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A new graph coloring algorithm is presented and compared to a wide variety of known algorithms. The
algorithm is shown to exhibit O(n?) time behavior for most sparse graphs and thus is found to be particularly well
suited for use with large-scale scheduling problems. In addition, a procedure for generating large random test
graphs with known chromatic number is presented and is used to evaluate heuristically the capabilities of the
algorithms discussed.
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1. Introduction

Graph coloring has considerable application to a large variety of complex problems involving optimization.
In particular conflict resolution, or the optimal partitioning of mutually exclusive events, can often be
accomplished by means of graph coloring. Examples of such problems include: the scheduling of exams in the
smallest number of time periods such that no individual is required to participate in two exams simultaneously
(see appendix A), the storage of chemicals on the minimum number of shelves such that no two mutually
dangerous chemicals (i.e., dangerous when one is in the presence of the other) are stored on the same shelf,
and the pairing of individuals (as in a computer dating agency) such that the maximal number of compatible
persons are paired together.

In each of the above problems, the constraints are usually expressible in the form of pairs of incompatible
objects (e.g., pairs of chemicals that cannot be stored on the same shelf). Such incompatibilities are usefully
embodied through the structure of a graph. Each object is represented by a node and each incompatibility is
represented by an edge joining the two nodes. A coloring of this graph is then simply a partitioning of the
objects into blocks (or colors) such that no two incompatible objects end up in the same block. Thus, optimal
solutions to such problems may be found by determining minimal colorings for the corresponding graphs.
Unfortunately, this may not always be accomplishable in a reasonable amount of time.

As the graph coloring problem is known to be NP-complete [1],! there is no known algorithm which, for
every graph, will optimally color the nodes of the graph in a time bounded by a polynomial in the number of
nodes. Since exponential time algorithms [5, 6, 7, 9, 18] are prohibitively expensive for use with large-scale
problems, much attention has been focused on the development of heuristic algorithms which will usually
produce a good, though not necessarily optimal, coloring for any graph in a reasonable amount of time.

This paper describes a new graph coloring algorithm, the recursive largest first (RLF) coloring algorithm.
In addition, a variety of existing coloring procedures are presented and their performance on a wide range of
test data is compared to that of the RLF algorithm.

Also described is a procedure for generating random graphs with known chromatic number. The existence
of such a procedure, heretofore lacking in the experimental literature, provides a standard method for testing
the accuracy of graph coloring algorithms.
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2. Preliminary Definitions

Throughout this paper, the graph G with nodes V and edges £, denoted by (V, E'), is assumed to contain no
loops or multiple edges. The subgraph of G = (V, E) induced by a subset U of the nodes V consists of those
nodes and all the edges that directly connect them. This subgraph is represented by < U > or (U, E') where
E' = {(w;. ws)|(w;. ws) €E, w, €U, wyeU}. The degree of a node weG, denoted by d(w). is the number of
nodes adjacent to w in G. Define d ;(w) to be the number of nodes in U adjacent to w in G. This is equivalent
to the degree of w in < U U {w} >.

A coloring of G is an assignment of colors to the nodes of G such that no two adjacent nodes share the same
color. More formally, a k-coloring of G is a mapping f:V— {1, 2, . . . , k} such that f(u) = f(v) only if (u.
v) £ E. The chromatic number of G, denoted x(G)., is the minimal number of colors necessary to color G. An
optimal coloring of G is one which uses exactly x(G) colors.

3. Sequential Coloring Algorithms

One of the simplest coloring algorithms is the randomly ordered sequential (RND) graph coloring algorithm
[14]. Given a graph G = (V, E), the algorithm randomly orders the nodes so that V = {v;, . . . , v,.} and then
assigns colors to the nodes in the following manner. The first node, v, , is assigned color number 1. Once the
first i nodes have been colored (1 =i =n — 1), v;4, 1s assigned the lowest possible color number such that
no previously colored node adjacent to v, has been assigned the same color number.

Though this algorithm is locally optimal in the sense that each node is assigned the smallest possible
number, the overall action is highly dependent on the initial ordering of the nodes. For any graph, there exists
an ordering for which this algorithm will produce an optimal coloring [14], while a less fortuitous ordering
may lead to an extremely poor coloring. Thus the problem of finding an optimal initial ordering of the nodes
is equivalent to the problem of optimally coloring the graph.

This fact has led to the development of a large number of algorithms, each differing from RND only in the
method of initially ordering the nodes [7, 14]. Two such algorithms are the largest first (LF) and smallest last
(SL) sequential coloring algorithms.

The LF algorithm orders the nodes such that d(v;) = d(v;y,) for 1 =i <n where V = {v; .. . . . vn}- The
SL algorithm is similar in strategy but recursively orders the smallest degree nodes last. An SL ordering is one
in which d(v,) = min d(w)and for n — 1 =i = 1, dy(v;)) = min dy(w) where U=V —{v,, . . . , 0541}

weV wel

Note that both the LF and SL algorithms tend to order the high degree nodes before the low degree nodes.
Computational experience has shown that this is generally a good strategy, whereas algorithms which color the
higher degree nodes last have often been found to produce colorings worse than those produced by a random
ordering.

Each of the sequential coloring algorithms presented in this section requires O(n?) time and O(n?) space to
color a graph with n nodes. Quadratic time and space complexities are generally quite acceptable for use with
large-scale coloring problems. If only they gave guaranteed optimal colorings, we would look no further.

