A Minimax-Measure Intersection Problem

Philip R. Meyers

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(March 16, 1976)

The problem solved is that of selecting n subsets of the unit interval, each of measure α, so as to minimize the maximum of the measures of their p-fold intersections. This is achieved by minimizing the sum of the measures of these p-fold intersections.

Key words: Combinatorial analysis; combinatorial probability; measure theory; minimax.

1. Introduction

Some years ago, NBS colleague S. Haber communicated the following problem: To select n subsets of the unit interval, each of measure $\frac{1}{2}$, so as to minimize the maximum of the measures of the pairwise intersections of these subsets. The problem is suggested by a paper [1] of Gillis which, settling "an unpublished conjecture of Erdos," proves that for denumerably infinite collections of sets of measure α, the value corresponding to the maximum pairwise-intersection measure has infimum α^2. (Collections with higher transfinite cardinality are treated by Gillis in [2].) Here we provide an explicit solution for collections of finite cardinalities n. Further, and also corresponding to [1], we consider as well the case of p-fold intersections with $2 \leq p \leq n$, and provide the corresponding explicit solution. (As noted in [2], the argument of [1] easily extends to show that α^n is the limiting value for a denumerably infinite collection.)

As preliminary, we introduce a second minimization and point out its relationship to our minimax problem, to wit: Select n subsets A_1, A_2, \ldots, A_n of the unit interval, each of measure α, so that the sum of the measures of their p-fold intersections is minimum. If now $X = \{S_1, \ldots, S_n\}$, a solution to this minimum problem, can be chosen so that all its p-fold intersections have the same measure s, and if M is the maximum of the measures of the p-fold intersections of an arbitrary collection A_1, A_2, \ldots, A_n with all $\mu(A_j) = \alpha$, then

$$\binom{n}{p} M \geq \sum_{i_1 < i_2 < \ldots < i_p} \mu \left(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_p} \right)$$

$$\geq \sum_{i_1 < i_2 < \ldots < i_p} \mu \left(S_{i_1} \cap S_{i_2} \cap \ldots \cap S_{i_p} \right)$$

$$= \binom{n}{p} s.$$

Thus $s \geq M$, demonstrating that X solves the minimax problem. This observation suggested the analysis which follows.

AMS Subject Classification: Primary 05A05; Secondary 05B99, 10E30, 28A75.

1 Figures in brackets indicate the literature references at the end of this paper.
2. Analysis

We will use the following notation: \(N = \{1, 2, \ldots, n\} \); \(p \) is a fixed positive integer with \(2 \leq p \leq n \). The underlying space is the unit interval \(I \) with Lebesgue measure \(\mu \) (but the analysis actually carries over to any "atomless" probability space). Set complements of \(A \subseteq I \) and \(R \subseteq N \) are denoted \(A^c \) and \(R^c \) respectively. Let, for \(0 \leq r \leq n \),

\[
K_r = \{R \subseteq N: |R| = r\}.
\]

Given the real number \(\alpha \) with \(0 < \alpha \leq 1 \), let

\[
F(\alpha) = \{A \subseteq I: \mu(A) = \alpha\}
\]

and let \(F^n(\alpha) \) denote the \(n \)-fold Cartesian power of \(F(\alpha) \), consisting of all \(n \)-tuples

\[
X = \{A_1, A_2, \ldots, A_n\}
\]

with each \(A_i \in F(\alpha) \). For each such \(X \), and each \(R \subseteq N \), set

\[
X_R = \{x \in I: x \in A_i \text{ iff } i \in R\};
\]

an easily-proved property of these sets, to be used repeatedly below, is that

\[
X_R \cap (\bigcap_{i \in P} A_i) = \begin{cases} X_R & \text{if } P \subseteq R, \\ \emptyset & \text{otherwise.} \end{cases} \tag{1}
\]

Note that the disjoint union

\[
X_r = \bigcup_{R \in K_r} X_R
\]

consists of those points \(x \in I \) which are members of exactly \(r \) sets \(A_i \in X \). Finally, for measurable \(B \)
\(\subseteq I \), it is convenient to define

\[
S(X,B) = \sum_{p \in \mathbb{K}_p} \mu \left[\left(\bigcap_{i \in p} A_i \right) \cap B \right].
\]

