Properties of Neighboring Sequences in Stratifiable Spaces*

Ralph R. Sabella**

(May 12, 1975)

In T_0-spaces metrizability can be characterized in terms of mutual convergence of “neighboring sequences.” In this paper Nagata spaces are characterized in terms of a convergence property of neighboring sequences and more generally it is shown that in all stratifiable spaces, neighboring sequences satisfy a similar convergence property.

Key words: Coconvergent; contraconvergent; Nagata spaces; open neighborhood assignments; stratifiable spaces; U-linked sequences

An open neighborhood assignment (ONA) is defined in [4] as a function

$$U : X \times Z \rightarrow \{N(x) : x \in X\}$$

such that $x \in U_n(x)$ (where X is a topological space, Z is the set of natural numbers and $N(x)$ is the collection of open neighborhoods of x). If U is an ONA then the sequence $\{x_n\}$ is U-linked to $\{y_n\}$ if $x_n \in U_n(y_n)$ for all n. Using the notation $Cp\{x_n\}$ for the set of cluster points of $\{x_n\}$ a space will be called coconvergent (contraconvergent) if $Cp\{x_n\} \subset Cp\{y_n\}$ ($Cp\{y_n\} \subset Cp\{x_n\}$) whenever $\{y_n\}$ is U-linked to $\{x_n\}$. If on X there is an ONA U satisfying some property P I shall say “X is P” or “U is P.” Also, U will be said to be nested if $U_{n+1}(x) \subset U_n(x)$ for all x and n.

It was proved in [4]:

Theorem 1: X is metrizable iff it is a coconvergent, contraconvergent T_0-space.

Also, examples of a T_2, coconvergent space and a T_2, contraconvergent space, neither of which are metrizable were given in [4]. Coconvergence implies first countability whereas nonfirst countable contraconvergent spaces exist.

R. W. Heath in [3] proved:

Theorem 2: A T_1-space X is a Nagata space (first countable and stratifiable) iff there is an ONA U on X such that (a) U is first countable and (b) for every $x \in X$ and open set R containing x there is an $n \in Z$ such that $U_n(x) \cap U_n(y)$ implies $y \in R$.

(Note: Condition (a) is implied by (b): If $x \in X$ and $R \in N(x)$ such that for all n there is a $y_n \in U_n(x) \cap R$, then $U_n(x) \cap U_n(y_n) \neq 0$.

It follows from (b) there is a $y_n \in R$ for some k contradicting the way the y_n were chosen.)

Proposition 3: A T_1-space X is a Nagata space iff it is first countable and contraconvergent.

Proof: Let U be an ONA on X satisfying the conditions of Theorem 2. Without loss of generality we may take U to be nested. Let $\{y_n\}$ be U-linked to $\{x_n\}$ with $y \in Cp\{y_n\}$. Given an $R \in N(y)$ and $N \in Z$ there is an $n_1 > N$ such that $U_{n_1}(y) \subset R$. Also, since U is nested there is an $n_2 > n_1$ such that if x satisfies $U_{n_2}(x) \cap U_{n_2}(y) \neq 0$ then $x \in R$. Finally, there is a $k > n_2$ such

AMS Subject Classifications: Primary 54E35; Secondary 54D99.

AN invited paper.

Present address: California State University, Northridge, California 91324.

Figures in brackets indicate the literature references at the end of this paper.
that \(y_k \in U_{n_k}(y) \subset U_n(y) \). Since \(\{ y_n \} \) is \(U \)-linked to \(\{ x_n \} \), \(y_k \in U_k(x_k) \cap U_{n_k}(y) \). It now follows from \(k > N \) that \(y_k \in \mathcal{C}p \{ y_n \} \) and that \(U \) is contraconvergent.

