The Absorption Spectra of Krypton and Xenon in the Wavelength Range 330–600 Å

K. Codling* and R. P. Madden

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(September 20, 1971)

A total of 153 krypton resonances in the spectral region 330-500 Å and 253 xenon resonances in the spectral region 375-600 Å are reported. A detailed listing of the resonances is given, with wavelength and line shape information. The analysis of the spectra is very incomplete and will require detailed theoretical calculation to significantly improve it. In Kr, 45 resonances and in Xe, 56 resonances have been grouped into probable Rydberg series, for which classifications are suggested. The resonances are due, in the main, to either the excitation of the inner subshell "s" electron $(s^2p^6 \rightarrow sp^6np)$ or to the excitation of two of the outer "p" electrons simultaneously $(s^2p^6 \rightarrow s^2p^4nln'l')$. These highlying excited states autoionize, resulting in resonances with window-, asymmetric-, or absorption-type profiles. Where possible, comparisons are made with previous work.

Key words: Autoionization; far ultraviolet; krypton; photoionization; resonances; xenon.

1. Introduction

This communication is intended as the final report on the absorption spectra of the noble gases He through Xe, observed in the wavelength range 80–600 Å. Earlier papers have dealt with the discovery and analysis (in some cases tentative) of the structure in the photoionization continuua of He[1],¹ Ne[2], and Ar[3]. We present here the spectra of Kr and Xe in the wavelength range 330–600 Å. Two previous publications have described the structure observed between 80 and 200 Å, due to the excitation of a single innershell d electron[4] and also the simultaneous excitation of an outer-shell p and an inner-shell d electron[5]. (The excitation of the outer p electron had been observed many years before [6].)

In the wavelength range 400-500 Å, Samson [7] observed two distinct resonances in the photoionization continuum of Kr using a many-lined spark discharge as a background source. Subsequently, many more autoionizing states in both Kr and Xe between 380 and 600 Å were reported [8] and recently, highlights of the present, more detailed experimental observations of the Kr and Xe spectra have been published [9]. In an accompanying paper [10], absolute cross-section measurements were made in the region of some of the more prominent resonances.

The following analysis of the Kr and Xe spectra is necessarily far from complete. The breakdown of strict L-S coupling, evident throughout the Ar spectrum, is even more pronounced in Kr and Xe. Consequently, considerable theoretical work is required, of an *ab initio* type, before a reasonable analysis of the Kr and Xe spectra can be made. In the hope of stimulating such calculations on noble gas atoms, we present here final numbers on wavelengths of the resonances observed, along with a rough guide as to the profiles of some of the resonances. The accompanying spectra and densitometer traces together with the published resonance profiles [10] may be helpful in comparing theoretical predictions with the experimental observations, at least for the low-lying levels.

2. Experimental Procedure

The spectra shown in figure 1 were taken using a three-meter grazing-incidence spectrograph [11]. The grating of 600 lines per mm and a 0.01 mm spectrograph entrance slit yielded a resolution of 0.06 Å. The source of continuum was provided by the radiation emitted by the NBS-SURF (Synchrotron Ultraviolet Radiation Facility). For this synchrotron the radiated power per unit wavelength peaks at 335 A. Spectra were photographed from 80-600 Å with a grating blazed at 200 Å. The noble gas filled the spectrograph at pressures typically in the range of 0.01 to 0.10 torr, with absorption path lengths between entrance slit and plate of the order of 1 m. Since the synchrotron continuum is free from overlying emission and absorption lines, any features observed were due to the gas itself.

The spectra were photographed on Eastman SWR plates.² Wavelength calibration was obtained by super-

^{*}Present Address: University of Reading, Physics Department, Whiteknights Park, Reading, Berks, England.

¹ Figures in brackets indicate the literature references at the end of this paper.

² A commercial material is identified in this paper in order to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Bureau of Standards.

(The background continuum cross section varies by over a factor of 3 through this region.) Black denotes' absorption and therefore the prominent series of resonances due to the excitation of the subshell 4s electron to outer p orbitals are of the "window" type. The remaining resonances are due to the simultaneous excitation of two 4p electrons. Such resonances, grouped in series B, C, F, and G, are listed in table 3.

Lower Spectrum. The absorption spectrum of Xe between 425 and 600 Å, taken at three different pressures.

(The background continuum cross section varies by over a factor of 4 in this region). The prominent series of "window" resonances labeled A, are due to the excitation of a subshell 5s electron to outer p orbitals. Short series labeled C, D, and I are due to simultaneous excitation of two 5p electrons and are listed in table 4.

imposing the absorption spectrum of He on the Kr and Xe spectra and by using the previously determined fact that wavelengths could be reliably predicted, by application of the grating equation, to an accuracy of at least 0.01 Å. As an additional check, where long Rydberg series existed, use was made of the fact that such series converge in the limit to a well established state of Kr II or Xe II. In the cases where only small perturbations exist good quantum defects were obtained using known limits and the measured wavelengths of the Rydberg series lines.

3. Classification of Spectra

The ground state of Kr is $4s^24p^{6}$ $^{1}S_0$, that of Xe $5s^25p^{6}$ $^{1}S_0$. The ionization potentials of Kr and Xe are 14.0 and 12.1 eV respectively. Thus, when photons of an energy between 20 and 40 eV are incident upon

these gases, the basic process observed is photoionization. However, as well as exciting an outer p electron to continuum ϵs and ϵd states, it is possible to excite a subshell s electron to p-type orbitals or excite two electrons simultaneously. In the latter case, either two outer p electrons or both an outer p and a subshell selectron can be excited.

Thus, in Kr for example, one may excite to configurations of the type: $4s4p^6np$ and $4s^24p^4nln'l'$ where ll' = sp, pd, sf, df. Transitions of the type $4s4p^5nln'l'$ where ll' = ss, pp, sd etc., have not been positively identified in Kr and Xe, although unidentified resonances exist in the appropriate energy region, and the existence of similar excitations has been fairly well established in Ar [3].

The total line list of 153 resonances in Kr and 253 resonances in Xe are listed in terms of their wave-

length, wavenumber and resonance type in tables 1 and 2. By resonance type we mean the following. When a high-lying discrete state such as the $4s4p^{6}5p$ state of Kr is excited by photoabsorption, the lifetime of this excited state is extremely short ($\sim 10^{-13}$ s). The state decays into the adjacent continuum by autoionization, with the ejection of an energetic electron,

the ion being left in its ground or excited state. The interaction of a discrete state with the continuum of states of similar energy and parity has been dealt with by Fano and Cooper [12]. The resonances in the continuum which result from this interaction may be broad, and can have a variety of profiles.

