Spectral Measures and Separation of Variables*

David W. Fox**

November 18, 1975

This article gives an expression for the spectral measure corresponding to a self-adjoint operator for which separation of variables is possible. The construction makes use of the amalgamation theorem for normal operators in a natural way to obtain the required measure as a tensor convolution of the spectral measures of the part operators.

Key words: Convolution; Hilbert space; separation of variables; spectral measure; tensor products.

Let A be a self-adjoint operator in a complex Hilbert space $\mathcal{H}((\cdot,\cdot))$. A separation of variables consists of a description of \mathcal{H} as a Hilbert space tensor product

$$\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$$

of two spaces $\mathcal{H}_1, ((\cdot, \cdot)_1)$ and $\mathcal{H}_2, ((\cdot, \cdot)_2)$ together with a decomposition of A. The requirements of the decomposition are (1) that there exist self-adjoint operators A_1 in \mathcal{H}_1 and A_2 in \mathcal{H}_2 such that on the elementary products $u_1 \otimes u_2$, u_1 in a core \mathcal{D}_1 of A_1 and u_2 in a core \mathcal{D}_2 of A_2, A has the expression

$$A(u_1 \otimes u_2) = A_1 u_1 \otimes u_2 + u_1 \otimes A_2 u_2;$$

and (2) that the linear hull \mathcal{D} of such products be a core of A. The operator A is said to be separated with A_1 and A_2 part operators, and the decomposition is written

$$A = A_1 \otimes I_2 + I_1 \otimes A_2.$$

Denote by E_1, E'_1 and E_2 the spectral measures corresponding to A, A_1 and A_2, respectively. The goal is to give meaning to and to justify the relation

$$E = E_1 \otimes E_2.$$

The first steps are to use the amalgamation theorem to define a tensor product spectral measure $E_1 \otimes E_2$ analogous to the product measure for complex measures. Then the tensor convolution $E_1 \otimes E_2$ has a natural definition. Finally, $E_1 \otimes E_2$ is identified with E.

Denote by \mathcal{B} the family of Borel sets of the reals R, and by \mathcal{B}^2 the Borel sets of $R \times R$. A spectral measure defined over \mathcal{B} is said to be real. Here all spectral measures are normalized. The generality needed here is given by the following version of the

AMALGAMATION THEOREM: If \hat{E}_1 and \hat{E}_2 are commuting real spectral measures in a Hilbert space \mathcal{H}, then there exists one and only one spectral measure \hat{E} in \mathcal{H} over \mathcal{B}^2 such that

$$\hat{E}(B \times B') = \hat{E}_1(B) \hat{E}_2(B'), \quad \text{for all } B, B' \in \mathcal{B}.$$

That \hat{E}_1 and \hat{E}_2 commute means

$$\hat{E}_1(B) \hat{E}_2(B') = \hat{E}_2(B') \hat{E}_1(B)$$

for all $B, B' \in \mathcal{B}$.

*An invited paper. This work has been supported in part by the Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force under Contract AR-8-0001 and in part by the Department of the Navy under Contract N00017-72-C-4401.

**Present address: Applied Physics Laboratory, Johns Hopkins Road, Laurel, Maryland 20810.
The problem at hand is to use the amalgamation theorem to construct the spectral measure E for a separating self-adjoint operator A. The first step is

Lemma 1: If E_1 and E_2 are real spectral measures in \mathcal{S}_1 and \mathcal{S}_2, respectively, then $E_1 \otimes I_2$ and $I_1 \otimes E_2$ are commuting real spectral measures in $\mathcal{S}_1 \otimes \mathcal{S}_2$.

Proof: Clearly $E_1 \otimes I_2$ defined by

$$(E_1 \otimes I_2)(B) = E_1(B) \otimes I_2, \quad \text{for all } B \in \mathcal{B},$$

is an $\mathcal{S}_1 \otimes \mathcal{S}_2$-projection-valued function defined on \mathcal{B}, and

$$(E_1 \otimes I_2)(B) = I_1 \otimes I_2 = I.$$

The countable additivity follows from that of E_1 and the fact that strong convergence of factor operators implies strong convergence of their tensor product. Thus $E_1 \otimes I_2$ is a real spectral measure; and by a parallel argument, so is $I_1 \otimes E_2$. Finally

$$[(E_1 \otimes I_2)(B)] [I_1 \otimes E_2](B') = E_1(B) \otimes E_2(B') = E_1(B) \otimes E_2(B') = E_1(B) [I_1 \otimes E_2](B'),$$

for all $B, B' \in \mathcal{B}$, by elementary computations.