4. More Sophisticated Algorithms

One successful variation of the sequential coloring algorithms involves what is known as an interchange.
Given any G = (V, E) and color function f such that f(w)e{i, j} for all weV, and (i, j)-interchange on G is a
redefinition of f such that if f(w) = i originally, f(w) is now assigned; and vice versa for all weV.

Appropriate use of the interchange process has been found to yield particularly good results when used in
conjunction with the LF and SL algorithms [14]. The resulting procedures are referred to as the smallest last
with interchange (SLI) and largest first with interchange (LFI) coloring algorithms.

The SLI (LFI) algorithm operates just like the SL (LF) algorithm except when the latter requires the
introduction of a new color. Suppose that such a situation occurs when v,, is the node to be colored and that
k = max f(v;). For 1 =i < = k, define G;; to be the subgraph of G induced by the nodes of G previously

i<m
colored i orj. If possible, choose i and j such that no connected component of G;; contains two differently
colored nodes both adjacent to v,,. If such a G;;is found to exist, then perform an (i, j) — interchange on each

connected component of G;; which contains an i-colored node adjacent to v, in G. It is now possible to assign
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color i to v,, and thus the addition of a new color has been avoided. If no such G;; exists, however, then
regardless of what interchange is performed, v,, must be assigned color & + 1.

This version of the SLI (LFI) algorithm initially appeared in [11] and is an extension of the original version
which is described in [14]. The original version allows an (i, j) — interchange only when v, is adjacent to
exactly one node colored i and one node colored j. There is little difference between the original and extended
versions of the SLI and LFT algorithms in terms of colorings produced or time required. While the extended
versions may be able to perform a useful interchange impossible in the original version, they will likely take
slightly longer to do so. All four algorithms require O(n®) time and O(n?) space to color an n node graph.
Based on a limited amount of computational experience, the extended version of the SLI algorithm (henceforth
to be referred to simply as the SLI algorithm) was found to produce slightly better results than did the other
interchange procedures.

All of the algorithms thus far presented are capable of producing very bad colorings, in terms of number of
colors used, for certain graphs. Johnson [10, 11] has given constructions of 3-colorable graphs on O(n)
vertices which each of the above algorithms requires n colors to color completely. Since no more than O(n)
colors may be used to color an O(n) node graph, such colorings are, up to a constant, the worst possible.

) X(G) or fewer

og n

There is an algorithm, however, which will color any graph G with n nodes in ()(

colors. While this worst-case behavior is still unacceptable in practice, the approximately maximum
independent set (AMIS) algorithm is interesting because it is the only known algorithm which is known not to
exhibit the worst possible worst-case behavior [11]. The algorithm proceeds as follows. Given G = (V. E),
select the node with minimum degree in G, say v, and color it 1. Once i nodes have been assigned color 1,
select, if possible v ;,, €U such that d(v;;,) is minimal for nodes in U where U is the set of uncolored nodes
not adjacent to any colored node. If no such selection is possible, i.e., U is empty, then repeat the entire
procedure on the subgraph of G induced by the uncolored nodes of G, using the next available color. This
process is then, in turn, repeated until all the nodes of G have been colored.

Interestingly enough, while this algorithm exhibits better worst-case behavior than the other algorithms
thus far discussed, computational experience has shown that, on the average, the colorings it produces are
substantially inferior to those produced by the LF, SL, and SLI algorithms.

5. The Recursive Largest First (RLF) Algorithm

The RLF algorithm combines the strategy of the LF algorithm with the structure of the AMIS algorithm.
Like the LF algorithm, at each step in the RLF procedure a node is selected for coloring which will, in some
sense, leave the resulting uncolored nodes colorable in as few colors as possible. As with the AMIS algorithm,
the RLF procedure completes the assignment of color i before commencing assignment of colori + 1.

The RLF graph coloring algorithm proceeds as follows. Given G = (V. E), assign color 1 to the node with
maximal degree in G, say v;. Once ¢ nodes have been assigned color 1, select, if possible, v;,, €U, such that
dy,(vi44) is maximal for nodes in U; where Uy is the set of uncolored nodes not adjacent to any colored node
and U, is the set of uncolored nodes adjacent to at least one colored node. Ties are, if possible, broken by
choosing the node that has minimal degree in < U; >. If no such selection is possible, i.e., U; is empty,
then repeat the entire process recursively on the subgraph of G induced by the uncolored nodes of G, using
the next available color. This recursion is then repeated until all of the nodes in G are colored. Several
examples of this procedure are worked out in appendix A.

As was true with the SLI algorithm, the RLF algorithm, in general, requires O (n?)time and O(n?) space to
color an n node graph. Unlike the SLI algorithm, however, the RLF algorithm requires only O(n?) time to
color graphs for which k-e = n* where k is the number of colors used to color the graph, e is the number of
edges in the graph, and n is the number of nodes in the graph (see appendix B for proof). Such graphs, which
are usually sparse, quite commonly arise in practical applications such as exam scheduling. For example, the
graph associated with the 1977-8 Princeton University fall term course examinations schedule consisted of
273 nodes, 6727 edges, and required 17 colors to be colored by the RLF algorithm. Thus, for practical
purposes, the RLF algorithm, if programmed properly, exhibits an ((n?) time dependence for many
applications. Appendix B presents a PL-1 listing of the RLF algorithm as well as a rigorous analysis of its
time complexity.
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6. Generation of Test Graphs With Known Chromatic Number

A few papers have been published which compare the performance of various algorithms on large (usually
100-node) randomly generated graphs [14, 21, 23]. Unfortunately, none of these empirical studies provide
the chromatic numbers of the test graphs used. Indeed, the task of closely approximating the chromatic
number of a graph is NP-complete [8] and thus virtually impossible to accomplish for large graphs.
Consequently, approximations of upper and lower bound results established for x(G) have generally been
crude and of little practical use [1, 7, 14, 19].

