)
construction, input is obtained from the initial randomness source as specified in item
1 of Sec. 7.2.1.1.1.

e If the initial randomness source is a full-entropy source, input is obtained as specified
in item 1 of Sec. 7.2.1.1.2.

2. When the DRBG in the root RBGC construction uses CTR_DRBG with a derivation
function, Hash DRBG, or HMAC DRBG, input is obtained from the initial randomness
source in the same manner as for instantiation except that s bits are requested (instead
of 3s/2 bits), where s is the instantiated security strength of the DRBG in the root.

e If the initial randomness source is an RBG3(XOR), RBG3(RS), RBG2(P), or RBG2(NP)
construction, input is obtained from the initial randomness source as specified in item
2 of Sec. 7.2.1.1.1.

e [f the initial randomness source is full-entropy source, input is obtained as specified
initem 2 of Sec. 7.2.1.1.2.
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7.2.3.2. Reseed of the DRBG in an RBGC Construction Other Than the Root
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Fig. 36. Reseed request received by an RBGC construction other than the root

As shown in Fig. 36, a DRBG in an RBGC construction other than the root (e.g., RBGC,) may receive
a request for reseeding from an application. DRBG, may also reseed itself based on
implementation-selected criteria. The randomness source must be either DRBG,’s parent, a
sibling of the parent, another ancestor of DRBG,, or the initial randomness source.

7.2.3.2.1. The Randomness Source is an RBGC Construction

The randomness source for reseeding the DRBG in a non-root RBGC construction (e.g., DRBG,, as
shown in Fig. 36) may be the DRBG in the parent, a sibling of the parent, or another ancestor of
DRBGn. Let DRBGgs be the randomness source to be used for reseeding. DRBGgs may be the DRBG
of the root RBGC construction (outlined in gray in Fig. 36). Prediction resistance is not provided
for the DRBG being reseeded (DRBG,) since fresh entropy is not provided by the randomness
source in this case (DRBGgs).

Upon the receipt of a valid reseed request or when a reseed is to be performed based on
implementation-selected criteria, the DRBG in RBGC, executes its DRBG_Reseed function (if
implemented). The Get_randomness_source_input request in the DRBG_Reseed function is
replaced by the following:

o (status, seed material) = DRBG_Generate request(RBGCrs DRBG state handle,
number_of bits, s, additional input).

o |If (status # SUCCESS), then return (status, invalid_bitstring),
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where:

o RBGCrs DRBG state handle is the state handle for the internal state of the DRBG in the
randomness source (i.e., RBGCgs),

o number of bits is keylen+output len bits for a CTR_DRBG without a derivation function,
and s bits otherwise.

e additional input is optional.

Upon receiving the request, RBGCgs executes its DRBG_Generate function. A status indication
will be returned from RBGCgs along with seed material if the status indicates a success (see Sec.
7.2.2).

Upon the receipt of a response from the randomness source (RBGgs), the DRBG in RBGC,
proceeds as follows:

1. If an error indicator is received from the randomness source (RBGCgs) in response to the
generate request, the error indicator is forwarded to the application as the status in the
response to the reseed request.

2. If status = SUCCESS is received from the randomness source (i.e., RBGCgs) and
seed_material is provided, the seed material is incorporated into the internal state of the
DRBG in RBGCn, as specified in its DRBG_Reseed function (see [SP_800-90A]). If the
reseeding of the DRBG in RBGCn was in response to a DRBG_Reseed_request from an
application, the status received from the randomness source is returned to the
application.

7.2.3.2.2. The Randomness Source is the Initial Randomness Source

When an appropriate RBGC construction is not available to reseed the DRBG in a non-root RBGC
construction (see Sec. 7.2.3.2.1), the initial randomness source may be used.

If the initial randomness source is an RBG2 construction, reseeding is performed as specified in
Sec. 7.2.1.1.1, items 1a and 2a. Reseeding the DRBG in the RBG2 construction before requesting
the generation of random bits is optional but recommended.

If the initial randomness is an RBG3 construction, reseeding is performed as specified in Sec.
7.2.1.1.1, items 1b and 2b.

If the initial randomness source is a full-entropy source, reseeding is performed as specified in
Sec.7.2.1.1.2.
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7.3. RBGC Requirements

7.3.1. General RBGC Construction Requirements

An RBGC construction has the following general testable requirements (i.e., capable of being
tested by the FIPS 140 validation labs):

1.

10.

11.

12.

An approved DRBG (from [SP_800-90A]) whose components are capable of providing the
targeted security strength for an RBGC construction shall be employed.

RBGC components shall be successfully validated for compliance with the SP 800-90
series (i.e., [SP_800-90A], [SP_800-90B], and this document), [FIPS_140], and the
specification of any other approved algorithm used within the RBGC construction, as
applicable.

An RBGC construction shall not produce any output until it is instantiated.

An RBGC construction shall not provide output for generating requests that specify a
security strength greater than the instantiated security strength of its DRBG.

If a health test on the DRBG in an RBGC construction fails, the DRBG instantiation shall be
terminated.

The seed material provided to the DRBG within an RBGC construction shall remain secret
during transfer from the DRBG’s randomness source and remain unobservable from
outside its RBG boundary.

The internal state of the DRBG within an RBGC construction shall remain unobservable
from outside its RBG boundary.

A tree of RBGC constructions and the initial randomness source for the root RBGC
construction shall be implemented and operated on a single, physical platform (see
Appendix A.3).

The initial randomness source shall not be removable from the computing platform
during operation. If a replacement is required, the root shall be (re-)instantiated using
the replacement randomness source.

The seed material shall not be output from the computing platform on which it was
generated.

The internal state of the DRBG within an RBGC construction shall not be removed from
the computing platform on which it was created, including for storage, and shall only be
available to the DRBG instantiation for which it was created.

If the (parent) randomness source for an RBGC construction is not available for reseeding,
the DRBG in the RBGC construction may continue to generate output without reseeding
or may be reseeded using a validated sibling of the parent, a validated ancestor of the
RBGC construction to be reseeded, or the validated initial randomness source.
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General requirements for an RBGC construction that are non-testable are:

13. Each RBGC construction must be able to determine the type of randomness source
available for its use and how to access it.

14. The randomness source for an RBGC construction must provide the requested number of
bits at a security strength of s bits or higher, where s is the targeted security strength for
that RBGC construction.

15. The specific output of the randomness source (or portion thereof) that is used for
instantiating or reseeding an RBGC construction must not be used for any other purpose,
including seeding or reseeding a different instantiation or RBGC construction.

16. The output of an RBGC construction must not be used as seed material for a predecessor
(i.e., ancestor) RBGC construction.

7.3.2. Additional Requirements for the Root RBGC Construction

An RBGC construction that is used as the root of a DRBG tree has the following additional testable
requirements (i.e., capable of being tested by the FIPS 140 validation labs):

1. For CTR _DRBG with a derivation function, Hash DRBG, or HMAC DRBG, 3s/2 bits
shall be obtained from the initial randomness source for instantiation, where s is the
targeted security strength for the DRBG used in the root RBGC construction. When
reseeding, s bits shall be obtained from the initial randomness source.

2. For CTR _DRBG without a derivation function used as the DRBG within the root RBGC
construction, keylen + output len bits shall be obtained from the randomness source for
instantiation and reseeding, where keylen is the length of the key to be used in the
cryptographic primitive used by the root’s DRBG, and output len is the length of its output
block.

3. If the randomness source for the root RBGC construction is an RBG2 construction, a
request for reseeding the DRBG in the RBG2 construction should precede a request for
generating seed material.

The non-testable requirements for the root RBGC construction are:

4. The initial randomness source for the root RBGC construction must be a validated
RBG3(XOR), RBG3(RS), RBG2(P), or RBG2(NP) construction or a full-entropy source.

5. A full-entropy source serving as the initial randomness source must be either an entropy
source that has been validated as providing full-entropy output or a validated entropy
source that uses the external conditioning function specified in Sec. 3.2.2.2.

6. The DRBG in the root RBGC construction may be instantiated at any security strength for
the design, subject to the following restriction: if the initial randomness source is an
RBG2(P) or RBG2(NP) construction, the root must not be instantiated at a security
strength greater than the security strength of the RBG2(P) or RBG2(NP) construction.
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7.3.3. Additional Requirements for an RBGC Construction That is Not the Root of a DRBG Tree

An RBGC construction that is not the root of a DRBG tree has no additional testable requirements
beyond those in Sec. 7.3.1.

The non-testable requirements for an RBGC construction that is not the root of a DRBG tree are:

1. Each RBGC construction must have only one parent RBGC construction as a randomness
source for instantiation and reseeding, although an alternative randomness source may
be used for reseeding under certain conditions (see requirement 12 in Sec. 7.3.1).

2. An RBGC construction must reside on the same computing platform as its parent and any
alternative randomness source (see requirement 12 in Sec. 7.3.1).

3. Each RBGC construction may be instantiated at any security strength for a design that
does not exceed the security strength of its parent randomness source.
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8. Testing

Two types of testing are specified in this recommendation: health testing and implementation-
validation testing. Health testing shall be performed on all RBGs that claim compliance with this
recommendation (see Sec. 8.1). Section 8.2 provides requirements for implementation
validation.

8.1. Health Testing

Health testing is the testing of an implementation prior to and during normal operations to
determine whether the implementation continues to perform as expected and as validated.
Health testing is performed by the RBG itself (i.e., the tests are designed into the RBG
implementation).

An RBG shall support the health tests specified in [SP_800-90A] and [SP_800-90B] as well as
perform health tests on the components of SP 800-90C. [FIPS_140] specifies the testing to be
performed within a cryptographic module.

8.1.1. Testing RBG Components

Whenever an RBG receives a request to start up or perform health testing, a request for health
testing shall be issued to the RBG components (e.g., the DRBG and any entropy source).

8.1.2. Handling Failures

Failures may occur during the use of entropy sources and during the operation of other
components of an RBG. [SP_800-90A] and [SP_800-90B] discuss error handling for DRBGs and
entropy sources, respectively.

8.1.2.1. Entropy-Source Failures

A failure of a validated entropy source is reported to the Get_entropy bitstring process in
response to entropy requests to entropy source(s). The Get_entropy_bitstring function notifies
the consuming application of such failures as soon as possible (see item 4 of Sec. 3.1). The
consuming application may choose to terminate the RBG operation. Otherwise, the RBG may
continue operation if any entropy source that can be credited with providing entropy32 is still
healthy (e.g., a failure has not been reported by those entropy sources) and can provide sufficient
entropy when requested.

38 Only the entropy provided by physical entropy sources is credited for the RBG2(P) and RBG3 constructions. Entropy from both physical and
non-physical entropy sources is credited for the RBG2(NP) construction (see Sec. 5 and 6).
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If all entropy sources credited with providing entropy report failures, the RBG operation shall be
terminated (e.g., stopped) until an entropy source is repaired and successfully tested for correct
operation.

8.1.2.2. Failures by Non-Entropy-Source Components

Failures by non-entropy-source components may be caused by hardware, software, or firmware
failures that may be detected using known-answer health tests within the RBG or by the system
in which the RBG resides. When such failures are detected that affect the RBG, the RBG operation
shall be terminated. The RBG must not resume operations until the reasons for the failure have
been determined, the failure has been repaired, and the RBG has been successfully tested for
proper operation.

8.2. Implementation Validation

Implementation validation is the process of verifying that an RBG and its components fulfill the
requirements of this recommendation. Validation is accomplished by:

e Validating the components from [SP_800-90A] and [SP_800-908B];

e Validating the use of the constructions in SP 800-90C via known answer tests, code
inspection, or both, as appropriate; and

e Validating that the appropriate documentation has been provided, as specified in SP 800-
90C.

Documentation shall be developed that will provide assurance to testers that an RBG that claims
compliance with this recommendation has been implemented correctly. This documentation
shall include the following as a minimum:

e An identification of the constructions and components used by the RBG, including a
diagram of the interaction between the constructions and components.

e Whether an external conditioning function is used, an indication of the type of
conditioning function and the method for obtaining any keys that are required by that
function.

e Appropriate documentation, as specified in [SP_800-90A] and [SP_800-90B]. The DRBG
and the entropy sources shall be validated for compliance with SP 800-90A and/or SP 800-
90B, respectively, and the validations successfully finalized before the completion of RBG
implementation validation.

e The maximum security-strength that can be supported by the DRBG.

e A description of all validated and non-validated entropy sources used by the RBG,
including identifying whether the entropy source is a physical or non-physical entropy
source.
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Documentation justifying the independence of all validated entropy sources from all
other validated and non-validated entropy sources employed.

