
Methods of Conjugate Gradients for
Solving Linear Systems

The advent of electronic computers in the middle of
the 20th century stimulated a flurry of activity in devel-
oping numerical algorithms that could be applied to
computational problems much more difficult than those
solved in the past. The work described in this paper [1]
was done at the Institute for Numerical Analysis, a
part of NBS on the campus of UCLA [2]. This institute
was an incredibly fertile environment for the develop-
ment of algorithms that might exploit the potential
of these new automatic computing engines, especially
algorithms for the solution of linear systems and matrix
eigenvalue problems. Some of these algorithms are
classified today under the term Krylov Subspace
Iteration, and this paper describes the first of these
methods to solve linear systems.

Magnus Hestenes was a faculty member at UCLA
who became associated with this Institute, and Eduard
Stiefel was a visitor from the Eidgenössischen Technis-
chen Hochschule (ETH) in Zürich, Switzerland. At this
time, there were two commonly used types of al-
gorithms for solving linear systems. The first, like Gauss
elimination, modified a tableau of matrix entries in a

systematic way in order to compute the solution. These
methods were finite, but required a rather large amount
of computational effort with work growing as the cube
of the number of unknowns. The second type of al-
gorithm used “relaxation techniques” to develop a se-
quence of iterates converging to the solution. Although
convergence was often slow, these algorithms could be
terminated, often with a reasonably accurate solution
estimate, whenever the human “computers” ran out of
time.

The ideal algorithm would be one that had finite
termination but, if stopped early, would give a useful
approximate solution. Hestenes and Stiefel succeeded in
developing an algorithm with exactly these characteris-
tics, the method of conjugate gradients.

The algorithm itself is beautiful, with deep connec-
tions to optimization theory, the Pad table, and quadratic
forms. It is also a computational gem, the standard al-
gorithm used today to solve large sparse systems of
equations, involving symmetric (or Hermitian) positive
definite matrices, for which matrix modification meth-
ods are impractical.

Fig. 1. Wolfgang Wasow (left) and Magnus Hestenes (right).
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The INA group was quite collegial, and many of the
ideas in this paper have roots in joint discussions among
many participants. Hestenes and Stiefel summarize the
development this way [1, pp. 409-410]:

“The method of conjugate gradients was
developed independently by E. Stiefel of
the Institute of Applied Mathematics at
Zurich and by M. R. Hestenes with the
cooperation of J. B. Rosser, G. Forsythe,
and L. Paige of the Institute for Numerical
Analysis, National Bureau of Standards.
The present account was prepared jointly
by M. R. Hestenes and E. Stiefel during the
latter’s stay at the National Bureau of
Standards. The first papers on this method
were given by E. Stiefel [1952] and by
M. R. Hestenes [1951]. Reports on this
method were given by E. Stiefel and J. B.
Rosser at a Symposium on August 23-25,
1951. Recently, C. Lanczos [1952] devel-
oped a closely related routine based on
his earlier paper on eigenvalue problem
[1950]. Examples and numerical tests
of the method have been by R. Hayes,
U. Hoschstrasser, and M. Stein.”

The papers referred to in this summary are those of
Stiefel [3], Hestenes [4], and Lanczos [5,6], the last of
which is discussed elsewhere in this volume.

It is interesting to hear two distinct voices in this
paper of Hestenes and Stiefel. Hestenes came to the

algorithm from the point of view of variational theory
and optimal control. In 1936 he had developed an
algorithm for constructing a set of mutually conjugate
basis vectors, but was advised by a Harvard professor
that it was too obvious for publication [7]. Yet this back-
ground, plus discouraging numerical experience by
George Forsythe in using the steepest descent algorithm
for solving linear systems, was grist for the mill in the
development of the conjugate gradient algorithm.
Stiefel, on the other hand, had a strong orientation
toward relaxation algorithms, continued fractions, and
the qd-algorithm, and he developed conjugate gradients
from this viewpoint.

