Orthogonal Decompositions of Tensor Spaces*

Stephen Pierce
Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(September 23, 1969)

Let \(V \) be an \(n \)-dimensional vector space over the complex numbers. Let \(H \) be a subgroup of \(S_m \), the symmetric group on \(\{1, \ldots, m\} \), and let \(W = \bigotimes_1^n V \) be the tensor product of \(V \) with itself \(m \) times.

In this note we give an orthogonal direct sum decomposition of \(W \) in terms of the system of inequivalent irreducible characters of \(H \).

AMS Subject Classifications: Primary, 1580; Secondary, 2080.

Key words: Irreducible character; symmetry class of tensors; symmetry operator; tensor product.

1. Introduction

Let \(V \) be an \(n \)-dimensional vector space over the field of complex numbers. Let \(W = \bigotimes_1^n V \) be the tensor product of \(V \) with itself \(m \) times. For \(\sigma \in S_m \), the symmetric group on \(\{1, \ldots, m\} \), define the permutation operator \(P(\sigma) : W \to W \) by \(P(\sigma)v_1 \otimes \ldots \otimes v_m = v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(m)} \), \(v_1, \ldots, v_m \in V \), where \(\theta = \sigma^{-1} \). It is easy to check [1] that \(P(\sigma) \) is linear and that \(P(\sigma)P(\tau) = P(\sigma\tau) \), \(\sigma, \tau \in S_m \). Any linear combination \(T = \sum_{\sigma \in S_m} a(\sigma)P(\sigma) \) is called a symmetry operator and the range of \(T \) is called a symmetry class of tensors.

In [4], Weyl expressed \(W \) as a direct sum of symmetry classes. The corresponding symmetry operators were determined from the idempotent generators of the minimal right ideals of the group ring of \(S_m \). In this paper we obtain an orthogonal direct sum decomposition of \(W \) into symmetry classes with respect to the inner product defined below.

Let \((\cdot, \cdot) \) be an inner product on \(V \). Define an inner product on \(W \) by

\[
(x_1 \otimes \ldots \otimes x_m, y_1 \otimes \ldots \otimes y_m) = \prod_{i=1}^m (x_i, y_i), x_i, y_i \in V. \tag{1}
\]

Theorem 1: Let \(H \) be a subgroup of \(S_m \) of order \(h \). Let \(\chi_1, \ldots, \chi_k \) be the complete system of inequivalent irreducible characters on \(H \), with \(\chi_i \) having degree \(r_i \), \(i = 1, \ldots, k \). Define \(T_{\chi_i} : W \to W \) by

\[
T_{\chi_i} = \frac{r_i}{h} \sum_{\sigma \in H} \chi_i(\sigma)P(\sigma), \quad i = 1, \ldots, k.
\]

Let \(V_{\chi_i}^m(H) \) be the range of \(T_{\chi_i} \). Then with respect to the inner product (1), \(W \) is the orthogonal direct sum of the symmetry classes \(V_{\chi_i}^m(H) \):

\[
W = \bigoplus_{i=1}^k V_{\chi_i}^m(H). \tag{2}
\]

*This work was done (1968–1969) while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the National Bureau of Standards, Washington, D.C.

1 Figures in brackets indicate the literature references at the end of this paper.
In section 3, we discuss some of the difficulties involved in constructing a suitable basis for $V_{\chi}^{m}(H)$. This problem has been dealt with [1] when χ is linear, but little has been done otherwise. We attempt to show the extent to which the methods of [1] will apply when χ is of higher degree.

2. Proof of Theorem 1

To establish (2), it suffices to show that

a. $T_{x_{i}}$ is hermitian,

b. $T_{x_{i}}T_{x_{j}} = \delta_{ij}T_{x_{i}}$,

c. $\sum_{i=1}^{k} T_{x_{i}} = \text{identity}.$

If "*" denotes the adjoint with respect to the inner product (1), then $(P(\sigma))^{*} = P(\sigma^{-1})$. Since $\chi_{i}(\sigma) = \chi_{i}(\sigma^{-1})$, $T_{x_{i}}^{*} = T_{x_{i}}$. We now compute

$$T_{x_{i}}T_{x_{j}} = \frac{r \delta_{ij}}{h^{2}} \sum_{\sigma, \tau \in H} \chi_{i}(\sigma)\chi_{j}(\tau)P(\sigma\tau) = \frac{r \delta_{ij}}{h^{2}} \sum_{\mu \in \chi_{i}} P(\mu) \sum_{\sigma \in H} \chi_{i}(\sigma)\chi_{j}(\sigma^{-1}\mu).$$

