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1. Introduction 

1.1 . Unrestricted Partitions 

As far back as 1669, Leibnitz asked John Bernoulli, if he had investigated the number of 
ways in whic h a given number can be expressed as a sum of two or more integers. This was neces
sarily the problem of partitioning a given number into a specified number of parts. 

A partition of a positive integer n , is a mode of expressing it as a sum of one or more positive 
integers, the order in which the summands occur being irrelevant. The parts are usually arranged 
according to size, one way or the other. Thus,S can be expressed as a sum in the following seven 
ways: 

5; 1 + 4; 2 + 3; 1 + 2 + 2; 1 + 1 + 3; 1 + 1 + 1 + 2; and 1 + 1 + 1 + 1 + 1. 

These are all the partitions of 5. Since there is no restriction of any kind on the number or size 
of parts, we call these the unrestricted partitions of 5. In all that follows, the number of unrestric ted 
partitions of any given positive integer n will be denoted by p(n) and we shall take p(O) = 1. 

In this survey, we shall give a short resume of the advances that have been made in recent 
years, in dealing with problems on partitions of integers. The bibliography includes papers on parti
tions of vectors also but we do not propose to deal with the topic here. 

1.2. Restricted Partitions 

Given a set 

where the a's are positive integers, one may be required to find the number of ways in which a 
given integer can be expressed as a sum of the a's, re petitions being allowed or not. This will be 
an example of restricted partitions. As other examples, we can mention: (1) Partitions into distinct 
parts; (2) Partitions into odd parts; (3) Partitions into a specified number of parts; and (4) Parti
tions into a specified number of distinct parts. In fact, the restrictions that can be placed on the 
size or on the number of parts or both, are too many to enumerate. Very recently, I had to consider, 
for example, the number g( n, m, h, k) of partitions of n into exactly k summands, each ~ m, 
just h (and any h) of the positive integers ~ m being used as summands, in any partition. Among 
several interesting results, I found that 

x (k-1)(m) ~,g(n, m, h, k) = h-1 h' 

*An invit ed paper. Thi s s ur-vey is based on an address give n b y the writer at a conference of the Indian Mathematical Socie ty held a t Madras in December ] 963. 

II has been brought to da le with the help of Professor M. S. C hee ma of the Universit y of Arizona , Tucson. 

**P resenl add ress : 402 Mlimfordga nj , Allahabad 2. India. 
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We shall denote by p(n, k) the number of partitions of n into exactly k summands; by q(n) 
the number of partitions of n into distinct parts; and by q(n, k) the number of partitions of n into 
exactly k distinct parts. 

1.3. Decompositions 

We have already stated that in a partition the order in which the summands appear is irrelevant. 
When the order of appearance of summands is relevant, the partition is called an ordered partition 
or a decomposition. (Some writers call it a composition.) We shall, however, invariably use the 
word decomposition in this sense. 

The number of decompositions is usually easier to find than the number of partitions. The 
total number of decompositions of n is, in fact, given by 2n - l . This is easily proved as follows: 

The decompositions of n can be classified under two heads: 
(1) Those in which the first part is 1; and .J 
(2) Those in which the first part is > l. 
Removing 1 (the first part), from each decomposition of n of the first kind, we obtain all the 

different decompositions of (n-l), each once. Reducing by 1 the first part in the decompositions 
of the second kind, we again get all the decompositions of (n -1) as before. Hence, the number of 
decompositions of n, is twice the number of decompositions of (n -1) and the result follows readily 
by induction. 

1.4. Perfect Partitions 

A partition of n is said to be perfect when it contains just one partition of every number up to 
n. Thus, 1 + 2 + 2 + 2 is a perfect partition of 7, because every number up to 7, can be expressed 
uniquely as a sum by using the summands: 1, 2, 2, 2. Other such partitions of 7 are: 
1+1+1+1+1+1+1; 1+1+1+4; 1+2+4. 

1.5. Plane and Solid Partitions 

The summands in a partition of n are sometimes arranged in the form of something like a 
mat,rix, so that the elements in each row and in each column are in a descending order, though not 
necessarily strictly. Such an arrangement gives a plane partition of n. Thus 

3 
2 

3 
2 

1 1 

2 
2 

1 
1 

is a plane partition of 18. A plane partition is also called a rowed partition. A k-rowed partition of 
n includes all partitions of n with k or fewer number of rows. Thus the three-rowed partitions of 
4 are: 

4; 31; 22; 211; 1111; 3; 2; 21; 111; 11; 2; II. 
12111111 

1 1 

The number of k-rowed partitions of n is denoted by tk (n). 
In a solid partition the summands are arranged in three-dimensional space as they are arranged 

in a two dimensional space in the case of a plane partition. The elements are arranged in descending 
order of magnitude in each of the three principal directions . 