TABLE 1. Code number, wavelength (λ), wave number (ν), and profile type for all observed Kr resonances, listed in order of decreasing
wavelength

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Number	Wavelength (Å)	Wave number (cm ⁻¹)	Comment ^a (Number	Wavelength (Å)	Wave number (cm ⁻¹)	Comment ^a
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$^{ m b}$ 501.23 \pm .05	199509	-sx	52	$421.56\pm.03$	237214	-sx
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$498.83 \pm .05$	200469	-dw	53	$421.23 \pm .03$	237400	-sx
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$^{ m c}*497.50\pm.05$	201005	+dw	54	$420.90 \pm .05$	237586	-sx
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	$496.90 \pm .05$	201248	dw	55	$420.36 \pm .05$	237891	-da
	5	$*496.07 \pm .05$	201584	-dw	56	$419.96 \pm .05$	238118	sa
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$492.52 \pm .05$	203037	-sw	57	$419.74 \pm .05$	238243	sa
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	$488.71 \pm .05$	204620	-dx	58	$419.51 \pm .05$	238373	sa
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$488.06 \pm .05$	204893	-dx	59	$419.10 \pm .10$	238607	da
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9	$472.26\pm.03$	211748	+sw	60	$418.83 \pm .03$	238760	sw
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	$*471.48 \pm .03$	212098	+sw	61	$418.70 \pm .03$	238834	sw
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	$*471.23 \pm .03$	212211	-sw	62	$418.33 \pm .05$	239046	sa
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12	$469.08 \pm .03$	213183	-sx	63	$*417.96 \pm .03$	239257	sa
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	$464.70\pm.10$	215193	-sw	64	$*417.62 \pm .03$	239452	sa
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	$*462.71 \pm .03$	216118	+sw	65	$*417.39 \pm .05$	239584	sa
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15	$461.83 \pm .03$	216530	-sx	66	$*417.22 \pm .05$	239682	sa
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	$460.45\pm.03$	217179	sa	67	$416.76 \pm .05$	239946	sw
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	$459.91 \pm .03$	217434	-sa	68	$416.01 \pm .10$	240379	dw
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	$*458.69 \pm .03$	218012	+sw	69	$a414.78 \pm .10$	241092	sw
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	$457.86 \pm .03$	218407	-sw	70	$413.58 \pm .10$	241791	sw
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	$457.51 \pm .03$	218574	sa	71	$412.79 \pm .05$	242254	+sw
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	$456.67 \pm .03$	218976	sa	72	$412.47 \pm .05$	242442	sw
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	$*456.12 \pm .03$	219241	sw	73	$409.70 \pm .2$	244081	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	$455.29 \pm .03$	219640	-sx	74	$406.85 \pm .10$	245791	aa
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	$*454.73 \pm .03$	219911	sw	15	$405.30 \pm .10$	246731	da
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	$454.01\pm.03$	220259	sa	70	$403.34 \pm .05$ $401.50 \pm .2$	247930	aa dda
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	$*453.73 \pm .03$	220395	sw		$401.50 \pm .2$ $400.22 \pm .07$	249070	aaa da
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	$*453.15 \pm .03$	220677	sw	78	$400.35 \pm .07$ 200.75 ± .07	249794	da
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	$*452.68 \pm .03$	220907	sw	79	$399.75 \pm .07$	250150	aa
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29	$*452.34 \pm .03$	221073	sw	80	$399.30 \pm .10$	200400	aa
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30	$*452.07 \pm .03$	221205	sw	81	$396.77 \pm .10$	252055	-aw
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	$451.98 \pm .03$	221249	sw	82	$394.24 \pm .07$	200000	aa
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	$*451.86 \pm .03$	221307	sw	83	$393.50 \pm .07$	254150	aa
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	$*451.69 \pm .03$	221391	sw	84	$392.70 \pm .07$	254047	aa J_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	$*451.56 \pm .03$	221455	sw	85	$391.83 \pm .05$	255215	aa
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	$*451.45 \pm .03$	221508	sw	00	$^{+}391.44 \pm .03$	255407	sa
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	$450.16 \pm .03$	222143	-sw	87	$^{\circ}390.49 \pm .05$	250000	aa
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	$449.93 \pm .03$	222257	+sw	00	$390.04 \pm .03$ *200.49 ± .05	256752	sa
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	$449.22 \pm .03$	222608	-sw	09	$309.40 \pm .03$	250755	da
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	$448.29 \pm .03$	223070	+sw	90	$300.04 \pm .03$ $*200.27 \pm .05$	257175	aa
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	$446.54 \pm .05$	223944	-sx	91	$300.37 \pm .03$	257600	sa
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	$444.02 \pm .03$	225215	+ sx	92	$300.03 \pm .03$ $*207.70 \pm .05$	257099	sa
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.2	$439.00 \pm .2$	227790	dw	95	$307.79 \pm .03$ *297.60 ± .05	257002	sa
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	$434.30 \pm .05$	230256	-dw	94	$307.00 \pm .03$ 207.45 ± 05	257990	sa
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.4.	$433.98 \pm .05$	230425	SW2	95	$307.43 \pm .03$ *387.09 ± .05	250090	-da
46 $426.53 \pm .05$ 234450 $-da$ 97 $380.20 \pm .05$ 256933 $-da$ 46 $426.53 \pm .05$ 234450 $-da$ 98 $385.45 \pm .07$ 259437 sa 47 $425.33 \pm .07$ 235112 da 99 $*385.03 \pm .05$ 259720 $-sw$ 48 $424.05 \pm .05$ 235821 dw 100 $384.38 \pm .05$ 260159 sa 49 $423.61 \pm .05$ 236066 sw 101 $*384.03 \pm .05$ 260396 $-sw$ 50 $423.17 \pm .07$ 236312 dw 102 $383.47 \pm .05$ 260777 sa	45	427.15 ± 03	234110	sa	90	$307.00 \pm .03$ 206.26 ± .05	230345	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	426.53 ± 05	234450	-da	97	$380.20 \pm .03$	250095	- <i>aa</i>
48 $424.05 \pm .05$ 235821 dw 100 $384.38 \pm .05$ 260159 sa 49 $423.61 \pm .05$ 236066 sw 101 $*384.03 \pm .05$ 260396 $-sw$ 50 $423.17 \pm .07$ 236312 dw 102 $383.47 \pm .05$ 260396 $-sw$ 50 $423.17 \pm .07$ 236312 dw 102 $383.47 \pm .05$ 260777 sa	47	$425, 33 \pm 07$	235112	da	90	$303.43 \pm .07$ *385 03 ± 05	259457	-su
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	$424.05 \pm .01$	235821	du	100	$384 38 \pm 05$	260150	sa
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	$423.61 \pm .05$	236066	sw	101	*384 03 + 05	260396	- 540
$\frac{100}{120,112}$, $\frac{101}{100}$, $\frac{100012}{100}$, $\frac{102}{100}$, $\frac{102}{100}$, $\frac{1000000}{100}$, $1000000000000000000000000000000000000$	49	$423.01 \pm .03$ $423.17 \pm .07$	236000	due	102	$383.47 \pm .05$	260777	sa
$51 = 422.58 \pm .03 = 230642 = sa = 103 = 383.22 \pm .05 = 260947 = sa$	51	$422.58 \pm .03$	236642	sa	102	$383.22 \pm .05$	260947	sa

3

TABLE 1.	$Code number, wavelength (\lambda), wave number (v), and profile type for all observed Kr resonances, listed in order of decreasing$
	wavelength-Continued

