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The concept of a quasi-particle excitation in an interacting many-body system will be discussed 
from both the physical and the mathe matical points of view. The physical origin of mass enhancement, 
wave function renormalization, interac tions betwee n quasi-particles , etc. will be presented. Landau's 
Fermi liquid theory, including the quasi-particle kinetic equation, will be reviewed. Finally, the domain 
of validity of the quasi-particle approximation will be discussed. 
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1. Introduction 

Since the early work of Drude and of Sommerfeld 
[1] , it has been clear that an independent-particle pic­
ture represents in a qualitatively correct manner the 
electronic properties of a metal. The electronic specific 
heat, the transport properties, the magnetic suscepti­
bility, etc. are all roughly accounted for by elementary 
band theory, without recourse to explicit many-body ef­
fects. Exceptions to the rule are the plasma modes ob­
served in the energy 105$ of fast charged particles, as 
well as cooperative phenomena such as superconduc­
tivity ferromagnetism, antiferromagnetism, etc. 

of metals relative to the IPA since this approximation 
includes only the average Coulomb interaction between 
electrons. The "correlation energy" neglected by the 
IP A is of order 1 to 2 e V per electron and is by no 
means trivial. 

The success of the independent-particle approxima­
tion (IP A) is particularly striking in view of the large 
ratio of interelectronic Coulomb energy to kinetic ener­

l gy experienced by electrons in metals. A measure of 
d ~ this ratio is the electron density parameter Ts defined 
i essentially as the mean spacing between electrons, 

measured in units of the Bohr radius. For Ts ~ 1, the 
Coulomb interactions between electrons are weak com­
pared to the kinetic energy effects, while if Ts P 1 the 
potential effects dominate the kinetic effects. For sim­
ple metals, Ts is typically between two and six. Thus, 

The qualitative reason that the IPA works so well is 
that typical measurements made on metals at normal 
temperatures (T ~ Tp ~ 105 K, where Tp is the Fermi 
temperature) involve only the low lying excited states 
of the metal. There is good theoretical (and experimen­
tal) evidence that these many-body states are well 
characterized in terms of a set of elementary excita­
tions, called quasi-particles, which for the interacting 
system play the same role as the excited electrons 
(above the Fermi surface) and the excited holes (below 
the Fermi surface) in the IPA. As for electrons and 
holes, these quasi-particles are labelled by a wave vec­
tor k and a spin orientation s = ± 1/2. It is assumed that 
there is a sharp Fermi surface in the actual system as 
T ~ 0, although its shape may depend on the many­
body interactions. By convention, one measures the 
quasi-particle energies Ek relative to their (common) 
value on the Fermi surface so that EkP= 0, where k p is 
a wave vector on the Fermi surface. 

1 
it one might expect qualitative changes in the properties 
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At sufficiently low temperature, few quasi-particles 
are excited and therefore this dilute quasi-particle gas 
is nearly a "perfect" gas, in the sense that the quasi­
particles rarely collide. Furthermore, at low tempera­
ture only low energy quasi-particles are excited. Since 
their intrinsic decay rate varies as Ek1, they constitute 
long lived, weakly interacting excitations , thereby justi-
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fying their use as the building blocks for the low lying 
excitation spectrum. 

There is no need in principle for the effective mass 
of the quasi-particles (q.p.) to be simply related to the 
free electron (or band structure) mass. For simple 
metals, it turns out that the q. p. mass m * is of the order 
of the free electron mass me, differing from it in most 
cases by a factor of less than two. The main source of 
the deviation of m* from me (aside from band structure) 
is the electron·phonon interaction, which in general 
leads to an increase of m*. 

Unfortunately, there is at present no truly first princi­
ples proof of the above statements, i.e. the 1:1 cor­
respondence of the low lying excited states of the 
noninteracting and interacting systems, a simple effec­
tive mass spectrum, long lifetimes of the quasi·parti­
cles, etc., although one has a proof that these state­
ments are true to all orders in perturbation theory start­
ing from the noninteracting states [2] . This lack of a 
rigorous foundation for the theory is not merely a 
mathematical nicety, since we know of many systems 
(e.g. the superconducting phase) which are not con­
nected perturbatively with the noninteracting system; 
nevertheless, quasi-particles are still of use even in this 
case. One assumes that in normal systems (absence of 
cooperative effects) perturbation theory (or alternative­
ly, adiabatic switching on of the interactions) gives the 
correct physics of the interacting system despite subtle 
nonanalytic effects which are likely present even in 
normal systems. 

Thus far we have discussed only the excitation spec­
trum and not the many·body wave functions. Response 
functions (e .g. transport phenomena) require informa­
tion about both quantities. The remarkable fact is that 
a suitably defined kinetic (or Boltzmann-like) equation 
for the quasi-particle distribution function gives an ac­
curate account of the response of the system to long 
wavelength, low frequency perturbations such as elec­
tric and magnetic fields. This second property of quasi­
particles is the heart of why the Drude-Sommerfeld 
scheme works well for nonequilibrium as well as 
equilibrium phenomena. 

