On Characters of Subgroups*

Russell Merris**

(October 16, 1973)

Let H be a subgroup of G. Let χ be an irreducible character of H. Let χ^G be the character of G induced by χ. The irreducibility of χ^G is discussed. In particular, if H is normal in G, then χ^G is irreducible if and only if χ cannot be extended to any subgroup of G which properly contains H.

These results have application to the determination of irreducibility of a class of representations of the full linear groups.

Key words: Frobenius Reciprocity Theorem.

I. First Introduction

Let H be a subgroup of G. Let χ be an irreducible complex character of H. In the course of the author’s study of a class of representations of the full linear group, the following criterion arose:

Condition 1. There is an irreducible character λ of G such that $(\lambda, \chi)_H = 1$, and $(\xi, \chi)_H = 0$, for every irreducible character ξ of G different from λ. (Here, of course,

$$(\xi, \chi)_H = \frac{1}{o(H)} \sum_{h \in H} \xi(h) \chi(h^{-1}).$$

It turns out that when $G = S_m$, the symmetric group, Condition 1 is equivalent to the irreducibility of a certain representation of the full linear group [3]. The main purpose of this (essentially expository) note is to investigate character theoretic statements which are related to Condition 1.

II. Second Introduction

Let H be a subgroup of G and let χ be an irreducible character of H. Can we obtain from this situation any information about the irreducible characters of G? It would be most pleasant, for example, if χ could be extended to a character of G. But, this is not always possible.

One general method to obtain a character of G from χ goes as follows: Define χ^* on G by $\chi^*(h) = \chi(h)$ for $h \in H$, and $\chi^*(g) = 0$ for $g \in G \setminus H$. then

$$\chi^G(g) = \frac{1}{o(H)} \sum_{f \in G} \chi^*(f^{-1}g) \chi(f), \quad g \in G,$$

turns out to be a character of G whose degree is $\chi(id) [G : H]$. It is called the character of G induced by χ [1, 2].

AMS Subject Classification: Primary 20C15; Secondary 15A69, 20G05.

*An invited paper.

**Present address: Instituto de Física e Matemática, Av. Gama Pinto, 2, Lisbon, 4 (Portugal).

Figures in brackets indicate the literature references at the end of this paper.
Now, of course, we would like to know something about χ^G. For example, is it an irreducible character? In general, the answer is no. We are indebted to Frobenius for the following very useful result:

(Frobenius Reciprocity) Theorem: Let H be a subgroup G. Let χ and λ be characters of H and G respectively. Then

$$(\chi, \lambda)_H = (\chi^G, \lambda)_G.$$

As we shall see, the irreducibility of χ^G is related to the extendability of χ.

III. Results

Suppose $g \in G$. We let χ^g denote the character of gHg^{-1} defined by

$$\chi^g(gHg^{-1}) = \chi(h), \quad h \in H.$$

Theorem 1: Let H be a subgroup of G. Let χ be an irreducible character of H. The following are equivalent

a. Condition 1.

b. χ^G is irreducible (in fact $\chi^G = \lambda$).

c. For all $g \in G\setminus H$, χ^g and χ are different characters of $H \cap gHg^{-1}$.

Theorem 2: If χ^G is irreducible, then χ cannot be extended to any subgroup of G which properly contains H.

Unfortunately, the converse of Theorem 2 is not true in general. For example, let $G = S_4$. Let H be the subgroup generated by $\{(14)(23), (1234)\}$. (Then H is the dihedral group D_4 of order 8.) Let χ be the irreducible character of H of degree 2. The only subgroup of G which properly contains H is G itself, and χ does not extend to G. The character χ^G, of degree 6, is the sum of the two inequivalent characters of G of degree 3.

When H is normal in G, however, the converse does hold.

Theorem 3: Let H be a normal subgroup of G. Let χ be an irreducible character of H. If χ cannot be extended to any subgroup of G which properly contains H, then χ^G is irreducible.

In this connection, we point out a recent result of Roth [4, Theorem 3.1].

(Roth's) Theorem. Let ξ be a character of G of degree 1. Let $H = \ker \xi = \{g \in G : \xi(g) = 1\}$. Suppose there exists an irreducible character λ of G such that $\lambda \xi = \lambda$. Then there exists an irreducible character χ on H such that $\chi^G = \lambda$.

