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If A is a give n nons ingular matrix and X an approximate inve rse of A such that N (R ) < I, where 
R = [ - AX and N is any matrix norm , then it is s hown tha t 

N(XR) N(XR) 
l+N(R) ", N(A - ' -X) '" I-N(R)· 

This inequality prov id es the means for c heckin g th e output of a matrix inve rs ion program. 
Methods for c hecking the so luti o n of a single linear sys te m are also di scussed. 

Key words: Approximate inve rses; approx im ate soluti ons; e rror bound s; hi gh s peed di gital co mputation; 
matrix norm s. 

1. Introduction 

Although numerous excellent programs exis t for the inversion of a matrix A or the solution 
of a linear system Ax = b, not enough attention has been give n to the ques tion of guaranteeing 
the accuracy of the output of s uch a program. In fact the proble m of certifying the results of com­
putation in general is a basic one and has been largely neglected, although it should be of pressing 
concern to any user of a high speed digital computer. 

The purpose of thi s article (which is mainly expository) is to point out that for matrix inversion 
there is a sati sfac tory solution to this question, and to derive the necessary estimates. It is the 
author's hope that this article will influe nce users of large machines to incorporate the procedures 
suggested (or some version of them) into their programs for matrix .inversion. 

2 . Matrix Norms 

The principal tool for providing such error estimates is the matrix norm. A good theoretical 
discussion of this topic may be found for example in Householder's book [3),1 chapter 2. We 
depart somewhat from the usual definition in what follows. For our purposes a matrix norm N 
will be a real-valued function defined for all rectangular matrices ,)Ver the complex numbers C 
such that for any matrices A, B 

(1) N(A) ;?! 0; N(A) =0 if and only if A =0, 

(2) N(A + B) ::;; N(A) + N(B), provided that A and B may be added, 
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(3) N(cA) = iel N(A), where c is any complex number, 

(4) N(AB) ~ N(A)N(B), provided that A and B may be multiplied in the order shown. 

Properties (1), (2), (3) are the usual properties of a distance function, but (4) is peculiar to '\ 
matrices. 

Let A = (aij) be any m X n matrix over C. Then the most important examples of norms are 

(5) 

(6) 

(7) 

{' }1 /2 
N (A) = F (A) = ? laij 12 (the Euclidean or Frobenius norm), 

I, J 

N (A) = M (A) = ~ Tl)C\X la ij I (the maximum element norm), 
I, J 

N(A)=S(A)= m~x L laijl (the maximum row sum norm). 
j 

It is a simple exercise to show that these are indeed norms. The reader may wish to consult 
[4] where it is proved that (5) satisfies property (4). 

The Euclidean norm has the property that it is a unitary invariant; that is , if U, V are unitary 
matrices of respective orders m, n, then 

F(UAV) =F(A). 

This is most easily seen from the observation that 

F(A)2=tr (AA*), 

where A* is the conjugate transpose of A. 
This may be used to deduce that if A is square of order n and has eigenvalues A I, 11. 2 , ••• , An, 

then 

(8) 

with equality if and only if A is normal (that is, if and only if A is unitarily equivalent to a diagonal 
matrix). This happens if and only if AA*=A*A. Inequality (8) is known as Schur's inequality. 

A consequence of (8) is that if A is any eigenvalue of A, then 111.1 ~ F(A). In fact any matrix 
norm has this useful property, which we state as a theorem: 
THEOREM 1: Let A be a square matrix with arbitrary complex entries. Let 'A be any eigenvalue of 
A. Then if N is any matrix norm, 

(9) 

PROOF: Let x be a nonzero eigenvector corresponding to A, so that Ax= Ax. Then 

IAIN(x) = N(AX) 

=N(Ax) 

~N(A)N(x), 

so that 

since N (x) ~ O. This completes the proof. 

66 



Thi s result provides a useful criterion for the convergence of a certain power series. Let A be 
square. It is well· known that the series [+ A + At + ... converges if and only if every eigenvalue 
of A is of modulus less than 1, in which case [-A is nonsingular and the sum of the series is (I - A) - I 
(a proof may be found in [4J). Thus Th eorem 1 has the useful corollary that if N (A) < 1, where N is 
any matrix norm , then [ - A is non singular and the series [+ A + At + ... converges to (I - A) - I. 
Since the convergence of thi s seri es underlies ma ny ite rative schemes used in matrix computations, 
the corollary is a valuable one. 

3. Error Bounds for Approximate Inverses 

Now s uppose that A is a square nonsingular matrix , and that so me computational scheme has 
been used to determine an approximate inverse X of A. Put R = [-AX. The fact that R is close to the 
o matrix does not necessarily imply that X is close to A - I . A simple example which illustrates this 
phenomenon is furnished by choosing 

(
n2 + n 

X= 
., -n--n 

wh ere n is large. then 

0) (-n o ' A -'-X= n 

so that R i s arbitrarily close to the 0 matrix although X is arbitrarily far from A - I . 