Conversely, without loss of generality it may be assumed there is an \(\mathcal{O} \) on \(X \) which is contraconvergent and first countable. If \(U \) does not satisfy the condition of Theorem 2, then for some \(x \) and \(R \in \mathcal{N}(x) \) there are sequences \(\{ x_n \} \) and \(\{ y_n \} \) such that \(x_n \in U_n(x) \cap U_n(y_n) \) and \(y_n \in R \) for all \(n \). It follows from the first countability and contraconvergence of \(U \) that \(x \in \mathcal{C}p \{ y_n \} \) which is a contradiction.

Corollary 4: A \(T_0 \)-space is metrizable iff it is coconvergent and stratifiable.

Coconvergent spaces are those included in the class of spaces in which compact sets have countable local bases (\(D_0 \)-spaces) [5]. The set of all ordinals less than or equal to the first uncountable ordinal, with the order topology is an example of a \(D_0 \)-space which is not coconvergent. It was shown in [5] that spaces in which the stratifications of open sets satisfy a certain monotone condition, "coconvergent" can be replaced by "\(D_0 \)" in Corollary 4.

If \(X \) is stratifiable, I will use: \(R_n, (X - F)_n \) and \(\{ U_k(x) \}_n \) to denote the \(n \)th layers of stratifications of the open sets \(R, X - F \) and \(U_k(x) \) respectively and more generally, \(A \) for the closure of \(A \). Without loss of generality I shall assume \(R_n \subset R_{n+1} \) for any open \(R \). It will be shown that if \(X \) is stratifiable that the \(\mathcal{O} \) defined by \(U_n(x) = X - (X - x_n)^{-} \) satisfies a condition similar to that defining contraconvergent spaces. The \(\mathcal{O} \) will be referred to as the \(\mathcal{O} \) associated with the given stratification.

Definition 5: An \(\mathcal{O} \) on \(X \) satisfies property \(A \) if whenever \(\{ y_n \} \) is \(U \)-linked to \(\{ x_n \} \) and \(y \in \mathcal{C}p \{ y_n \} \) then for any \(N \in \mathbb{Z} \) there is a \(k > N \) such that \(x_k \in U_n(y) \).

Proposition 6: A \(T_1 \)-space is a Nagata space iff there is a first countable \(\mathcal{O} \), \(U \) on \(X \) satisfying property \(A \).

Proof: If \(X \) is a Nagata space, by Proposition 3 there is an \(\mathcal{O} \), \(U \) which is first countable and contraconvergent. If \(\{ y_n \} \) is \(U \)-linked to \(\{ x_n \} \) and \(y \in \mathcal{C}p \{ y_n \} \) then \(y \in \mathcal{C}p \{ x_n \} \) and it follows that \(U \) satisfies condition \(A \).

Let \(U \) be a first countable \(\mathcal{O} \) satisfying condition \(A \). If \(\{ y_n \} \) is \(U \)-linked to \(\{ x_n \} \) with \(y \in \mathcal{C}p \{ y_n \} \) and if \(N_1 \in \mathbb{Z} \) and \(R \in \mathcal{N}(y) \) then there is an \(N_2 > N_1 \) and by property \(A \) a \(k > N_2 \) such that \(x_k \in U_{N_2}(y) \subset R \) proving \(y \in \mathcal{C}p \{ x_n \} \) and that \(U \) is contraconvergent.

Proposition 7: Let \(X \) be a stratifiable space. Then the \(\mathcal{O} \) \(U \) associated with a given stratification satisfies property \(A \).

Proof: It follows from \(R_n \subset R_{n+1} \) for any open \(R \) that \(U \) is nested. If \(U \) does not satisfy property \(A \), then there exist a \(\{ y_n \} \) \(U \)-linked to \(\{ x_n \} \), a \(y \in \mathcal{C}p \{ y_n \} \) and an \(N \in \mathbb{Z} \) such that for all \(k > N \), \(x_k \in U_n(y) \). Hence \(F = \{ x_k : k > N \}^{-} \subset X - U_n(y) \).

References

(Paper 79B3 4–425)