The lack of such information makes an accurate interpretation of the experimental data very difficult. For
instance, if algorithm A required 22 colors to color G while algorithm B required only 20, the conclusions
drawn about their relative effectiveness if x(G) = 20 might be quite different from those drawn if x(G) = 4.
Further, without knowledge of x(G), no statement can be made at all about the accuracy or closeness to
optimality of either algorithm A or B. Thus there is a need for a standard procedure for generating random test
graphs with known chromatic numbers. Such a procedure will now be presented.

Suppose it is desired to construct an n-node graph G with e edges and chromatic number k. For the
purposes of the following argument, assume that k|n. This is not a significant restriction since most test or
modeling uses of a large graph generator are likely to allow some flexibility in the choices of n and k. For such
a graph to exist under these restrictions, e must be such that

k(k— 1) n*(k — 1)
— Y Se=—""".
2 2k

The first step in the procedure is to choose positive integers a, ¢ and m such that:

1. m >>n,
2. (n,m) =k,
3. ((', m) =1,
4. p|m— p|(a — 1) for all primesp, and
5. 4|m—> 4|(u— 1).
Next generate a uniform sequence of random numbers {X;} on the interval 0 to m — 1 by the linear

congruential method described in [12]. This is accomplished by fixing X, and, then for each i > 0, setting X;
X
= MOD(aX;—; + ¢, m) where MOD(X, Y) = X — [;jl * Y. Sequences generated in such a manner exhibit

two important properties [12]. First, for every ¢ and j such that 0 = j = m — 1 and i = 0, there exists an r
suchthat i =r =i+ m — 1and X, = . Second, for every i = 0, X; = X, -

Next construct the sequence {Y;} on the interval 0 to n — 1 so that ¥; = MOD(X;, n). Note that unless &
= n, n| mand {Y}} is not a uniform random number sequence on the interval O to n — 1.

By defining V = {0, 1, . . . , n — 1}, it is possible to associate two consecutive values of { Y¥;} with edges
to be added to E. Similarly, it is possible to associate h consecutive values of {Y;} with h-cliques to
be implanted in G. For example, the subsequence {Y,. Y,. Yj} corresponds to the subset
{(vy, . vy,). (vy, . vy,). (vy,. vy,)}. By identifying certain subsequences of consecutive elements of {v;} and
adding the corresponding edges to E, it is possible to construct the desired graph G.

More precisely, define the (kK — 1)-vectorb = (b, bs_;. . . ., by)sothatb, =1andb; =0for2 =i <
k — 1. Each b; corresponds to the number of i-cliques to be implanted in G. Specifically, given the sequence
{v.} and vector b, proceed as follows. Select the first k& values of {V;} starting with Y; and add the
corresponding edges to E. If b, > 1, select the next k values of {Y;} and add the corresponding edges to E.
Repeat this process until b k-cliques have been implanted in G. Next add, in an identical fashion, b,_,
(k — 1)-cliques to G. Continue the process until b, 2-cliques or edges have been added to E. Note that some
edges may be “added” several times and thus it may not be possible to precalculate a vector b such that there
are exactly e edges in the resulting graph. It is possible, however, to keep track of how many edges have been
added at any point and to eliminate the addition of i-cliques which might result in the addition of too many
edges to E. Since edges may be added one at a time, it is not difficult to show that graphs having exactly e
edges may be constructed in this manner for any e such that
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k(k— 1) n*(k — 1)
S s
2 2k
It now remains to be shown that x(G) = k for any G constructed in this manner. Since b, = 1, G contains

a k-clique and thus x(G) = k. Before establishing that x(G) = £, it is useful to examine the structure of the
sequence { Y/} where Y/ = MOD(Y;, k). Since k|nand k|m,

Yisr = MOD(Yy,, k)
= MODMOD (X, , . n). k)
= MOD(X,,,. k)
= MODMOD (aX; + ¢, m), k)
= MOD(aX; + ¢, k)
= MODMOD (aX; + ¢, n), k)
=MOD(aY; + ¢, k)

Yl,, = MOD(aY, + c. k).

Further,

plk— plm— pl(a — 1),
4lk—4|m—4|(a — 1), and

(c, m) =1— (c, k) = 1.

Thus { Y;'} is a uniform sequence of random numbers on the interval 0 to k — 1.

This structure of the {¥;} modulo & allows the following coloring of G. For each i, define f(vy,) = MOD(i,
k). Since for all j such that 0 = j < n, there exists an i = 0 such that Y; = j, it is clear that every node is
assigned a color by this procedure. Since {Y;} is a uniform sequence of random numbers on the interval from
0tok — 1, we know that if ¥; = ¥;, then ¥/ = Y/ and MOD(i, k) = MOD(;. k) and thus that ‘/V(I'y'_) =

S(vy,). This means that f is well defined. Finally, it is easily verified that vy .oy ... . are all

2 1?Yi+ h—1
colored differently if h =< k. for all i = 0. This means that edges occur only between differently ('olo;ed nodes,
and that ' is a proper coloring of G. Thus x(G) = k.

It should be noted that the above result is a special case of a more general result for arbitrary £ and n. That
is, if k and n are such that k = d where d = (n, m), then k = x(G) = k + MOD(d, k) < 2k. The proof of the
general result is not given here but is similar to that of the special case when MOD (d, k) = 0.

