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The problem of dec iding wh en a st.ationary stochasti c process is a function of a finit e Markov 
process has been con side red by seve ral au thors, leading t.o an elegant necessary and suffi c ient. cond i­
tion. Taking a diffe rent approach, t.hi s not.e uses ele menta ry ring theory to prove that a ce rtain exp li c itly 
construc ted st.ationary e rgodic process is not. a functi on of any finit e Ma rkov process. 
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1. Introduction 

The problem of deciding when a stationary stochas ti c process is a function of a finite Markov 
process has be en considered by several authors ([1 , 2, 4- 6]),1 leading to an elegant necessary 
and sufficient condition (Heller, [6])_ This condition involves both (a) the finite dimensionality of 
a certain module over the real numbers, and (b) the requirement that a certain cone in this module 
be polyhedral (an idea used earlier by Dharmadhikari [2]). The output symbols of the stochastic 
process act as linear operators on th e above-mentioned module_ 

Taking a different approach , this note uses elementary ring theory to prove that a certain 
specific stationary ergodic process is not a function of any finite Markov process. The structure 
of this process- although not th e idea- resembles that of an example of Fox and Rubin [4]. 

Section 2 presents the principal tool for the verification, namely a sufficient condition for a 
"source" (in the language of information theory) not to be a function of any finite Markov process. 
This condition and its verification are purely algebraic. 

Section 3 gives the explicit description of the example, plus the verification of its properties. 
A related conjecture is posed in section 4. 

The balance of the present section 1 consists of definitions and other background material 
provided to make the exposition more nearly self-contained. 

Let A be a fixed finite nonempty set; the sources to be considered emit "symbols" from this 
"alphabet" A as outputs. Let A '" be the set of all doubly infinite sequences x = {Xt} ""00 of members 
of A; each such sequence can be considered a possible time history of the source's outputs, with 
symbol X I emitted at time t. The shift operator T:A oo ~ A oo is defined by 

Tx = y where YI = Xt +l. 

A cylinder set is a subset of Aoo of the form 

CU , g) = {xEA oo :Xt = g(t) for all tEj} 
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where J is some finite subset of the integers (positive, negative , or zero) and g:J ~ A is some func­
tion_ If J = {l, 2, ... , k} for some k, then C (J , g) is called an elementary cylinder set. It follows 
from the finiteness of A that every cylinder se t is a finite union of elementary cylinder sets. 

Let 2, be the Borel field generated by all cylinder sets (or equivalently , all elementary cylinder 
se ts). We now define an information source over A to be a probability measure /-t on (A "' , L). Such 
a source will be denoted [A, /-t]. In terms of the notation in (1.1), the source is called stationary if 
/-t (TS) =/-t(S) for every measurable subset S of A oo, and is called ergodic if TS=S (where S is 
measureable) implies /-t (S) = 0 or /-t(S ) = l. 

Let I II = {I, 2,. . . , n}, and suppose there is a function f: I" ~ A, and an n-state Markov 
chain with transition-matrix entries p(i,j) and stationary probabilities p (i) , such that , for every 
elementary cylinder set 

C = C({ 1,2, .. . , k},g), 

we have 

(1.2) 

where the sum is over all sequences {it , i2 , . . ., id over In such thatf( ill = g( t) for t = 1,2,. . . ,k. 
Note that this e ntirely determines /-t , so that [A, /-t] is specified by the finite set of data {p(i), 
p (i, j)} together with f. In this case, [A, /-t] is called a function of a (finite) Markov process ; it is 
automatically stationary, and is ergodic if the Markov chain is. 

If I", in the last paragraph, is replaced by the set of all natural numbers, we are led instead 
to the concept of " function of a denumerable-state Markov process." The exam pIe to be given 
later falls into this category, but not into the previous one, as will be proven. 