An identification of the features supported by the RBG (e.g., access to the underlying
DRBG of an RBG3 construction).

A description of the health tests performed, including identification of the periodic
intervals for performing the tests.

A description of any support functions other than health testing.
A description of the RBG components within the RBG security boundary (see Sec. 2.5).

For an RBG1 construction, a statement indicating that the randomness source must be a
validated RBG2(P) or RBG3 construction or a root RBGC construction whose initial
randomness source is an RBG3 construction or full-entropy source (e.g., this could be
provided in user documentation and/or in a security policy).

If sub-DRBGs can be used in an RBG1 construction, the maximum number of sub-DRBGs
that can be supported by the implementation and the security strengths to be supported
by the sub-DRBGs.

For RBG2 and RBG3 constructions, a statement that identifies the conditions under which
the DRBG is reseeded (e.g., when requested by a consuming application or at a given time
interval).

For an RBG3 construction, a statement that indicates whether the DRBG can be accessed
directly (i.e., the DRBG internal state used by the RBG3 construction can be accessed using
calls directly to the DRBG).

For an RBG3 construction, the security policy shall indicate the fallback security strength3®
that can be supported by the DRBG if the entropy source fails.

For an RBG3(RS) construction, when implementing CTR_DRBG with a derivation
function, Hash DRBG, or HMAC DRBG, the method used for obtaining s + 64 bits of
entropy to produce s full-entropy bits (see Sec. 6.5.1.2).

For an RBGC construction, whether it is capable of serving as the root of a DRBG tree, how
it “finds” an appropriate randomness source for seeding and reseeding (if reseeding is
implemented), whether it can instantiate child RBGC constructions, any restrictions on
the number of child RBGC constructions in the implementation, whether it can be used
as an alternative randomness source for another RBGC construction and how this is
accomplished (see the note in Sec. 7.1.2.2), and whether it can be reseeded.

If an RBGC construction can serve as the root of a DRBG tree, identify the initial
randomness source types that can be used. If the randomness source can be a full-entropy
source, describe the entropy sources to be used.

39 The fallback security strength is the instantiated security strength of the DRBG.
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e Guidance to users about fulfilling the non-testable requirements, as appropriate (see Sec.
4.4,5.3,6.3,and 7.3).
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Appendix A. Auxiliary Discussions (Informative)

A.1. Entropy vs. Security Strength

This appendix compares and contrasts the concepts of entropy and security strength.

A.1.1. Entropy

Entropy is the amount of disorder, randomness, or variability in a closed system. There are
several measures of entropy in the literature. The SP 800-90 series uses min-entropy, which is a
worst-case measure of the unpredictability of a random variable.

Suppose that an entropy source produces n-bit strings with m bits of entropy in each bitstring.
This means that when an n-bit string is obtained from that entropy source, the best possible
guess of the value of the string has a probability of no more than 27" of being correct.

Entropy can be thought of as a property of a probability distribution, like the mean or variance.
Entropy measures the unpredictability or randomness of the probability distribution on bitstrings
produced by the entropy source, not a property of any particular bitstring. However, the
terminology is sometimes slightly abused by referring to a bitstring as having m bits of entropy.
This simply means that the bitstring came from a source that ensures m bits of entropy in its
output bitstrings.

Because of the inherent variability in the process, predicting future entropy-source outputs does
not depend on an adversary’s amount of computing power.

A.1.2. Security Strength

A deterministic cryptographic mechanism (e.g., the DRBGs defined in [SP_800-90A]) has a
security strength — a measure of how much computing power an adversary expects to need to
defeat the security of the mechanism. If a DRBG has an s-bit security strength, an adversary who
can make 2" computations of the underlying block cipher or hash function, where w < s, expects
to have about a 2" probability of defeating the DRBG’s security. For example, an adversary who
can perform 2% AES encryptions can expect to defeat the security of CTR-DRBG that uses AES-
128 with a probability of about 2732 (i.e., 296-128),

A.1.3. A Side-by-Side Comparison

Informally, one way of thinking of the difference between security strength and entropy is the
following: suppose that an adversary somehow obtains the internal state of an entropy source
(e.g., the state of all of the ring oscillators and any internal buffer). This might allow the adversary
to predict the next few bits from the entropy source (assuming that there is some buffering of
bits within the entropy source), but the entropy source outputs will once more become
unpredictable to the adversary very quickly. For example, knowing what faces of the dice are
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currently showing does not allow a player to successfully predict the next roll of the dice. In
contrast, suppose that an adversary somehow obtains the internal state of a DRBG. Because the
DRBG is deterministic, the adversary can then predict all future outputs from the DRBG until the
next reseeding of the DRBG with a sufficient amount of entropy.

An entropy source provides bitstrings that are difficult for an adversary to guess correctly but
usually have some detectable statistical flaws (e.g., they may have slightly biased bits, or
successive bits may be correlated). However, a well-designed DRBG provides bitstrings that
exhibit none of these properties. Rather, they have independent and identically distributed bits,
with each bit taking on a value with a probability of exactly 0.5. These bitstrings are only
unpredictable to an adversary who does not know the DRBG’s internal state and is
computationally bounded.

A.1.4. Entropy and Security Strength in This Recommendation

The DRBG within the RBG1 construction is instantiated from an RBG2(P) construction, an RBG3
construction, or a root RBGC construction whose initial randomness source is an RBG3
construction or full-entropy source. To instantiate the RBG1 construction at a security strength
of s bits, this recommendation requires the source RBG to support a security strength of at least
s bits and provide a bitstring that is at least 3s/2 bits. Some DRBGs have additional requirements
(see [SP_800-90A]).

The DRBG within an RBG2 or RBG3 construction is instantiated using a bitstring with a certain
amount of entropy obtained from a validated entropy source.*® In order to instantiate the DRBG
to support an s-bit security strength, a bitstring with at least 3s/2 bits of entropy is required for
the instantiation of most of the DRBGs. Reseeding requires a bitstring with at least s bits of
entropy. Other DRBGs have additional requirements (see [SP_800-90A]).

RBG3 constructions are designed to provide full-entropy outputs but with a DRBG included in the
design as a second security anchor in case the entropy source fails undetectably. Entropy bits are
obtained either directly from an entropy source or from an entropy source via an approved,
vetted conditioning function. When the entropy source is working properly, an n-bit output from
the RBG3 construction is said to provide n bits of entropy. The DRBG in an RBG3 construction is
always required to support the highest security strength that can be provided by its design
(highest _strength). If an entropy source has an undetectable failure, the RBG3 construction
outputs are generated at that security strength. In this case, the security strength of a bitstring
produced by the RBG is the minimum of highest strength and the length of the bitstring — that
is, security strength = min(highest_strength, length).

The DRBG within an RBGC construction is instantiated using a bitstring from a randomness
source. The randomness source for an RBGC construction will be either the initial randomness
source or another RBGC construction. The tree of RBGC constructions will always originate from

40 However, the entropy-source output may be cryptographically processed by an approved conditioning function before being used.
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an approved initial randomness source that is either a full-entropy source or an RBG2 or RBG3
construction, each of which includes a validated entropy source.

In conclusion, entropy sources and properly functioning RBG3 constructions provide output with
entropy. RBG1, RBG2, and RBGC constructions provide output with a security strength that
depends on the security strength of the RBG instantiation and the length of the output. Likewise,
if the entropy source used by an RBG3 construction fails undetectably, the output is then
dependent on the DRBG within the construction (i.e., an RBG2(P) construction) to produce output
at the highest security strength for the DRBG design.

Because of the difference between the use of “entropy” to describe the output of an entropy
source and the use of “security strength” to describe the output of a DRBG, the term
“randomness” is used as a general term to mean either “entropy” or “security strength,” as
appropriate. A “randomness source” is the general term for an entropy source or RBG that
provides the randomness used by an RBG.

A.2. Generating Full-Entropy Output Using the RBG3(RS) Construction

Table 4 provides information on generating full-entropy output using the RBG3(RS) construction
with the DRBGs in [SP_800-90A].

Table 4. Values for generating full-entropy bits by an RBG3(RS) construction

AR Entropy obtained Entropy required
DRBG Strength (s) that . . .
DRBG . during a normal for s bits with full
Primitives may be supported reseed operation (r) entropy (s + 64)
by the DRBG P Py
CTR _DRBG AES-128 128 256 192
(with no derivation AES-192 192 320 256
function) AES-256 256 384 320
CTR_DRBG (using a AES-128 128 128 192
derivation function) AES-192 192 192 256
AES-256 256 256 320
SHA-256
SHA3-256 256 256 320
Hash DRBG and SHA-384
HMAC DRBG SHA3-384 256 256 320
SHA-512
SHA3-512 256 256 320

Each DRBG is based on the use of an approved hash function or block cipher algorithm as a
cryptographic primitive. See [SP_800-90A] for an up-to-date list of approved DRBGs.

e Column 1 lists the DRBG types.

e Column 2 identifies the cryptographic primitives that can be used by the DRBG(s) in
column 1.
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e Column 3 indicates the highest security strength (s) that can be supported by the
cryptographic primitive in column 2.4

e Column 4 indicates the amount of fresh entropy (7) that is obtained by a DRBG_Reseed
function for the security strength identified in column 3 (as specified in [SP_800-90A]).

e Column 5 indicates the amount of entropy required to be inserted into the cryptographic
primitive (s + 64) to produce s bits with full entropy for the RBG3(RS) construction.

For CTR_DRBG with no derivation function, the amount of entropy obtained during a reseed as
specified in SP 800-90A (see column 4) exceeds the amount of entropy needed to subsequently
generate s bits of output with full entropy (see column 5), where s is 128, 192, or 256. Therefore,
reseeding as specified in SP 800-90A is appropriate.

However, for CTR_DRBG that uses a derivation function, Hash DRBG, or HMAC DRBG, a
reseed as specified in [SP_800-90A] does not guanantee sufficient entropy for producing s bits of
full-entropy output for each execution of the DRBG_Generate function (see columns 4 and 5).
Section 6.5.1.2 provides two methods for obtaining the required s + 64 bits of entropy needed
to generate s bits of full-entropy output:

1. Modify the DRBG_Reseed function to obtain s + 64 bits of entropy from the entropy
sources rather than the s bits of entropy specified in SP 800-90A. This approach may be
used in implementations that have access to the internals of the DRBG implementation.

2. Obtain 64 bits of entropy directly from the entropy sources, and provide it as additional
input when invoking the DRBG_Reseed function. As specified in SP 800-90A, the
DRBG_Reseed function obtains s bits of entropy from the entropy source(s) and
concatenates the additional input to it before updating the internal state with the
concatenated result (see the specification for the reseed algorithm for each DRBG type in
SP 800-90A), thus incorporating s + 64 bits of fresh entropy into the DRBG’s internal state.

A.3. Additional Considerations for RBGC Constructions

The boundaries for an RBGC construction are more difficult to define than other constructions
specified in this document, which makes validation more difficult. This difficulty arises from
changes in the structure of the RBGC tree (e.g., an RBGC constructions created in software at
runtime) and the possibility that the module containing the DRBG of the RBGC construction may
be validated separately from the module containing the randomness source that seeds and
reseeds it.

This section contains examples of acceptable RBGC constructions as well as designs that properly
transmit seed material. To simplify the discussion, the figures only show the DRBG in each RBGC
construction. For example, DRBG; is the DRBG for the RBGC;, which is used in the examples as
the root of the tree (i.e., the root DRBG), and DRBG; is the DRBG for RBGC,.

41 Columns 2 and 3 provide the same information as Table 3.
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A.3.1. RBGC Tree Composition

When parts of an RBGC tree are validated separately, the tree can later be composed in a safe
manner to ensure that the requirements in Sec. 7 are met. An RBGC tree consists of an initial
randomness source and a root RBGC construction (at a minimum) and may include descendent
RBGC constructions (e.g., children and grandchildren). Additional RBGC constructions (called
subtrees) may be added to form a more complex tree. Each subtree consists of at least one RBGC
construction that may have its own descendants but is unable to access the initial randomness
source.