As will be demonstrated shortly, the range of graphs which can be generated by this procedure is quite

large. The node degrees of such graphs may vary between 0 and n — g while the average node degree may

k(k — 1 th=1
vary between ( ) and . The variety of distributions of node degrees is also quite large. Most
n

importantly, however, the procedure generates graphs which are as difficult to color as are randomly generated
graphs (where the chromatic number is not known). Demonstration of this fact is provided in section 7.
Another advantage of this procedure is that the test graphs may be easily characterized. For example, only
k + 5 values are required to generate an n-node graph with chromatic number k. These values are n, k, Xj .
a, comy by, by, . ... by and by. Whereas it would be infeasible to completely describe a large, randomly
generated graph by conventional means in a short paper, graphs generated by this procedure are easily
described. Thus, in future publications concerning the effectiveness of various graph coloring algorithms, it
will be possible to specify precisely which graphs were used to test the various algorithms. There are several
conceivable situations where such documentation could be valuable to the interested reader. For example,
should the reader desire to compare the effectiveness of a new graph coloring algorithm to those in the
literature, he would need only to regenerate the graphs used in published tests and color them with the new
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algorithm. This would eliminate the necessity of developing an entirely new set of test data and of having to
rerun all previous algorithms on such data. Pursuant to these goals, a complete characterization of the test
graphs referred to in tables 1 and 2 is provided in appendix C.

7. Test Results

The procedure described above was used to generate 27 150-node graphs and 12 450-node graphs of
varying edge density and chromatic number. In addition, 27 completely random 150-node graphs were
generated with varying edge density and unknown chromatic number. The RND, LF, SL, RLF and SLI
algorithms were tested on each of the 66 graphs. The resulting data are displayed in tables 1, 2, and 3,
respectively.

In each table, the graphs are subdivided into groups according to chromatic number, ¥, (or as in the case
with the completely random graphs, to a known lower bound for x) and average node degree, d. There are

TABLE 1. Results for 150-node test graphs generated according to the procedure detailed in section 6.
number of colors used average number of excess colors used
X d
RND LF SL RLF SLI RND LF SL. RLF | SLI
5 11 9,9, 9) (7,8,7) (7,7, 8) (6, 6, 6) 6,6,6)| 4 21z | 2Ys | 1 1
19 | (11, 11, 12) (10, 10, 9) (9, 10, 9) (7,7, 8 (9,5,8) 63 433 41/3 2Y/3 | 213
24 | (13,12,13) | (10,11, 11) (10, 9, 10) (7,6, 7) 8,7,6)| 73 5%/3 4%/ 1%/3 | 2
Ave. total 6 429 379 159 | 179
10 11 (INIPRIII2) (10, 10, 10) | (10, 10, 10) (10, 10, 10) (10, 10, 10)| 1Y/s 0 0 0 0
2] (15, 14, 16) (12, 12, 12) (12912391 2) (11, 11, 11) (11,11, 11)| 5 2 2 1 1
29 | (17,16, 18) | (14, 14, 14) | (14,15, 15) | (13,13,12) | (13,13, 12)| 7_ 4 42/ 2%/3 | 2%/3
Ave. total 449 2 22/ 1%/9 | 1%/9
15 12 | (15,16, 15) | (15,15,15) | (15,15,15) | (15,15,15) | (15,15, 15) 13 0 0 0 0
25 | (19,18,18) | (17,16, 16) | (16,16, 15 | (15, 15,15) | (15, 15, 15)| 33 1Y/3 2/3 0 0
34 (19, 21, 20) (17, 17, 18) (17,19, 17) (16, 16, 16) (16, 16, 16)| 5 213 2%/3 1 1
Ave. total 28/9 1%/9 19 s s
Overall 412/97| 2'3/97| 21%27 | 1%/27 | 1%/27
average
total
Total 10.2 1353 13.5 15.3 49.2
time
(seconds)
TABLE 2.  Results for 450-node test graphs generated according to the procedure detailed in section 6.
number of colors used average number of excess colors used
X d
RND LFE SL RLF SLI RND LF SL RLF SLI
5 25 (14, 13) (11, 12) (11, 12) (8, 8) (10, 9) 81/2 6Y/2 6%/2 3 41/2
43 (17, 18) (12, 14) (11, 15) (5%5) (5%5 12Y/2 8 8 0 0
Ave. total 10/2 T4 7Ya 1Y/2 21/4
Ii5 36 (22, 22) (18, 18) (18, 18) (17, 16) (16, 16) 7 3 & 1Y2 1
74 (30, 31) (26, 26) (26, 26) (23, 23) (23, 24) 15Y/2 11 11 8 81/2
Ave. total 11Y/4 7 7 43/4 43/4
25 37 (29, 27) (26, 25) (25, 25) (25, 25) (25, 25) 3 763 0 0 0
77 (37, 35) (29, 30) (31, 31) (28, 28) (28, 29) 11 41/2 6 3 31/2
Ave. total 7 21/2 3 1Y2 1%/4
Overall 97/12 5712 5%2 | 2712 | 2112
average
total
Total 32.0 42.8 44.9 80.7 308.8
time
(seconds)
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TABLE 3. Results for random 150-node test graphs.