The next step is to establish a product spectral measure analogous to a product measure derived from ordinary measures. As usual, the product is defined on rectangles and then extended. This matter is taken care of by

Lemma 2: The $\mathcal{S}_1 \otimes \mathcal{S}_2$-projection-valued set function $E_1 \otimes E_2$ defined on rectangles $B \times B' \in \mathcal{B}^2$ by

$$(E_1 \otimes E_2)(B \times B') = E_1(B) \otimes E_2(B')$$

has an unique extension as a spectral measure in $\mathcal{S}_1 \otimes \mathcal{S}_2$ over \mathcal{B}^2.

Proof: This is a direct application of the amalgamation theorem in which

$$\hat{E}_1 = E_1 \otimes I_2, \quad \hat{E}_2 = I_1 \otimes E_2,$$

and

$$\hat{E} = E_1 \otimes E_2.$$

The relation

$$\hat{E}(B \times B') = \hat{E}_1(B) \hat{E}_2(B')$$

can be read off from the last lines of the proof of Lemma 1.

It is quite natural to call $E_1 \otimes E_2$ the tensor product spectral measure of E_1 with E_2.

The third step is to define the tensor convolution of E_1 with E_2 as for convolutions of complex measures. In preparation we need

Lemma 3: Let E be a spectral measure on \mathcal{R}^2 and for each $B \in \mathcal{B}$ let

$$B^2(B) = \{(x, y) \in \mathcal{R}^2 | x+y \in B\},$$

then E_\ast defined on \mathcal{B} by

$$E_\ast(B) = E[B^2(B)]$$

is a real spectral measure.

Proof: Since

$$B^2(B) \in \mathcal{B}^2, \quad \text{for all } B \in \mathcal{B},$$

E_\ast is a projection-valued set function on \mathcal{B}; and clearly

$$E_\ast(B) = I.$$
Further if

\[B \cap B' = \emptyset, \]

then

\[B^2(B) \cap B^2(B') = \emptyset, \]

and if

\[B = \bigcup B_i, \]

then

\[B^2(B) = \bigcup_i B^2(B_i). \]

These follow directly from the definition of \(B^2(B) \). Hence if

\[B = \bigcup B_i \]

and

\[B_i \cap B_j = \emptyset, \quad i \neq j, \]

then

\[E_*(B) = E[B^2(B)] = E[\bigcup_i B^2(B_i)] = \sum_i E[B^2(B_i)] = \sum_i E_*(B_i), \]

so that \(E_* \) is countably additive.

Now it is natural to formulate the

Definition: Let \(E_1 \) and \(E_2 \) be real spectral measures in \(\mathfrak{S}_1 \) and \(\mathfrak{S}_2 \), respectively, and let \(E_1 \otimes E_2 \) be their tensor product. The tensor convolution of \(E_1 \) with \(E_2 \), designated \(E_1 \otimes E_2 \), is the real spectral measure in \(\mathfrak{S}_1 \otimes \mathfrak{S}_2 \) given by

\[(E_1 \otimes E_2)(B) = (E_1 \otimes E_2)[B^2(B)], \quad \text{for all } B \in \mathfrak{B}, \]

where \(B^2(B) \) is as defined in Lemma 3.

The tensor convolution of \(E_1 \) with \(E_2 \) has a tidy relation to the convolution of the measures associated with \(E_1 \) and \(E_2 \) as given by

Lemma 4: Let \(E_* = E_1 \otimes E_2 \) where \(E_1 \) and \(E_2 \) are real spectral measures in \(\mathfrak{S}_1 \) and \(\mathfrak{S}_2 \), and let \(u = u_1 \otimes u_2 \) and \(v = v_1 \otimes v_2 \) be elementary tensor products, then for all such \(u \) and \(v \)

\[(E_* u, v) = ((E_1 \otimes E_2) u_1, v_1)(E_2 u_2, v_2), \]

where \(\otimes \) indicates the convolution of measures.