The orthogonality relations for characters [3, p. 16] now imply that

$$T_{x_{i}}T_{x_{j}} = \frac{r \delta_{ij}}{h^{2}} \sum_{\mu \in \chi_{i}} P(\mu) \frac{\delta_{ij}h\chi_{j}(\mu)}{r} = \delta_{ij}T_{x_{i}}.$$

Let e be the identity in H. Then

$$\sum_{i=1}^{k} T_{x_{i}} = \sum_{i=1}^{k} \frac{r_{i}}{h} \sum_{\sigma \in H} \chi_{i}(\sigma)P(\sigma)$$

$$= \frac{1}{h} \sum_{\sigma \in H} P(\sigma) \sum_{i=1}^{k} \chi_{i}(e)\chi_{i}(\sigma).$$

Again, the orthogonality relations imply that

$$\sum_{i=1}^{k} T_{x_{i}} = \frac{1}{h} \sum_{\sigma \in H} P(\sigma)\delta_{\epsilon,\sigma}h$$

$$= P(e),$$

the identity transformation on W. This proves (3).

We note that Weyl’s decomposition of W is orthogonal with respect to the above inner product only when $m = 2$.

3. Bases for Symmetry Classes

As above, H is a subgroup of S_{m}, χ is an irreducible character on H of degree r, and T_{x} and $V_{\chi}^{m}(H)$ are the associated symmetry operator and symmetry class. If $x_{1} \otimes \ldots \otimes x_{m}$ is a decomposable tensor in W, set

$$T_{x_{1}} \otimes \ldots \otimes x_{m} = x_{1} \otimes \ldots \otimes x_{m}.$$

The tensor $x_{1} \otimes \ldots \otimes x_{m}$ is called a decomposable element of $V_{\chi}^{m}(H)$. Now if v_{1}, \ldots, v_{n} is a basis of V, the set of n^{m} tensors $v_{a_{1}} \otimes \ldots \otimes v_{a_{m}}$, $1 \leq a_{i} \leq n$ is a basis of $W = \bigoplus_{i=1}^{n} V$. Thus there is a basis
of \(V^\chi(H) \) consisting of decomposable elements. In [1], Marcus and Minc give a construction for such a basis when \(\chi \) is linear, i.e., \(r = 1 \). Let \(\Gamma_{m,n} \) be the set of all \(m \times n \) sequences \(\alpha = (\alpha_1, \ldots, \alpha_m) \), \(1 \leq \alpha_i \leq n \). We write \(\alpha \sim \beta \) if \(\alpha^\sigma = (\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(m)}) = \beta \) for some \(\sigma \in H \). Clearly \(\sim \) is an equivalence relation on \(\Gamma_{m,n} \). Choose lexicographically the lowest representative from each class determined by \(\sim \). Call this set of representatives \(\Delta \). For each \(\alpha \in \Delta \), let \(H_\alpha \) be the subgroup of all \(\sigma \in H \) such that \(\alpha^\sigma = \alpha \). Let \(\Delta \) be the set of all \(\alpha \in \Delta \) such that \(\sum_{\sigma \in H_\alpha} \chi(\sigma) \neq 0 \). If \(v_1, \ldots, v_n \) is a basis of \(V \), then the tensors

\[
v_\alpha = v_{\alpha} \ast \ldots \ast v_{\alpha_m}, \quad \alpha \in \Delta \tag{4}
\]

are a linearly independent set in \(V^\chi(H) \). Moreover, if \(\chi \) is linear, the tensors (4) are a basis of \(V^\chi(H) \). (For details, see [1].) Note that \(\Delta \) depends only on \(H \) and \(\chi \), and if \(\chi \) is linear \(v_\alpha^* = \chi(\sigma)v_\alpha^* \) for all \(\sigma \in H, \alpha \in \Delta \) (see [1]). Thus in the linear case one can conveniently determine matrix representations of certain linear transformations on \(V^\chi(H) \). Using these properties, Marcus, Minc and Newman (see, e.g., [1], [2]) have been able to prove a large class of inequalities for determinants, permanents, and other multilinear matrix functions. Thus it would be useful to find a basis of \(V^\chi(H) \) when degree \(\chi > 1 \). The following result demonstrates some obstacles.