2. Generating Functions 

A convenient way of representing a partition of n, in which one occurs hI times, two h2 times, 
three h3 times and so on, is to write 

n = 1'''2/123''3 

2 

nhn , 

I 
) 

/ 

I 

~ 



where h's are nonnegative integers, and 

hi +2h2 + 3h3 + .. +nhn=n. 

Now it would not be diffic ult to see that p(n) is the coefficient of xl! in the product: 

(l+ x+x 2 + . . . + X '" + 

because a on e-one corresponde nce can be set up between the partition: 

of n and the term: 

of the produc t noted above. Using the algebra of formal power series, we can write 

fI ( l -x r ) - I=l + f p(n)xlI. 
r = 1 n = J 

The function: 
oc 

f(x) = IT (1- X,) - I 
1'= 1 

is called the generating function for p(n). In the same way, one can show that the generating 
functiqn for q(n) is : 

g(x)=IT (l+x''). 
J' = I 

In general, the generating func tion for the number of partitions of n into members of se t 

where a's are posItIve integers whic h may be considered to be arranged in a strictly ascending 
order of magnitude, is 

~I(X) = IT (l-XOj) - l, 
CLj€A 

when repetitions are allowed, and 

gA(X) = IT (l+x"j), 
ajEA 

when repetitions are not allowed . Moreover, if UA (n) and VA (n) denote the numbers of partitions 
of n into an even number of distinct a's and an odd number of distinct a's respectively, then the 
coeffici ent of x 11 in the product: 

is uA(n) -vA(n) . 
The number of partitions of n into exactly k summands each taken from set A, is the coefficient 

of z""xll in 
IT (1- ZXaj) - 1 

ajEA 
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when repetitions are allowed, and in 
IT (l+zxaj) 

CljE,4 

when repetitions are not allowed. In particular, when the set A consists of all the positive integers, 
the generating function for p (n, k) is found to be 

k 

Xk IT (1- X,") - I. 
,"= 1 

Similarly the generating function for q(n, k) can be shown to be 

k 
Xk(h"+ I)/2 IT (1- X,") - I. 

1"= 1 

If 

be a perfect partition of n , then we must have 

(1+x+x2+ ... +xhl)(l+X2+X4+ ... +X2h2)(l+X3+ ... +X3h3) 

. . . . (l + X" h,,) = 1 + x + x2 + . . . . + xn. 

Hence the number of perfect partitions of n, is the same as the number of solutions of the equations: 

hi + 2h2+3h3+ .. . + nhn=n, 

in nonnegative integers. This can be shown to be the same as the number of ordered factorizations of 
(n + 1) without unit factors . Thus for n = 7, we have 

n + 1 = 8 = 8; 2.4; 4.2; 2.2.2; 

and 7 has exactly four perfect partitions as has already been seen. 
Many theorems in partitions can be easily proved by a judicious use of generating functions . 

For example, we have 

g(x) = g(x)f(x)/f(x) , 

=[1; (l+x'") [I; (1-X,")- I/ [I; (l-X,") - I, 

= IT (l- x 2 ,") / IT (1- x"), 

={(l-x)(l-X3)(l-X5) ... (l - x2'·- I) ... }- I. 

This shows that the number of partitions of n into distinct parts is the same as the number of 
partitions of n into odd parts, repetitions allowed. As another example of this type of interpretation, 
we notice that formally we have 

(l-x)(1+x)(l+x2 )(1+x4 ) ••• (1+x 2m) .. . =1. 
Hence 

O+X)(l+X2 )(l+X4 ) ••• (1+x2nl) ... =(1-X) - 1 =1+x+x2+x3+ . .. +x"+ . ... 
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This readily shows that the number of partitions of n into distinct powers of 2 is just one, i.e., every 
number can be expressed as a sum of distinct powers of 2 in a unique way. 

The generating function for tk(n), the number of k-rowed partitions of n, is: 

"" II (l-xr) - min(k,r). 
1' = 1 

In 1964, Cheema a nd Gordon gave a co mbinatorial proof of this result and obtained some co n
gruence properties of l2(n) and t3(n). Recently Gandhi has obtained some congruences for tdn). 

