The Factorization of a Matrix as the Commutator of Two Matrices

John M. Smith*

Institute for Computer Sciences and Technology, National Bureau of Standards, Washington, D.C. 20234

(April 4, 1974)

Let \(P = P_+ = (\pm I_p) \), the direct sum of the \(p \times p \) identity matrix and the negative of the \(q \times q \) identity matrix. The following theorem is proved.

Theorem: If \(X = cZ \) where \(Z \) is a \(4 \times 4 \) \(P \)-orthogonal, \(P \)-skew-symmetric matrix and \(|c| \leq 2 \), there exist matrices \(A \) and \(B \), both of which are \(P \)-orthogonal and \(P \)-skew-symmetric, such that \(X = AB - BA \). Methods for obtaining certain matrices which satisfy \(X = AB - BA \) are given. Methods are also given for determining pairs of anticommuting \(P \)-orthogonal, \(P \)-skew-symmetric matrices.

Key words: Anticommuting; commutator; factorization; matrix; orthogonal; skew-symmetric.

1. Introduction

Let \(P = P_+ = (\pm I_p) \), the direct sum of the \(p \times p \) identity matrix and the negative of the \(q \times q \) identity matrix. Katz and Olkin [2] define a real matrix \(A \) to be orthogonal with respect to \(P \) (\(P \)-orthogonal) if and only if

\[
APA' = P
\]

where \(A' \) is the transpose of \(A \). Furthermore, they define \(B \) to be skew-symmetric with respect to \(P \) (\(P \)-skew-symmetric) if and only if \(BP \) is skew-symmetric in the ordinary sense.

The main result of this paper is concerned with matrices which are both \(P \)-orthogonal and \(P \)-skew-symmetric of order \(n = 4 = p + q \). Smith [7] proved that such matrices exist in only two cases, \(p = 4 \), \(q = 0 \) and \(p = q = 2 \). In the first case \(P \)-orthogonal and \(P \)-skew-symmetric reduce to orthogonal and skew-symmetric in the ordinary sense.

Pearl [4] and Smith [6] proved the following theorem in the cases \(p = 4 \), \(q = 0 \) and \(p = q = 2 \) respectively.

Theorem 1: If the \(4 \times 4 \) matrices \(A \) and \(B \) are both \(P \)-orthogonal and \(P \)-skew-symmetric then their commutator, \([A, B] = AB - BA \), is a scalar multiple of a \(4 \times 4 \) \(P \)-orthogonal, \(P \)-skew-symmetric matrix.

The purpose of this paper is to prove a converse to Theorem 1. Shoda [5] proved that if \(X \) is a square matrix with zero trace having elements in an algebraically closed field then there exist matrices \(A \) and \(B \) such that \(X = AB - BA \). Albert and Muckenhoupt [1] removed the restriction that the field be algebraically closed. However, both the method of Shoda and the method of Albert and Muckenhoupt give a singular matrix \(B \). The main result of this paper is:

Theorem 2: If \(X = cZ \) where \(Z \) is a \(4 \times 4 \) \(P \)-orthogonal, \(P \)-skew-symmetric matrix and \(|c| \leq 2 \), there exist matrices \(A \) and \(B \), both of which are \(P \)-orthogonal and \(P \)-skew-symmetric, such that \(X = AB - BA \).
Methods for obtaining certain matrices which satisfy $X = AB - BA$ are given. Methods are also given for determining pairs of anticommuting P-orthogonal, P-skew-symmetric matrices.

2. Anticommuting Matrices

In examining the structure of P-orthogonal, P-skew-symmetric matrices in the case $p = 4, q = 0$, Pearl [4] shows that any such matrix has exactly one of the following forms:

(i) $\alpha_1 R_1 + \alpha_2 R_2 + \alpha_3 R_3, \quad \alpha_1^2 + \alpha_2^2 + \alpha_3^2 = 1$

(ii) $\alpha_1 S_1 + \alpha_2 S_2 + \alpha_3 S_3, \quad \alpha_1^2 + \alpha_2^2 + \alpha_3^2 = 1$

where the α_i are real scalers and the R_i and S_i are the first and second regular representations respectively of the real quaternions [3].