Lower
Bound d RND LF SI¥ RLF SLI
on x
5 10 9,9, 8) 7,7,7 (7,7,7 (6, 6, 6) (6, 6, 6)
18 (11, 11, 11) (10, 10, 10) (10, 10, 9) (8, 8, 8) 9, 8, 8)
24 (13, 13, 12) (10, 12, 11) (11, 11, 11) 9,9, 9) (10, 10, 10)
10 10 (16, 15, 16) (15, 15, 15) (ISN153915) (15, 15, 15) (15, 15, 15)
18 (16, 17, 16) (115, 15y, 15)) (15, 15, 15) (1153 1163, 115 (A5FLSMS)
24 (17, 18, 17) (15, 16, 16) (15, 15, 15) (15,15, 15) (5, 2153, 1155)
115 8 (24, 22, 21) (24, 22, 21) (24, 22, 21) (24, 22, 21) (24, 22, 21)
16 (23, 23, 24) (23, 23, 24) (23, 23, 24) (23, 23, 24) (23, 23, 24)
24 (24, 24, 24) (24, 24, 24) (24, 24, 24) (24, 24, 24) (24, 24, 24)
Total time 9.8 12.9 12.9 19.0 384.3
(seconds)

three graphs in each 150-node group and two graphs in each 450-node group. The numbers in parentheses
indicate the number of colors used by an algorithm to color the first, second, and possibly, third graph of that
category. For the graphs where y was known, the average number of excess colors used by the algorithm was
computed for each group and totaled. For example, the RLF algorithm optimally colored each of the 10-
colorable 150-node graphs with average degree 11 in table 1 but required, on the average, 43/4 extra colors to
color each of the four 15-colorable 450-node graphs in table 2.

The total run time for each algorithm is also included in each table. This figure represents execution time
in seconds on an IBM 360-91. It should be noted that such figures are highly dependent on factors unrelated
to the inherent efficiency of the algorithm, such as programmer skill and machine characteristics. The time
complexity estimates provided earlier are much more rigorous measures of the algorithms’ relative speeds.
Except for the SLI time in table 3, the run times are in accordance with these theoretical estimates. It is quite
possible that the graphs referenced in table 3 have chromatic numbers much higher than the minimum
estimate, and that the SLI algorithm was thus induced to attempt and possibly perform a large number of
time-consuming interchanges. This example points out the highly variable amounts of time required by most
interchange algorithms to color various graphs (a phenomenon also observable in the data of [14]).

The random graphs of table 3 were included only for the purpose of demonstrating that the graphs generated
by the technique discussed in section 6 are just as suitable for testing the relative capabilities of graph
coloring algorithms as are completely randomly generated graphs. As was pointed out earlier, the data in
table 3 cannot be used to draw conclusions about the accuracy of the tested algorithms. From the data in
tables 1 and 2, however, we observe that, for the graphs considered, the LF and SL algorithms required about
twice as many extra colors to color the graphs as did the RLF and SLI algorithms. Similarly, the RND
algorithm required about twice as many extra colors as did the LF and SL algorithms. Significantly, this
observation can be made for most of the graphs on an individual basis. The RND algorithm always used more
colors than the LF and SL algorithms which, in turn, always used more colors than the RLF or SLI algorithms.

There is not as clear a distinction between the performance of the LF and SL algorithms or the RLF and SLI
algorithms. The LF and SL algorithms required virtually the same number of colors on the average and
required nearly the same amount of time. While the colorings produced by both the RLF and SLI algorithms
for test graphs were, on the average, quite good, the RLF algorithm required substantially less time and used
approximately 12 percent fewer excess colors on the 450-node graphs and 3 percent fewer excess colors on
the 150-node graphs than did the SLI algorithm. Of the eight 450-node graphs which were not optimally
colored by both the RLF and SLI algorithms, the RLF algorithm required the fewest colors for four of the
graphs and the most for only one graph.

. . d . .
As a final note, the edge density, e of the test graphs did not exceed /4. This results from the fact that for

most large-scale practical applications, the edge density of the graphs to be colored is generally small. For
instance, the Princeton University exam scheduling graph mentioned in Section 5 had an edge density of
approximately /6.
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8. Conclusions

From the data presented it is apparent that the RLF algorithm, when not optimal, colored large graphs with
substantially fewer colors than did any of the other algorithms that did not involve interchanges. When
compared with interchange algorithms, the RLF algorithm was found to produce slightly better colorings in
substantially less time. While the RLF and interchange algorithms in general each require O(n?) time to
color an n-node graph, the RLF procedure is unique in that it exhibits O(n2) time behavior for graphs with
low edge density. Thus the RLF algorithm is particularly well suited for use with large-scale practical
problems.

The method described in section 6, for generating random graphs with a known chromatic number, was
found to produce test data which can be used to determine heuristically a given algorithm’s accuracy as well
as algorithms’ relative capabilities. Previously, published comparison tests have been made only on graphs
with unknown chromatic numbers, which rendered impossible any evaluation of an individual algorithm’s
accuracy and questionable any statement about two algorithms’ relative capabilities. In addition, the
procedure provides a standard method of generating test data for coloring algorithms; by its use a large graph
with known chromatic number may be uniquely constructed from only a few parameters.

In addition to Professor Acton, the author would like to thank Dr. Charles Johnson, Dr. James Lawrence,
and Dr. Alan Goldman for their helpful remarks.
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10. Appendix A: Application to Examination Scheduling

The examination scheduling problem is probably the best known of a large class of scheduling problems in
applied mathematics and operations research. It consists of scheduling exams such that no individual is
required to participate in two or more exams simultaneously. It is usually assumed desirable to schedule the
exams such that the total number of time periods required for the examinations is minimized. Sometimes,
additional restraints are imposed. Requiring that some examinations be given or not given in specified time
periods and scheduling the exams so that a certain subset of the exams will be completed as early as is
possible are examples of such restraints.