3. Some Important Identities 

3.1. Euler's Identity 

A serious study of the subject of partitions started with Euler. In 1742, Euler gave the important 
expansion: 

00 IT (l-xr ) =1-x- x2+x5 +x7- x I2-xI5+ ... + (-1)k{x k(3k - I)/2+ x lc(31c +1)/2} + ... , 
r = 1 

"" 2: (-1 )kXk(3k+I)/2; 
k = -oo 

a res ult which he co uld not, at first, prove. Using hi s formula he calculated a table of values of p(n) 
for n ~ 59. I made use of thi s ide ntity in exte nding my table of values of p(n) from n=300 to 
n= 1000. In 1830, A. M. Legendre noted that Euler's ide ntity implies th at every number which is 
not pentagonal, can be partitioned into an even number of distinct parts as often as it can be par
titioned into an odd number of distinct integers, while the pentagonal number k(3k+ 1)/2 can be 
partitioned into an even number of distinct parts once oftener or once fewer times than into an odd 
number of di stinct parts according as k is even or odd. Franklin used Ferrers graphs to give a 
remarkable proof of Euler's identity. 

3.2. Jacobi's Identity 

Jacobi gave fundamental applications of elliptic functions to the study of the theory of parti
tions_ In 1929, he proved that 

00 IT (l- x2r) (l +ZX2r - l ) (1 +z- lx2r- l) = 1 +x(z+ Z- I) + X4 (Z2 +Z- 2) +X 9 (Z3 + Z- 3) + 
1'=1 

He then deduced the following relations: 

00 00 IT (1- xtr) (l + X 2" - I)2 = 2: X"2; 
r = 1 

00 00 IT (1 - x2r) (1 - x2r - I )2 = 2: (- 1 ) rx"2; 
'1' = 1 

2X I/4 IT (l-x2") (1+x2r)2 =iX(21'+1)2/4 
1' = 1 

and finally 
00 00 IT (1- x2r)3 

1' = 1 

= 2: (-1)r (2r+ l)xr2+r. 
r=O 
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The last one of these identities is of particular importance in the theory of partitions and has 
been used repeatedly by Gandhi and others. Euler's identity can be shown to be a particular 
case of Jacobi's. 

In Jacobi's identity, replace x2 by uv, Z2 by u/v, and change u to - u and v to - v, to obtain the 
identity: 

IT (1- urv r) (1- u rvr- 1 ) (1- ur - 1vr) = i (-1) rur(r+I)/2vr(r - l)/2. 
1' = 1 

In 1964, Cheema interpreted this combinatorially in the form of the 
THEOREM : The excess of the number of partitions of (n, m) into even number of parts of the 

type (a, a-I), (b-l, b), (c, c) over those into odd number of parts, distinct in each case, is (-I)r 
or zero , according as (n, m) is or is not of the type (r(r+ 1)/2, r(r-l)/2). 

He also gave a graphical proof of this result. 
In fact, identities involving theta functions are equivalent to combinatorial theorems involving 

partitions under two different conditions. 
In 1966, Sudler gave two enumerative proofs of Jacobi's identity. 

3.3. Cauchy's Identities 

In 1843, A. Cauchy, besides proving Euler's identity, showed that 

n- l r _ l-xn (1-x n )(x-xn) 2 Jl (1+zx )-1+ I-x z+ (1-x)(1-x 2) z + .... 

+ (l-x ll )(x-xn )(x2_xn) ... (xn - l_xn) 
(l-x)(l-x2)(1-x3) ... (l_X") z"; 

and 

11 - 1 _ " - 1- l-x n (l-Xn)(l-X'H l) 2 (l-xn)(l-Xn +I)(l-Xn +2 ) 3 ,Q (l zx) -1+ I-x z+ (l-x)(1-x2) z + (l-x)(l-X 2)(I_X3) Z + 

These identities lead to the generating functions for pen, k) and q(n, k) given already. As a special 
case of Cauchy's identities, we have the following identities of Euler: 

00 I1 (l +zxr) 
" ~ O 

IT (l-zx r)-I =I+ ~ (1- )(1- 2(' ( r r~ O '-I X x . ... l-x r 

3.4 . Gordon's Identities 

Basil Gordon has given the identities: 

IT (I-x") (l-yx r ) (l_y- lx r - l) (1_y2x 2r - l) (l-y- 2x 2r-l) = i X"(3r +1)/2(y3r _ y - 3r - l). 
1' = 1 1' =-00 

(A proof of this identity was given by Mordell in 1962.) 

r=l r= -oo 

(This was also proved by Bailey.) 