Number	Wavelength (Å)	Waye: number (cm ⁻¹)	Comment ^a	Number	Wavelength (Å)	Wave number (cm ⁻¹)	Comment ^a
					*267.00.07		
104	$382.95 \pm .05$	261131	sa	129	$*367.03 \pm .05$	272457	+sa
105	^a $382.45 \pm .05$	261472	da	130	$*366.70 \pm .05$	272702	+sa
106	$382.07 \pm .05$	261732	sa	131	$^{+306.49 \pm .05}$	272859	+sa
107	$381.87 \pm .05$	261869	sa	132	$365.50 \pm .2$	273600	dda
108	$381.51 \pm .05$	262116	sa	133	$363.80 \pm .2$	274880	dda
109	$381.31 \pm .05$	262254	sa	134	$362.70 \pm .2$	275710	sa
110	$380.80 \pm .05$	262605	sa	135	$362.30 \pm .2$	276010	sa
111	$379.30 \pm .2$	263640	dda	136	$361.90 \pm .2$	276320	sa
112	$*378.97 \pm .05$	263873	sa	137	$359.60 \pm .2$	278090	sa
113	$*378.65 \pm .05$	264096	sa	138	$358.20 \pm .2$	279170	sa
114	$*378.43 \pm .05$	264250	sa	139	$357.30 \pm .2$	279880	sa
115	$*378.23 \pm .05$	264389	sa	140	$356.50 \pm .2$	280500	sa
116	$375.03 \pm .2$	265390	dda	141	$^{d}355.60 \pm .2$	281210	da
117	$5.03 \pm .05$	266645	sa	142	$354.80 \pm .2$	281850	da
118	$374.66 \pm .05$	266909	sa	143	$354.40 \pm .2$	282170	da
119	$374.20 \pm .05$	267237	sa	144	$350.30 \pm .2$	285470	da
120	$373.00 \pm .2$	268100	dda	145	$349.30 \pm .2$	286290	da
121	$371.86 \pm .05$	268918	sa	146	$348.30 \pm .2$	287110	da
122	$371.37 \pm .05$	269273	sa	147	$347.00 \pm .2$	288180	da
123	$*370.87 \pm .05$. 269636	sa	148	$345.10 \pm .2$	289770	dda
124	$*370.13 \pm .05$	270175	sw	149	$343.50 \pm .2$	291120	da
125	$*369.13 \pm .05$	270907	sa	150	$342.30 \pm .2$	292140	sa
126	$*368.60 \pm .05$	271297	sw	151	$341.80 \pm .2$	292570	sa
127	$*368.14 \pm .05$	271636	sa	152	$341.10 \pm .2$	293170	sa
128	$*367.56 \pm .05$	272064	+sa	153	$337.40 \pm .3$	296380	da

^a Sign plus (+) or minus (-) represents the sign of q in the Fano [12] representation of noninteracting resonances. The letters s, d, dd, give a very rough idea of the sharpness or diffuseness of lines on a photographic plate. Naturally, this apparent width varies with gas pressure. The letters x, w or a indicate specifically if the resonance has been measured at (x) the point of highest rate of change of plate density, (w) the point of maximum plate density, or (a) the point of minimum plate density (maximum absorption); e.g., sw means a sharp resonance of low unknown (q) measured at the peak transmission point.

^b Errors shown represent the estimated absolute uncertainty. In the case of Kr the relative accuracies are of the order of 0.02 Å better than the estimated absolute uncertainty.

^c Resonances denoted by an asterisk (*) are listed in table 3 as possible members of Rydberg series.

^d Possible double resonance.

Number	Wavelength(Å)	Wave number (cm^{-1})	Comment ^a	Number	Wavelength(Å)	$\begin{tabular}{l} Wave number \\ (cm^{-1}) \end{tabular}$	Comment ^a
1	$^{b}599.99 \pm .05$	166669	sw	17	$556.51 \pm .02$	179691	+sx
2	$595.93 \pm .03$	167805	-sw	18	$555.52 \pm .02$	180012	-sw
3	$c*591.77 \pm .03$	168985	+ dw	19	$555.28 \pm .02$	180089	sw
4	$589.54 \pm .02$	169624	-sw	20	$552.31 \pm .02$	181058	+sx
5	$586.29 \pm .02$	170564	-sw	21	$552.00 \pm .02$	181159	sw
6	$582.74 \pm .02$	171603	-sx	22	$*550.76 \pm .02$	181567	+sx
7	$581.11 \pm .02$	172084	sw	23	$549.60 \pm .02$	181951	sa
8	$579.98 \pm .02$	172420	sw	24	$549.19 \pm .05$	182086	sa
9	$579.16 \pm .02$	172664	-sw	25	$548.14 \pm .02$	182435	sa
10	$570.79 \pm .02$	175196	sw	26	$547.79 \pm .02$	182552	sa
11	$570.47 \pm .05$	175294	sw	27	$546.88 \pm .02$	182855	sa
12	$562.39 \pm .02$	177813	sa	28	$*546.08 \pm .02$	183123	+sw
13	$560.64 \pm .05$	178368	-sa	29	$545.26 \pm .02$	183399	sw
14	$560.44 \pm .05$	178431	+sa	30	$544.95 \pm .05$	183503	sa
15	$558.78 \pm .02$	178961	-sx	31	$*544.18 \pm .02$	183763	-sx
16	$*557.83 \pm .02$	179266	+sw	32	$543.89 \pm .02$	183861	+sw

TABLE 2. Code number, wavelength (λ) , wave number (ν) , and profile type for all observed Xe resonances, listed in order of decreasing wavelength

