Normal Subgroups of the Modular Group*

Leon Greenberg** and Morris Newman

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234
(July 2, 1969)

A number of results on the normal subgroup structure of the classical modular group is announced. A typical result is that a normal subgroup of square-free index is necessarily of genus 1, apart from 4 exceptions.

Key words: Genus; index; modular group; normal subgroups.

1. Introduction

In this note we summarize the results of some work on the normal subgroups of the classical modular group \(\Gamma \), which is a continuation of the work begun in [1] and [4]. We may regard \(\Gamma \) as the free product of a cyclic group of order 2 and a cyclic group of order 3; \(\Gamma = \{ x \} \ast \{ y \}, \ x^2 = y^3 = 1 \). The number of normal subgroups of \(\Gamma \) of index \(\mu \) will be denoted by \(N(\mu) \). If \(G \) is any subgroup of \(\Gamma \), \(G' \) will denote its commutator subgroup, and \(G^p \) the fully invariant subgroup of \(G \) generated by the \(p \)th powers of the elements of \(G \). The level of \(G \) is the least positive integer \(n \) such that \((xy)^n \in G\). If \(G \) is a normal subgroup of index \(\mu \geqslant 6 \) and \(n \) is its level, then the genus of \(G \) is given by

\[
g = 1 + \mu(n - 6)/12n,
\]

and the number of parabolic classes of \(G \) by

\[
t = \mu/n.
\]

Except for the groups \(\Gamma, \Gamma^2, \) or \(\Gamma^3 \), the index of a normal subgroup is a multiple of 6.

The commutator subgroup \(\Gamma' \) of \(\Gamma \) is a free group of rank 2, freely generated by

\[
a = xyxy^2, \quad b = xy^2xy.
\]

The normal subgroups of \(\Gamma \) of genus 1 (alternatively, of level 6) have been completely described in [5]. Any such subgroup \(G \) lies between \(\Gamma' \) and \(\Gamma'' \) and may be described uniquely by the triplet of integers \((p, m, d) \), where \(p > 0, \ 0 \leqslant m \leqslant d-1, \ m^2 + m + 1 \equiv 0 \mod d \). \(G \) is of index \(6dp^2 \) in \(\Gamma \) and consists of all words \(w \) of \(\Gamma' \) satisfying

\[
e_a(w) \equiv 0 \mod p, \quad e_b(w) \equiv me_a(w) \mod dp,
\]

where \(e_a(w), e_b(w) \) are the respective exponent sums in \(a \) and \(b \) of \(w \).

We also let \(G_{k,m} \) be the intersection of all normal subgroups of \(\Gamma \) containing

\[
(xy)^{mk}, \quad (yx)^k(xy)^{-k}.
\]

*This paper was written while the first author held NSF Grant GP8019.

**Present address University of Maryland, College Park, Md. 20740.

1 Figures in brackets indicate the literature references at the end of this paper.
Going over to the representation of Γ as $LF(2, Z)$, we define the principal congruence subgroup $\Gamma(n)$ as the totality of elements $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \epsilon \Gamma$ such that

$$a = d = \pm 1 \mod n, \quad b = c = 0 \mod n.$$

2. The Results

We now state the principal results obtained. Throughout this section G is a normal subgroup of Γ of index μ, level n, genus g, and having t parabolic classes.

1) Suppose that μ is square-free. Then either $G = \Gamma$, Γ^2, Γ^3, or $\Gamma(2)$, or else G is of genus 1 and every prime divisor of $\mu/6$ is $\equiv 1 \mod 3$.

2) Define $f(\mu)$ as 1 if there is a normal subgroup G of index μ with solvable quotient group Γ/G, and 0 otherwise. Then

$$\lim_{x \to \infty} \frac{1}{x} \sum_{\mu \leq x} f(\mu) = 0.$$

3) Let p be a prime, $p = -1 \mod 3$, and suppose that $p > r$. Then there is no normal subgroup of Γ of index pr.

4) If Γ/G is nilpotent then it is abelian, and G must be Γ, Γ^2, Γ^3, or Γ'.

5) Let p be a prime, $p = 1 \mod 12$. Then there are no normal subgroups of Γ having $2p$ parabolic classes.

6) Let p be a prime > 84, $p = -1 \mod 3$; and let n be any positive integer. Then there are no normal subgroups of Γ of genus $1 + p^n$.

7) Let p be a prime > 5, and suppose that $\mu = 6p^2$. Then G must be one of the following groups:

 (i) $\Gamma(2)^p \Gamma(2)'$.
 (ii) $(p, 0, 1)$.
 (iii) $(1, m_1, p^2), (1, m_2, p^2)$, where $p = 1 \mod 3$ and m_1, m_2 are the solutions of $m^2 + m + 1 \equiv 0 \mod p^2$.

Thus

$$N(6p^2) = 3 + (p/3), \quad p \text{ prime, } p > 5.$$

8) Let p be a prime > 11. Then $N(12p^2) = 0$.

9) Let p be a prime > 11. Then the only normal subgroup of Γ of index $12p^3$ is $\Gamma(3)^p \Gamma(3)'$.

10) $N(72) = 2, N(78) = 2, N(84) = 0, N(90) = 0$.

11) There is just one normal subgroup of Γ of genus 2: namely $G_{4,2}$.

12) The normal subgroups of Γ with t parabolic classes, $t \leq 5$, are the following:

 \begin{align*}
 t = 1 & : \Gamma, \Gamma^2, \Gamma^3, \Gamma'. \\
 t = 2 & : \text{none.} \\
 t = 3 & : \Gamma(2), (1, 1, 3). \\
 t = 4 & : (2, 0, 1), \Gamma(3), G_{3,4}. \\
 t = 5 & : \text{none.}
 \end{align*}

3. Some Remarks

Perhaps the most striking results are the first two. A generalization of (2) with a precise estimate for the density function is in course of publication ([2]). As for (1), we note that if G is any
finite group of square-free order generated by elements x, y such that $x^2 = y^3 = 1$, then $(xy)^6 = 1$.
This is so since the second commutator subgroup G'' is necessarily $\{1\}$ (p. 148 of [3]), and

$$a = xyxy^2 \in G', \quad b = xy^2xy \in G',$$

$$(xy)^6 = ab^{-1}a^{-1}b \in G''.$$ The result (1) is now an easy consequence.

The other results are of varying degrees of difficulty, but generally present no special problems.

4. References

(Paper 74B2–324)