The “objective function” for the minimax problem is

\[
M(X) = \max_{p \in \mathbb{K}_p} \mu \left[\bigcap_{i \in p} A_i \right],
\]

while that for the related minimization problem introduced in section 1 is

\[
S(X) = S(X,I) = \sum_{p \in \mathbb{K}_p} \mu \left[\bigcap_{i \in p} A_i \right].
\]

An alternative formula for \(S(X) \) will first be developed (Lemma 1), and then a necessary condition (Lemma 2) for some \(X \in F^n(\alpha) \) to minimize \(S \) will be presented.

Lemma 1: For each \(X \in F^n(\alpha) \),

\[
S(X) = \sum_{r=p}^{n} \binom{r}{p} \mu \left(X_r \right). \tag{2}
\]

Proof: Since \(\{ X_r : r = 0, 1, \ldots, n \} \) is a partition of \(I \),

\[
S(X) = \sum_{r=0}^{n} S(X,X_r)
= \sum_{r=0}^{n} \sum_{|R|=r} S(X,X_R).
\]

Applying (1) to each summand, we obtain

\[
S(X) = \sum_{r=p}^{n} \sum_{|R|=r} \binom{r}{p} \mu \left(X_R \right),
\]

yielding (2).
LEMMA 2. If X minimizes S over $F^n(\alpha)$, and $\mu(X_i) > 0$ for some $r \geq p$, then $\mu(X_t) = 0$ for all $t < r - 1$.

PROOF: Suppose, to the contrary, that there exist $r \geq p$ and $t < r - 1$ such that $\mu(X_r) > 0$ and $\mu(X_t) > 0$. We will prove the existence of an $X' \in F^n(\alpha)$ for which $S(X') < S(X)$, thus contradicting the hypothesis about X.

Since $\mu(X_r) > 0$ and $\mu(X_t) > 0$, K_r and K_t must contain respective members R and T with $\mu(X_R) > 0$ and $\mu(X_T) > 0$. Choose subsets Y and Z of I with

$$Y \subseteq X_R, \quad Z \subseteq X_T, \quad \mu(Y) = \mu(Z) > 0.$$

Also choose a member i of the nonempty set $R - T$; then

$$Y \subseteq A_i, \quad Z \subseteq A'_i.$$

Now define $X' = \{A_1, A_2, \ldots, A'_i, \ldots, A_n\}$, where

$$A'_i = (A_i - Y) \cup Z;$$

Since $\mu(A'_i) = \mu(A_i - Y) + \mu(Z) = \mu(A_i)$, we have $X' \in F^n(\alpha)$.

To prove that $S(X') < S(X)$, observe that I is partitioned into Y, Z, and $I - Y - Z$.

Thus

$$S(X) = S(X,Y) + S(X,Z) + S(X,I - Y - Z),$$

Since X and X' differ only on $Y \cup Z$, it follows that

$$S(X) - S(X') = [S(X,Y) - S(X',Y)] - [S(X',Z) - S(X,Z)].$$

Since $Y \subseteq X_r$ and $Y \subseteq X'_{r-1}$, application of (1) to the summands of $S(X,Y)$ and $S(X',Y)$ yields

$$S(X,Y) - S(X',Y) = \binom{r}{p}\mu(Y) - \binom{r}{p-1}\mu(Y) = \binom{r-1}{p-1}\mu(Y).$$
Similarly, it follows from $Z \subseteq X_t$ and $Z \subseteq X_{t+1}$ that

$$S(X', Z) - S(X, Z) = \left(\frac{t + 1}{p} \right) \mu(Z) - \left(\frac{t}{p} \right) \mu(Z) = \left(\frac{t}{p - 1} \right) \mu(Z).$$

Since $r - 1 > t$ and $\mu(Y) = \mu(Z) > 0$,

$$S(X) - S(X') = \left(\frac{r - 1}{p - 1} \right) \mu(Y) - \left(\frac{t}{p - 1} \right) \mu(Z) > 0,$$

completing the proof.