Consider two modules — A and B — that are evaluated separately (see Fig. 37).

Module A Module B Composed

tree on the i
same i
computing

platform

Initial
Randomness
Source

Fig. 37. Subtree in Module B seeded by root RBGC of Module A

Module B does not contain a root DRBG, but Module A does. Module A contains an initial
randomness source and a DRBG that can access the initial randomness source to serve as the
root of a tree (shown as DRBG1). Module B does not include an initial randomness source, so no
DRBG in that module can serve as a root. The following examples show how DRBGs in Module B
can be evaluated as RBGC constructions.

The simplest case for tree composition occurs when one RBGC construction satisfies the
requirements for the root RBGC, and every other RBGC construction involved meets the
requirements of a non-root RBGC construction. Figure 37 and Fig. 38 show compositions in which
Module A has been validated as an RBGC tree containing an initial randomness source, a root
(shown as DRBGj), two children of the root (DRBG; and DRBG4), and DRBGs (a child of DRBG3).
Module B contains an RBGC-compliant subtree consisting of DRBGs and two child DRBGs (DRBGg
and DRBGy). In these examples, all DRBGs meet the requirements for RBGC constructions.
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Module A

Initial
Randomness
Source

DRBG;
(Root RBGC)

Module B

Composed
tree on the
same

computing
platform

Initial
Randomness
Source

DRBG,
(Root RBGC)

Fig. 38. Subtree in Module B seeded by a non-root DRBG of Module A (i.e., DRBGa)

In Fig. 37, the DRBGs in Module B are added to the tree by using the root (DRBGi) as the
randomness source for DRBGs. In Fig. 38, the DRBGs in Module B are added to the tree by using
DRBG, as the randomness source for DRBGs.

It is possible to compose trees in which some of the DRBGs in Module A do not meet the
requirements of an RBGC-compliant tree. Fig. 39 depicts two DRBGs — DRBG; and DRBG3 — that
do not meet RBGC requirements because a loop exists when DRBGs is used to reseed DRBG,.

Module A

Initial
Randomness
Source

DRBG,
(Root RBGC)

Module B

Composed
tree on the
same
computing
platform

Initial
Randomness
Source

DRBG,
(Root RBGC)

In Fig. 39, the DRBGs in red boxes that are connected to the parent through dashed lines do not
meet the DRBG requirements for an RBGC construction. If Module B is added to the tree such
that DRBG; is the randomness source for DRBGs, the elements of Module B’s subtree only depend
on DRBGs to meet the RBGC requirements (i.e., DRBG1) and may therefore be validated as RBGC-
compliant constructions when added to the tree in this manner. However, if the DRBGs in Module

Fig. 39. Subtree in Module B seeded by DRBG4 in Module A
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B are added to the tree so that DRBG: is the randomness source for DRBGs (see Fig. 40), then the
resulting tree is not a compliant RBGC tree.

Module A Module B Composed
Initial tree on the Ran?c;t:;ess
Rand
a’éo%rr“cr;ess same . Source
computing
DRBG
DRBG;, platform (Root RBGC)
(Root RBGC)
- — — + DRBG,
gl —
g1 P N
I~ DRBG, DRBG;

-~
4= 'S

DRBG; DRBG,

Fig. 40. Subtree in Module B seeded by DRBG2 of Module A

A.3.2. Changes in the Tree Structure

New RBGC subtrees may be added to the tree during operation, and others may be removed. An
RBGC construction cannot be moved from one physical platform to another by any means,
including backups, snapshots, and cloning.

An RBGC construction could be copied via forking within a single computer platform. Such cases
are permissible as long as the original and/or new processes are reseeded prior to fulfilling any
requests. This ensures that multiple instances of the same RBGC construction are not operating
simultaneously with the same internal states. Without this reseeding, the outputs of one RBGC
construction could be used to learn subsequent outputs from its counterpart, voiding any claims
of prediction resistance.

A.3.3. Using Virtual Machines

The phrase “same computing platform” (used in Sec. 7) is intended to restrict realizations of RBGC
constructions to similar concepts of a randomness source and DRBGs that exist within the same
RBG boundary. In particular, seed material must pass from a randomness source to a DRBG in a
way that provides the same guarantees as using a physically secure channel.

RBGC constructions used within virtual machines (VMs) pose a unique challenge because they
can be on the same physical platform yet communicate through a local area network (LAN).
Whether network traffic between VMs is routed solely by the hypervisor’s virtual LAN (VLAN) or
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is sent to the platform’s network for routing depends on the configuration of the VLAN. For
example, two VMs that are in different port groups or use different virtual switches may transmit
the data outside of the physical system they reside on, as shown in Fig. 41 and Fig. 42.

]
I
I
I
I
I
I
I
I
I
I
I
I
I

Host system boundary |

I
vSwitch, |

I
I
I
-—— vSwitch, | Physical switch
I

111

s

I
|
| Physical switch
|
|

vSwitch

Fig. 42. VM1 and VM. with the same virtual switch but different port groups

A DRBG within a virtual machine could potentially obtain seed material from sources outside of
the virtual machine if the seed material originates on the same computing platform. In particular,
seed material can be obtained from randomness sources that reside in levels below the virtual
machine, such as a hypervisor, host operating system, or the platform hardware. Fig. 43 shows
an example in which all seed material is obtained from lower levels on the same system.
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seeds seeds seeds

Hypervisor

Platform Hardware

Fig. 43. Acceptable external seeding for virtual machine RBGC constructions

To comply with an RBGC tree as specified in SP 800-90C, virtual machines cannot provide seed
material to each other via a virtual network (see Fig. 44).
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Fig. 44. Acceptable external seeding for an RBGC construction in VM2 but not in VM1 and VM3

This is a very important point in terms of local security guarantees. Virtual network configurations
may change without being visible to a VM and alter the path of virtual network traffic. Therefore,
it cannot be guaranteed that the seed material will never be transmitted over the physical
network. Two configuration examples in which data transmitted between virtual machines exits
the host machine are shown in Fig. 41 and Fig. 42.

A.3.4. Reseeding From an Alternative Randomness Source

There may be situations in which it is acceptable for an RBGC construction to obtain reseeding
material from a randomness source other than its parent. Fig. 45 presents an example of a
computing platform with an OS-level RBGC construction and tree containing an initial
randomness source, the root RBGC construction (containing DRBG1), and three child RBGC
constructions (DRBG2, DRBGs, and DRBGs), each associated with a different processor (shown as
CPU4, CPU3, and CPUs3).
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Fig. 45. Application subtree obtaining reseed material from a sibling of its parent

A subtree consisting of DRBGs, DRBG7, and DRBGs has been established using DRBGs as the parent
of DRBGs and DRBGe as the parent of DRBG7 and DRBGs.

Ideally, DRBGs would obtain bits for reseeding from its parent (i.e., DRBGs), but there may be
reasons why this is either undesirable (e.g., because of load balancing) or not allowed by the
RBGC requirements (e.g., seed material would exit the computing platform). Figure 45 provides
an example in which a computing platform is a multi-processor system that performs load
balancing to distribute tasks across processors. Application 2 (containing DRBGg) was originally
located on CPUs so that DRBGs was originally seeded by DRBGs (the parent). If Application 2 is
later moved to CPU; and DRBGe needs to be reseeded, it may be costly to reseed using DRBGs.
For efficiency within the multi-processor system, DRBGg can instead be reseeded using DRBG, if
DRBG, has been designed and validated to meet the RBGC requirements.*?

Other alternatives for reseeding DRBGs are DRBG: (e.g., an ancestor, direct predecessor, or
grandparent of DRBGg) or the initial randomness source.

42 DRBGs4 and DRBG:s are siblings since they have the same parent (DRBG1).
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Appendix B. RBG Examples (Informative)

Appendix B.1 provides an example of the direct access to a DRBG used by an RBG3 construction.
Appendices B.2 — B.7 provide an example of each RBG construction.

The figures do not show that when an error indicates an RBG failure (e.g., a noise source in the
entropy source has failed), the RBG operation is terminated (see Sec. 2.6 and 8.1.2.1). For the
examples below, all entropy sources are considered to be physical entropy sources. In order to
simplify the examples, the additional input parameter in the generate and reseed requests and
generate functions is not used.

B.1. Direct DRBG Access in an RBG3 Construction

An implementation of an RBG3 construction may be designed so that the DRBG implementation
used within the construction can be directly accessed by a consuming application using the same
or separate instantiations from the instantiation used by the RBG3 construction (see the
examples in Fig. 46).

RBG3 RBG3
Entropy Entropy
Source(s) Source(s)

| /N
Internal Internal Internal
State 1 State 1 State 2
— i :
| I 1 1
! Internal : :
| state used I Int |
I for direct ! nierna
' DRBG 1 state used
: I for direct
| access : DRBG
| I access
Internal state used by the Internal state used by the
RBG3 construction RBG3 construction
Example 1 Example 2

Fig. 46. DRBG Instantiations

In the leftmost example in Fig. 46, the same internal state is used by the RBG3 construction and
a directly accessible DRBG. The DRBG implementation is instantiated only once, and only a single
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state handle is obtained during instantiation (e.g., RBG3_DRBG state handle). Generation and
reseeding for RBG3 operations use RBG3 function calls (see Sec. 6.4 and 6.5), while generation
and reseeding for direct DRBG access use RBG2 function calls (see Sec. 5.2) with the
RBG3 DRBG state_handle.

In the rightmost example in Fig. 46, the RBG3 construction and access to the DRBG
implementation use different internal states. The DRBG implementation is instantiated twice —
once for RBG3 operations and a second time for direct access to the DRBG. A different state
handle needs to be obtained for each instantiation (e.g., RBG3 state handle and
RBG2 DRBG state handle). Generation and reseeding for RBG3 operations use RBG3 function
calls and RBG3 DRBG state handle (see Sec. 6.4 and 6.5), while generation and reseeding for
direct DRBG access use RBG2 function calls and RBG2 DRBG state handle (see Sec. 5.2).

Multiple directly accessible DRBGs may also be incorporated into an implementation by creating
multiple instantiations. However, no more than one directly accessible DRBG should share the
same internal state with an RBG3 construction (i.e., if n directly accessible DRBGs are required,
either n or n — 1 separate instantiations are required).

The directly accessed DRBG instantiations are in the same security boundary as the RBG3
construction. When accessed directly using the same internal state as the RBG3 construction
(rather than operating as part of the RBG3 construction), the DRBG operates as an RBG2(P)
construction. A DRBG instantiation using a different internal state than the DRBG used by the
RBG3 construction may operate as either an RBG2(P) or RBG2(NP) construction.

B.2. Example of an RBG1 Construction

An RBG1 construction only has access to a randomness source during instantiation (i.e., when it
is seeded; see Sec. 4). In Fig. 47, the DRBG used by the RBG1 construction and the randomness
source reside in two different cryptographic modules with a physically secure channel connecting
them during the instantiation process.

111



NIST SP 800-90C Recommendation for RBG Constructions
September 2025

RBG2(P)

'RBG2(P) security
boundary

Cryptographic | Secure RBG1

channel
Modules =-—-Security

boundary

| HMAC_DRBG
—| with
' SHA-256

DRBG security
boundary

DRBG security boundary1

Fig. 47. Example of an RBG1 construction

Following DRBG instantiation, the secure channel is no longer available. For this example, the
randomness source is an RBG2(P) construction (see Sec. 5) with a state handle of
RBG2 DRBG state handle. The targeted security strength for the RBG1 construction is 256 bits,
so a DRBG from [SP_800-90A] that is able to support this security strength must be used.
HMAC DRBG using SHA-256 is used in the example. A personalization_string is provided during
instantiation, as recommended in Sec. 2.4.1.

As discussed in Sec. 4, the randomness source (i.e., the RBG2(P) construction in this example) is
not available during normal operation, so reseeding cannot be provided.

This example provides an RBG that is instantiated at a security strength of 256 bits.