4

Number	Wavelength (Å)	Wave number (cm ⁻¹)	Comment ^a	Number	Wavelength(Å)	Wave number (cm ⁻¹)	Comment ^a
33	$543.49 \pm .05$	183996	sw	95	$499.74 \pm .03$	200104	-sw
34	$541.95 \pm .02$	184519	sa	96	$498.54 \pm .03$	200586	sa
35	$^{d}541.46 \pm .05$	184686	sa	97	$497.33 \pm .05$	201074	sw
36	$540.62 \pm .02$	184973	sw	98	$497.06 \pm .05$	201183	+sx
37	$*540.54 \pm .02$	185000	sw	99	$496.11 \pm .05$	201568	da
38	$*539.33 \pm .02$	185415	-sx	100	$495.69 \pm .10$	201739	sa
39	$537.75 \pm .02$	185960	sa	101	$495.42 \pm .05$	201849	sw
40	$*537.46 \pm .02$	186060	sw	102	$495.15 \pm .05$	201959	sw
41	$537.38 \pm .02$	186088	sw	103	$495.02 \pm .05$	202012	sa
42	$537.22 \pm .02$	186143	sw	104	$494.39 \pm .05$	202209	-sw
43	$536.83 \pm .02$	186279	-sw	105	$493.80 \pm .05$ $402.42 \pm .05$	202511	-sa
44	$535.95 \pm .02$	180585	—sa	100	$493.42 \pm .05$	202007	-sa
45	$^{+}535.55 \pm .02$	100724	sw	107	$492.91 \pm .03$	202877	sa
40	$333.13 \pm .02$ *524.59 ± .02	187063	sx sx	108	$492.10 \pm .2$	203210	dda
47	$334.30 \pm .02$ * 524.27 ± .02	107005	-51	109	$491.22 \pm .03$	203575	-sw
40	d*522 24 + 05	187498	sw	110	$490.20 \pm .05$	203998	-sx
49	$533.04 \pm .03$	187617	-sw	111	$489.93 \pm .05$	204111	sa
50	$*532.00 \pm .02$ $*532.76 \pm .02$	187702	SW	112	$489.00 \pm .03$ $490.10 \pm .02$	204225	sa
52	$532.70 \pm .02$ $532.06 \pm .02$	187949	-sw	113	$489.19 \pm .03$ $499.01 \pm .02$	204420	aa
53	$532.00 \pm .02$ $531.83 \pm .02$	188030	-sw	114	$488.91 \pm .03$ $499.50 \pm .02$	204557	sa
54	$*531.05 \pm .02$ $*531.37 \pm .02$	188193	-sw	115	$400.39 \pm .03$ $400.92 \pm .02$	204071	+ sa
55	$*531.97 \pm .02$ $*531.91 \pm .02$	188249	510	110	$400.25 \pm .05$	204021	+sa
56	$531.21 \pm .02$ $531.04 \pm .02$	188310	SW	117	$487.93 \pm .03$	204947	sa
57	$*530.93 \pm 02$	188349	SW SW	118	$487.79 \pm .03$	205006	sw
58	$*530.83 \pm .03$	188384	SW	119	$487.08 \pm .03$	205052	sw
59	$*530.74 \pm 03$	188416	SIU	120	$487.03 \pm .05$	205320	sw
60	$530.10 \pm .02$	188644	-sw	121	$480.71 \pm .05$ $495.55 \pm .02$	205401	sw
61	$529.94 \pm .03$	188701	SW	122	$403.33 \pm .03$ $495.25 \pm .05$	203932	+sw
62	$*529.34 \pm .02$	188914	SW	125	$403.23 \pm .03$ 492.12 + 05	200079	-sw
63	$528.93 \pm .03$	189061	sa	124	482.20 ± 0.05	200900	50
64	$*528.42 \pm .03$	189243	+ sa	125	481.28 ± 0.05	207303	5W
65	$*528.05 \pm .05$	189376	+sw	120	$480.47 \pm .05$	208130	-sa
66	$526.35 \pm .02$	189988	-lsw	128	478.93 ± 10	208799	$\frac{\partial a}{\partial a}$
67	$526.15 \pm .02$	190060	"sw	129	$478.30 \pm .05$	209074	da
68	$525.86 \pm .02$	190165	sw	130	$477.51 \pm .05$	209420	da
69	$*525.77 \pm .02$	190197	sw	131	$477.12 \pm .05$	209591	sw
70	$525.27 \pm .03$	190378	$-\mu w$	132	$476.77 \pm .05$	209745	sw
71	$521.97 \pm .05$	191582	'sw	133	$476.00 \pm .3$	210080	dda
72	$521.81 \pm .05$	191641	sw	134	$475.19 \pm .05$	210442	sw
73	$521.54 \pm .10$	191740	da	135	$*474.36 \pm .05$	210810	da
74	$518.88 \pm .10$	192723	sa	136	$^{*}473.42 \pm .05$	211229	da
75	$517.24 \pm .10$	193334	da	137	$*472.83 \pm .05$	211492	sa
76	$514.42 \pm .10$	194394	da	138	$*472.36 \pm .05$	211703	sa
77	$513.86 \pm .10$	194606	da	139	$*472.01 \pm .05$	211860	sa
78	$513.27 \pm .10$	194829	da	140	$*471.67 \pm .05$	212013	sa
79	$512.32 \pm .05$	195191	sa	141	$*470.46 \pm .05$	212558	sa
80	$510.46 \pm .05$	195902	sa	142	$*469.40 \pm .05$	21300	sa
81	$509.54 \pm .03$	196255	sa	143	$*468.67 \pm .05$	213370	sa
82	$509.27 \pm .03$	196359	sa	144	$*468.15 \pm .05$	213607	sa
83	$a507.85 \pm .10$	196909	dw	145	$467.72 \pm .05$	213803	sa
84	$506.69 \pm .05$	197359	sw	146	$467.54 \pm .05$	213885	sa
85	$500.30 \pm .05$	197488	+sw	147	$467.02 \pm .05$	214124	da
80	$505.89 \pm .10$	197071	sa	148	$400.30 \pm .2$	214450	aa
87	$505.42 \pm .03$	197855	-sx	149	$405.80 \pm .05$	214084	sa
80	$504.40 \pm .05$	190255	-sx	150	$405.10 \pm .05$ $464.35 \pm .05$	215008	sa
89	$503.04 \pm .05$ $502.97 \pm .05$	190353	-/SX	151	$404.35 \pm .05$ $463.27 \pm .07$	210000	sa
90	$502.07 \pm .05$ $502.12 \pm .02$	190059	-sx	152	$403.27 \pm .07$ $462.63 \pm .07$	215657	sa
91	$502.13 \pm .05$ 501.74 ± .05	100206	-sw	153	$462.03 \pm .07$	210133	sa
92	$501.74 \pm .05$ $501.39 \pm .05$	199300	SW	155	$*461.00 \pm 05$	216920	+ sa
94	500.37 ± 0.05	199852	-sw	156	$460.31 \pm .10$	217245	dda

 $\label{eq:table 2} \begin{array}{l} \text{TABLE 2. Code number, wavelength} \ (\lambda), wave number \ (\nu), and profile type for all observed \ \mbox{Xe resonances} \\ listed in order of decreasing wavelength - \mbox{Continued} \end{array}$