6 



--------------------------------

3.5. Ramanujan's Identities 

Ramanujan stated without proof the two remarkable identities: 

(1) p(4) +p(9)x+p(l4)x2 + ... =5{f(x)}6/{f(x 5 )}5; 

These identities lead to the well known congruences of Ramanujan for the moduli 5, 52, 7, 72 ; 

which we consider a little later. In 1950, using formal power series, D. Kruyswijk obtained the two 
Ramanujan identities. 

3 .6. Rogers-Ramanujan Identities 

The following two identities, first found by Rogers in 1894, were rediscovered by Ramanujan 
about 1913. 

(1) 

(2) 

00 00 x~ 

IT {(J - X 5T +l ) (1 - X 5T +4 )} - 1 = 1 + IT -;-:--.,---;-:-----:?-:----;-:---;
/'= 0 /'= I (l - x) (1 - x-) . (1- x,.) 

Rogers·Ramanuj an identities have received considerable attention. Several proofs of these 
identities have been given, besides two by Rogers himself. An ingenious proof was given by 
J. M. Dobbie in 1962. In 1954, Henry L. Alder gave a generalization of these identities. A combina· 
torial interpretation of the identities was given by Gordon in 1961. B. Gordon and G. E. Andrews 
have generalized th ese identities in different directions. 

3.7. Generalizations of pen) 

In 1951 , Gupta considered the function: 

00 

1 (x) = IT (1- x") - 1:i-I . 
.,.= 1 

This is a generalization of the generating fun ction I(x) for p (n). He also considered the function: 

'In 

l ex, m) = IT ( 1 -x,·) - ri- l • 

1'= 1 

In 1960, O. Kolberg gave another generali zation of I(x) viz, 

00 

P(x, j) = {f(x)} - j = 1 + ITpj (n) x ll • 

n= 1 

For positive values of j , Newman has shown that pj( n) is a polynomial in j of degree n. Gupta has 
expressed pj(n) in terms of combinatory functions. Wright has obtained an estimate for pj(n) 
for large n. Gandhi has congruences for pj(n) from which results due to Ramanathan and Lahiri 
and also those concerning the parity of pen) follow as special cases. 

Kolberg proved that 

00 

P(X2, 5)P( ~ x, - 2) = L (3m+ 1)xm (311l+ 2) 

l1l =-oo 
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and 
'" P(x,5)P(x 2 ,-2)= L (6m+1)x m(3m+ 1)/2. 

m=- :o 

In 1953, L. Carlitz d erived Newman's formula: 

'" P( x, 6)P(x5, -1) = L P5(5m)x"'. 
m = O 

4. Recursion Formulas 

In extending to n = 300, the partition table which MacMahon and Ramanujan had computed 
up to n = 200, I adopted a new procedure. Denoting by r(n, m), the number of partitions of n 
with one part equal to m and other parts ~ m, I showed that 

r(n, m)=r(n-m, m)+r(n+1, m+l). 

This recursion formula enabled me to compute a double entry table for the values of r(n, m). 
The work was very much reduced with the help of the following relations: 

rem, m) = 1; 

r(m+j, m)=O, o < j < m; 

r(2m+j, m)=l, o ~ j < m; 

r(3m+ j, m) =2+ [j/2], o ~ j < m; 

and 

r(4m+ j, m) =3+ [(m+ j) /2] + [j(j+6)/12], 0 ~ j < m. 

The result for r(5m + j, m) is rather complicated. Moreover, for 0 ~ k < 4 , 

r(4m + k, > m) = m+ 2 + [k/2] + [(m+ k+3)(m+ k - 3)/12]. 

Since p (n) = r(n + 1, 1), my table provided a table of partitions as well. The generating function 
for r(n, m) will be readily seen to be: 

In 1958, G. Palama evaluated r(n, > [n/5]). 
The recursion formula for pen, k) is: 

This gives : 

pen, k)=p(n-1, k-1)+p(n-k, k). 

pen, 1) = 1; 

pen, 2) = [n/2]; 

pen , 3) = [(n2 +3) /12]. 
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Formulas for p (n, k), k ,,;.;; 12, are given in the introduction to the Royal Society Tables of Parti
tions. In 1942 , I obtained a formula expressing r(n, m) in terms of pen, m). It gave 

r(n+ 2m+ 1, m+ 1) = pen, 1) + p(n- m , 2) + p(n- 2m, 3) + ... + pen - jm,j + 1), 

wi th j = [( n - 1) / ( m + 1) ] . 
Very recently, using ele me ntary methods , J. Intrator has proved that the number of partitions 

of any natural number n into exactly k summands , is given by a polynomial of degree exactly 
(k -1) in n, the first [(k + 1) /2] coefficients of which are independent of n, while the others depend 
on the residue of n modulo the least common multiple of the integers: 1,2,3, ... , k. This is 
an improvement on earlier results. Actually the coefficient of ni in the polynomial depends on 
the residue of n modulo the least common multiple of the integers: 1,2,3, ... , [k/(j+1)]; 
j ,,;.;; (k-1). 