B.2.1. Instantiation of the RBG1 Construction

A physically secure channel is required to transport the entropy bits from the randomness source
(i.e., the RBG2(P) construction) to the HMAC DRBG during instantiation.** After the

43 An example of an RBG2(P) construction is provided in Appendix B.4.
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instantiation of the RBG1 construction, the randomness source and the secure channel are no
longer available.

1. The HMAC DRBG is instantiated by an application when sending an instantiate request
to the DRBG:

(status, RBGI _DRBG state handle) =
DRBG _Instantiate request(256, “Device 70567),

where:

e A security strength of 256 bits is requested for the HMAC DRBG used in the
RBG1 construction.

e The personalization string to be used for this example is “Device 7056”.

2. The DRBG_Instantiate_request results in the execution of the DRBG_Instantiate
function within the DRBG of the RBG1 construction (see Sec. 2.8.1.1):

(status, RBG1 _DRBG state handle) = DRBG _Instantiate(256, “Device 7056”).

3. The instantiate function sends a reseed request to the RBG2(P) construction (i.e., the
randomness source; see requirement 17 in Sec. 4.4.1).

status = DRBG_Reseed_request(RBG2 DRBG state handle),

where RBG2 DRBG state handle is the state handle for the internal state in the RBG2(P)
construction.

4. Upon receiving a reseed request, the RBG2(P) implementation executes a reseed
function:

status = DRBG_Reseed(RBG2 DRBG state handle).

If an error is indicated by the returned status, the error is returned to the RBG1
construction by the RBG2(P) construction in response to the reseed request and
forwarded to the application by the RBG1 construction in response to the instantiate
request. The DRBG within the RBG1 construction has not been instantiated.

Otherwise, a status of success is returned to the RBG1 construction in response to the
reseed request to indicate that the DRBG within the RBG2(P) construction has been
successfully reseeded.

5. Upon receiving a status of success in response to the reseed request, the RBG1
construction then sends a generate request to the RBG2(P) construction (see Sec. 5.2.2).

(status, seed_material) = DRBG_Generate request(RBG2 DRBG state _handle, 384,
256),

where 384 indicates that 3s/2 bits are needed to instantiate the HMAC DRBG at a
security strength of 256 bits.
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6. Upon receiving a generate request, the RBG2(P) construction executes a generate
function using information from the request:

(status, seed _material) = DRBG_Generate(RBG2 _DRBG state_handle, 384, 256).

If an error is indicated by the returned status, the error is returned to the RBG1
construction by the RBG2(P) construction in response to the generate request and
forwarded to the application by the RBG1 construction in response to the instantiate
request. The DRBG within the RBG1 construction is not instantiated.

If a status of success is returned from the generate function, the 384 bits of seed material
are also provided and sent to the RBG1 construction in response to the generate request.

7. The DRBG within the RBG1 construction uses the seed material provided by the RBG2(P)
construction and the personalization_string provided by the application in the instantiate
request (see step 1) to create the seed to instantiate the DRBG (see [SP_800-90A]).

If the instantiation is not successful, an error is returned to the application in response to
the instantiate request. The DRBG within the RBG1 construction has NOT been
instantiated.

If the instantiation is successful, the internal state is established. A status of SUCCESS and
the RBGI DRBG state handle are returned to the application requesting instantiation,
and the RBG can be used to generate pseudorandom bits.

B.2.2. Generation by the RBG1 Construction

Assuming that the HMAC DRBG in the RBG1 construction has been instantiated (see Appendix
B.2.1), pseudorandom bits can be obtained as follows:

1. A consuming application sends a generate request to the RBG1 construction:

(status, returned bits) = DRBG_Generate _request(RBG! DRBG state handle,
requested_number_of bits, requested_security strength).

e RBGI DRBG state handle is returned as the state handle during instantiation
(see Appendix B.2.1).

e The requested security strength may be any value that is less than or equal to 256
(i.e., the instantiated security strength recorded in the DRBG’s internal state).

2. Upon receiving a generate request, the RBG1 construction executes a generate function,
as specified in Sec. 2.8.1.2:

(status, returned_bits) = DRBG_Generate(RBGI DRBG state_handle,
requested number of bits, requested_security strength).

If an error is returned as the status, the RBG1 construction forwards the error indication
to the application in response to the generate request. returned bits is a Null string.
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If an indication of success is returned as the status, the requested number of bits are
provided as the returned bits to the consuming application in response to the generate
request.

B.3. Example Using Sub-DRBGs Based on an RBG1 Construction

This example uses an RBG1 construction to instantiate two sub-DRBGs: sub-DRBG1 and sub-
DRBG2 (see Fig. 48) using the same HMAC_DRBG implementation as the RBG1 construction.

(Source)
RBG1 RBG1
Construction output
Sub- Sub-
DRBG1 DRBG2

Fig. 48. Sub-DRBGs based on an RBG1 construction

Instantiation of the RBG1 construction is discussed in Appendix B.2. The RBG1 construction is
used as the randomness source for the sub-DRBGs and has been instantiated to provide a security
strength of 256 bits for its DRBG. The state handle for the DRBG in the RBG1 construction is
RBGI1 DRBG state handle.

For this example, sub-DRBG1 will be instantiated to provide a security strength of 128 bits, and
sub-DRBG2 will be instantiated to provide a security strength of 256 bits. The sub-DRBGs use
different internal states of the HMAC_DRBG implementation than are used by the RBG1
construction itself. Neither the RBG1 construction nor the sub-DRBGs can be reseeded.

This example provides the following capabilities:

e Access to the RBG1 construction to provide output generated at a security strength of
256 bits (see Appendix B.2 for the RBG1 example),

e Access to one sub-DRBG (e.g., sub-DRBG1) that provides output for an application that
requires a security strength of no more than 128 bits, and

e Access to a second sub-DRBG (e.g., sub-DRBG2) that provides output for a second
application that requires up to 256 bits of security strength.
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B.3.1. Instantiation of the Sub-DRBGs

Each sub-DRBG is instantiated using output from the RBG1 construction that is discussed in
Appendix B.2.

B.3.1.1. Instantiating Sub-DRBG1

1. Sub-DRBG1 is instantiated when an application sends an instantiate request to the RBG1
construction:

(status, sub-DRBG1 state handle) =
Instantiate_sub-DRBG_request(128, “Sub-DRBG App 17),

where:
e Asecurity strength of 128 bits is requested for sub-DRBG1,
e The personalization string to be used for sub-DRBG1 is “Sub-DRBG App 1”7, and
e The returned state handle for sub-DRBG1 will be sub-DRBG1 _state handle.

2. Upon receiving the instantiate request, the RBG1 construction executes its instantiate
function for a sub-DRBG (see Sec. 4.3.1):

(status, sub-DRBG1 _state handle) = Instantiate_sub-DRBG(128,
“Sub-DRBG App 17).

As specified for the Instantiate_sub-DRBG function, the DRBG in the RBG1 construction
will attempt to generate 3s5/2 = 192 bits of seed material and combine it with “Sub-DRBG
App 1” (i.e., the personalization string) to create a seed for the internal state of sub-
DRBG1.

If an error is returned as the status, the RBG1 construction forwards the error indication
to the application in response to the instantiate request received in step 1. The sub-DRBG
is not instantiated.

If an indication of success is returned as the status, the RBG1 construction forwards the
status and the state handle (sub-DRBG1 state_handle) to the application in response to
the instantiate request. Sub-DRBG1 can now be requested directly using its state handle
(i.e., sub-DRBGI state handle) to generate output (see Appendix B.3.2).

B.3.1.2. Instantiating Sub-DRBG2

Sub-DRBG?2 is instantiated in the same manner as sub-DRBG1 but at a security strength of 256
bits and with a different personalization string.

1. The application sends an instantiate request to the RBG1 construction:

(status, sub-DRBG2 state handle) =
Instantiate_sub-DRBG_request(256, “Sub-DRBG App 2”).
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2. The RBG1 construction executes an instantiate function for a sub-DRBG:

(status, sub-DRBG2 state handle) = Instantiate sub-DRBG(256,
“Sub-DRBG App 27).

The DRBG in the RBG1 construction will attempt to generate 3s5/2 = 384 bits of seed
material and combine it with “Sub-DRBG App 2” to create a seed for the internal state of
sub-DRBG2.

If an error is returned as the status, the RBG1 construction forwards the error indication
to the application in response to the instantiate request received in step 1. The sub-DRBG
is not instantiated.

If an indication of success is returned as the status, the RBG1 construction forwards the
status and the state handle (sub-DRBG2_state_handle) to the application in response to
the instantiate request. Sub-DRBG2 can now be requested directly using its state handle
(i.e., sub-DRBG? state handle) to generate output (see Appendix B.3.2).

B.3.2. Pseudorandom Bit Generation by Sub-DRBGs

Assuming that the sub-DRBG has been successfully instantiated (see Appendix B.3.1),
pseudorandom bits can be requested from the sub-DRBG by a consuming application.

1. An application sends the following generate request:

(status, returned_bits) = DRBG_Generate_request(sub-DRBG state _handle,
requested number of bits, requested_security strength).

e Forsub DRBGI, sub-DRBG state handle = sub-DRBGI state handle.
e For sub-DRBG2, sub-DRBG state_handle = sub-DRBG2_state_handle.

o requested number of bits must be < the maximum number of bits allowed for a
single generate request (see [SP_800-90A] for the HMAC DRBG parameters).

e Forsub DRBGI, security strength must be < 128.
e Forsub DRBG?2, security strength must be < 256.
2. The sub-DRBG executes the generate request (see Sec. 2.8.1.2):

(status, returned_bits) = DRBG_Generate(sub-DRBG _state _handle,
requested number of bits, security strength).

If an error is returned as the status, the sub-DRBG forwards the error indication to the
application in response to the generate request received in step 1. The returned bits
string is Null.

If an indication of success is returned as the status, the sub-DRBG forwards the status to
the application along with the requested number of newly generated bits.
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B.4. Example of an RBG2(P) Construction

For this example of an RBG2(P) construction, no conditioning function is used, and only a single
DRBG instantiation will be used (see Fig. 49), so a state handle is not needed. A physical and a
non-physical entropy source are used. Full-entropy output is not provided by the entropy
sources.

Entropy

Source(s)

h 4

HMAC_DRBG
with
SHA-256

Pseudorandom Output

Fig. 49. Example of an RBG2 construction

The targeted security strength is 256 bits, so a DRBG from [SP_800-90A] that can support this
security strength must be used. HMAC DRBG using SHA-256 is used in this example. A
personalization_string may be provided, as recommended in Sec. 2.4.1. Reseeding is supported
and will be available on demand (e.g., by an application). Method 1 (i.e., physical only) is used for
counting the entropy produced by the entropy sources (i.e., only entropy from the physical
entropy source is counted).

This example provides the following capabilities:
e An RBG instantiated at a security strength of 256 bits and

e Access to an entropy source to provide prediction resistance.

B.4.1. Instantiation of an RBG2(P) Construction

1. The RBG2(P) construction is instantiated by an application using an instantiate request:

status = DRBG_Instantiate request(256, “RBG2 42”).
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Since there is only a single instantiation, a state_handle is not used for this example. The
personalization string to be used for this example is “RBG2 42”.

2. Upon receiving the instantiate request, the RBG2(P) construction executes an instantiate
function:

status = DRBG_Instantiate(256, “RBG2 42”).

The seed material for establishing the security strength (s) of the DRBG (where s = 256
bits) is requested using the following call to the entropy source (see Sec. 2.8.2 and item 2
in Sec. 5.2.1):

(status, seed _material) = Get_entropy_bitstring(384, Method 1),

where 35/2 = 384 bits of entropy are requested from the entropy sources, and Method 1
is used to count only the entropy produced by the physical entropy source. Entropy from
the non-physical entropy source may also be used but is not counted.

If status = SUCCESS is returned in response to the Get entropy_bitstring call, the
HMAC DRBG is seeded using the seed _material returned from the
Get_entropy_bitstring function and the personalization_string (“RBG2 42”) provided in
the DRBG _Instantiate function. The internal state is recorded (including the security
strength of the instantiation), and status = SUCCESS is returned to the consuming
application in response to the instantiation request.

If the status returned in response to the Get_entropy_bitstring call indicates an error,
then the internal state is not created, the status is returned to the consuming application
in response to the instantiation request, and the RBG cannot be used to generate bits.