2. An Algebraic Condition 

Let TIN denote the set of all polynomials in N variables with integer coefficients. For the in­

formation source [A , /-t] , define the following subring of the ring of real numbers: 

V(A, /-t ) = {p : p=P (/-t(C t ), ••• , /-t(C N ) ) for some N > 0, some PeTI N , 

and some cylinder sets C t , C2 , ••• , C N } • 

Suppose in particular that [A, /-t] is a function of an n-state Markov chain with parameters {p (i), 
p (i, j)} . Then it follows .by (1.2) that the measure of any elementary cylinder set is the value, at 
(pO) , ... , p(n), pO, 1), ... , p(n, n)) of a polynomial in n+n2 variables with integer coeffi· 
cients. It follows that the same is true of the measure of any cylinder set , and so is true of every 
member of V (A, /-t). That is, if we set 

for some 

then we have, 

V(A,/-t) ~ W,, +/I 2 (p(l), . .. , p(n), pO, 1) , ... , p(n , n) ) 

whenever [A , /-t] is a function of the n-state Markov chain with the indicated parameters. 
This observation provides the basis for the following result. 
THEOREM 1: Suppose there are real numbers {Pi};n such that the ring generated over the in­

tegers by V (A, /-t) U {Pi} f' includes all the rationals. Then the source [A, /-t] is not a function oj 

any finite Markov process. 
This will be shown to follow from the next theorem , whose conclusion, in order to support an 

inductive proof, is stronger than is needed for Theorem 1. 
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THEOREM 2: Let U= (u" ... , UN) be a fixed N -tuple of real numbers, k a fixed positive 
integer, (D" ... , Dk ) fixed polynomials in IIN with each Dj(U) =\= o. Then the set RN = {p: P = P(U)/ 
II(' [Dj(u) ] a(j) for some PEII " and some integral a(j) ~ O} does not include all the rationa ls. 

W e first show that Theore m 2 implies Theorem 1. In Theorem 2let N = m + n + n2, let U = (PI, . .. , 
pm, p(l), . .. , pen), pO , 1) , ... , pen , n» , and let all Dj = 1. It follows from (2. 1) that , if 
[A, p,] is a function of the Markov process with the indicated parameters {p(i), p(i, j)} , then 
V(A, p,) ~ R ". Since PiER .\", and R .v is a ring over the integers, the ring R * generated over the 
integers by V(A, J-t) U {p i}t'" also lies in R.\" . By Theorem 2, R * cannot contain all rationals, and 

so Theorem 1 is proved. It is interes ting that the proof uses only (1.2), and not the further properties 

p(i , j) ~ O, p(i) ~ 0, 

2": jp( i,j)=l, 2": iP(i)P(i , j)=p(j). 

We turn now to the proof of Theore m 2, based on a suggestion by M. Newman. The nota­
tion R [z" ... ,z,,] will mean the ring of pol ynomials in the indeterminates z" . . . ,Zll with 
coefficients in a ring R. The proof is by induction on N. 

CASE 1: N= 1. Suppose the conclusion is false, i.e. , that there is U = u, such that R, includes 
all the rationals. Let I denote the ring of integers. 

U = u, mu st be algebrai c over the r a tionals, since for any prime p, 1/ pER, , which implies a n 
eq uation of the form 

II~· [D j (U)] aU) - pP(U) = 0 

in which not a ll coefficients can vanish if p is chose n so as not to divide all coefficients of the 
polynomial II ~ D j . Now let Ui = uq) and let u<P (2 ~ i ~ m) be the ith conjugate of u , over the 

rationals, so that II';' (z-u<I)) is the minimal polynomial of u, over the rationals. Then for a suit­

able integer A, 

Let {(T d ~' denote the elementary symmetric functions of m variables, and put 

so that 

It follows that all As;El. 

Let p be a prime , to be determined later. As above, l/pER, leads to an equationf(ud= O 
where 

for some appropriate PEII, and nonnegative integers a(j). Since g is a constant multiple of the 
minimal polynomial of u" f(u,) = 0 implies that f=gh for some polynomial h with rational co­
e fficients. Since g(U<i) ) = 0 for all i, all f (u<jl ) = 0 and so 
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l/p=P(dP )/IIf [Dj (u<P) JaW, 

implying 

(2.2) 

In the above note that 

cannot be zero. For otherwise some Dj(u<e)=O, implying Dj(u,)=O, contrary to hypothesis. 
Now consider the symmetric polynomials 

By [9; p. 97], there are polynomials 7T, <>jeI[z" ••• , ZlIlJ such that 

., ZlIl) = 7T[al (ZI, ., Zm), ., (Tm(Zl, ., Znz)], 

"' Zm), o,O"m(ZI , ., Zm)]. 