Let p* (n, k) denote the number of partitions of n into at most k summands. Then, we have 

p*(n , k) =p*(n, k-1) + p*(n-k, k). 

In fact,p*(n,k)=p(n+k,k). 
In 1955 , Lothar Berg considering solutions of the form: 

for the abov e recurrence, derived many known results for p*(n, k) and for pen). In particular, he 
showed, in a very simple way, that 

p(n) < Cexp(2CVn) /V n , C2=7T2/6. 

5. Graphical Methods 

5.1 . Ferrers Graphs 

An idea that has been very useful in the study of the theory of partitions, is that of Ferrers 
graphs. The partition: 6 + 2 + 1 of 9, is represented by means of dots - six in the first row, two in 
the second and one in the third, as in the following diagram: 

If we read this graph in columns, we get the partition: 3 + 2 + 1 + 1 + 1 + 1 of 9. The two partitions 
are said to be conjugate. Some partitions are self-conjugate too. Such, for example, is the partition: 
5 + 4 + 2 + 2 + 1 of 14. Corresponding to e very self-conjugate partition of n, we have a partition of 
n into odd distinct parts and conversely. Hence, the number of self-conjugate partitions of n is the 
same as the number of partitions of n into odd distinct parts. This and several other theorems in 
partitions are easily proved by means of graphs. For example, the following two can be mentioned: 

1. The number of partitions of n into exactly k summands, is the same as the number of parti
tions of n into summands the largest of which is k. 

2. The number of partitions of n into odd parts is the same as the number of partitions of n 

into distinct parts. (This has already been proved with the help of generating functions.) 

5.2. Decompositions of n 

Closely connected with Ferrers graphs, is the foilowing method of representing a decomposition 
of n. 
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Take a straight line ON of n units in length. If 

be a decomposition of n into k parts, then taking along the line ON; 

we get 
0--0--0 - 0 0--0 

o AI Az A3 Ak - 1 N 

as a graphic re presentation of the said decomposition. Conversely, given the graphic representa
tion, the decomposition can be written out. It will be readily seen that the number of decomposi
tions of n into exactly k summands, is the same as the number of ways in which exactly (k -1) 
lattice points can be marked strictly between 0 and N. Since there are (n -1) lattice points between 

o and N, in all; this can be done in (~= D ways. This gives the number of decompositions of n 

into k parts. The total number of decompositions of n is given by 

11 (n-l) L _ =211- 1. 
k = l k 1 

Since a partition of n into k parts, cannot give rise to more than k! decompositions (and that 
too only if the k parts are distinct), it follows that 

1 (n-l) p(n,k)~k! k-l ~q(n,k). 

We might mention here that the number of decompositions of n into at most k summands, 
is the number of solutions of the equation: 

XI + Xz + X3 + . . . + Xk = n, 

in nonnegative integers x. This is the same as the number of ways in which n like objects can be 
distributed among k persons when there is no restriction as to the number of objects any of them 
may receive. 

The method of representation described above can be extended to a j-dimensional space. 
Gupta has thus obtained generalizations of the above inequality for partitions ofj-partite numbers. 

6. Congruences 

6.1. Ramanujan's Conjecture 

About 1919, Ramal\ujan proved that for any nonnegative m, 

p(5m+4) == O(mod 5), p (25m + 24) == 0 (mod 25) ; 

p(7m+5) == O(mod 7), p(49m+47) == O(mod 49). 

He further stated that 
p(llm+6) == O(mod 11). 

10 



All these results are included in his famous conjecture: 

If p = 5, 7, or 11 and (24n-1) == O(mod pa), a;3 1; 

then alsop(n) == O(modpa). 
This as tounding conjecture held good till, using my table of values of pen) for n :S; 300, S. 