There is not time here to go into the details of the 
Landau theory of Fermi liquids , upon which the present 
theory of quasi· particles in metals is based. The excel­
lent books of Pines and Nozieres [3] and of Nozieres 
[4] deal in depth with this topic. We would like, how­
ever, to give a brief sketch of the theory and to make a 
few comments about it. 

2. The Landau Picture of Fermi Liquids 

In the Landau picture one assumes that the low ener-

gy excited states of the interacting system have ener­
gies well approximated by the form 

''1J 

E(on ks ) = 2: Eksonks+~ 2: f~t,onksonk's' . (2.1) I 

ks ksk's' 

Here·onks is a measure of the quasi-particle (q.p.) occu­
pation numbers. Assuming there is a well defined 
Fermi surface SF at zero temperature described by the (~ 
wave vectors kF, one has l 

{

+ 1, ks outside SF and occupied by a quasi- .( 
electron 

on ks = - 1, ks inside SF and occupied by a quasi­
hole 

h ~,' 0, ot erwise. 

The zero-order q.p. energy Eks is measured relative to 
the chemical potentiallL so that Ek,s = o. One assumes ! 

I that Eks and its derivatives are continuous across SF and I 

one makes the effective mass approximation j 

(2.2) , 

The approximation (2.2) often suffices, since one is 
usually interested in q.p. states ks in the immediate 
vicinity of SF (since T ~ TF). The term involving Rf 
represents the energy of interaction between quasi-par­
ticles. This function and m * are considered to be 
parameters to be determined from experiment or to be 
roughly estimated from a more fundamental theory. 

Landau argued that if one views the quasi-particles 
as being described by wave packets whose extent is 
large compared to the wavelength of a q.p. at the Fermi A 
surface (AF ~ 21TI kF ~ 10- 8 cm in metals) then one can ( 
define a distribution function onks(r, t)for q.p. 's which 
plays the role of the single particle distribution function 
f(r,p,t) in kinetic theory. This concept is reasonable as 
long as onks(r,t) varies slowly in space (compared to AF) 
and in time (compared to hilL). By the usual arguments L 
of kinetic theory one can write down a kinetic (Landau-'r 
Boltzmann) equation for on. 

Y; k and [Conks) are the external force acting on the q.p. 
and the collision integral respectively, while V rOnks is 
defined by 

'V ronks(r, t) = 'V ronks(r, t) 

+ O(E ks)2: Rf'Vronk,, (r, t). (2.4) 
k ', 
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The term V.onks in (2.4) describes the conventional 
s treamin g flow of q. p. 's familiar from kinetic theory. 

:r Th e other term, arising from the interactions, may be 
viewed as a dragging along of the ground state particles 
by the inhomogeneous distribution of quasi -particles, 
eac h q. p_ dragging along its own cloud. 

Naively, one might guess that the particle curre nt 
density J(r,t) at point r may be expressed as 
~>kSonkS(r,t). This is not true, but rather 
ks 

J (r, t) = 2: vksonks(r, t) 
ks 

=2: [Vks + 2:f~~' Vk 'S .O(Ek's' )] onks(r, tl. (2.5) 
ks k 's' 

The von term represents the current of the quasi-parti­
cle, while the term involving I represents the curre nt of 
the ground s tate particles being " dragged along" with 
the q.p. It is clear from the kineti c equation (2.3) that 

~ thi s definition is correct since the continuity equation 

ap 
-+\7 'J = O at 

is satisfied by J if we use the fact that 

P= PO + 2:0nks( r, t). 
ks 

(2.6) 

(2.7) 

Roughly speaking R{· behaves like a veloci ty depe n­
dent potential acting on particles in k and k'. A c hange 
in onks acts on the particle in k's ' like a vector potential 
would, and induces a c urrent eve n though the k' 
wave function does not chan ge , like the Meissner effect 
in a superconductor. 

3. Quasi-Particles in Metals 

The above picture is suitable for a sys tem like He3 

whi ch is translation ally invariant in its ground state and 
:r has only the Fermion degrees of freedom. Metals are 

clearly different: they are invariant only under the 
translation group of the crystal lattice and have lattice 
vibrations as well as electronic degrees of freedom. 
How much of the Landau picture survives? The "non­
interac ting system" is presumably now th~ IPA in which 

7 the Coulomb interac tions be tween electrons are treated 
in the mean fi eld approximation. In this case the one 
particle states are labelled by a wave vector k 
(restricted to the first Brillouin zone), a band index n 

and the spin s. We lump n and k together for now. 
There is a sharp Fermi surface at T = 0 and excited 