Similarly, in the case $p = q = 2$, Smith [6] shows that any such matrix has exactly one of the following forms:

(iii) $\alpha_1 R_1 P + \alpha_2 S_2 P + \alpha_3 S_3 P, \quad \alpha_1^2 + \alpha_2^2 - \alpha_3^2 = 1$

(iv) $\alpha_1 S_1 P + \alpha_2 R_2 P + \alpha_3 R_3 P, \quad \alpha_1^2 - \alpha_2^2 - \alpha_3^2 = -1$

where $P = I_2 + (-I_2)$.

A further examination of these papers leads to

Theorem 3: If Z is a 4×4 P-orthogonal, P-skew-symmetric matrix there exists a 4×4 P-orthogonal, P-skew-symmetric matrix B such that $ZB = -BZ$.

Proof: There are four cases to consider.

Case 1, $Z = \alpha_1 R_1 + \alpha_2 R_2 + \alpha_3 R_3$. If $\alpha_3 \neq 0$, choose arbitrary β_1', β_2' and set

$$\beta_3' = -\frac{1}{\alpha_3} (\alpha_1 \beta_1' + \alpha_2 \beta_2').$$

Let $x = \beta_1'^2 + \beta_2'^2 + \beta_3'^2$ and set $\beta_i = \frac{\beta_i'}{\sqrt{x}}, i = 1, 2, 3$. If $\alpha_3 = 0$, let $\beta_1 = \beta_2 = 0$ and $\beta_3 = 1$. Clearly, in either situation

$$\alpha_1 \beta_1 + \alpha_2 \beta_2 + \alpha_3 \beta_3 = 0 \quad (2)$$

and

$$\beta_1^2 + \beta_2^2 + \beta_3^2 = 1. \quad (3)$$

Letting $B = \beta_1 R_1 + \beta_2 R_2 + \beta_3 R_3$, by (3) B is P-orthogonal, P-skew-symmetric and by (2)

$$ZB = -BZ.$$

Case 2, $Z = \alpha_1 S_1 + \alpha_2 S_2 + \alpha_3 S_3$. Choose $\beta_i, i = 1, 2, 3$ as in Case 1 and let

$$B = \beta_1 S_1 + \beta_2 S_2 + \beta_3 S_3.$$

Case 3, $Z = \alpha_1 R_1 P + \alpha_2 S_2 P + \alpha_3 S_3 P$. The matrix $B = \beta_1 R_1 P + \beta_2 S_2 P + \beta_3 S_3 P$ will be P-orthogonal, P-skew-symmetric if

$$\beta_2^2 + \beta_3^2 - \beta_1^2 = 1 \quad (4)$$

and $ZB = -BZ$ if

110
\[
\alpha_2 \beta_2 + \alpha_3 \beta_3 - \alpha_1 \beta_1 = 0.
\] (5)

If \(\alpha_1 + \alpha_2 \neq 0\), set
\[
\beta_1 = \frac{-\alpha_3}{\alpha_1 + \alpha_2}, \quad \beta_2 = \frac{-\alpha_3}{\alpha_1 + \alpha_2}, \quad \text{and} \quad \beta_3 = 1.
\]
Clearly, (4) and (5) are satisfied. If \(\alpha_1 = \alpha_2 = 0\), set \(\beta_1 = \beta_3 = 0, \beta_2 = 1\). Again (4) and (5) are satisfied. If \(\alpha_1 = -\alpha_2 \neq 0\), since clearly \(\alpha_3 = \pm 1\), set \(x = \frac{1}{1 + \alpha_1^2}\) and let \(\beta_1 = 0, \beta_3 = \alpha_3 \alpha_1 \sqrt{x}, \beta_2 = \sqrt{x}\). Again (4) and (5) are satisfied.

Case 4, \(Z = \alpha_1 S_1 P + \alpha_2 R_2 P + \alpha_3 R_3 P\). Let \(B = \beta_1 S_1 P + \beta_2 R_2 P + \beta_3 R_3 P\) where the \(\beta_i\) are chosen as in case 3.

3. Proof of Theorem 2

In order to prove Theorem 2 it is convenient to first prove the following lemmas.

Lemma 1:
(i) If \(B\) is \(P\)-skew-symmetric then \(B' = -PBP\).
(ii) If \(B\) is \(P\)-skew-symmetric and \(P\)-orthogonal than \(B^2 = -1\).