Proof: Using the definition of \(E_1 \otimes E_2 \) it is evident that

\[((E_1 \otimes E_2)(B \times B') u, v) = (E_1(B) u_1, v_1)(E_2(B') u_2, v_2), \quad \text{for all } B, B' \in \mathfrak{B}. \]

Since the product measure

\[(E_1 u_1, v_1)(E_2 u_2, v_2), \]

is the unique extension to \(\mathfrak{B}_2 \) of the right side of the preceding equation and \((E_1 \otimes E_2) u, v) \) is also an extension to \(\mathfrak{B}_2 \), the two extensions coincide, i.e.,

\[((E_1 \otimes E_2)(B^2) u, v) = ((E_1 u_1, v_1)(E_2 u_2, v_2)) (B^2), \quad \text{for all } B^2 \in \mathfrak{B}_2. \]

On specializing this to \(B^2(B) \) for any \(B \in \mathfrak{B} \) and invoking the definitions of the convolutions, the desired result follows.

Based on what has been done so far, it is now quite easy to show that

\[E_* = E_1 \otimes E_2 \]

is, indeed, the spectral measure corresponding to \(A \). From Lemma 3 and the Definition, it is clear that \(E_* \) is a real spectral measure and consequently corresponds to some self-adjoint
operator A_* in \mathcal{S}. The business at hand is to show that A_* is equal to A. This will complete the construction and prove the

Theorem: Let A be a separated self-adjoint operator with A_1 and A_2 part operators, and let E_1 and E_2 be the real spectral measures corresponding to A_1 and A_2, respectively; then the real spectral measure given by the tensor convolution $E_1 \ast E_2$ of E_1 with E_2 corresponds to A.

Proof: Let A_* be the self-adjoint operator corresponding to E_*. We shall show that A_* is defined and coincides with A on the core \mathcal{D} of A made up of finite linear combinations of elementary products $u_1 \otimes u_2$, $u_1 \in \mathcal{D}_1$, $u_2 \in \mathcal{D}_2$.

Recall that the domain \mathcal{D}_* of A_* is given by

$$\mathcal{D}_* = \{ u \in \mathcal{S} | \int \lambda^2 d(E_* u, u) < \infty \}$$

and that

$$(A_* u, v) = \int \lambda d(E_* u, v)$$

for all $u \in \mathcal{D}_*$, $v \in \mathcal{S}$. Let $u = u_1 \otimes u_2$, $u_1 \in \mathcal{D}_1$, $u_2 \in \mathcal{D}_2$ and let $v = v_1 \otimes v_2$.

By separation of variables and the spectral theorem for A_1 and A_2 it follows that

$$||A u||^2 = \int_\mathbb{R} (\lambda_1 + \lambda_2)^2 d(E_1 u_1, u_1) d(E_2 u_2, u_2)$$

and

$$(A u, v) = \int_\mathbb{R} (\lambda_1 + \lambda_2) d(E_1 u_1, v_1) d(E_2 u_2, v_2).$$

By Fubini's theorem

$$||A u||^2 = \int_\mathbb{R} (\lambda_1 + \lambda_2)^2 d[(E_1 u_1, u_1) \times (E_2 u_2, u_2)]$$

and

$$(A u, v) = \int_\mathbb{R} (\lambda_1 + \lambda_2) d[(E_1 u_1, v_1) \times (E_2 u_2, v_2)].$$

Now by an immediate consequence of the definition of convolution of measures

$$||A u||^2 = \int_\mathbb{R} \lambda^2 d[(E_1 u_1, u_1) \otimes (E_2 u_2, u_2)]$$

and

$$(A u, v) = \int_\mathbb{R} \lambda d[(E_1 u_1, v_1) \otimes (E_2 u_2, v_2)].$$

According to Lemma 4, this is the same as

$$||A u||^2 = \int_\mathbb{R} \lambda^2 d(E_1 \otimes E_2 u, u)$$

and

$$(A u, v) = \int_\mathbb{R} \lambda d(E_1 \otimes E_2 u, v).$$

350
Thus A_u is defined on each such u, and by linearity on \mathcal{D}. Further, by the last equation

$$(Au, v) = (A_u u, v) \quad \text{for all } u \in \mathcal{D}, \quad v = v_1 \otimes v_2.$$

But since elementary products are total in \mathcal{S},

$$Au = A_u u, \quad \text{for all } u \in \mathcal{D},$$

as was to be shown.

(Paper 8083–450)

References

Paper 80B3–450