 $\mathbf{5}$

Number	Wavelength(Å)		Comment ^a	Number	$Wavelength({\rm \AA})$		Comment ^a
157	*450.69 + 05	917549		206	*422.21 + 05	991915	da
152	$439.00 \pm .03$ $450.22 \pm .05$	217343	sa da	200	$432.31 \pm .03$ $421.97 \pm .05$	201010	au
150	$409.20 \pm .00$ *458.63 ± .05	217730	aa	207	$431.07 \pm .03$ *421.55 $\pm .05$	201001	sa
159	$+30.05 \pm .05$	210041	sa	200	$431.33 \pm .03$	201720	sa
161	$450.04 \pm .05$	210322	sa	209	$431.20 \pm .03$	201079	sa
101	$450.00 \pm .2$	210910	aa	210	$430.90 \pm .03$	252072	sa
102	$450.71 \pm .07$	210937	-sa	211	$^{+430.03} \pm .05$	232210	sa
103	$450.42 \pm .05$	219090	-sa	212	$^{+}430.45 \pm .05$	232315	sa
104	$455.83 \pm .05$	219380	sa	213	$430.31 \pm .05$	232391	sa
165	$455.40 \pm .05$	219587	sa	214	$429.07 \pm .05$	232737	+sa
166	$454.95 \pm .05$	219804	-sa	215	$428.30 \pm .05$	233448	sa
167	$^{454.34} \pm .05$	220099	-sa	210	$428.14 \pm .05$	233508	sa
168	$454.00 \pm .05$	220264	sa	217	$427.92 \pm .05$	233089	sa
169	$453.70 \pm .05$	220410	sa	218	$426.61 \pm .05$	234406	+sa
170	$*453.42 \pm .05$	220546	-sa	219	$425.88 \pm .05$	234808	da
171	$453.11 \pm .07$	220697	sa	220	$425.51 \pm .05$	235012	da
172	$452.70 \pm .07$	220897	-sx	221	$424.97 \pm .05$	235311	sa
173	$*452.35 \pm .10$	221068	dda	222	$424.47 \pm .10$	235588	da
174	$452.06 \pm .07$	221210	sa	223	$424.02 \pm .10$	235838	da
175	$450.33 \pm .05$	222059	-da	224	$423.43 \pm .10$	236167	aa
176	$449.67 \pm .05$	222385		225	$422.73 \pm .10$	236558	aa
177	$449.15 \pm .05$	222643	da	226	$420.40 \pm .2$	237870	aaa
178	$448.42 \pm .05$	223005	da	227	$418.00 \pm .2$	239230	aaa
179	$448.01 \pm .05$	223209	sa	228	$413.70 \pm .10$	241721	da
180	$447.61 \pm .05$	223409	da	229	$410.30 \pm .10$	243724	aa
181	$445.91 \pm .05$	224260	sa	230	$408.94 \pm .10$	244535	sa
182	$*445.61 \pm .05$	224411	da	231	$408.50 \pm .10$	244798	sa
183	$445.41 \pm .05$	224512	da	232	$407.67 \pm .10$	245296	sa
184	$444.93 \pm .05$	224754	sa	233	$406.32 \pm .10$	246111	sa
185	$444.38 \pm .05$	225033	sa	234	$406.07 \pm .10$	246263	sa
186	$*443.73 \pm .07$	225362	da	235	$404.96 \pm .10$	246938	sa
187	$443.27 \pm .05$	225596	da	236	$404.63 \pm .10$	247139	sa
188	$442.91 \pm .05$	225779	da	237	$403.87 \pm .10$	247604	sa
189	$*442.41 \pm .07$	226035	da	238	$401.90 \pm .2$	248820	da
190	$*441.46 \pm .10$	226521	sa	239	$401.24 \pm .10$	249227	sa
191	$*441.01 \pm .07$	226752	sa	240	$400.90 \pm .10$	249439	sa
192	$*440.59 \pm .07$	226968	sa	241	$399.94 \pm .10$	250038	da
193	$*440.33 \pm .07$	227102	sa	242	$399.56 \pm .10$	250275	da
194	$439.92 \pm .07$	227314	da	243	$399.00 \pm .2$	250630	da
195	$439.30 \pm .07$	227635	da	244	$397.72 \pm .15$	251433	da
196	$438.29 \pm .07$	228159	sa	245	$396.70 \pm .2$	252080	da
197	$437.64 \pm .07$	228498	sa	246	$395.66 \pm .15$	252742	da
198	$437.22 \pm .05$	228718	sa	247	$392.28 \pm .15$	254920	dda
199	$436.82 \pm .05$	228927	sa	248	$387.39 \pm .15$	258138	da
200	$436.60 \pm .05$	229043	sa	249	$385.62 \pm .15$	259323	da
201	$436.15 \pm .05$	229279	+ da	250	$384.56 \pm .15$	260037	da
202	$435.75 \pm .05$	229489	da	251	$383.33 \pm .15$	260872	da
203	$435.16 \pm .05$	229801	sa	252	$377.20 \pm .15$	265111	da
204	$*434.34 \pm .05$	230234	da	253	$375.34 \pm .15$	266425	da
205	$*433.30 \pm 05$	230787	da				

TABLE 2. Code number, wavelength (λ) , wave number (ν) , and profile type for all observed Xe resonances, listed in order of decreasing wavelength – Continued

^a Sign plus (+) or minus (-) represents the sign of q in the Fano [12] representation of noninteracting resonances. The letters s, d, dd, give a very rough idea of the sharpness or diffuseness of lines on a photographic plate. Naturally, this apparent width varies with gas pressure. The letters x w, or a indicate specifically if the resonance has been measured at (x) the point of highest rate of change of plate density. (w) the point of maximum plate density, or (a) the point of minimum plate density (maximum absorption); e.g., sw, means a sharp resonance of low unknown (q) measured at the peak transmission point.

^b Errors shown represent the estimated absolute uncertainty. In the case of Xe the relative accuracies are of the order of 0.02 Å better than the estimated absolute uncertainty.

^c Resonances denoted by an asterisk (*) are listed in table 4 as possible members of Rydberg series.

^d Possible double resonance.

The absorption cross section in the region of a resonance can be parameterized in the form:

$$\sigma(E) = \sigma_a \, \frac{(q+\epsilon)^2}{1+\epsilon^2} + \sigma_b$$

with $\epsilon = (E - E_r)/\frac{1}{2}\Gamma$, where the quantities E and E_r are the photon energy and the resonance energy ($\epsilon = 0$), respectively. The parameter q is the resonance profile index and is defined in terms of transition matrix elements between the ground state, the modified discrete state and the continuum states. The halfwidth of the resonance is Γ , the quantity σ_a is the cross section associated with the fraction of the available continua with which the discrete state interacts, and σ_b is the cross section associated with the fraction of the continua which does not enter into the interaction. The parameter ρ , called the correlation index [12], is

obtained from the relation $\rho^2 = \frac{\sigma_a}{\sigma_a + \sigma_b}$.

Experimentally, when q is positive, a region of low absorption at low energy immediately precedes a region of increased absorption at higher energy. For a negative q, the reverse is true. If q is of the order of 1, the resonance appears quite asymmetric. If q is large and ρ^2 is small, the resonance looks like a conventional Lorentz absorption profile (absorption-type resonance), but if q is close to zero, the resonance has only a reduced-absorption zone (window-type resonance). When possible, in tables 1 and 2 the sign q is given. Where the letter x, a, and w are used, the resonance appears to be an asymmetric, absorption or window-type resonance, respectively, and has been measured as such.

3.1. One-Electron Transitions

The most prominent series should be those associated with one-electron transitions. This was found to be the case in Ne and Ar, and is equally true in Kr and Xe. The ground state of the noble gases is a ${}^{1}S_{0}$. In a photoexcitation process, therefore, the upper state involved must have J=1, regardless of the coupling conditions.

Since strict L-S coupling is not applicable, the strongest Rydberg series would be due to transitions:

Kr:
$$4s^24p^{6} {}^{1}S_0 \rightarrow 4s4p^{6} ({}^{2}S_{1/2})np; n=5, 6$$
. (two $J=1$ components)

Xe:
$$5s^25p^{6} {}^{1}S_0 \rightarrow 5s5p^{6} {}^{2}S_{1/2})np; n=6,7$$
.. (two $J=1$ components)

The upper configurations have only two J=1 states, and transitions to upper states of other J cannot occur due to the rigorous selection rules: $\Delta J=0, \pm 1;$ $0 \neq 0.$

Thus we might expect to resolve at low *n* values, the two J=1 members converging to the known ${}^{2}S_{1/2}$ limits of Kr II or Xe II. (This limit occurs in Kr at 450.62 Å and in Xe at 529.91 Å).

In the case of Kr, we see three "strong" window resonances in the region where the first members of the one-electron excitation series should occur. In Xe, one "strong" resonance and three somewhat weaker resonances are observed. "Strong" in this case means high visibility rather than a large oscillator strength, since the visibility of resonances depends also on the interference effects. Additionally, the ability to see window resonances is photographically enhanced at lower pressures.

The choice of the two J=1 components of the first member of the Rydberg series is by no means unambiguous. The two components chosen in Kr are seen in the top photograph of figure 1 and again in the densitometer trace, figure 2. The resonances are denoted by their code numbers 3 and 5, see table 1. The wavelengths, principal quantum numbers (n) and effective quantum numbers (n^*) are given in table 3, part A. Recent work appears to support the above choice. Reader et al. [13] noted that the effective quantum number of the 5p electron in the $4s4p^{6}5p$ state in the isoelectronic sequence Zr v, Nb vi, and Mo VII consistently differed from the n^* in the $4s^24p^65p$ state of Nb v, Mo vI, and Tc vII by 0.040. Extrapolating this relationship the n^* for the $4s4p^{6}5p$ state of KrI can be obtained from the n^* for the $4s^24p^65p$ state of Rb I (2.289). The result, 2.329, is in good agreement with the value of 2.323 for the assigned resonance to this state in table 3.