Chowla found that the conjec ture failed for n = 243. For this value of n, 

24n - 1 =5831 == O(mod 73 ), 

while 
p(243) =13397 82593 44888 == O(mod 72), 

but 

Later it was found that the conjecture failed also when n = 586. 
This dis covery led to a lot of work particularly by D. H. Lehm er, who using Hardy-Ramanujan 

and Rademacher Series (discussed later in this survey), computed values of p (n) for certain large 
values of n. He thus found that 

. 
p(599) == O(mod 54), p(721) == O(mod 113) ; 

p(1224) == O(mod 54), p(2052) == O(mod 113) ; 

p(2474) == O(mod 55), p(l4031) == O(mod 114). 

These results are in conformity with Ramanujan's conjecture. 

In 1948, D. B. Lahiri found three new congruences: 

p(49m+ r) == O( mod 49) for r= 19, 33, 40; 

and announced two more: 

p(125m+r) == O(mod 125) for r=74, 124. 

In 1952, from a study of Ramanujan's manuscript, J. M. Rushforth proved that 

p(121m+116) == O(mod 121); 

and 
p(49m+r) == O(mod 49) for r= 19, 33,40, 47. 

In 1960, Professor M. Newman showed that for (m, 30) = 1. 

p( (l67m 2 + 1)/24) == O(mod 5). 

These were all results of the Ramanujan type. 

In the meantime, G. N. Watson had proved Ramanujan's conjecture completely for powers 
of 5. For powers of 7, he proved the following modification of the conjecture: 

If 

then 

24n-1 ==O(mod 7b ), 

pen) == O(mod 7d ) where d= [(b+2)/2]. 
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Finally, A. O. L. Atkin has essentially settled the problem by proving Ramanujan's conjecture for 
powers of 11. The full truth with regard to the conjecture can now be stated in the form of the 

THEOREM: If 24n - 1 "" 0 (mod sa 7b 11 C), where a, b, c are nonnegative integers, then 

p(n) "" 0 (mod sa 7d 11C ) with d = [(b + 2) /2]. 

Watson's method was based on modular equations. Atkin followed the method of J. Lehner, 
which had enabled Lehner to prove Ramanujan's conjecture for 11, IF, IP, in 1943, 1950. 

Mention must also be made of the method which Professor H. Rademacher developed in 1942, 
for the investigation of the Ramanujan identities with respect to the moduli sa, 7, 72 , and 13a . 

Very recently, A. O. L. Atkin and J. N. O'Brien have made a valuable contribution to the 
literature on the subject by giving some properties of p(n) modulo powers of 13. 

6.2. The Parity of p(n) 

In 1920, MacMahon had shown that 

p(n) "" L p(t) (mod 2) 
t 

where t runs through the positive integral values given by the relation: 

8t = 2n - j U + 1) , j ;?! O. 

It is rather strange that nothing better should be known about the parity of p (n) than MacMahon's 
congruence. 

In 1946, making use of the fact that Ramanujan's function T(n) is odd if and only if n is an 
odd square, I obtained MacMahon's congruence. 

6.3. Congruences for pj (n) 

Newman, Kolberg, Ramanathan, Gandhi and several others have studied the function pj(n) 
defined in section 3.7. In 1956, Newman gave extensive tables of values of pj(n) for j ~ 16. 

For j= 2,4,6,8,10, 14,26 and a primep > 3 such that 

j(p+l) ",,0(mod24) . 

M. Newman proved that 

where k = j(p2 -1) /24 and we take pj(a) = 0 if a is not a nonnegative integer. He also showed that 

and that pj(n) vanishes for arbitrarily long strings of consecutive values of n,when j= 2,4,6,8, 
10, 14 or 26. 

then 

Ramanathan showed that 

If 24n + j "" O( mod sa)., j "" 16, 21, 26 (mod 30). 

pj(n) "" O(mod 5 b ) where b= [(a+ 1)/2]. 
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6.4. Rank of a Partition 

In 1954, Atkin and Swinnerton-Dyer proved some conjectures of Dyson, who had discovered, 
in 1944, empiri cally a remarkable co mbinatorial method of dividing the partitions of (5n+4) and 
of (7n + 5) into five and eve n equal classes res pectively. Dyson defined the rank of a partition as 
the largest part minu s the number of parts in the partition. The partitions of a given number co uld 
then be divided into classes according to their ranks. In the case of numbers of the form s (5 n+4) 
and (7n+5) , these classes had equal number of elements in each class. 