Lemma 2: If \(Z\) is a \(P\)-orthogonal, \(P\)-skew-symmetric matrix and \(|c| \leq 2\) then
\[
Y = \frac{\sqrt{4 - c^2}}{2} I + \frac{c}{2} Z \text{ is } P\text{-orthogonal}.
\]

Proof: By direct computation,
\[
YPY' = \left(\frac{\sqrt{4 - c^2}}{2} I + \frac{c}{2} Z\right) P \left(\frac{\sqrt{4 - c^2}}{2} I + \frac{c}{2} Z'\right)
\]
\[
= \frac{4 - c^2}{4} P + \frac{c^2}{4} ZPZ' + \frac{\sqrt{4 - c^2}}{2} (ZP + PZ').
\]

However, \(ZPZ' = P\) by (1) and by Lemma 1
\[
ZP + PZ' = ZP + P(-PZP) = ZP - ZP = 0.
\]

Thus \(YPY' = \frac{4 - c^2}{4} P + \frac{c^2}{4} P + O = P\) and by (1) \(Y\) is \(P\)-orthogonal.

Lemma 3: If \(Z\) is \(P\)-orthogonal, \(P\)-skew-symmetric and \(|c| \leq 2\), and if \(B\) is \(P\)-orthogonal, \(P\)-skew-symmetric such that \(ZB = -BZ\), then
\[
A = \left(\frac{\sqrt{4 - c^2}}{2} I + \frac{c}{2} Z\right) PB'P \text{ satisfies } [A,B] = cZ.
\]

Proof:
\[
AB = (YPB')P = (YP) (B'PB) = (YP) P = Y
\]
\[
= \frac{\sqrt{4 - c^2}}{2} I + \frac{c}{2} Z
\]
\[
BA = B (YPB') = \frac{\sqrt{4 - c^2}}{2} BPB'P + \frac{c}{2} BZPB'P
\]
\[
= \frac{\sqrt{4 - c^2}}{2} I + \frac{c}{2} BZPB'P
\]
\[
= \frac{\sqrt{4 - c^2}}{2} I - \frac{c}{2} ZBPB'P
\]
Thus \([A,B] = AB - BA = c Z \).

Corollary: The matrix \(A \) defined in Lemma 3 is \(P \)-orthogonal, \(P \)-skew-symmetric.

Proof: By Lemmas 1 and 2 \(A \) is the product of two \(P \)-orthogonal matrices. Hence \(A \) is \(P \)-orthogonal. Also

\[
A = \left(\frac{\sqrt{4 - c^2}}{2} I + \frac{c}{2} Z \right) PB'P
\]

\[
= \frac{\sqrt{4 - c^2}}{2} PB'P + \frac{c}{2} ZPB'P.
\]

By Lemma 1, \(\frac{\sqrt{4 - c^2}}{2} PB'P = -\frac{\sqrt{4 - c^2}}{2} B \) which is \(P \)-skew-symmetric. Furthermore

\[
\left(\frac{c}{2} ZPB'P \right)' = \frac{c}{2} PBPZ'
\]

\[
= -\frac{c}{2} B'Z'
\]

by Lemma 1

\[
= \frac{c}{2} Z'B'
\]

since \(ZB = -BZ \)

\[
= -\frac{c}{2} PZPB'
\]

by Lemma 1

\[
= -\frac{c}{2} P(ZPB'P)'.
\]

Thus \(A \) is the sum of two \(P \)-skew-symmetric matrices and hence \(A \) is \(P \)-skew-symmetric.

In the \(4 \times 4 \) case, the existence of the matrix \(B \) is given by Theorem 3. Thus Theorem 3, Lemma 3, and the Corollary complete the proof of Theorem 2.

4. Conclusion

Theorem 2 provides a converse to the theorems of Pearl [4] and Smith [6]. While Theorem 2 is restricted to the \(4 \times 4 \) case, the results of section 3 refer to the general \(n \times n \) case. Smith [8] has generalized Theorem 1 to the \(n \times n \) case. Perhaps the results of section 3 can be applied to find a converse of that result.

5. References

(Paper 78B3–407)