Consider the following exam scheduling problem.

Exam  Participants Exam  Participants
1 A] N /’12. A;;. AG 7 1444 ‘46
2 By. By, B; 8 B3, Bg. B;
3 B, . By, 9 B;. B;. Bg
4 Ay, Ag, By 10 A, By, By
5 B, B3 11 B;, B;
6 Ay, Az, B, 12 Aj, As

FiGure 1

Exams that may not

Time Period be scheduled
1 4,11, 12
3 3,7
5 1, 10
FIGURE 2

In addition to the information contained in figures 1 and 2, assume that we also know that exam 2 must be
scheduled in time period 1 and that the final schedule must be such that the last exam involving a participant
of type A is scheduled as early as possible.

We will now proceed to solve the above scheduling problem utilizing the RLF graph coloring algorithm.

Since exam 2 must be scheduled in time period 1, we will do so and amend figure 2 so that exams
incompatible (i.e., may not be scheduled concurrently) with exam 2 will not be scheduled in time period 1.

This information is included in figure 3.

Exams that may not

‘Time Per‘ii)i be scheduled
1 3,4,5,6, 8,10, 11, 12
3 3,7
5 1, 10
Ficure 3

The restriction placed on exams involving type A participants may be satisfied, as far as is possible by
heuristic means, by scheduling the exams involving type A individuals first and then, using this information,
scheduling the remaining exams. The graph in figure 4 contains the information necessary for the first step.

Node F£;represents exam i and node 7' represents time period j for all i, j. There is an edge between every
pair of time period nodes to insure that no two time periods are assigned the same color. An edge is inserted
between node E; and node Ej;if and only if exams ¢ and j may not be scheduled simultaneously. Finally, an
edge is inserted between node E;and node Tj;if and only if exam i may not be given during time period j.
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T] \
T2 Eg
Ts
Ty N E;
37’

g N

Eqp

Ficure 4

not adjacent to any colored node, nodes in U/, | will not be labeled.
The coloring then Proceeds as follows. Node T is colored 1 and nodes Ty, Ty, I T Ey, K, E\y. and
E}5 are circled. This is illustrated in figure 5,

colored node, Us,. by encircling such nodes. Colors, as usual, will be denoted by a number. Uncolored nodes

Eq Eq

%
Q%

Only nodes E, and E7 remain in U;. Node E., is adjacent to five nodes in U, while node £, is adjacent to
only two nodes in Us. Thus node Ey is colored 1 and node £, circled. This leaves every node either colored or
circled (U, is empty) and thus we must delete the colored nodes (7y and Ey) from the graph and repeat the
Procedure on the resulting graph starting with color 2. Once T, has been assigned color 2 an the appropriate
nodes circled, we have the graph in figure 6,
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E E1o

FIGURE 6

Both nodes E; and £, are adjacent to one node in U, while all other nodes in U, are not adjacent to any
node in U,. Since E7 is connected to only one node in Uy while dy; (E,y) = 2. E7 is colored 2 and E4 is

Eq
Eg
/ 2
></ -
E12 E1o

circled. This leaves the graph in figure 7.

7

FiGURE 7

Completing the assignment of color 2, E is assigned color 2, node E; is circled and, finally, £ is colored
2. Since U, is now empty, we delete the colored nodes and repeat the process on the graph in figure 8 using
color 3.

FiGURE 8
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This graph is trivially colored by assigning color 3 to nodes T3, E and Eg; color 4 to T4; and color Sto T's.

The schedule may now be constructed by assigning to each time period those exams which were assigned
the color of that time period. Should the number of colors used exceed the number of time period nodes used,
the additional colors may be arbitrarily associated with additional time periods (assuming they exist). In this
example, however, the number of time period nodes, 5, exceeded the number of colors used, 3, and no such
additional assignment of time periods was necessary. The resulting schedule is displayed in figure 9.

Time Period _Exams_
1 1
2 7, 10, 12
3 4,6
4
5
Ficure 9

This completes the scheduling of exams involving type A individuals. We must now schedule the remaining
exams taking into account the partial schedule in figure 9 and the information displayed in figure 3. This

information is summarized in figure 10.

Exams that may not

Iirrpg Period o be schedliled

1 3,5,8,11

2 3,5

3 8, &
FiGure 10

Combining this information with that in figure 1, the graph in figure 11 is readily constructed.

Ej Eg
T3

Ficure 11
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All that remains is to color the graph displayed in Figure 11. This is easily done using the RLF algorithm.

The final coloring is displayed in figure 12.

4E3 2 Eg

T3

11

4 Es E11

FIGURE 12

Note that, depending on the order in which the nodes were considered, E; could have been assigned color
2 and Eg color 3 since the two nodes are identical as far as the RLF algorithm is concerned. This illustrates
the fact that the final colorings assigned to a graph may, to a small extent, depend on the initial ordering of
the nodes (i.e., on the manner in which nodes with identical characteristics are distinguished). Finally, since
4 colors were necessary to color the graph, those exams colored 4 will be scheduled in the first available,
unused time period, the fourth time period.

This results in the partial schedule in figure 13.

Time Period_ Exam_
1 9
2 8
3 11
4 3,5
Ficure 13

The completed exam schedule for all exams is displayed in figure 14. In this particular case, the schedule

produced is optimal.