Atkin and Swinnerton-Dyer showed that for q = 5, 7, or 11, and 0< b < q; 

00 2: p (qn + b) yn 
11 = 0 

is congruent modulo q to a simple infinite product. 
In 1958, Atkin and Hussain obtained an identity for 

00 

2: p(l1n+6)y". 
11 = 0 

6.5 . Sylvester's Theorem 

In 1945, D. P. Banerjee proved Sylvester's theorem, which states that p(n) -Q(n) is even, 
where Q(n) denotes the number of partitions of n into odd distinct parts. 

6.6. Newman's Conjecture 

In 1960, M. Newman conjectured that for every pair of natural numbers In and r , there are 
infinitely many natural nu mbers n , such that 

p(n) == r(mod m). 

He proved the conjecture for In = 5, 13,65 and some other composite moduli. Kolberg and Subbarao 
have proved it for m= 2. In this connection, the following two results of Newman might be of 
interest: 

Neither of the congruences: 
p(13n-7) == r(mod 13), 

and 
p(l3 2 n-7) == r(mod 13), 

can hold for all sufficiently large n and a fixed r. 

7. Some Inequalities 

We have already shown that 

( n-1 ) k!q(n, k) ~ k-1 ~ k!p(n, k). 

Since, 
q(n, k) =p(n-tk(k-1), k), 

we must have 

( n+tk(k-l)-l»k! ( k»(n-1) 
k-1 ~ .p n, ~ k-1 . 

(Originally, I had made use of the recursion formula for p(n, k) to prove this inequality.) 
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The inequality implies that 

( k) _ .1 ( n - 1) f k - ( 1/3 ) P n, k! k -1 ,or - 0 n . 

Erdos and Lehner had proved this result in 1941, by a rather lengthy method. They had in fact 
proved that if p*(n, k) denotes the number of partitions of n into at most k summands, then 

p *( n, k) jp(n) - exp (-C - Ie - CX), 

where (here and in all that follows), C=7rjV6; and x is given by the relation: 

Ck= Vn log Vn+Cx Vn. 

They gave a similar result for partitions into distinct parts. 
As an analogue of this remarkable result of Erdos and Lehner, I showed that 

pen, k)jp(n) - tn - 1/ 2 exp (-tjC). 
where 

t= Lim Vn exp (-Ckn- l/2). 
n , k-+ oo 

In 1957, S. M. Luthra obtained an asymptotic formula for 

/I 2: kp(n , k)jp(n). 
k = 1 

The case of partitions of n into k distinct parts was also considered. 
In 1950, Auluck, Singwi, and Agarwala gave another asymptotic result of some interest: 
If wen) denotes the number of partitions of n into integers each of which occurs in the partition 

only an odd number of times , then for a certain constant y, 

wen) - 2Y exp (2yVn). 
7rn 

If pen, A) denotes the number of partitions of n into members of the set: 

then , I proved in 1955, the inequality: 

(n+m) 111 ( III ) 
:;;:p(n,A)J]aj :;;: n+j~aj . 

III 111 

This is a generalization of the inequality given earlier. 
In 1954, writing 

'" { (1 - x) (1 - x 2) (1 - x 3 ) (l-x")} - 1 = 2: cj(r) (1- x)j - ,., 
j = O 

I showed that for a fix ed j and large r , 

This led to an asymptotic formula for p*(n, r). 
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In 1956, Bateman and Erdos showed that the number of partitions of n into parts taken from 
a nonempty set A of positive integers, is strictly increasing for large n , if and only if A contains 
more than one element and if when any element is removed from A, the remaining elements have 
the greatest common divisor unity. 

8. Conjecture of Auluck, Chowla, and Gupta 

In 1942, Auluck , Chowla, and Gupta conjectured that p(n, k) has a unique maximum for any 
given n, i.e. , regarding n as fixed there exists an integer ko such that 

p(n, k) ~p(n, k-l),fork~ko; 
and 

~ p(n, k-l), for k> ko. 

This conjecture has not been completely proved so far. 
In 1953, however, G. Szekeres proved that a maximum of p(n, k) occurs at 

where 
L=log (VnIC). 

He deduced this result from his formula for p *( n, k) true for bounded (niP). The formula itself 
was obtained by using the me thod of steepest descent. 

In fact, the work of Szekeres opened up the possibility of obtaining the infinite series for 
p (n) without using the theory of elliptic modular functions. He sharpened the results of Erdos 
and Lehner regarding maximum of p (n, k) and q(n, k). It was shown that q(n, k) has a maximum at 

where {3 is a fixed constant. 

In 1954, Haselgrove and Temperley developed a powerful method which made no use of Farey 
dissections and enabled them to prove that p(n, k) attains its greatest value for at most two con· 
secutive values of k when n is large and fixed. This had been conjectured by Auluck, Chowla, and 
Gupta. 