IV. Proofs

We begin with Theorem 1. The equivalence of a and b is immediate from the Frobenius Reciprocity Theorem, i.e., $\chi^g = \lambda$ if and only if $(\lambda, \chi)_H = 1$, and $(\xi, \chi)_H = 0$, for every irreducible character ξ of G different from λ. The equivalence of b and c is Theorem (45.2)' of [1].

The proof of Theorem 2 is equally straightforward. If χ^G is irreducible, then (by Theorem 1) for all $g \in G\setminus H$, χ^g and χ are different on $H \cap gHg^{-1} \subset <H, g>$, the group generated by H and g. Thus, since characters are class functions, χ cannot be extended to $<H, g>$.

We proceed to the proof of Theorem 3.

Lemma: Let H be a normal subgroup of G. Let χ be an irreducible character on H. Then χ can be extended to $<H, g>$ if and only if $\chi^g = \chi$.

36
Proof: As above, necessity is clear. Suppose, then, that \(\chi(g^{-1}hg) = \chi(h) \) for all \(h \in H \). Let \(h \to A(h) \) be an irreducible representation of \(H \) affording \(\chi \). Define

\[
B(h) = A(g^{-1}hg), \quad h \in H.
\]

Then \(h \to B(h) \) is a representation of \(H \) which affords \(\chi \). It follows that \(A \) and \(B \) are equivalent. Let \(U \) be nonsingular such that

\[
B(h) = U^{-1}A(h)U, \quad h \in H. \tag{1}
\]

Now, let \(r \) be minimal such that \(g^r \in H \). Observe

\[
A(g^{-r})A(h)A(g^r) = A(g^{-r}hg^r) = A(g^{-1}g^{-r+1}hg^r) = B(g^{-r+1}hg^r) = U^{-1}A(g^{-r+1}hg^r)U = \ldots = U^{-r}A(h)Ur.
\]

Thus, \(A(g^r)U^{-r} \) commutes with \(A(h) \) for all \(h \in H \). It follows from Schur’s Lemma that \(A(g^r)U^{-r} \) is a scalar matrix \(S \). We now replace \(U \) in (1) with \(U \) times any scalar \(r \)-th root of \(S^{-1} \), i.e., we may assume that \(Ur = A(g^r) \).

Next, we define \(R \) on \(<H, g> \) by

\[
R(hg^k) = A(h)U^k
\]

for all \(h \in H \) and \(k = 0, 1, \ldots, r-1 \). We claim \(R \) is a representation of \(<H, g> \). Observe

\[
R(h_1g^s)R(h_2g^t) = A(h_1)U^sA(h_2)U^t \tag{2}
\]

and

\[
R(h_1g^s)R(h_2g^t) = R(h_1h_2g^{s+t}) = A(h_1)A(h_2)U^{s+t}, \tag{3}
\]

where \(h_2' = g^r h_2 g^{-r} \). To obtain equality between (2) and (3), it remains to show that

\[
U^sA(h_2) = A(h_2')U^s.
\]

But, this follows as above. This establishes our claim that \(R \) is a representation of \(<H, g> \). Since the restriction of \(R \) to \(H \) is \(A \), the character afforded by \(R \) extends \(\chi \). The proof of the lemma is complete.

Now, to complete the proof of Theorem 3, we appeal to the implication \(c \to b \) of Theorem 1.\(^2\)

Since \(gHg^{-1} = H \), this implication establishes that \(\chi^G \) is irreducible if \(\chi \neq \chi^g \) for all \(g \in G \setminus H \), i.e., by the lemma, if \(\chi \) cannot be extended to \(<H, h> \) for all \(g \in G \setminus H \).

Corollary: Let \(H \) be a normal subgroup of \(G \). Suppose \([G: H] \) is prime. Let \(\lambda \) be an irreducible character of \(G \). Then either the restriction of \(\lambda \) to \(H \) is irreducible or \(\lambda = \chi^G \) for some irreducible character \(\chi \) of \(H \).

\(^2\) For a slightly different proof, one could appeal at this point to [2, (9.11)].
5. References

(Paper 78B1–396)