B.4.2. Generation Using an RBG2(P) Construction

Assuming that the RBG has been successfully instantiated (see Appendix B.4.1):
1. Pseudorandom bits can be requested from the RBG by a consuming application:

(status, returned_bits) = DRBG_Generate_request(requested number of bits,
requested_security strength).

e Since there is only a single instantiation of the HMAC_ DRBG, a state handle is
not returned from the DRBG_Instantiate (see Appendix B.4.1) and is not used
during the generate request.

e The requested security strength may be any value that is < 256 (i.e., the
instantiated security strength recorded in the HMAC_ DRBG’s internal state).

2. Upon receiving the generate request, the RBG executes the generate function (see Sec.
2.8.1.2):

(status, returned_bits) = DRBG_Generate(requested number of bits,
security strength).
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A status indication is returned to the requesting application in response to the
DRBG_Generate call. If status = SUCCESS, a bitstring of at least
requested_number of bits is provided as the returned bits. If status = FAILURE,
returned_bits is an empty bitstring.

B.4.3. Reseeding an RBG2(P) Construction

The HMAC DRBG will be reseeded 1) if explicitly requested by the consuming application or 2)
automatically during a DRBG_Generate call at the end of the DRBG’s designed seedlife (see the
DRBG_Generate function specification in [SP_800-90A] and Sec. 5.2.3 herein).

1. An application may request a reseed of the DRBG using a reseed request:
status = DRBG_Reseed_request().

Since there is only a single instantiation of the HMAC DRBG, a state handle is not
returned from the DRBG _Instantiate function (see Appendix B.4.1) and is not used
during the reseed request.

2. Uponreceiving the reseed request or when the end of the seedlife is determined, the RBG
executes the reseed function (see Sec. 2.8.1.3):

status = DRBG_Reseed().

The DRBG_Reseed function in SP 800-90A uses a Get_randomness_source_input call
to access the entropy source. In Sec. 5.2.3 (item 2.b), the Get_entropy_bitstring function
is used to obtain the entropy:

(status, seed _material) = Get_entropy_bitstring(256, Method 1).

256 is obtained from the internal state as the security strength. Method 1 indicates that
only the entropy from the physical entropy source should be counted.

If status = SUCCESS is returned by Get_entropy_bitstring, the seed material contains
at least 256 bits of entropy and is at least 256 bits long. Status = SUCCESS is returned to
the RBG2 construction in response to the DRBG_Reseed call, and the status is forwarded
to the application in response to the reseed request, if appropriate.

If the status indicates an error, seed material is an empty (e.g., null) bitstring. The
HMAC DRBG is not reseeded, the status is returned to the DRBG_Reseed function in
the RBG2 construction, and the status is then forwarded to the application in response to
the reseed request, if appropriate. Depending on the error, the DRBG operation may be
terminated (see item 10 in Sec. 2.6).

B.5. Example of an RBG3(XOR) Construction

This construction is specified in Sec. 6.4 and requires a DRBG and a source of full-entropy bits.
For this example, a single physical entropy source that does not provide full-entropy output is
used, so the vetted hash conditioning function listed in [SP_800-90B] using SHA-256 is used as an

120



NIST SP 800-90C Recommendation for RBG Constructions
September 2025

external conditioning function to obtain the required full-entropy bitstrings. Since the type of
entropy source is known, the counting method is known and need not be indicated when
requesting entropy.

The Hash DRBG specified in [SP_800-90A] will be used as the DRBG with SHA-256%* used as the
underlying hash function for the DRBG. The DRBG will obtain input directly from the RBG’s
entropy source without conditioning (as shown in Fig. 50) since bits with full entropy are not
required for input to the DRBG, even though full-entropy bits are required for input to the XOR
operation (shown as “@” in the figure) from the entropy source via the conditioning function.

Physical
Instantiation
Entro Py and Reseed
Source

Conditioning
Function

.- - - | Hash_DRBG

Full-entropy Output

Fig. 50. Example of an RBG3(XOR) construction

The DRBG is instantiated and reseeded at a 256-bit security strength. In this example, only a
single instantiation is used, and a personalization string is provided during instantiation. Calls are
made to the RBG using the RBG3(XOR) calls specified in Sec. 6.4. The Hash DRBG itself is not
directly accessible.

This example provides the following capabilities:

e Full-entropy output by the RBG,

44 SHA-256 is used for both the Hash_DRBG and the vetted conditioning function.
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Fallback to the security strength provided by the Hash DRBG (256 bits) if the entropy
source has an undetected failure, and

Access to an entropy source to instantiate and reseed the Hash DRBG.

B.5.1. Instantiation of an RBG3(XOR) Construction

1.

An application instantiates an RBG3(XOR) construction using an instantiate request that
will instantiate the DRBG within the RBG:

status = Instantiate. RBG3 _DRBG_request(256, “RBG3(XOR)”).

Since only a single instantiation is used, there is no need for a state handle. The
HMAC DRBG is requested to be instantiated at a security strength of 256 bits using
“RBG3(XOR)” as a personalization string.

Upon receiving an instantiate request, the RBG3(XOR) construction executes an
instantiate function:

status = RBG3(XOR)_Instantiate(256, “RBG3(XOR)”).

The entropy for establishing the security strength of the Hash DRBG is requested from
the entropy source using the following Get_entropy_bitstring call:

(status, seed_material) = Get_entropy_Dbitstring(384),
where 3s5/2 =384 when s = 256.

If status = SUCCESS is returned from the Get_entropy_bitstring call, the Hash DRBG
is seeded using the seed material and the personalization string (i.e., RBG3(XOR)). The
internal state is recorded (the 256-bit security strength of the instantiation), and status =
SUCCESS is returned to the RBG3(XOR) construction and forwarded to the consuming
application in response to the instantiate request (from step 1). The RBG can be used to
generate full-entropy bits.

If the status returned from the Get_entropy_bitstring call indicates an error, the status
is forwarded by the RBG3(XOR) construction to the consuming application. The
Hash DRBG’s internal state is not established, and the RBG cannot be used to generate
bits.

B.5.2. Generation by an RBG3(XOR) Construction

Assuming that the Hash DRBG has been instantiated (see Appendix B.5.1), the RBG can be
called by a consuming application to generate output with full entropy.

B.5.2.1. Generation

1.

An application requests the generation of full-entropy bits using:
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(status, returned_bits) = RBG3_DRBG_Generate request(n),

where n indicates the requested number of bits to be generated. A state handle is not
included since a state handle was not returned during instantiation (see Appendix B.5.1).

2. Upon receiving a generate request, the RBG3(XOR) construction executes a call to the
generate function:

(status, returned_bits) = RBG3(XOR)_Generate(n).

The construction of the RBG3(XOR) Generate function in Sec. 6.4.1.2 is used as
follows:

RBG3(XOR) Generate:
Input:
n: The number of bits to be generated.
Output:
status: The status returned by the RBG3(XOR)_Generate function.
returned_bits: The newly generated bits or a Null bitstring.
Process:
2.1 (status, ES bits) = Get_conditioned_full entropy input(n).
2.2 If (status # SUCCESS), then return(status, Null).
2.3 (status, DRBG bits) = DRBG_Generate(n, 256).
24 If (status # SUCCESS), then return(status, Null).
2.5  returned bits = ES bits ©® DRBG bits.
2.6 Return (SUCCESS, returned_bits).

The state _handle parameter is not used in the RBG3(XOR) Generate call or the
DRBG_Generate function call (in step 2.3) for this example since a state handle was not
returned from the RBG3(XOR) Instantiate function (see Appendix B.5.1).

In step 2.1, the entropy source is accessed via the conditioning function using the
Get_conditioned_full entropy input routine (see Appendix B.5.2.2) to obtain n bits
with full entropy, which are returned as the ES bits.

Step 2.2 checks that the Get conditioned full entropy input call in step 2.1 was
successful. If it was not successful, the RBG3(XOR) Generate function is aborted,
returning status # SUCCESS and a Null bitstring to the RBG3(XOR) construction. The
status and Null bitstring are then forwarded to the application in response to the generate
request (in step 1).

Step 2.3 calls the Hash DRBG to generate n bits at a security strength of 256 bits. The
generated bitstring is returned as DRBG bits.
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Step 2.4 checks that the DRBG_Generate function invoked in step 2.3 was successful. If
it was not successful, the RBG3(XOR)_Generate function is aborted, returning status #
SUCCESS and a Null bitstring to the RBG3(XOR) construction. The status and Null
bitstring are then forwarded to the application in response to the generate request (in
step 1).

If step 2.3 returns an indication of success, the ES bits returned in step 2.1 and the
DRBG bits obtained in step 2.3 are XORed together in step 2.5. The result is returned to
the RBG3(XOR) construction in step 2.6 and forwarded to the application in response to
the generate request (in step 1).

B.5.2.2. Get_conditioned_full_entropy_input Function

The Get_conditioned full entropy input procedure is specified in Sec. 3.2.2.2. For this
example, the routine becomes the following:

Get_conditioned_full entropy input:
Input:
n: The number of full-entropy bits to be provided.
Output:
1. status: The status returned from the Get_conditioned_full entropy input function.

2. Full-Entropy bitstring: The newly acquired n-bit string with full entropy or a Null
bitstring.

Process:

1. temp =the Null string.

2. ctr=0.

3. While ctr <n, do
3.1 (status, Entropy bitstring) = Get_entropy_bitstring (320).
3.2 If (status # SUCCESS), then return (status, Null).
3.3 conditioned output = Hashsuna 2s¢(Entropy_bitstring).
3.4  temp = temp || conditioned output.
3.5 ctr = ctr + 256.

4. Full-Entropy bitstring = leftmost(temp, n).

5. Return (SUCCESS, Full-Entropy_bitstring).

Steps 1 and 2 initialize the temporary bitstring (temp) for holding the full-entropy bitstring being
assembled and the counter (ctr) that counts the number of full-entropy bits produced so far.
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Step 3 obtains and processes the entropy for each iteration.

e Step 3.1 requests 320 bits*® from the entropy source (i.e., output len + 64 bits, where
output len =256 for SHA-256).

e Step 3.2 checks whether the status returned in step 3.1 indicated a success. If the status
did not indicate a success, the status is returned to the RBG3(XOR)_Generate function
(in Appendix B.5.2.1) along with a Null bitstring.

e Step 3.3 invokes the hash conditioning function (see Sec. 3.2.1.2) using SHA-256 for
processing the Entropy bitstring obtained from step 3.1.

e Step 3.4 concatenates the conditioned output received in step 3.3 to the temporary
bitstring (temp).

e Step 3.5 increments the counter for the number of full-entropy bits that have been
produced so far.

After at least n bits have been produced in step 3, step 4 selects the leftmost »n bits of the
temporary string (temp) to be returned as the bitstring with full entropy.

Step 5 returns the result from step 4 (i.e., Full-Entropy _bitstring).

B.5.3. Reseeding an RBG3(XOR) Construction

The Hash DRBG within the RBG3(XOR) construction must be reseeded at the end of its designed
seedlife and may be reseeded on demand (e.g., by the consuming application). Reseeding will be
automatic whenever the end of the DRBG’s seedlife is reached during a DRBG_Generate call
(see [SP_800-90A] and step 2.3 in Appendix B.5.2.1).

The consuming application uses a reseed request to reseed the DRBG within the RBG3(XOR)
construction:

status = DRBG_Reseed_request().
A state handle is not provided for this example since none was provided during instantiation.

Whether reseeding is done automatically during a DRBG_Generate call or is specifically
requested by a consuming application, the DRBG_Reseed call for this example is:

status = DRBG_Reseed().
Again, a state handle is not provided since none was provided during instantiation.
A Get_entropy_bitstring call to the entropy source is used to obtain the entropy for reseeding:
(status, seed _material) = Get_entropy_bitstring(256).

If status = SUCCESS is returned by the Get_entropy_bitstring call, seed material consists of at
least 256 bits that contain at least 256 bits of entropy. These bits are used by the DRBG_Reseed

4> The 320 has been hard-coded into the example code above, since it is a known value.
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function to reseed the Hash DRBG. If the reseed was requested by an application, the status is
returned to that application.