Iilnt‘ Period Exam
1 1,2,9
2 7, 8,10, 12
3 4, 6, 11
4 ) &)
FIGURE 14

501



11. Appendix B: Computer Implementation of the RLF Algorithm

As was demonstrated in Appendix A, the RLF algorithm can be used to color small graphs easily by hand.
For large graphs, however, such a task can only be accomplished reliably by computer. In order to program
the RLF algorithm efficiently, the values of dj; and dy, must be stored for each node and updated whenever
U, or U, is modified. This is accomplished by defining two arrays, £ and F' :

<0 if wis colored
E(w) 1s {<0 if wel,

= dy,(w) if wel,
<0 if wis colored
and F(w) is = dL’,uL'z("') if wel,

= d(}l uU, ( ll') if w €U1

Initially U, consists of every node in G and thus E(w) = F(w) = d(w) for all weV.If node w " is selected

for coloring, then we must modify £ and F so that:

E(w') < —1,

E(w) < —1 for wadjacentto w',

E(w) <« E(w) — (the number of nodes in U, adjacent to both w and ')
for weU, and nonadjacent to w',

F(w') «<—1, and

F(w) < F(w)—1 for wadjacentto w'.

The next node to be colored will, of the nodes in U, , then have the maximum value of F(w) — E(w) and,
if a tie exists, the minimum value of E(w) among those nodes that tied. When U, is empty (this corresponds
to E(w) < 0for all weV), the values of E are modified so that E(w) < F(w) for all weV. This corresponds
to a reinitialization of the values of £ for the subgraph of G induced by the uncolored nodes.

The above operations on E and F can be easily performed by appropriate use of the following subroutine,
procedure DELETE. Given an array D and node w ', DELETE performs the following operations on D :

D(w') <« —1

D(w) < D(w) — 1 for wadjacentto w'.

Thus whenever node w ' is selected for coloring we may modify £ and F' by simply performing DELETE on
(F,w')and (E, w')as well as on (E., w) for all w in U; adjacent tow . It is not difficult to verify that such a
procedure maintains the desired values of £ and F.

A complete PL-1 computer program listing of the RLF procedure is included at the end of this appendix.
The program is written in subroutine form and assumes that values for CI and CL are provided on input. Array
CI serves as an index array to CL, the node adjacency list. For example, the nodes adjacent to the i th node
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are sequentially stored in CL(CI(i — 1) + 1), CL(CI(i — 1) + 2), . . ., CL(CI(i)). The data are stored in
this compact form to minimize the amount of storage required, a very important consideration when working
with large graphs.

Each node w in the graph is processed by procedure DELETE, i.e. deleted, f(w) times where f(w) is the
color number assigned to w. This claim is easily established by observing that for each new color ¢ introduced,
i = f(w). wis either colored i or adjacent to a node colored i. In either case w is deleted exactly once. Once

w is colored, then it may never subsequently be deleted. Thus exactly

k k k
E ing = E kn; = k - E n; = nk
i=1 k=1

i=1

deletions are performed on G, where k is the number of colors used to color G, n; is the number of nodes
colored i and n is the number of nodes in G. Since each deletion requires O(d) time where d is the average
degree of a node, all the deletions may be accomplished in O(kdn) time. It is easily checked that all other
operations may be accomplished in O(n?) time. Thus the algorithm requires O(n?) time and O(n?) space to
color an arbitrary n node graph. However, for those graphs where kd = O(n) or, equivalently, ke = O(n?),
the RLF algorithm consumes only O(n?) time and O(n?) space in coloring the graph. As was pointed out in
the text, many large-scale practical problems involve graphs for which this property holds and thus may be

colored with the RLF algorithm in O(n?) time.
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VA
VA
Ve
VA
VA
VA
73
VA
VA
VA
Ve
VA
/#
VA
Ve
VA
/*®
VA
VA
VA
VA
VA

VA
/%
VA

VA
/%
VA

/%
/%
VA
/%

VA
Ve
VA

/%
/¥
/¥

/3
/*

THI

ON

ON

DECLARE (N,CI(*),COL,C(*),E(*),F(*),Jd,L,I1,K) BINARY FIXED (31),

PROCEDURE (N,CI,CL,COL,C,E,F)3

S SUBROUTINE COLORS THE N NODE GRAPH DEFINED BY CI AND CL
USING THE RLF ALGORITHM.

INPUT

N IS THE NUMBER OF NODES IN THE GRAPH.

Cl IS THE INDEX VECTOR FOR CL.

CL 1S THE NODE ADJACENCY LIST FOR THE INPUT GRAPH. FOR
EXAMPLE, CL(CICI-1)>+1), CL(CICI-1)>+2), +.., CLCCICID)
CONTAIN, IN SEQUENCE, THE CIC(I)-CI(I-1) NODES ADJACENT
TO NODE I.

¢3L, C, © aND F ARE MEANINGLESS.
RETURN S

N, CI AND CL ARE UNCHANGED.
COL IS THE NUMBER OF COLORS USED TO COLOR THE GRAPH.

C 1S THE COLOE FUNCTION ASSIGNELD TO THE GRAPH. FOR EXAMPLE,

CCI) IS THE COLOR ASSIGNED TO NODE I.
E AND F ARE MEANINGLESS.