In Xe, the most prominent member of the quartet of resonances (Code Nos. 1, 2, 3, 4) has been chosen as the first member of the one-electron excitation series: 3, 16, 28 etc. This series can be seen in the lower photograph of figure 1 and also in the densitometer trace figure 3. The wavelengths and effective quantum numbers are given in table 4, part A. A choice has not been made for the second J=1 component in Xe, although it is likely to be resonance 1 or 2.

Recent work [13] suggests that the main J=1 component in Xe should have an effective quantum number $n^* = 2.391$. If resoance 4 is taken as the first member of the series, its effective quantum number is 2.398. Resonance 3 chosen here gives $n^* = 2.359$. This choice was made upon the basis of the great similarity in resonance profiles of line 3 and the following members of the series, resonances 16 and 28. Figure 3 clearly shows that line 3 is asymmetric, with a low positive q, whereas resonance 4 has a q of the *opposite* sign. In fact, Ederer [10] has shown that the values of q and ρ^2 for resonance 3 are $0.23(\pm .04)$ and $0.65(\pm .03)$, for resonance 4 are $-0.14(\pm .04)$ and $0.50(\pm .04)$ and for resonance 16 are $0.16(\pm .04)$ and $0.67(\pm .02)$. In addition, we can compare the equivalent one-electron excitation states in Ne, Ar, Kr, and Xe and the way in which the first member of the Rydberg series is always depressed (moved to longer wavelengths) relative to a simple theoretical estimate of its location, due to screening effects. The increase in this screening effect from Ne through Kr leads us to expect the strongest J = 1 component in Xe to lie almost exactly where it is. Nevertheless, it is conceivable that configuration interaction may cause resonances to interchange intensi-

FIGURE 2. A microdensitometer trace of the absorption spectrum of Kr in the region 435-500 Å.

The main series of "window" resonances are indicated by vertical lines. Note the two J = 1 components for the n=5 and 6 members. The code numbers alongside the resonances allow determination of their wavelengths (and in some cases classification) via tables 1 and 3.

TABLE 3. Resonances in Kr I grouped as members of possible series converging to the limits indicated

The principal quantum number (n), and effective quantum number (n*) associated with the appropriate series limits are given. The levels in Kr II to which these series converge are arranged in order of increasing energy. Their positions are obtained from data [18] on the Kr II, added to 112915 cm⁻¹, the first ionization energy of Kr I.

$(A) \ \text{Limit:} -4s4p^{6}(^{2}\text{S}_{1}) \\ \hline 5 & 496.07 \\ 11 & 471.23 \\ 14 & 462.71 \\ 18 & 458.69 \\ 22 & 456.12 \\ 24 & 454.73 \\ 26 & 453.73 \\ 27 & 453.15 \\ 28 & 452.68 \\ 29 & 452.84 \\ 30 & 452.07 \\ 32 & 451.86 \\ 33 & 451.69 \\ 34 & 451.56 \\ \end{array}$	$(1/2) = 221915 \text{ cm}^{-1};$ 5 6 7 8 0	Series: - 4s4p ⁶ np 2.323 3.363 4.351 5.303	63 64 65	(B) Unknov 417.96 417.62	vn limit ^a =240300 13) cm ⁻¹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 6 7 8	2.323 3.363 4.351 5.303	63 64 65	417.96 417.62	13	10.26 a (0.35)
32 451.80 33 451.69 34 451.56	9 10 11 12 13 14 15	6.406 7.399 8.498 9.42 10.43 11.41 12.43	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 417.39\\ 417.22\\ \hline \\ (^{1}S)5s (^{2}S_{1/2}\\ \hline \\ 391.44\\ 390.49\\ 389.48\\ 388.84\\ 388.84\\ 390.37\\ \hline \\ \end{array}$	$ \begin{array}{r} 14 \\ 15 \\ 16 \\ \end{array} $ $ \begin{array}{r} = 258727 \text{ cm}^{-1}; \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
35 451.45 Second series of tw 3 497.50 10 477.49	16 17 18 19	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	91 92 93 94 96 (D) Limit: - 4	388.37 388.05 387.79 387.60 387.08 p ⁴ ('D)4d (² D 385.03 284.02	$ \begin{array}{r} 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 5/2) = 262429 \text{ cm}^{-1} \\ 9 \\ 10 \end{array} $	9.41 10.33 11.33 12.27 13.21 -1; Series: $-4p^{4}4dnp$ 6.37 7.25

TABLE 3. Resonances in Kr1 grouped as members of possible series converging to the limits indicated - Continued

Code number	$\lambda \; ({\rm \AA})$	n	n^*	Code number	$\lambda({\rm \AA})$	n	n*
(E) Limit: -4	$P_{1/2}) = 265100 \text{ cm}^{-1}; S$	Series: -4p44dnp					
112 113 114 115	378.97 378.65 378.43 378.23	12 13 14 15	9.46 16.46 11.36 12.43	127 128 129 130 131	368.14 367.56 367.03 366.70 366.49	10 11 12 13 14	7.27 8.17 9.36 10.44 11.35
(F) Limit ^b : $-4p^4$ (¹ D) $4d$ (² S _{1/2}) = 273710 cm ⁻¹ ; Series: $-4p^44dnp$			(G) Limit: -4	$p^4({}^1S)4d({}^2D)$	$_{5/2})=273927 \text{ cm}^{-1}; S$	Series: $-4p^44dnp$	
123 125	370.87 369.13	8	5.19 6.26	124 126	370.13 368.60	8 9	5.41 6.46

The principal quantum number (n), and effective quantum number (n*) associated with the appropriate series limits are given. The levels in Kr II to which these series converge are arranged in order of increasing energy. Their positions are obtained from data [18] on the KrII, added to 112915 cm⁻¹, the first ionization energy of KrI.

^a The nearest known limit [18] is (¹D)5s(²D_{3/2}) at 240512 cm⁻¹. One could assume this limit to be the apppropriate one, giving the values of n^* shown in parentheses. Noninteger difference in n^* through the series could possibly be explained by configuration interaction effects.

^b This limit was previously assigned [19] to $4p^4({}^{3}\text{P})5d({}^{4}\text{P}_{1/2})$. It was recently reassigned [18] by Minnhagen.

The main series of "window" resonances is denoted by vertical lines. The code numbers allow determination of wavelengths (and in some cases classification) via tables 2 and 4. The absorption feature labeled X, is the third order of an absorption line [4] at 190.41 Å.

TABLE 4. Resonances in Xe I grouped as members of possible series converging to the limits indicated

The principal quantum number (n) and effective quantum number (n*) associated with the appropriate series limits are given. The levels in Xe II to which these series converge are obtained by adding 97834 cm⁻¹, the lowest ionization energy of Xe I, to terms [19] of Xe II.