We will subsequently show that if $\mu(X_r) > 0$ for some $r > p$ then $\mu(X_t) = 0$ for $t < r - 1$ is a sufficient condition for X to minimize S over $F^n(\alpha)$.

Lemma 3: For all $X \in F^n(\alpha)$,

$$n\alpha = \sum_{r=0}^{n} \mu(X_r). \quad (3)$$

Proof: Let c_i denote the characteristic function of A_i. Then

$$n\alpha = \sum_{r=1}^{n} \int c_i(x) \, d\mu(x) = \int \left[\sum_{i=1}^{n} c_i(x) \right] \, d\mu(x) = \sum_{r=0}^{n} \int_{X_r} \left[\sum_{i=1}^{n} c_i(x) \right] \, d\mu(x) = \sum_{r=0}^{n} r \mu(X_r).$$

It is now possible to prove:

Lemma 4: If $n\alpha \leq p - 1$, then $S_{\text{min}} = \min \{ S(Y) : Y \in F^n(\alpha) \} = 0$.

Proof: It suffices to exhibit an $X \in F^n(\alpha)$ for which

$$\mu(X_r) = 0 \quad \text{for } r \geq p. \quad (4)$$

To this end, let

$$A_i = [(i - 1)\alpha, i\alpha) \pmod{1} \quad \text{for } 1 \leq i \leq n.$$

Each point of $[0,1)$ corresponds (mod 1) to exactly $p - 1$ points of the interval $[0, p - 1)$, and thus to at most $p - 1$ points of the subinterval $[0, n\alpha)$; thus $X_r \cap [0, 1) = \phi$ for $r \geq p$, verifying (4).

Lemma 5: If for given $X \in F^n(\alpha)$, the largest r such that $\mu(X_r) > 0$ satisfies $r \geq p$ and further for $t < r - 1$, $\mu(x_t) = 0$, then

$$S(X) = S_{\text{min}}.$$

Proof: It suffices to show that $S(X)$ has the same value for all $X \in F^n(\alpha)$ satisfying the conditions of the lemma. Consider such an X, and the greatest r for which $\mu(X_r) > 0$. Since

$$\sum_{i=0}^{n} \mu(X_i) = \mu(I) = 1, \quad (5)$$

such an r must exist. By the above condition $\mu(X_r) = 0$ for $t \neq r, r - 1$, and so by (5),
\[
\mu(X_{r-1}) = 1 - \mu(X_r).
\]

Let \(n\alpha = m + \beta \) with \(m \) integral and \(0 \leq \beta < 1 \). It follows from (3) that

\[
m + \beta = r\mu(X_r) + (r - 1)\mu(X_{r-1}) = (r - 1) + \mu(X_r),
\]

and from (2) that

\[
S(X) = \binom{r}{p}\mu(X_r) + \binom{r-1}{p}\mu(X_{r-1}) = \binom{r-1}{p} + \binom{r-1}{p-1}\mu(X_r).
\]

If \(\beta = 0 \), then since \(m \) is integral and \(0 < \mu(X_r) \leq 1 \), it follows from (6) that \(\mu(X_r) = 1 \) and \(r = m \), and then it follows from (7) that

\[
S(X) = \binom{m-1}{p} + \binom{m-1}{p-1} = \binom{m}{p}.
\]

If \(\beta > 0 \), then it follows from (6) that \(\mu(X_r) = \beta \) and \(m = r - 1 \), and then it follows from (7) that

\[
S(X) = \binom{m}{p} + \binom{m}{p-1}\beta.
\]

Thus \(S(X) \) is uniquely determined by the pair \((m, \beta)\), i.e., by \(n\alpha \). Note that (8) and (9) are consistent with Lemma 4, since both yield \(S(X) = 0 \) if \(n\alpha \leq p - 1 \).