It follows from (2.2) that 

(2.3) 

Let d (j) = deg [<>j] , and choose integer b > ° so that 

d= "Lfd(j)a (j) + b ~ deg[7T]; 

since all ASid, this implies that A d7T (51, . . ., 5,") is an integer w. Note also that A dU)<>j (51, . . ., 51/!) 
is an integer Wj independent of p. 

Now, (2.3) yields 

Choosing p to be a prime which divides neither A nor any Wj, we obtain a contradiction. (Recall 
that A does not depend on p.) 

CASE 2: N> 1. Again we assume that RN contains all the rationals. As in the proof for Case 1, 
U = (UI' . . ., UN) cannot be algebraically independ~nt over the rationals. Without loss of gener­
ality, we assume UN is algebraically dependent on U = (ut, ... , UN- I). Expand the notation to 
read 

We will show that there exist.o l , .. , .ok+,ETIN- , with all .oj(U) =1=0 such thatRN_1 (U; .01, ... ,.ok+,) 
contains all the rationals. This yields the desired contradiction of the induction hypothesis. 

Let Ro be the ring generated over the integers by U, i.e., 

Ro= {p :p=P(U) for some PeTIN- I} ' 
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and letF 0 be the quotient field of R o. Then UN is algebraic over Fo; let uW= UN and let u\{,>(2:;;; i:;;; m) 
be the conjugates of UN over Fo, so that TI7'(z - u~)) is the minimal polynomial of UN over Fo. Then 
for a suitable AfRo, 

Define {<T;} ~n as above, and s; = <Ti (u~~), . .. , U~")); then all AS;fRo. 
As in Case 1, we consider a prime p. The requirement II pfR N leads as before first to an 

equation f (U) = ° where 

for some appropriate Pf TIN and nonnegative integers a(j). This can be rewrittenf* (UN) = ° where 

f*(z) = TI?[Dj(O,z)]a u )- pP(U,z). 

Arguing as above we find that all f* (u(M) = 0, implying 

and thus 

(2 .4) 

Now consider the symmetric polynomials 

, Zm], 

, Zm) = TI'{'Dj(U, Zi)fRo[ZI, , ZmJ. 

As above, there are polynomials 1T,OjER o [zl, ... ,Zm] such that (2 .4) yields 

(2.5) 

as before A, the Si and the OJ are independent of p. Defining d (j), b , and d as above, we have 

(2.6) 

where Wj= Ad(j)Oj(sl, ... , sm)€R o. We may denote the numerator of (2.6), which lies in R o, 

as P(U). Similarly let wj=Dj(U) for some Dj€TI N - I , let A=Dk+I(U) where Dk+I €TIN - I , and 
let a(k + 1) = b. Then (2.6) yields 

Thus if RN(U; D I , ... ,D k ) contains all rationals, or equivalently all prime·reciprocals lip, then 
so does RN- I(U; VI, ... ,Vk + I). 

This completes the proof. 

3. The Construction 

Our example is constructed as a function of a denumerable Markov chain M, which will be 
described next. The state-space of M consists of a special state So, and an infinite lower-triangular 
array of states 5 ij ; the ith row of the array consists of the states 5 i I , 5 i2 , . . ., 5 ii . The probability 
of transition from So to a row-leading state Sit is qi, where the qi'S are positive numbers (to be speci-
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fied) with 2: iqi = 1; no other stat~s are directly accessible from 50. The other direct transitions are 
from 5it to 5 i2 , Si2 to 5 i3 , .•• , and from 5 ii back to 50, each with probability 1. 

We now exhibit a vector a, with positive components summing to 1, such that 

aP=a (3.1) 

where P is the transition matrix of M. The entries of a will be denoted p (50) and p (5 ij), with obvious 
interpretation. For some x> 0, set 

p(50 ) =x, p(5ij)=qiX • 

The equations of (3.1) which correspond respectively to 50, to any 5it , and to any 5i. j+ I are 

p(5ij) . 1 = P(Si ,j+t)' 

and all are satisfied; hence (3.1) holds. It only remains to satisfy the normalization 

which identifies x as 

The qi will be chosen so that the above makes sense, i.e., 

2:;iq; < 00. 