CL(*) BINARY FIXED (135);

INITIALIZE THE COLOR FUNCTION TO ZERQ.
C=0;
COL=0;
J=03
L=13
INITIALIZE THE F VECTOR TO THE NODE DEGREES.
DO I=1 TO N3
FCI)=CICI)=CI(I=-1)3;
END;3
1F THERE ARE ANY UNCOLORED NODES, INITIATE THE ASSIGNMENT OF
THE NEXT COLOR.
DO WHILE (J<N);
COL=COL+1;
REINITIALIZE THE E VECTOR.
DO I=1 TO N3
ECI)=F(I);
END;
SELECT THE NODE IN Ul WITH MAXIMAL DEGREE IN Ul.
DO I=! TO N;
IF FCI)>F(L) THEN L=1;
END;
COLOR THE NODE JUST SELECTED AND CONTINUE T3 COLOR NJODES WITH
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/¥
/i

COL UNTIL Ul IS EMPTY.
U3 WHILE (ECL)Y>=0);
COLOR NODE AND MODIFY Ul AND U2 ACCORDINGLY.

CALL DELETE (Z,L);

CALL DELETZ (F,L);

C(L)Y=COL;s

Jd=d+1;

IF CIC(L)>CIC(L-1) THEN DO I=CIC(L-1)+1 TO CIC(L)>;
IF E(CL(I))>=0 THEN CALL DELETE (E,CLCI));

END;

FIND THE FI®ST NODE IN Ul, IF ANY.

IF Ul IS NOT EMPTY, SELECT THE NEXT NODE FOR COLORING.

IF K>0 THEN DOJ;
L=Xj;
DO I=K TO N3
IF ECI)>=0 THEN DG;
IF FCI)-ECI)>F(L)-E(L) THEN L=1I;
ELSE IF F(I)=-E(CIJ)=F(L)-EC(L) & ECI){E(L) THEN
END;
END;
END;
ENDj
END;

END RLF 3

VA
Va
/%

DELETE: PROCEDURE (H,M);

/%
VE:
J*
Ve
/%
/3
VA
VA
&%
VE:
/%
Vs
Va:
Va

THIS SUERJUTINE DECREMENTS THE VALUE OF H FOR M AND NODES
ADJACENT TO M.

ON INPUT:

d IS5 EITHER THE E OR F VECTOR FOR THE GRAPH.
M IS THE NODE TO BE DELETED.

ON RETURN:

H IS APPROPRIATELY UPDATED.
M IS UNCHANGED.

DECLARE (H(#®*),M,P) EBINARY FIXED (31);

H(M)=-1;

IF CI(M)>CICi'=-1) THEN DJ »=0I1( =1>+1 T3 CIl(M);
HC(CL(P)I)=H(CL(P))-13
END3;

ENDESDE RS

o

Ty
ity
%/

L=1;



12. Appendix C: Characterization of Test Graphs

The data provided in tables 4 and 5 of this appendix provide the necessary information to regenerate each
of the test graphs used in the preparation of the data included in tables 1 and 2, respectively. Each graph is
referenced by its chromatic number, average node degree, and order in which the colorings (or values of X)
are given. For example, the parameters for the third 150-node graph with chromatic number 5 and average
node degree 11 (i.e., the graph that SL 8-colored) are: n = 150. k = 5, a = 8401, ¢ = 6859, m = 84035,
by = 19, by = 60, by = 97. by, = 210. and X, = 22093. Using these parameters, it is possible to regenerate
the graph by using the procedure described in section 6.

TABLE 4.  Generation Parameters for the Test Graph Used in Table I.

X d n k a ¢ m b 3 values of X,
5 11 150 5, 8401 6859 | 84035 (19, 60, 97, 210) 0,33289,22093
19 150 5 8401 6859 | 84035 (39, 120, 195, 420) 21047,55697,74912
24 150 &) 8401 6859 | 84035 (58, 180, 292, 630) 78692,83491,52870
10 11 150 10 8401 6859 168070 | (10, 0, 0, 12, 0, 0, 25, 0, 2, 4) 8879,64827,78005
21 150 10 8401 6859 168070 | (21, 0, 0, 24, 0, 0, 51, 0, 48) 5293,59845,102567
29 150 10 8401 6859 168070 | (31, 0, 0, 36, 0, 0, 76, 0, 72) 107489,118239,101759
15 12 150 15 8401 6859 | 252105 | (4,0,0,0,0,7,0,0,0,0, 12, 0, 0, 148) 80589,60363,94632
2)5) 150 15 8401 6859 | 252105 | (9,0, 0,0, 0, 15,0, 0, 0, 0, 24, 0, 0, 297) 220881,67107,198723
34 150 15 8401 6859 | 252105 | (13, 0,0, 0, 0, 22, 0, 0, 0, 0, 36, 0, 0, 445) 66684,189309,9534

TABLE 5.  Generation Parameters for the Test Graphs Used in Table 2.

X | davg. n k a @ m b 2 values of X,
5 25! 450 S 8401 6859 84035 (175, 540, 877, 1890) 0,41794
43 450 5 | 8401 6859 | 84035 (409, 1260, 2047, 4410) 35428,47927
15 36 450 15 8401 6859 252105 (40, 0, 0, 0,0, 67, 0,0, 0,0, 108, 0, 0, 1336) |36276,213549
74 450 15 8401 6859 252105 (94, 0, 0, 0, 0, 157. 0, 0, 0, 0, 252, 0, 0, 3118) |161712,160056
25 37 450 25 8401 6859 420175 (13, o, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 192625,358531
0, 0, 0, 40, 0, 0, 0, 0, 1336)
77 450 | 25 | 8401 6859 | 420175 | (31,0,0,0,0,0,0,0,0,63,0,0,0,0,0, 247337,274955
0,0, 0,94, 0,0,0,0, 3118)
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