We are now able to provide the solutions, both to the problem of minimizing \(S(X) \) over \(F^n(\alpha) \) and to the original problem of minimizing

\[
M(X) = \max_{p\in\mathbb{R}_p} \mu \left(\bigcap_{i\in\mathbb{R}} A_i \right)
\]

over \(F^n(\alpha) \). Let \(M_{\min} \) denote the value of this latter minimum. Then the solution takes the following form.

Theorem. Let \(n\alpha = m + \beta \) with \(m \) integral and \(0 \leq \beta < 1 \). Then

\[
S_{\min} = M_{\min} = 0 \quad \text{if} \ n\alpha \leq p - 1,
\]

\[
S_{\min} = \binom{m}{p} + \binom{m}{p-1}\beta, \quad M_{\min} = S_{\min}/\binom{n}{p} \quad \text{if} \ n\alpha > p - 1.
\]

Thus, in particular, for the problem as originally posed where \(p = 2 \) and \(\alpha = 1/2 \).

\[
S_{\min} = \begin{cases}
k(k - 1)/2 & \text{if } n = 2k \\
(k - 1)^2/2 & \text{if } n = 2k - 1,
\end{cases}
\]

and \(M_{\min} = (k - 1)/2(2k - 1) \).

Proof: First suppose \(n\alpha \leq p - 1 \). Then \(S_{\min} = 0 \) follows from Lemma 4, whose proof constructed an \(X \in F^n(\alpha) \) for which \(\mu \left(\bigcup_{r=p}^n X_r \right) = 0 \). Since every \(p \)-fold intersection of the members of \(X \) lies in this union, it follows that \(M(X) = 0 \), implying \(M_{\min} = 0 \).
Now suppose $n\alpha > p - 1$. The formula for S_{\min} follows from (8) and (9). We will prove the result for M_{\min} by constructing an $X \in F^n(\alpha)$ which satisfies the condition of Lemma 2, and which furthermore (see the end of sec. 1) has equal measures for each of its p-fold intersections. For this purpose, partition the interval $[0, \beta)$ into $\binom{n}{m+1}$ equal subintervals and the interval $[\beta, 1]$ into $\binom{n}{m}$ equal subintervals. Label the second family of subintervals as $\{X_M: M \in K_m\}$ and the first family as $\{X_Q: Q \in K_{m+1}\}$. Define

$$A_i = \left[\bigcup \{X_M: i \in M\} \right] \cup \left[\bigcup \{X_Q: i \in Q\} \right].$$

Then each A_i consists of $\binom{n-1}{m-1}$ intervals X_M and $\binom{n-1}{m}$ intervals X_Q, all disjoint, so all A_i have equal measure. If c_i denotes the characteristic function of A_i, then

$$\sum_{i=1}^{\binom{n}{m+1}} \mu(A_i) = \int_{\beta}^{1} \left(\sum_{i=1}^{\binom{n}{m+1}} c_i \right) d\mu = \int_{0}^{\beta} \left(\sum_{i=1}^{\binom{n}{m+1}} c_i \right) d\mu + \int_{\beta}^{1} \left(\sum_{i=1}^{\binom{n}{m}} c_i \right) d\mu$$

$$= (m + 1)\beta + m(1 - \beta) = m + \beta = n\alpha.$$

Thus each $\mu(A_i) = \alpha$, i.e., $X \in F^n(\alpha)$. For $r \geq p$, $\mu(X_r) > 0$ holds only for $r = m$ and $r = m + 1$, so the condition of Lemma 2 is satisfied. The symmetry of the construction assures that all p-fold intersections of the members of X have equal measure; explicitly, for $P \in K_p$, we have

$$\bigcap_{i \in P} A_i = \left[\bigcup \{X_M: P \subset M\} \right] \cap \left[\bigcup \{X_Q: P \subset Q\} \right],$$

implying

$$\mu\left[\bigcap_{i \in P} A_i \right] = \binom{n-p}{m-p} (1 - \beta) \binom{n}{m} + \binom{n-p}{m+1-p} \beta \binom{n}{m+1},$$

independently of P.

3. References

(Paper 80B2–438)