Take the alphabet A = {O, I}. Ifk denotes the state-space of M, define f: k ~ A by 

[A, /L] is now defined as the function of M rletermined by f 
Consider the elementary cylinder set 

C j =C({1,2, .. . ,i+2},g;) 

(3.2) 

(3.3 ) 

(3.4) 

where g;(l) =gi(i+2) =0 and g;= 1 otherwise_ Then /L(C i ) is the probability of the source pro­
ducing a pair of D's separated by exactly iI's. The sum (1.2) here collapses to a single term, yielding 

/L( Ci ) = qiX • 

Thus if {qi} can be selected to include, for each prime p, a rational number with denominator 
divisible by p, then the ring generated over the integers by V(A, /L) U {l/x} will contain all qi, 
hence all reciprocals of primes, hence all rationals. By Theorem 1, [A, /L] cannot be a function 
of any finite Markov process. 

Let 7Ti be the i th prime (7T I = 1) , and set 

qi= 1/2i7Ti (i~2). (3.5) 
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Since 1Ti ~ 2 in (3.5), we have 

2: iqi < 2: i/2 i+ 1 < 00, 

;=2 i = 2 

and so (3.4) holds for any finit e q, ; sin ce 

2: qi< 2: 1/2 i + 1 = 1/4 < 1, 
;= 2 i = 2 

there is a unique q, > 0 such that 2: qi = 1. Thus the goal described in the previous paragraph 
has now been accomplished. i = ' 

Although the main di sc ussion is now comple te, certain technical points whi ch were passed 
over above must still be verified. It must be s hown that M is ergodic (as a Markov chain), that the 
vec tor a defined in (3.2) is its unique s tationary vector, and that [A , JL) is (as promised) ergodic. 

With 2: (as above) the state-space of M, the identit y ma p of 2: induces a n infinite-alphabe t 

source [2: , JL *] which is a function of M . Let 2:" be the set of doubly· infinite sequ ences {atL"", 

over 2: ' and T * the shift operator on 2:". Then any fun ction [A, JL) of M, induced by a fun ction 

}; 2: ~ A, is ergodi c if [ 2: ' JL *] is ergodic. This follows, in terms of th e func tion f " : 2:"~ A "" ari sin g 
fro m f, from the facts 

JL(B) = JL * [(foo ) - I (B)) 

for an y meas urable subset B of Aoo. 

~hus it suffices to pro ve that [ 2: , JL *] is a n ergodic source which, for a ny 5E 2: a nd any integer 
t , satI sfies 

JL *{xEA '" :Xt= 5} = probability of 5 as given by a. (3.6) 

The reader is now referred to the discussion in [8; p. 52] of limit properties of Markov chains; 
we shall use the terminology of that discussion. The chain M is clearly irreducible and nonperiodic . 
By (3.4), the mean recurrence time of 50 is finit e, so that 50 (and hence all states) are persistent. 
By [8; p. 56], M has a unique invariant instanta neous di stribution. Since (3.1) holds, thi s dis tribution 
must be a ; he nce (3 .6) holds. In addition, le tting P denote the transition matrix of M , we have 
for any a , TE 2: 

(3 .7) 

Th e fact that [2: ' JL *] is ergodic in the sense used in this paper can now be proved from (3. 7) 

by elementary but lengthy arguments ; ins tead we refer the reader to Doob [3; p. 460] for an elegant 
proof using martingales. 

This completes the di scussion. 

4. Conjecture 

According to (2.1), if[A , JL] is a function of a finite Markov chain , then V(A, JL) is imbedded in a 
finately generated ring (of real numbers) over the integers. We coojecture that this necessary 
condition is not sufficient : 

C ONJECT URE: There is an information source [A, JL] on a finite alphabet A with the/ollowing 

two properties : 
(1) V (A,JL) is a finitely generated ring over the integers; 
(2) ,[A, JL)is not a/unction 0/ any finite Markov process. 
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