Theorem 2: If \(v_1, \ldots, v_n \) is a basis of \(V \), the tensors

\[
v_\alpha^*, \quad \alpha \in \Delta \tag{5}
\]

are a basis of \(V^\chi(H) \) if and only if \(\chi \) is linear. Moreover, if \(|\Delta| \) is the cardinality of \(\Delta \) then

\[
\dim V^\chi(H) \geq 2|\Delta| \tag{6}
\]

if \(\chi \) is not linear.

Proof. We may assume \(v_1, \ldots, v_n \) is an orthonormal basis of \(V \). The procedure in [1] still applies to show that the tensors (5) are linearly independent. For \(\sigma, \tau \in H \) and \(\alpha, \beta \in \Delta \), we compute

\[
(v_\alpha^*, v_\beta^*) = (T_xv_{\alpha(1)} \otimes \ldots \otimes v_{\alpha(m)}, T_xv_{\beta(1)} \otimes \ldots \otimes v_{\beta(m)})
\]

\[
= (T_xv_{\alpha(1)} \otimes \ldots \otimes v_{\alpha(m)}, v_{\beta(1)} \otimes \ldots \otimes v_{\beta(m)}),
\]

because \(T_x \) is idempotent hermitian. Hence

\[
(v_\alpha^*, v_\beta^*) = \frac{r}{h} \sum_{\rho \in H} \chi(\rho) \prod_{t=1}^m (v_{\alpha_{\rho^{-t}}(1), v_{\beta(t)}})
\]

\[
= \frac{r}{h} \sum_{\rho \in H} \chi(\rho) \prod_{t=1}^m (v_{\alpha_{\rho^{-t}}(1), v_{\beta(t)}}). \tag{7}
\]

Since \(\alpha, \beta \in \Delta \), the product in (7) is zero unless \(\alpha = \beta \) and \(\sigma \rho^{-1}\tau^{-1} \in H_\alpha \).

Thus

\[
(v_\alpha^*, v_\beta^*) = \delta_{\alpha, \beta} \frac{r}{h} \sum_{\rho \in H_{\alpha^\sigma \tau^{-1}}} \chi(\rho)
\]

\[
= \delta_{\alpha, \beta} \frac{r}{h} \sum_{\mu \in H_\alpha} \chi(\sigma \tau^{-1} \mu). \tag{8}
\]

43
Thus we are finished if we can show that for each $\alpha \in \Delta$ there is a $\sigma \in H$ such that v_α^* and $v_{\alpha \sigma}$ are linearly independent. Suppose this were false for some $\alpha \in \Delta$. Then

$$v_{\alpha \sigma}^* = \eta(\sigma)v_\alpha^*, \ \sigma \in H,$$

where $\eta(\sigma)$ is a scalar. From (8) and (9),

$$\eta(\sigma) \eta(\tau)(v_\alpha^*, v_\alpha^*) = (v_{\alpha \sigma}^*, v_{\alpha \tau}^*)$$

$$= \frac{r}{h} \sum_{\mu \in \mathcal{H}_\alpha} \chi(\sigma \tau^{-1} \mu)$$

$$= (v_{\alpha \sigma}, v_\alpha^*)$$

$$= \eta(\sigma^{-1})(v_\alpha^*, v_\alpha^*).$$

(10)

Since $v_\alpha^* \neq 0$, (10) implies that η is a character on H of degree 1. Thus for all $\sigma \in H$

$$\sum_{\mu \in \mathcal{H}_\alpha} \chi(\sigma \mu) = \frac{h}{r} (v_{\alpha \sigma}, v_\alpha^*)$$

$$= \frac{h}{r} \eta(\sigma)(v_\alpha^*, v_\alpha^*)$$

$$= \eta(\sigma) \sum_{\mu \in \mathcal{H}_\alpha} \chi(\mu).$$

(11)

Multiply both sides of (11) by $\eta(\sigma^{-1})$ and sum on σ, obtaining

$$0 \neq \sum_{\sigma \in \mathcal{H}} \sum_{\mu \in \mathcal{H}_\alpha} \chi(\mu)$$

$$= \sum_{\sigma \in \mathcal{H}} \eta(\sigma^{-1}) \sum_{\mu \in \mathcal{H}_\alpha} \chi(\sigma \mu)$$

$$= \sum_{\mu \in \mathcal{H}_\alpha} \sum_{\sigma \in \mathcal{H}} \eta(\sigma^{-1}) \chi(\sigma \mu).$$

(12)

As long as the degree of χ is greater than 1, the orthogonality relations imply that the right side of (12) is zero. This establishes (6) and thus Theorem 2 is proved.

4. References

(Paper 74B1–316)