If the status indicates an error, the seed material is a Null bitstring, and the Hash DRBG is not
reseeded. If the reseed was requested by an application, the error status is returned to the
application.

B.6. Example of an RBG3(RS) Construction

This construction is specified in Sec. 6.5 and requires an entropy source and a DRBG. Figure 51
depicts an RBG3(RS) construction with a directly accessible DRBG that has the same internal state
and state handle.

| RBG3(RS) i RBG2(P)
| Construction Construction -

Physical
Entropy
Source

»i
hl

Directly

CTR DRBG | Accessible
T DRBG

Full-entropy Pseudorandom
Output Output

Fig. 51. Example of an RBG3(RS) construction

The RBG3(RS) construction is indicated on the left with a dark blue dashed line (— — —), and the
directly accessible DRBG is indicated by a red dashed line (— — * ) on the right.

The CTR_DRBG specified in [SP_800-90A] will be used as the DRBG with AES-256 used as the
underlying block cipher for the DRBG.** CTR_DRBG will be implemented using a derivation
function located inside the CTR_DRBG implementation. In this case, full-entropy output will not
be required from the entropy source (see [SP_800-90A]).

46 For this example, keylen = 256 and blocklen = 128 for AES 256.
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As specified in Sec. 6.5, a DRBG used as part of the RBG must be instantiated and reseeded at a
security strength of 256 bits when AES-256 is used in the DRBG. For this example, the DRBG has
a fixed security strength (i.e., 256 bits), which is hard coded into the implementation so will not
be used as an input parameter.

Calls are made to the RBG3(RS) construction, as specified in Sec. 6.5. Calls made to the directly
accessible DRBG (i.e., a DRBG that uses the same internal state as the RBG3(RS) construction) use
the RBG calls specified in Sec. 5. Since an entropy source is always available, the directly accessed
DRBG can be reseeded.

If the entropy source produces output at a slow rate, a consuming application might call the
RBG3(RS) construction only when full-entropy bits are required, obtaining all other output from
the directly accessible DRBG. Requirement 3 in Sec. 6.5.2 requires that the DRBG be reseeded
whenever a request for generation by a directly accessible DRBG follows a request for generation
by an RBG3(RS) construction that has the same internal state. For this example, a global variable
(last_call) within the RBG3(RS) security boundary is used to indicate whether the last use of the
DRBG was as part of the RBG3(RS) construction or directly accessed:

e last call =1 if the DRBG was last used as part of the RBG3(RS) construction to provide
full entropy output. If the next request is for generation by the DRBG directly, the DRBG
must be reseeded before the requested output is generated.

e last call = 0 otherwise. A reseed of the DRBG when accessed directly is not necessary.
When the DRBG is first instantiated with entropy or the last request was for direct access
to the DRBG, last_call is set to zero.

See [SP_800-90A] for information about the internal state of the CTR_DRBG.
This example provides the following capabilities:
e Full-entropy output by the RBG3(RS) construction,

e Fallback to the security strength of the RBG3(RS)’s DRBG instantiation (i.e., 256 bits) if the
entropy source has an undetected failure,

e Direct access to the DRBG with a security strength of 256 bits for faster output when full-
entropy output is not required,

e Access to an entropy source to instantiate and reseed the DRBG, and

e On-demand reseeding of the DRBG (e.g., to provide prediction resistance for requests to
the directly accessed DRBG).

B.6.1. Instantiation of an RBG3(RS) Construction

Instantiation for this example consists of the instantiation of the CTR DRBG used by the
RBG3(RS) construction.
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1. An application requests the instantiation of the RBG3(RS) construction using:

(status, RBG3 _DRBG state handle) = Instantiate. RBG3 DRBG_request(“RBG3(RS)
2024”),

which requests the instantiation of the DRBG within the RBG3(RS) construction using
“RBG3(RS) 2024” as the personalization string. In this example, the request does not
include an indication of the security strength to be instantiated that would need to be
checked against the security strength implemented for the DRBG (see Sec. 2.8.3.1 for a
discussion).

2. Upon receiving the request, the RBG3(RS) construction executes the instantiate function:
(status, RBG3 _DRBG state _handle) = RBG3(RS)_ Instantiate(“RBG3(RS) 2024”).

For this example, the RBG3(RS) Instantiate function (see Sec. 6.5.1.1) in the DRBG includes an
additional step to set the initial value of last call to zero. This indicates that a reseed of the DRBG
before generating bits is not required if the first use of the DRBG is for direct access. Setting the
initial value of last_call is an implementation decision, but some method for indicating when s +
64 bits of entropy is needed before generating bits is required:

2.1 (status, RBG3_DRBG state handle) = DRBG_Instantiate(personalization string).
2.2 last call=0.
2.3 Return(status, RBG3_DRBG state_handle).

In step 2.1, the DRBG_Instantiate function is used to instantiate the CTR_DRBG using
“RBG3(RS) 2024” as the personalization string. Since the required security strength is known (i.e.,
256 bits), and a derivation function is used in the CTR_DRBG implementation, the required
entropy (s + 128 = 384 bits) is obtained from the entropy source using:

(status, seed _material) = Get_entropy_bitstring(384).

The seed material and personalization string are used to seed the CTR DRBG. Since the
entropy source is known to be a physical entropy source, the counting method (i.e., Method 1)
is known and not included as an input parameter.

Step 2.2 sets last _call = 0 so that if the initial request is for direct access to the DRBG, a reseed
will not be initially required before generating bits (i.e., entropy has just been acquired as a result
of the instantiation process).

In step 2.3, the status and the state handle for the DRBG’s internal state are returned to the
RBG3(RS) Instantiate function and forwarded to the application in response to the instantiate
request in step 1.

B.6.2. Generation by an RBG3(RS) Construction

Assuming that the DRBG in the RBG3(RS) construction has been instantiated (see Appendix
B.6.1), the RBG can be invoked by a consuming application to generate outputs with full entropy.
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1. An application requests the generation of full-entropy bits using:
(status, returned_bits) = RBG3_ Generate request(RBG3 DRBG state_handle, n),

where RBG3 _DRBG state_handle was provided during DRBG instantiation (see Appendix B.6.1),
and n is the number of requested bits.

2. Upon receiving the generate request, the RBG3(RS) construction executes the generate
function (see Sec. 6.5.1.2):

(status, returned bits) = RBG3(RS) Generate(RBG3 DRBG state handle, n).

A few modifications to the RBG3(RS)_ Generate function have been made, resulting in
the following:*’

RBG3(RS) Generate:
Input:

e RBG3 DRBG state handle: The state handle for the DRBG’s internal state
(see Appendix B.6.1).

e n: The number of full-entropy bits to be generated.
Output:
e status: The status returned from the RBG3(RS)_Generate function.

e returned bits: The newly generated bits or a Nul// bitstring.

Process:
2.1 temp = Null.
2.2 sum = (.

2.3 While (sum < n),
2.3.1 status = DRBG_Reseed(RBG3 DRBG state handle).
2.3.2  If (status # SUCCESS), then return (status, Null).

2.3.3 (status, full entropy bits =
DRBG_Generate(RBG3_DRBG state_handle, 256).

2.3.4 If (status # SUCCESS), then return (status, Null).
2.3.5 temp = temp || full entropy bits.
2.3.6 sum = sum + 256.

24  last call=1.

2.5 Return (SUCCESS, leftmost(femp, n)).

47 Recall that when the RBG3(RS) construction is executed, a reseed of the DRBG is performed before the generation of each s-bit bitstring.
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Steps 2.1 and 2.2 initialize temp to a Null string for accumulating the requested output and sum
to zero for counting the entropy generated.
Step 2.3 generates the requested output with full entropy.

e Step 2.3.1 reseeds the DRBG. Whenever the RBG3(RS) construction is requested to
generate bits, the DRBG is always reseeded with s + 64 = 320 bits directly from the
entropy source (see Appendix B.6.4).

e Step 2.3.2 checks the status of the reseed process and returns the status and a Null string
if the reseed process was not successful.

e Step 2.3.3 requests the generation of s = 256 bits.

e Step 2.3.4 checks the status of the generate process and returns the status and a Null
string if the generate process was not successful. The “256” could be omitted since it is
known to be the same as the hard-coded security strength.

e Step 2.3.5 assembles the full entropy bitstring.
e Step 2.3.6 counts the number of bits assembled so far.

In step 2.4, the last_call value is set to one to indicate that the requested bits were generated by
the RBG3(RS) construction rather than by direct use of the DRBG.

3. The status and generated bits from the RBG3(RS) Generate function in step 2 are
returned to the RBG3(RS) construction and forwarded to the application in response to
the generate request in step 1.

B.6.3. Generation by the Directly Accessible DRBG

Assuming that the DRBG has been instantiated (see Appendix B.6.1), it can be accessed directly
by a consuming application in the same manner as the RBG2(P) example in Appendix B.4.2 using
the RBG3 DRBG state handle obtained during instantiation (see Appendix B.6.1).
Pseudorandom bits can be generated directly by the CTR_DRBG as follows:

1. An application requests the generation of pseudorandom bits directly from the DRBG
within the RBG3(RS) construction:

(status, returned_bits) = DRBG_Generate_request(RBG3 _DRBG state handle, n, s),

where RBG3 DRBG state_handle was obtained during instantiation (see Appendix
B.6.1), n is the requested number of bits to be returned, and s is the requested security
strength.

2. Upon receiving the generate request, the RBG3(RS) construction executes a
DRBG_Generate function rather than an RBG3(RS)_ Generate function:

(status, returned_bits) = DRBG_Generate(RBG3_DRBG state_handle, n).

The security strength parameter (i.e., 256) is omitted since its value has been hard-coded.
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The DRBG_Generate function specified in SP 800-90A has been modified below to
determine whether a reseed is required before generating the requested output by
checking the value of last call. An extraction*® of the DRBG_Generate function in
[SP_800-90A] is:

[After other preliminary checks have been performed]
If ((last_call = 1) OR (reseed counter > reseed_interval)), then
status = DRBG_Reseed(RBG3 DRBG state_handle).
If (status # SUCCESS), then return (status, Null).

(returned_bits, new_working state _values) =
Generate_algorithm(current working state values, requested number of bits).

last _call = 0.
[Closing steps to update the internal state]

An additional step has also been included above to indicate that this use of the DRBG is direct
rather than part of the RBG3(RS) construction (i.e., setting last call = 0). This step is used to
indicate that if the next use of the DRBG is also by direct access, a reseed is not required before
generating bits.

B.6.4. Reseeding a DRBG

When operating as part of the RBG3(RS) construction, the DRBG_Reseed function is invoked
one or more times to produce full-entropy output when the RBG3(RS) Generate function is
invoked by a consuming application (see Sec. 6.5.1.4).

When operating as the directly accessible DRBG, the DRBG is reseeded 1) if explicitly requested
by the consuming application, 2) whenever the previous use of the DRBG was by the
RBG3(RS) Generate function (see Appendix B.6.2), or 3) automatically during a
DRBG_Generate call at the end of the seedlife of the RBG2(P) construction (see the
DRBG_Generate function specification in [SP_800-90A]).

1. The reseed function is requested by an application using:
status = DRBG_Reseed_request(RBG3 _DRBG state_handle),
where RBG3 _DRBG state_handle was obtained during instantiation.

2. The DRBG_Reseed function is executed in response to a reseed request by an
application (see step 1) or during the generation process (see Appendices B.6.2 and B.6.3):

status = DRBG_Reseed(RBG3_DRBG state_handle).

48 The complete DRBG_Generate function is significantly longer.
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For this example, the Get_entropy_bitstring call within the DRBG_Reseed function is
modified to obtain s + 64 bits of entropy rather than the “normal” s bits of entropy (see
method A for step 3.1 in Sec. 6.5.1.4).

(status, seed_material) = Get_entropy_bitstring(s + 64).

If status = SUCCESS is returned by the DRBG_Reseed function, the internal state has
been updated with at least 320 bits of fresh entropy (i.e., 256 + 64 = 320). Status =
SUCCESS is returned to the calling application by the DRBG_Reseed function.

If status # SUCCESS (e.g., the entropy source has failed), the DRBG has not reseeded,
and an error indication is returned as the status from DRBG_Reseed function to the
calling application.