9. Hardy-Ramanujan and Rademacher Series 

No account of partition theory can be even fairly complete without a mention of the great 
work of Hardy and Ramanujan on the subject. Using Farey dissections, they obtained an infinite 
series for p (n) , the first few terms of which gave the value of p (n) exactly if we neglect the decimal 
part in the answer. This was astounding. Later on Lehmer showed that the Hardy-Ramanujan series 
was divergent and Hardy and Ramanujan had been fortunate in breaking at a point where the 
series gave a correct answer. 

The Hardy·Ramanujan series gives 

where 

L ______ _ 

(12) 1/ 2 [ v'~· l 
p(n)= (24n-l)u I~I AZ(n)(u-k)exp (ulk) + o (log n/Vn); 

u= 7T(24n-l) 1/2/6. 

15 



A change in the path of integration enabled Rademacher to replace (u - k) exp (u/ k) in the 
Hardy-Ramanujan series by 

(u-k) exp (u/k)+(u+k) exp (-u/k)_ 

This simple-looking change gave a convergent series for p(n)_ 
The functions Ann) in the series for p(n) have been shown by Lehmer to be multiplicative 

in a certain sense_ In 1956, Whiteman used Fourier series for the evaluation of these functions 
and Rademacher obtained the Selberg formula for At (n) by using a transformation. He also put 

Lehmer's theorems for the evaluation and factorization of At (n) in a form suitable for computation. 

The method of Rademacher has been widely applied to partition problems of various types. 
For example , Lehner has obtained a convergent series for the number of partitions of a positive 
integer n into summands of the form: 5m±a, a=l, 2; and Hua for q(n). Hagis has not only de
rived Rademacher's formula for p(n) and the convergent series for q(n), but also a convergent 
series for q(n; t)-the number of partitions of ninto odd summands, no summand appearing more 
than t times in a partition. 

In 1941, Ingham used a Tauberian theorem to obtain the asymptotic formulas for p(n) and 
q(n). These are: 

p(n) ~ (4nY3) - 1 exp (1Tv'2n/3), 

q(n) ~ (4n3 / 23 1/ 4 ) - 1 exp (1Tv'n!3). 

In 1961, Iseki gave a shorter proof than Rademacher's for a functional equation which implies 
the transformation equation for Dedekind's modular function 'YJ (T). D. 1. Newman has obtained 
the asymptotic formula for p(n) in an elementary and simple way. In 1962, he gave another proof 
for it. 

In 1954, Petersson developed a function-theoretic method for finding an asymptotic formula 
for the partition function. This method is different from the Hardy-Ramanujan method. 

10. Miscellaneous Results 

Mention must be made of the work of O. P. Gupta and S_ Luthra who, in 1955, gave a table for 
the number of partitions of n ,;;; 300, into primes. I gave a table for the number of partitions into 
distinct primes. 

In 1957, Takayoshi Mitsui used the powerful methods of Vinogradov and Hua to obtain an 
asymptotic formula for the number of partitions of n into kth powers of primes not exceeding m. 
His results generalized those of Haselgrove and Temperley. 

Before I conclude, I give some results which, I believe, will interest the reader. 
(i) The number of partitions of n into distinct parts, the smallest being odd, is odd if and only 

if n is a square. This was given by N. 1. Fine in 1948. 
(ii) In 1958, Guy proved that the number of partitions of an integer into: 

(a) odd parts greater than unity; 
(b) unequal parts such that the two greatest parts differ by unity; 
(c) unequal parts which are not powers of 2; are all equal. 

(iii) In 1963, R. L. Graham showed that every integer greater than 77 can be partitioned into 
distinct positive integers whose reciprocals add to l. 

(iv) 1. B. Kelly proved the following result in 1964: Given k;:?; 3, every n;:?; N(k), can be parti
tioned into k parts in (k -1) different ways so that the products of the integers in each of the (k -1) 
partitions are equal. 

(v) By far the most remarkable result regarding two-rowed partitions of n, when the elements 
in rows strictly decrease, is that the number of such partitions is p (n), but it is only p ([n/2]) when 
the parts are all odd. 

16 



- -- --- - - --- ---- ----- ---

This was proved by B. Gordon in 1962. Sudler gave a direct proof of this result in 1965. More 
recently B. Gordon and L. Houten obtained generating functions and asymptotic formulas for 
various restri c ted rowed and plane partitions. 
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