W e are entitled to ass ume that R (which ideally should be 0) sati s fi es N (R) < 1 for so me matrix 
norm N, s ince otherwise X cannot eve n be co nsidered an approximation to A - I. W e now prove the 
following, whi c h is the main result of thi s article: 
THEOREM 2: Let A be a square nonsinguLar matrix and X an approximate inverse of A such that 
N(R) < 1, where R = I - Ax and N is some matrix nann. Then 

(10) 
N(XR) 

--'-:--::-::':- ~ 
1 + N(R) 

N(XR) N(X)N(R) 
(A - I - X ) ~ 1 _ N(R) ~ 1 - N(R) . 

PROOF: Sjnce N(R) < 1, [ - R is nonsing:ular and the power se ri es 1 + R + R 2 + ... converges 
to (/ -R )- '. Thu s we ha ve 

Hence 

AX=I-R, 
X - lA - I = (l-R) - '=[+R+R2+. 

A - ' -X= XR+XR 2+ . .. , 
N(A - ' - X) ~ N(XR) + N(XR2) +. 

~ N(XR) + N(XR)N(R) + . 
N(XR) 
I-N(R)" 

Thus since N(XR) ~ N(X)N(R), th e upper bounds given by (10) are valid. 
For the lowe r bound , we have 
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so that 

This completes the proof. 

R=/-AX, 

XR=X-XAX 

=(A- I-X)AX 

= (A - I-X)(I-R) 

= (A - I-X) - (A - I_X)R, 

N(XR) =N{ (A - I-X) - (A - I-X)R} 

~ N(A-I - X) + N{ (A - I - X)R} 

~ N(A-I-X) + N(A-I-X)N(R) 

=N(A-l_X) {l + N(R)}, 

N(XR) <N(A-I-X) 
l+N(R) ~ . 

It follows that for all practical purposes N(A - I-X) may be replaced by N(XR). 
Results elaborating on Theorem 2, and applications to the evaluation of programs for matrix 

inversion, may be found in [1] and [2]. 
Theorem 2 provides the theoretical basis for inserting absolute error checks into any matrix 

inversion program, using only the information supplied to the computer and the output of the pro· 
gram. In programs which incorporate an "iterative improvement" feature there is no time loss at 
all in doing so, since the new approximant X' is computed from the odd approximant X and the reo 
sidual R = / - AX by means of the formula 

X' =X +XR, 

so thatXR must be calculated in any case. For matrices of moderate order , say at most 50, the time 
involved in computing XR is negligible and the sharp error bound should be used. For matrices of 
large order one multiplication may be saved by computing only R and using the weaker upper 
bound. We note parenthetically that the computation of XR must generally be carried out in double 
or higher precision , if it is to be used for iterative improvement. 

4. Error Bounds for Approximate Solutions 

The corresponding question for the solution of a linear system Ax = b, where the output is a 
single vector which is an approximate solution of the system, does not seem capable of being 
answered so simply and completely. However, a very good relative check exists in this situation 
which is easily incorporated into any program to find x = A - lb. 

Let E be the vector (1,1 , ... , IF, so that r=AE is the vector whose coordinates are the row sums 
of A (and so available from the data). Adjoin r to the system and solve A (x, y) = (b, r) , the exact 
solution of which is (x, y)= (A - Ib, A - Ir ) = (A-Ib, E) . Then the maximum deviation from 1 in the 
coordinates of the computed vector y is an excellent indication of the maximum deviation fromA - lb 
in the computed vector X. This checking procedure is both simple and effective and is readily in· 
corporated into any program which finds x = A - I b. 

5. References 
[1] Fitzgerald, K. E. , Error estimates for the solution of linear algebraic systems. 1. Res. Nat. Bur. Stand. (U.S.) , 748 (Math. 

Sci.), No.4, 251-310 (Oct.-Dec. 1970). 
[2] Fitzgerald, K. E., Comparison of some FORTRAN programs for matrix inversion, J. Res. Nat. Bur. Stand (U.S.), 788 

(Math. Sci.) No.1, (Jan.-Mar. 1974). 
[3] Householder, A. S., The theory of matrices in numerical analysis. (Blaisdell, New York. 1964). 
[4] Newman, M., Matrix computations, Survey of numerical analysis , 1. Todd, editor, (McGraw-Hill , New York, 1962). 

(Paper 78B2-399) 

68 


	jresv78Bn2p_65
	jresv78Bn2p_66
	jresv78Bn2p_67
	jresv78Bn2p_68