B.7. DRBG Tree Using the RBGC Construction

A tree of DRBGs consists of RBGC constructions and an initial randomness source on the same
computing platform. For this example, the initial randomness source is a physical entropy source
that provides output with full entropy (i.e., the initial randomness source is a full-entropy source).
The tree includes two RBGC constructions: the root RBGC construction (RBGC1) and a child
(RBGC;) (see Fig. 52).

Cryptographic Module
Applicationg
Initial ry
Randomness
Source
(Entropy '
source) HMAC_DRBG
RBGC,
Cryptographic Module
CTR_DRBG|« Applicationp

(Root) RBGC;
Cryptographic Module

Fig. 52. Example of a DRBG tree of RBGC constructions

In this example, a CTR_DRBG with no derivation function is used in the root (RBGCz). It will be
seeded and reseeded at a security strength of 192 bits using the initial randomness source.
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RBGC; is implemented using SHA-256 and the HMAC DRBG. RBGC; will be seeded and
reseeded at a security strength of 128 bits using the root (RBGC1) as its randomness source.

B.7.1. Instantiation of the RBGC Constructions

The DRBG in each RBGC construction is instantiated by an application using a known randomness
source, starting with the instantiation of the DRBG in the root using the initial randomness source
(see Appendix B.7.1.1). Subsequent layers in the tree can be instantiated when an already-
instantiated RBGC construction is available. For this example, after the root has been
instantiated, the DRBG in a child RBGC construction (RBGC;) can be instantiated using the root
as its randomness source (see Sec. 7.2.1.2).

B.7.1.1. Instantiation of the Root RBGC Construction

The root of the DRBG tree is instantiated using the initial randomness source, which for this
example is an entropy source that provides output with full entropy. The instantiation is
requested by an application (e.g., Applicationa in Fig. 52). The CTR DRBG in the root is
implemented using AES-192, so a maximum security strength of 192 bits can be instantiated.

1. The application (Applicationa) sends an instantiate request to the root requesting that the
DRBG within the root be instantiated at a security strength of 192 bits:

(status, Root DRBG state handle) =
DRBG_Instantiate_request(192, “Root RBGC”),

where “Root RBGC” is the personalization string, and Root DRBG state_handle is the
name of the state handle to be assigned to the internal state of the root’s DRBG.

2. Uponreceiving the instantiate request, the root (RBGC;1) executes the instantiate function
for its DRBG:

(status, Root DRBG state _handle) = DRBG_Instantiate(192, “Root RBGC”).

The DRBG _Instantiate function in the root determines that its DRBG (CTR_DRBG)
needs to obtain keylen + blocklen bits (i.e., 192 + 128 = 320 bits) with full entropy from
the full-entropy source. The root sends a Get_entropy_bitstring request to the
randomness source to obtain 320 bits of seed material:

(status, seed_material) = Get_entropy_bitstring(320, Method 1).
Method_1 indicates that only entropy from a physical entropy source is to be counted.

If the status indicates success, and seed _material is returned from the initial randomness
source (i.e., the full-entropy source), the CTR _DRBG is seeded using the seed material
and the personalization string (see [SP_800-90A]). The internal state is recorded
(including the security strength of the instantiation), and the status and a state handle are
returned to the root (RBCi) and forwarded to the application in response to the
instantiate request.
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If the status indicates an error, the internal state is not created. The status and an invalid
state handle are returned to the root (RBC1) and forwarded to the application in response
to the instantiate request.

B.7.1.2. Instantiation of a Child RBGC Construction (RBGC>)

A child RBGC construction can be instantiated by an application (e.g., Applicationg in Fig. 52) after
the root has been successfully instantiated. In this example, the HMAC DRBG in RBGC; is
implemented using SHA-256, so a maximum security strength of 256 bits is possible. However,
since the root RBGC construction (i.e., the randomness source for RBGC;) can only support a
security strength of 192 bits (see Appendix B.7.1.1), only requests for security strengths of 192
bits or less can be instantiated for RBGC,.

The DRBG in RBGC; is instantiated as follows:

1. Anapplication (Applications) requests the instantiation of the DRBG in RBGC; at a security
strength of 128 bits:

(status, RBGC2 DRBG state handle) =
DRBG_Instantiate_request(128, “RBGC2 DRBG”),

where “RBGC2 DRBG” is the personalization string, and RBGC2 _DRBG state _handle is
the name of the state handle to be assigned to the internal state of the DRBG in the RBGC;
construction.

2. Upon receiving the instantiate request, the RBGC; construction executes the instantiate
function for its DRBG:

(status, RBGC2 _DRBG state_handle) = DRBG_Instantiate(128, “RBGC2 DRBG”).
The DRBG_Instantiate function in the DRBG sends a generate request to the root:
(status, seed_material) = DRBG_Generate(Root DRBG state _handle, 192, 128),
where:

e Root DRBG state handle is the state handle for the internal state of the DRBG in
the root (see Sec. 7.1.1).

e The requested security strength is 128 bits, so for the HMAC DRBG in RBGC,,
the number of bits requested from the root (i.e., RBGC;’'s randomness source) is
3s/2 =192 bits.

See Appendix B.7.2 for the handling of a generate request by an RBGC construction.

If the status returned from the randomness source (i.e., RBGC;) in response to the
generate request indicates a success, the HMAC DRBG in RBGC; is seeded using the
seed material returned from the generate request (see Appendix B.7.2) and the
personalization_string (“RBGC2 DRBG”) from the instantiate request in step 1 (see
[SP_800-90A]). The internal state is recorded (including the security strength of the
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instantiation), and the status and state handle are returned to the RBGC; construction to
be forwarded to the application that requested the instantiation of the DRBG in the RBGC;
construction (i.e., Applications).

If the status indicates an error, then the internal state is not created. The status and an
invalid state handle are returned to the RBGC; construction to be forwarded to the
application that requested the instantiation of the DRBG in the RBGC; construction.

B.7.2. Requesting the Generation of Pseudorandom Bits

1. An application or a child RBGC construction (e.g., Applicationa or RBGC; in Fig. 52)
requests the generation of pseudorandom bits as follows:

(status, seed_material) = DRBG_Generate request(DRBG state_handle, n, s),
where:

e DRBG state handle is the state handle for the internal state of the DRBG in the
RBGC construction requested to generate the bits. For this example, if
Applicationa is requesting the generation of bits from the root or the DRBG in
RBGC, is requesting the root to generate bits, the state handle is
Root DRBG state_handle. If Applicationg is requesting the generation of bits
from the RBGC; construction, the state handle is RBG2 DRBG state_handle.

e nisthe number of bits to be generated using the DRBG in the RBGC construction.

e s is the required security strength to be supported by the DRBG in the RBGC
construction.

2. Upon receiving the generate request, the RBGC construction executes the generate
function for its DRBG:

(status, seed _material) = DRBG_Generate(DRBG state handle, n, s).

If the returned status indicates success, the requested number of bits are returned
(seed_material) to the RBGC construction and forwarded to the requesting entity with the
status. The requesting entity is either an application or a child of the RBGC construction
(e.g., Applicationa, Applicationg, or RBGC; in Fig. 52).

If the returned status indicates an error, seed_material is a Null bitstring. This could, for
example, be the result of requesting a higher security strength than is instantiated for the
DRBG requested to generate bits. The status and the Null bitstring are returned to the
RBGC construction and forwarded to the requesting entity.
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B.7.3. Reseeding an RBGC Construction

The DRBG in an RBGC construction may be explicitly requested to be reseeded by an application,
or the DRBG may automatically reseed itself (e.g., at the end of its seedlife or after some system
interrupt).

1. An application requests the reseed of a DRBG in an RBGC construction as follows:
(status) = DRBG_Reseed_request(DRBG state_handle).

DRBG state_handle is Root DRBG state _handle for RBGC1 and
RBG2 DRBG state_handle for RBGCo.

2. Upon receiving a reseed request or if scheduled for automatic reseeding, the RBGC
construction executes the reseed function for its DRBG:

status = DRBG_Reseed(DRBG state _handle).

Appendix B.7.3.1 discusses the reseed function in the root’s DRBG, and Appendix B.7.3.2
discusses the reseed function in the DRBG of RBGC,.

B.7.3.1. Reseeding the Root RBGC Construction

The DRBG_Reseed function in the root uses the initial randomness source to reseed in the same
manner as for instantiation (by sending a Get_entropy_bitstring request to the entropy source).
For the CTR_DRBG in the root, 320 bits are again requested:

(status, seed_material) = Get_entropy_bitstring(320, Method 1).

If the returned status indicates a success, seed_material is returned from the initial randomness
source, and the CTR_DRBG within the root is reseeded using the seed material (see [SP_800-
90A]). The DRBG’s internal state is updated, and the status is returned to the application by the
DRBG_Reseed function in the root RBGC construction.

If the status indicates an error, then the internal state is not updated. The status is returned to
the application.

B.7.3.2. Reseeding a Child RBGC Construction

The DRBG_Reseed function in the RBGC construction uses its randomness source in the same
manner as for instantiation (by sending a DRBG_Generate_request to its randomness source,
which is the root in this example). In this example, the root RBGC construction is available, so an
alternate source of randomness for reseeding is not necessary.

For the HMAC DRBG in RBGC,, s = 128 bits are requested from the root RBGC construction,
where s is the security strength of the DRBG instantiation in RBGC; (see Appendix B.7.1.2).

(status, seed _material) = DRBG_Generate(Root DRBG state handle, 128, 128),
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where:

e Root DRBG state handle is the state handle for the internal state of the DRBG in the
root (see Appendix B.7.1.1).

e The requested security strength is 128 bits, so for the HMAC DRBG in RBGC,, the
number of bits requested from the root (RBGC;’'s randomness source) is s = 128 bits.

Appendix B.7.2 discusses the handling of a generate request by an RBGC construction.
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Appendix C. List of Abbreviations, Acronyms, and Symbols

C.1. List of Abbreviations and Acronyms

AES
Advanced Encryption Standard®®

CAVP
Cryptographic Algorithm Validation Program

CcMvP
Cryptographic Module Validation Program

DRBG
Deterministic Random Bit Generator®°

FIPS
Federal Information Processing Standard

MAC
Message Authentication Code

NIST
National Institute of Standards and Technology

RBG
Random Bit Generator

SP
(NIST) Special Publication

Sub-DRBG
Subordinate DRBG

TDEA
Triple Data Encryption Algorithm>!

XOR
Exclusive-Or (operation)

C.2. List of Symbols

0"
A string of x zeroes.

[x]

Recommendation for RBG Constructions

The ceiling of x; the least integer number that is not less than the real number x. For example, [3]=3,and[5.5]=

6.

42 AES is specified in [FIPS_197].
50 This mechanism is specified in SP 800-90A.
51 TDEA is specified in SP 800-67.
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min(a, b)
The minimum of a and b.

s
The security strength.

Xeyv
Boolean bitwise exclusive-or (also bitwise addition modulo 2) of two bitstrings X and Y of the same length.

+
Addition over real numbers.

XY
The concatenation of two bitstrings X'and Y.
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Appendix D. Glossary

additional input
Optional additional information that could be provided in a generate or reseed request by a consuming application.

adversary
A malicious entity whose goal is to determine, guess, or influence the output of an RBG.

alternative randomness source
A sibling of the parent randomness source, an ancestor of the RBGC construction to be reseeded, or the initial
randomness source.

ancestor (randomness source)
A parent, grandparent, or other direct RBGC predecessor (including the root RBGC construction) of an RBGC
construction.

approved
An algorithm or technique for a specific cryptographic use that is specified in a FIPS or NIST recommendation,
adopted in a FIPS or NIST recommendation, or specified in a list of NIST-approved security functions.

backtracking resistance

A property of a DRBG that provides assurance that compromising the current internal state of the DRBG does not
weaken previously generated outputs. See [SP_800-90A] for a more complete discussion. Contrast with prediction
resistance.

biased
A random variable is said to be biased if values of the finite sample space are selected with unequal probability.
Contrast with unbiased.

big-endian format
A format in which the most significant bytes (the bytes containing the high-order or leftmost bits) are stored in the
lowest address with the following bytes in sequentially higher addresses.

bitstring
An ordered sequence (string) of Os and 1s. The leftmost bit is the most significant bit.

block cipher
A parameterized family of permutations on bitstrings of a fixed length; the parameter that determines the
permutation is a bitstring called the key.

computing platform

A system’s hardware, firmware, operating system, and all applications and libraries executed by that operating
system. Components that communicate with the operating system through a peripheral bus or a network, either
physical or virtual, are not considered to be part of the same computing platform.

conditioning function (external)
As used in SP 800-90C, a deterministic function that is used to produce a bitstring with full entropy or to distribute
entropy across a bitstring.

consuming application
An application that uses random outputs from an RBG.
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cryptographic boundary

An explicitly defined physical or conceptual perimeter that establishes the physical and/or logical bounds of a
cryptographic module and contains all the hardware, software, and/or firmware components of a cryptographic
modaule.

cryptographic module
The set of hardware, software, and/or firmware that implements cryptographic functions (including cryptographic
algorithms and key generation) and is contained within the cryptographic boundary.

deterministic random bit generator (DRBG)
An RBG that produces random bitstrings by applying a deterministic algorithm to seed material.