The technical contributions of the paper begin in
Section 3, with a rather terse algebraic presentation
of the formulas of the conjugate gradient algorithm.
Motivation comes later, with the observation that the
recurrences lead to a sequence of approximations that
converge monotonically in the sense of reducing an
error function. At the same time, a sequence of poly-
nomials can be constructed in order to find the eigen-
system of the matrix. In the next section, the authors
explain that the algorithm is a special case of a conju-
gate direction algorithm, and it is this property that
yields finite termination. Algebraic properties are
further developed in Section 5, which presents some
alternate computational formulas. Sections 6 and 7 are
more geometric, discussing optimization properties of
the solution estimates. Section 8 turns to practical con-
siderations: will round-off errors on electronic comput-
ers render this theoretically beautiful algorithm useless?
The rather conservative analysis led to the conclusion
that although round-off certainly hurts the algorithm,
reasonable precautions and end corrections could over-
come this in most cases. Section 9 explored different
normalization options. In Section 10, “extensions” were
proposed; in particular, the authors discussed how
to solve nonsymmetric problems by considering the
normal equations, and how to choose a preconditioning
matrix in order to make the method applicable to
broader classes of matrices. Section 11 discusses the
construction of conjugate bases, and in Sections 12 and
13, the authors note that there is a close relation between
conjugate gradients and Gauss elimination. Other
relations are explored in later sections: continued
fractions and the theory of orthogonal polynomials
(Sections 14, 15, 17, and 18), and eigenvalue computa-
tions (Section 16).

The paper concludes with some numerical examples
demonstrating the usefulness of the algorithm on a
matrix of dimension 4 using exact arithmetic, a well-
conditioned matrix of dimension 6 with some rounding
error, and an ill-conditioned matrix of dimension 3, in
which the conjugate gradient solution was about as

Fig. 2. Eduard Stiefel [From Zeitschrift für angewandte Mathematik
und Physik 30, 139 (1979); used with permission].
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accurate as that from Gauss elimination. The authors
remind us how difficult numerical computations were in
the middle of the 20th century: the algorithm had been
used to solve 106 difference equations on the Zuse
computer at ETH (with a sufficiently accurate answer
obtained in 90 iterations); to solve systems as large as
dimension 12 on an IBM “card programmed calcu-
lator”; and to solve small systems on the SWAC
(Standards Western Automatic Computer), which had
only 256 words of memory [2, Appendix C].

Hestenes and Stiefel’s paper remains the classic
reference on this algorithm, explaining the use of the
algorithm as both a finitely terminating method and as
a way of obtaining an approximate solution if halted
before termination. It is such a rich paper that it contains
the roots of virtually all of the advances in this area up
to the present time: for example, preconditioning to
accelerate convergence of the algorithm, variations that
can be used to solve systems of equations involving
nonsymmetric matrices, and evaluation of computa-
tional variants in order to choose the most numerically
stable one.

The algorithm garnered considerable early attention
but went into eclipse in the 1960s as naive implementa-
tions were unsuccessful on some of the ever-larger
problems that were being attempted. Work by John Reid
[8] in the early 1970s drew renewed attention to the
algorithm, and since then it has been an intense topic of
research. Today it is the standard algorithm for solving
linear systems involving large, sparse, symmetric (or
Hermitian) matrices. Strategies for constructing pre-
conditioning matrices, which reduce the number of
iterations, remain a major research theme, as well as
understanding the convergence properties of some non-
symmetric variants. Some of the early history of the
algorithm is discussed in [9].

Despite the fact that the algorithm has become a
standard topic in numerical textbooks, the original
paper is still widely read and cited; Science Citation
Index lists over 800 citations between 1983 and 1999,
and it is clear that this algorithm, and the non-symmetric
variants developed to complement it, will remain the
standard algorithms for solving sparse linear systems for
the foreseeable future.