Code number	λ (Å)	n	n*	Code number	λ (Å)	n	n^*
(A) Limit:-	$-5s5p^{6(^{2}S_{1/2})} = 1887$	708 cm ⁻¹ ; Sei	ries: $-5s5p^6np$	(E) Limit: -5	$5p^4(^{3}P)6p(^{4}D_{3/2}) = 21$	4617 cm ⁻¹ ; Sei	ies: $-5p^46pnd^{-d}$
3 16 28 ^a 37 40	591.77 557.83 546.08 540.54 537.46	6 7 8 9	2.359 3.409 4.433 5.440 6.429	141 142 143 144	470.46 469.40 468.67 468.15	10 11 12 13	7.30 8.34 9.38 10.42
45 48 ^b 40	535.55 534.27 533 34	10 11 12 13	7.437 8.450 9.52	(F) Limit:	$5p^4(^{3}P)6p(^{4}S_{3/2}) = 21$	9463 cm ⁻¹ ; Sei	ries:-5p46pnd
51 55 57	532.76 531.21 530.93	13 14 19 21	9.52 10.44 15.47 17.48	153 157 159 160	459.68 458.63 458.04	10 11 12	7.56 8.78 9.80
58 59	530.83 530.74	22 23	18.41 19.39	(G) Limit:-	$5p^{4}({}^{1}S)5d({}^{2}D_{3/2}) = 22$	22136 cm ⁻¹ ; Set	ries: $-5p^{4}5dnp$
(B) Limit:-	$5p^4(^{3}P)6s(^{4}P_{5/2}) = 190$	0902 cm ⁻¹ ; S	eries: $-5p^46snp^5$	167 170	454.34 453.42	11 12	7.34 8.31
22 38	550.76 539.33	7 8	$3.429 \\ 4.472$	173	452.35	13	9.41
47 54	534.58 531.37	9 10	$5.346 \\ 6.364$	(H) Limit: -	$5p^{4(1}D)6p^{(2}F_{7/2}) = 22$	27898 cm ⁻¹ ; Se	ries:-5p46pnd
62 65	529.34 528.05	11 12	7.431 8.480	182 186	445.61 443.73	8 9	5.61 6.58
(C) Limit:-5	$5p^4({}^3\mathrm{P})6s({}^4\mathrm{P}_{3/2}) = 192$	2898-cm ⁻¹ ; Se	eries: - 5p ⁴ 6snp	189	442.41 441.46 441.01	10 11 12	7.67 8.93 9.79
31 ^b 49 64	544.18 533.34 528.42	7 8 9	$3.466 \\ 4.508 \\ 5.480$	192 193	440.59 440.33	$12 \\ 13 \\ 14$	10.87 11.74
69	525.77	10	6.374	(I) Limit:-	$-5p^4(^{3}P)7s(^{4}P_{1/2}) = 2$	32895 cm ⁻¹ ; Se	eries: -5p47snp
(D) Unknown Limit	c=212665 c	m ⁻¹	204 205 206	434.34 433.30 432.31	10 11 12	6.42 7.22 8.34
135 136 137 138 139 140	474.36 473.42 472.83 472.36 472.01 471.67	8 9 10 11 12 13	7.691 8.742 9.68 10.68 11.68 12.97	208 209 210 211 212 213	431.55 431.26 430.90 430.63 430.45 430.31	13 14 15 16 17 18	9.68 10.39 11.55 12.73 13.76 14.75

^{*a*} The resonance at 540.62 Å is an alternative choice for the n=9 member.

^b This resonance appears to be double and is used in series (A) and (C).

^{-c} The nearest Xe II levels are $5p^{4(1}D)5d^{(2}F_{5/2, 7/2})$ at 212585 cm⁻¹ and 212748 cm⁻¹, either of which would allow an *nf* series.

 d The quantum defects for this series are more appropriate to a running *p* electron. However, assuming a correct assignment for the level in Xe II, parity considerations require a running *d* electron (or an *s* electron).

ties, and affect their shapes. Good theoretical calculations will be required to resolve this situation.

If we move to higher series members in Kr, we find that resonance 18 has an unusually low effective quantum number and a low intensity (see fig. 2). On the basis of the quantum defect alone, resonance 18, the n=8 member of this series, was chosen as a member of the Rydberg series. Clearly, resonance 19 is much "stronger" (see also Ederer [10]) and was observed by Samson [15] and classified as a member of the series with $n^* = 5.593$. Once again, there is ambiguity. The remainder of the series is quite definitely established on a basis of quantum defects, intensities and profiles.

In tracing the development of the Xe series, we find the n=9 member to be double and an arbitrary choice must be made from resonances 36 and 37. Other workers [14, 15] did not resolve these resonances. Configuration interactions cause members n=15 through 18 and n=20 to be missing.

TABLE 5. A comparison of the wavelengths of some of the resonances measured in the present work and those of other workers

Krypton						Xenon		
Code	Present work	Samson [15]	Siegbahn [16]	Code	Present work	Samson [15]	Mansfield [17]	Siegbahn [16]
$ \begin{array}{c} 1\\3\\4\\5\\10\\14\\18\\19\\22\\24\\26\\27\\29\\30\\32\end{array} $	$\begin{array}{c} 501.23\\ 497.50\\ 496.90\\ 496.07\\ 471.48\\ 462.71\\ 458.69\\ ^a 457.86\\ 456.12\\ 454.73\\ 453.73\\ 453.73\\ 453.14\\ 452.32\\ 452.07\\ 451.86\\ \end{array}$	501.14 497.44 496.85 496.00 471.55 462.69 457.85 456.10 454.71 453.71 453.14 452.32 452.01 451.85	497.1 495.7 471.2 462.8 458.8 456.0 455.0 455.0 453.8	1 2 3 4 5 6 7 8 9 10 15 16 19 21 22 28 b 36 37	599.99 595.93 591.77 589.54 586.29 582.74 581.11 579.98 579.16 570.79 558.78 557.83 555.28 552.00 550.76 546.08 540.62 540.54	599.95 595.92 591.81 589.62 ¹⁴ 579.25 ¹⁴ 570.90 557.92 ¹⁴ 552.07 546.16 540.71	$\begin{array}{c} 599.81\\ 595.83\\ 591.67\\ 589.50\\ 586.24\\ 582.72\\ 581.07\\ 579.94\\ 579.15\\ 570.80\\ 558.78\\ 557.86\\ 555.32\\ 555.32\\ 552.02\\ 550.77\\ \end{array}$	592.1 589.5 557.7 546.2 540.5
				40 45	537.46	537.40 535.62		

The Siegbahn [16] wavelengths are obtained using the conversion factor $\lambda = 12398/E(eV)$.

^a Resonance 18 was chosen in the present work, on the basis of quantum defect; for $4s4p^{6}8p$. However, resonance 19 is a considerably stronger line seen also by Samson and assigned to the 8p state.

^b Two resonances, equally strong, just resolved.

Finally, in table 5, we see a comparison of the long wavelength resonances in Kr and Xe with other workers. In Kr, the present data is compared with the photoabsorption work of Samson [14, 15] and the electron spectroscopic observations of Siegbahn and co-workers [16]. In Xe, comparison is also made with the photoabsorption work of Mansfield [17] (Mansfield measured Kr also, and was in agreement with the present work for the stronger transitions). The error limits quoted by Samson are ± 0.05 Å, those of Siegbahn et al. are of the order of 0.2 Å. Mansfield gave no estimated error, but he had some calibration problems in the region of 585-600 Å due to lack of standards. The accuracy of the present measurements is also impaired in this region of the spectrum because of slight instrumental errors and this is reflected in the somewhat increased error limits given to the resonances in that region. Almost all of the wavelengths of Samson agree, within the combined error limits, with the present data, even in the range 585-600 Å.