Note: A DRBG has access to a randomness source initially but may not have access to a randomness source
thereafter.

digitization
The process of generating raw discrete digital values from non-deterministic events (e.g., analog noise sources)
within a noise source.

DRBG chain
A chain of DRBGs in which one DRBG is used to provide seed material for another DRBG during instantiation.

DRBG tree

A set of DRBGs within RBGC constructions that originate with the DRBG in a root RBGC construction. The root obtains
seed material from an initial randomness source, but all other DRBGs receive seed material from another DRBG in
the tree.

entropy
A measure of disorder, randomness, or variability in a closed system.

Notel: The entropy of a random variable X'is a mathematical measure of the amount of information gained
by an observation of X.

Note2: The most common concepts are Shannon entropy and min-entropy. Min-entropy is the measure
used in the SP 800-90 series.

entropy rate
The validated rate at which an entropy source provides entropy in terms of bits per entropy-source output (e.g., five
bits of entropy per 8-bit output sample).

entropy source

The combination of a noise source, health tests, and an optional conditioning component that produces bitstrings
containing entropy. A distinction is made between entropy sources with physical noise sources and those having
non-physical noise sources.

external conditioning function

A vetted conditioning function that is implemented outside of the boundary of an SP 800-90B entropy source.

fresh entropy
A bitstring that is output from a non-deterministic randomness source that has not been previously used to generate
output or has not otherwise been made externally available.

Note: The randomness source should be an entropy source or RBG3 construction.
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fresh randomness
A bitstring that is output from a randomness source that has not been previously used to generate output or has not
otherwise been made externally available.

full-entropy bitstring
A bitstring with ideal randomness (i.e., the amount of entropy per bit is equal to 1). This recommendation assumes
that a bitstring has full entropy if the entropy rate is at least 1 — ¢, where ¢ is at most 2732,

full-entropy source

An SP 800-90B-compliant entropy source that has been validated as providing output with full entropy or the
validated combination of an SP 800-90B-compliant entropy source and an external conditioning function that
provides full-entropy output.

hash function
A (mathematical) function that maps values from a large (possibly very large) domain into a smaller range. The
function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any input that maps to any pre-specified output.

2. (Collision-free) It is computationally infeasible to find any two distinct inputs that map to the same output.

health testing
Testing within an implementation immediately prior to or during normal operation to obtain assurance that the
implementation continues to perform as implemented and validated.

Note: Health tests are comprised of continuous tests and startup tests.

ideal randomness source

The source of an ideal random sequence of bits. Each bit of an ideal random sequence is unpredictable and unbiased
with a value that is independent of the values of the other bits in the sequence. Prior to an observation of the
sequence, the value of each bit is equally likely to be 0 or 1, and the probability that a particular bit will have a
particular value is unaffected by knowledge of the values of any or all the other bits. An ideal random sequence of n
bits contains n bits of entropy.

independent entropy sources
Two entropy sources are independent if knowledge of the output of one entropy source provides no information
about the output of the other entropy source.

initial randomness source
The randomness source for the root RBGC construction in a DRBG tree of RBGC constructions.

instantiate
The process of initializing a DRBG with sufficient randomness to generate pseudorandom bits at the desired security
strength.

internal state (of a DRBG)
The collection of all secret and non-secret information about an RBG or entropy source that is stored in memory at
a given point in time.

known answer test
A test that uses a fixed input/output pair to detect whether a deterministic component was implemented correctly
or continues to operate correctly.

legacy implementation (of DRBGS)
DRBG implementations that may not conform to the current SP 800-90A version but do conform to a previous
version of SP 800-90A.
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min-entropy

A lower bound on the entropy of a random variable. The precise formulation for min-entropy is (—log, max p;) for a
discrete distribution having probabilities pi, ..., px. Min-entropy is often used as a measure of the unpredictability of
a random variable.

must
Used to indicate a requirement that may not be testable by a CAVP/CMVP testing lab.

Note: Must may be coupled with not to become must not.

noise source
A source of unpredictable data that outputs raw discrete digital values. The digitization mechanism is considered
part of the noise source. A distinction is made between physical noise sources and non-physical noise sources.

non-physical entropy source
An entropy source whose primary noise source is non-physical.

non-physical noise source
A noise source that typically exploits system data and/or user interaction to produce digitized random data.

non-validated entropy source
An entropy source that has not been validated by the CMVP as conforming to [SP_800-90B].

null string
An empty bitstring.

parent (randomness source)
The randomness source used to seed a non-root RBGC construction during the instantiation of its DRBG.

personalization string
An optional input value to a DRBG during instantiation.

physical entropy source
An entropy source whose primary noise source is physical.

physical noise source
A noise source that exploits physical phenomena (e.g., thermal noise, shot noise, jitter, metastability or radioactive
decay) from dedicated hardware designs (e.g., using diodes, ring oscillators) or physical experiments to produce
digitized random data.

physically secure channel

A physical trusted and safe communication link that is established between an implementation of an RBG1
construction and its randomness source to securely communicate unprotected seed material without relying on
cryptography. A physically secure channel protects against eavesdropping as well as physical or logical tampering by
unwanted operators/entities, processes, or other devices between the endpoints.

prediction resistance

For a DRBG, a property of a DRBG that provides assurance that compromising the current internal state of the DRBG
does not allow future DRBG outputs to be predicted past the point where the DRBG has been reseeded with
sufficient entropy from an entropy source or RBG3 construction. For an RBG, compromising the output of the RBG
does not allow future outputs of the RBG to be predicted when the DRBG is reseeded. See [SP_800-90A] for a more
complete discussion. Contrast with backtracking resistance.
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pseudocode
An informal, high-level description of a computer program, algorithm, or function that resembles a simplified
programming language.

random bit generator (RBG)
A device or algorithm that outputs a random sequence that is effectively indistinguishable from statistically
independent and unbiased bits.

randomness

The unpredictability of a bitstring. If the randomness is produced by a non-deterministic randomness source (e.g.,
an entropy source or RBG3 construction), the unpredictability is dependent on the quality of the source. If the
randomness is produced by a deterministic randomness source (e.g., a DRBG), the unpredictability is based on the
capability of an adversary to break the cryptographic algorithm for producing the pseudorandom bitstring.

randomness source
A source of randomness for an RBG. The randomness source may be an entropy source or an RBG construction.

RBG1 construction
An RBG construction with the DRBG and the randomness source in separate cryptographic modules.

RBG2 construction
An RBG construction with one or more entropy sources and a DRBG within the same cryptographic module. This RBG
construction does not provide full-entropy output.

Note: An RBG2 construction may be either an RBG2(P) or RBG2(NP) construction.

RBG2(NP) construction

A non-physical RBG2 construction that obtains entropy from one or more validated non-physical entropy sources
and possibly from one or more validated physical entropy sources. This RBG construction does not provide full-
entropy output.

RBG2(P) construction

A physical RBG2 construction that includes a DRBG and one or more entropy sources in the same cryptographic
module. Only the entropy from validated physical entropy sources is counted when fulfilling an entropy request
within the RBG. This RBG construction does not provide full-entropy output.

RBG3 construction

An RBG construction that includes a DRBG and one or more entropy sources in the same cryptographic module.
When working properly, bitstrings that have full entropy are produced. Sometimes called a non-deterministic
random bit generator (NRBG) or true random number (or bit) generator.

Note: An RBG3 construction may be either an RBG3(XOR) or RBG3(RS) construction.

RBG3(RS) construction
An RBG3 construction that uses one or more validated entropy sources to continuously reseed the DRBG in the
construction.

RBG3(XOR) construction
An RBG3 construction that combines the output of one or more validated entropy sources with the output of an
instantiated, approved DRBG using an exclusive-or operation.

RBGC construction
An RBG construction used within a DRBG tree in which one DRBG is used to provide seed material for another DRBG.
The construction does not provide full-entropy output.
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reseed
To refresh the internal state of a DRBG with seed material from a randomness source.

root RBGC construction
The first RBGC construction in a DRBG tree of RBGC constructions.

sample space
The set of all possible outcomes of an experiment.

security boundary

For an entropy source, a conceptual boundary that is used to assess the amount of entropy provided by the values
output from the entropy source. The entropy assessment is performed under the assumption that any observer
(including any adversary) is outside of that boundary during normal operation.

For a DRBG, a conceptual boundary that contains the required DRBG functions and the DRBG's internal state.

For an RBG, a conceptual boundary that is defined with respect to one or more threat models that includes an
assessment of the applicability of an attack and the potential harm caused by the attack.

security strength

A number associated with the amount of work (i.e., the number of basic operations of some sort) that is required to
“break” a cryptographic algorithm or system in some way. In this recommendation, the security strength is specified
in bits and is a specific value from the set {128, 192, 256}. If the security strength associated with an algorithm or
system is s bits, then it is expected that (roughly) 2° basic operations are required to break it.

Note: This is a classical definition that does not consider quantum attacks. This definition will be revised to
address quantum issues in the future.

seed
Verb: To initialize or update the internal state of a DRBG with seed material and (optionally) a personalization string
or additional input. The seed material should contain sufficient randomness to meet security requirements.

Noun: The combination of seed material and (optional) personalization string or additional input.

seed material
An input bitstring from a randomness source that provides an assessed minimum amount of randomness (e.g.,
entropy) for a DRBG.

seedlife
The period of time between instantiating or reseeding a DRBG with seed material and either reseeding the DRBG
with seed material containing new, unused randomness or uninstantiating the DRBG.

shall
The term used to indicate a requirement that is testable by a testing lab. See testable requirement.

Note: Shall may be coupled with not to become shall not.

should
The term used to indicate an important recommendation. Ignoring the recommendation could result in undesirable
results.

Note: Should may be coupled with not to become should not.
sibling (randomness source)
Asibling of the parent randomness source for a non-root RBGC construction (the sibling can be considered the “aunt”

or “uncle” in “human family” terms). The “grandparent” of the non-root RBGC construction is the parent of both the
parent randomness source and the parent's sibling.
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state handle
A pointer to the internal state information for a particular DRBG instantiation.

subordinate DRBG (sub-DRBG)
A DRBG that is instantiated by an RBG1 construction and contained within the same security boundary as the RBG1
construction.

support a security strength (by a DRBG)
The DRBG has been instantiated at a security strength that is equal to or greater than the security strength requested
for the generation of random bits.

targeted security strength
The security strength that is intended to be supported by one or more implementation-related choices (e.g.,
algorithms, cryptographic primitives, auxiliary functions, parameter sizes, and/or actual parameters).

terminate (an operation)
Stop the operation.

testable requirement
A requirement that can be tested for compliance by a testing lab via operational testing, code review, or a review of
relevant documentation provided for validation. A testable requirement is indicated using a shall statement.

threat model
A description of a set of security aspects that need to be considered. A threat model can be defined by listing a set
of possible attacks along with the probability of success and the potential harm from each attack.

unbiased
A random variable is said to be unbiased if all values of the finite sample space are chosen with the same probability.
Contrast with biased.

uninstantiate
The termination of a DRBG instantiation.

validated entropy source
An entropy source that has been successfully validated by the CAVP and CMVP for conformance to SP 800-908B.
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