Fig. 3. Researchers associated with the NBS Institute for Numerical Analysis (1950). From left to
right: Mark Kac, Edward J. McShane, J. Barkley Rosser, Aryeh Dvoretzky, George E. Forsythe, Olga
Tausssky-Todd, Wolfgang R. Wasow, and Magnus R. Hestenes.
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The conjugate gradient algorithm was but one claim
to greatness for these remarkable and multifaceted
researchers.

Magnus R. Hestenes [10] was born in Bricelyn,
Minnesota, in 1906. His undergraduate work was at
St. Olaf College, and his graduate work at the University
of Wisconsin and the University of Chicago. His first
faculty appointment was at Chicago, but he left in 1947
to accept a professorship at UCLA, where he taught
until his retirement. He had 34 Ph.D. students and was
a well-loved advisor and teacher, known for his nurtur-
ing kindness toward his very junior colleagues. Admin-
istrative duties over the years included chairing the
Mathematics Department, directing the university’s
computing center, and serving as vice president of the
American Mathematical Society. He also held appoint-
ments with the Rand Corporation, the Institute for
Defense Analyses, and the IBM Watson Research
Center. His association with NBS’s INA lasted from
1949 to 1954, when the INA was transferred from NBS
to UCLA. His best known works include many publica-
tions on the problem of Bolza, a famous paper on
quadratic forms in Hilbert space [11], and the conjugate
gradient paper with Stiefel. Hestenes remained scientifi-
cally active until his death in 1991, concentrating in his
later years on the method of multipliers and continuing
to write and publish.

Eduard Stiefel [12] was born in 1909 in Zürich,
Switzerland. He spent virtually his entire career at
the Eidgenössischen Technischen Hochschule (ETH) in
Zürich, first as a student of mathematics and physics,
and then, following his habilitation degree in 1943, as a
professor. His early work was in topology, eventually
studying the geometry and topology of Lie groups. 1948
was a turning point for him, however. He founded
the Institut für Angewandte Mathematik (Institute for
Applied Mathematics) at ETH, in collaboration with
Heinz Rutishauser and Ambros P. Speiser. Stiefel was a
visionary who realized the enormous significance of the
new computing technology and the impact it would have
on mathematics and science. When he discovered in
1949 that a major computing engine, the Z4 of the
German designer Konrad Zuse, was sitting in the small
alpine village of Neukitchen, Germany, he traveled there
and arranged for the machine to be rented and moved to
ETH. Zuse, isolated by wartime secrecy, had indepen-
dently developed computing technology that in many
ways was superior to that available in the U.S. at the time
[13]. Stiefel’s initiative made ETH the first European
university with an electronic computer, putting it in
the forefront of numerical computation and computer

science. This led to several breakthrough developments
by him and his colleagues, including the qd algorithm,
the programming language ALGOL, and the conjugate
gradient algorithm. His own interests evolved toward
numerical algorithms, and he made substantial contri-
butions in computational linear algebra, quadrature, and
approximation theory before turning his attention to
mechanics and celestial mechanics late in his life [14].
His technical works include over 60 journal publications
and a wonderful 1960s textbook on numerical mathe-
matics. He died in 1978, a few months short of his 70th
birthday.

Computing in Science and Engineering, a publication
of the IEEE Computer Society and the American
Institute of Physics, named Krylov Subspace Iteration as
one of the Top 10 Algorithms of the Century [15], citing
in particular the pioneering work of Hestenes, Stiefel,
and Lanczos. The citation reads:

Krylov Subspace Iteration
Hestenes, Stiefel, Lanczos
Conjugate gradient methods are iterative
matrix algorithms for solving very large
linear systems of equations, especially effi-
cient for sparse square matrices. Such
systems arise in various application areas,
such as modeling of fluid flows, reservoir
engineering, mechanical engineering, semi-
conductor device analysis, nuclear reaction
models, and electric circuit simulation.
These matrices can be huge, up to millions
of degrees of freedom. Modern improve-
ments include GMRES and BI-CGSTAB.

Prepared by Dianne P. O’Leary.
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