The data of Siegbahn et al. was obtained by firing electrons of an energy of several keV into the noble gases, and measuring the energies (typically 8 to 14 eV) of the electrons released in the subsequent autoionization process, with a spherical electrostatic analyzer. Rydberg series of electron lines were found corresponding to transitions from excited states of neutral atoms to the ground state of the ions. By measuring the kinetic energy of electrons produced in the autoionization process:

$4s4p^6np \rightarrow 4s^24p^5(^2P_{1/2, 3/2}) + e$

and knowing the energy of the $4s^24p^5({}^2P_{1/2,3/2})$ states of KrII, they were able to calculate the energy of the excited state before autoionization. Since the Siegbahn data was normalized to the present data at certain wavelengths, it cannot be thought of as independent. It is interesting, however, to note that these workers picked out a second J=1 component for the $4s4p^{6}5p$ state of Kr. Even though the absolute wavelengths of resonances 3 and 5 disagree by 0.3 Å, the difference in wavelengths of 1.4 Å is in agreement with the present data. In Xe, however, the implication might be that resonances 3 and 4 are the two J=1components, in agreement with another recent estimate [13], and in disagreement with the present classification. It should be pointed out, however, that excitation by electron bombardment can excite, in general, many transitions not allowed optically and that often such nonoptically allowed transitions are preferred. In addition, the resonance profiles may be completely different.

3.2. Two-Electron Transitions

It has been pointed out that only two J=1 components can be expected for states such as $4s4p^{6}5p$ in Kr.

The remaining resonances in Kr, such as 1, 2, 4, 6, 7, 8 etc. (see fig. 2) must therefore be classified, from energy considerations, in terms of two-electron transitions, viz:

Kr: $4s^24p^{6} {}^{1}S_0 \rightarrow 4s^24p^4({}^{3}P, {}^{1}D, {}^{1}S) nln'l'$ and in Xe: $5s^25p^{6} {}^{1}S_0 \rightarrow 5s^25p^4 ({}^{3}P, {}^{1}D, {}^{1}S) nln'l'$.

Here ll' = sp, sf, pd, pf.

The term possibilities are just those outlined previously in Ar [3]. As shown, the grandparent term may be ³P, ¹D, or ¹S. Taking the simplest case of 5s5p in Kr, the number of possible J=1 components is 14, with 3 of these being ${}^{1}P_{1}$, in strict L-S coupling. We know, however, that L-S coupling does not prevail, and we may expect a large number of excited states with I=1. Experimentally, one observes few of this potentially large number of resonances.

As in Ar, we can make crude estimates of the expected positions of resonances from the known levels of the ion [18, 19] and typical quantum defects for the s, p, d, and f electrons. Because the spectra observed are quite rich and because of screening and configuration interaction effects, such estimates cannot be sufficiently accurate to establish definite assignments.

In the cases of Ne and Ar a number of low-lying two-electron excitation states were identified. In Kr and Xe virtually none have been assigned. In the absence of good calculations, we can only identify series with high-lying members. Intensity sharing interactions appear to be responsible for the fact that we see any series at all.

In both Kr and Xe, quantum defects have been calculated for all the resonances to the available [18, 19] known limits. As a result of this analysis, only 28 resonances in Kr and 43 in Xe have been grouped into probable Rydberg series. In the Ar case, one experimental fact was very obvious-that of all the possible excited configurations, those of the type:-3p⁴3dnl and 3p⁴4snl dominated the spectrum. Series such as $3p^44pns$ were hardly in evidence. This tendency is equally pronounced in Kr. where all of the series are of the type $4p^{4}5snp$ or $4p^{4}4dnp$.

Turning to table 3 (B), the unidentified series having a limit at 240300 cm⁻¹ may be due to transitions to states $({}^{1}D)5s({}^{2}D_{3/2})np$. However, using Minnhagen's value for this limit [18], we must then invoke certain configuration interaction effects to explain the unusual run of effective quantum numbers (inside the brackets).

In Xe, if the present tentative assignments are correct, the emphasis on running electrons of odd parity is no longer evident. Indeed, there are apparently two series of the type 5p⁴6pnd. Another series is tentatively labelled 6pnd (table 4 (E)) but the defects are more appropriate for a running p electron-forbidden on the grounds of nonconservation of parity if the state in Xe II has been correctly identified [19].

Also in table 4, the series (D) with an unidentified limit, may well be associated with a series of the type $5p^45dnf$.

Some of the more obvious series in Kr and Xe are indicated by lines above and below the spectra of figure 1. In Kr we can see the series A, B, C, F and G of table 3; in Xe we see the series A, B, D and I of table 4.

4. Conclusions

The one- and two-electron excitation resonances listed into the series above represent only one guarter of those observed. The basic problem is one of unfolding the complicated configuration interactions present. which displace levels from the locations expected on simple theoretical grounds, and produce intensity anomalies. Even within a single series, the profiles of the resonances may change with increasing principal quantum number. In others, only high series members are evident. It appears that a substantial theoretical effort will be required to analyze the spectra further. even in those regions where relatively few resonances occur. Original prints of the spectra shown in figure 1 can be made available to those interested in furthering the interpretation.

5. References

- [1] Madden, R. P., and Codling, K., Astrophys. J. 141, 364 (1965).
- [2] Codling, K., Madden, R. P., and Ederer, D. L., Phys. Rev. 155, 26 (1967).
- [3] Madden, R. P., Ederer, D. L., and Codling, K., Phys. Rev. 177, 136 (1969).
- [4] Codling, K., and Madden, R. P., Phys. Rev. Letters 12, 106 (1964)
- Codling, K., and Madden, R. P., Appl. Opt. 4, 1431 (1965).
- Beutler, H., Zeit. Phys. **93**, 177 (1935). Samson, J. A. R., Phys. Rev. **132**, 2122 (1963). [6]
- [8] Madden, R. P., and Codling, K., J. Opt. Soc. Am. 54, 268 (1964)
- [9] Codling, K., and Madden, R. P., Phys. Rev. A4, 2261, (1971).
- [10] Ederer, D. L., Phys. Rev. A4, 2263, (1971)
- [11] Madden, R. P., Ederer, D. L., and Codling, K., Appl. Opt. 6, 31 (1967).
- [12] Fano, U., and Cooper, J. W., Phys. Rev. 137, A1364 (1965).
- [13] Reader, J., Epstein, G. L., and Ekberg, J. O., J. Opt. Soc. Am. (in press)
- [14] Samson, J. A. R., Phys. Letters 8, 107 (1964).
- [15] Samson, J. A. R., Advances in Atomic and Molecular Physics (Academic Press Inc. New York 1966) Vol. 2, p. 177.
- [16] Siegbahn, K., Nordling, C., Johansson, C., Hedman, J., Heden, P. F., Hamrin, K., Gelius, U., Bergmark, T., Werme, L. O., Manne, R., and Baer, Y., ESCA Applied to Free Molecules (North-Holland Publishing Co., Amsterdam 1969).
- [17] Mansfield, M. W. D., Ph.D. Thesis, Physics Dept., Imperial College London (1969).
- [18] Minnhagen, L., Strihed, H., and Peterson, R., Arkiv. för Fys. Bd 39 nr **34**, 471 (1969).
- [19] Moore, C. E., Atomic Energy Levels, Nat. Bur. Stand. (U.S.) Circ. 467, Vols. 2 and 3 (1952, 1958).

(Paper 76A1-693)