, states are given by the usual electron and hole excita­
tions. Since the Coulomb interaction has full transla-

tion invariance, k remains a good quantum number to 
describe the quasi-particles, although the ground state 
of the actual syste m may be the tran sform of some 
excited s tate of the IPA syste m, due to c ha nges in 
shape of the Fermi surface. Luttinger and Nozieres [2] 
have shown to all orders in perturbation theory th at the 
voLume of k space inside Sf' remains fixed , as it mu st for 
the Landau picture to make sense. The energy expres­
sion (2.1) still holds butRf is in general a fun c tion hav­
ing only the symmetry of the crystal, rather than full the 
rotational symmetry present for say He3 . The effective 
mass expression for Vk still holds except l/m * is in 
general a second rank tensor having only the symmetry 
of the crystal. If the crystalline anisotropy of m * andf 
are very weak (as for Na) then the identity 

m* 1 + F~ 
m 3 

(3.1) 

relating the effective mass ra ti o and the spin symm etric 
L = 1 term Fls in a Legendre polynomial expansion of 
Rt'· for a true Fermi liquid is valid. Here, if N(O) is the 
density of single particle states of one spin orientation 
at the F ermi surface, th en 

Ff = N(O) UP + Itl] (3.2) 

and 

ft{.= !/!"' p, (cos kk '). (3.3) 
/= 0 

Thus, for nearly free electron metal s the low te mpera­
ture electronic specific heat, i.e. m*/m , determines Fl. 
Other pieces of information abo ut Rf can be extrac ted 
from other experiments s uch as the anomalous skin ef­
fect, Azbel-Kaner cyclotron resonance, de Haas van 
Alphen effect, dynamic magne ti c s usceptibility, etc. 
Presumably the Ii drop off rapidly with increasing L so 
only l = 0, 1 and perhaps 2 need be retained. For non­
free electron metals, it appears that the anisotropy off 
is so large that unravelling this function will be quite in­
volved. Howe ver, we know that the transport and the 
dHvA measurements have already given us a great deal 
of information about l/m* in complex metals. Whe n 
combined with band structure calculations these meas­
urements give information on the many-body effec ts 

. in these systems. As we mentioned earlier, most of the 
m*/m effect is due to the phonons , for which a 
reasonably good first principles calculation. is becoming 
possible, in many metals. A careful compari son here 
would provide an important check on the approxima­
tion of band th eor y and of the approximate methods 
presently used in many-body theory. 
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Another problem is that the phonons complicate the 
kinetic equation and the current density expression, 
since the phonons carry momentum and energy. The 
necessary generalizations of the Landau theory have 
been worked by Prange and Kadanoff [5] , although we 
do not have time to discuss these questions here. 

4. Green's Function Picture of Quasi-Particle 

An alternative way of viewing quasi-particles, which 
is more general than the Landau theory, is through the 
Green's function scheme of many-body theory 
[3,4,6,7]. Suppose that an interacting system of N 
electrons is initially prepared to be in its exact ground 
state, 10, N) . If c~ creates a (bare) Bloch electron in 
state ks, then we desire the probability distribution 
P lu (E) of the energy for the N + 1 particle state <I>N~t+ 1 
defined by 

I <I>tt-t ) = cis 10, N). (4.1) 

In general, <I> is not an eigenstate of the full Hamiltoni­
an so that <I> does not have a sharply defined energy, i.e. 
PIu(E) is not a delta function. The rules of quantum 
mechanics tell us that if the states In, N + I) are the 
exact energy eigenstates of the N + 1 particle problem 
then 

PIu(E)=L I (n,N+1Ict,i O,N) 1
20(E 

= L I ( n, N+ 1 I <I>itt ) 1
20(E 

I! 

- [E;~+ t - E~] + J-t) , 

where the E~+ t are the energy eigenvalues of the 
many-body system. Within the IP A, Pk,(E) is a delta 
func tion , since c~s creates a Bloch state electron, 
which by definition is an exact single particle eigen­
state of energy Eks . Thus, for the independent particle 
approximation (IP A) 

(4.3) 

Clearly, according to the Pauli Principle P is zero if one 
tries to add a particle to an already filled state, Elu < O. 
For the interacting system~ P will be a complicated 
(positive) function of E in general, whose shape depends 
on the value of ks. The essential point is that if k is 
slightly above the Fermi surface, P lu (E) will consist of 
a narrow high peak centered about a "quasi-particle 
energy," 

(4.4) 

plus a background continuum which in general has a 
rather smooth behavior, as sketched in figure 1 for k 
just above the Fermi surface. The half-width of the " 
peak r Iu, gives the intrinsic decay rate of the quasi-par­
ticle according to 1/TIu = 2r ks/Ii. Perturbation theoretic 

<­
arguments show that r goes to zero as Elu 2 for Elu ~ J-t so 
that the fractional width (or the reciprocal "Q" of the 
particle) varies as flu, showing the quasi-particle to be 
a well defined excitation near the Fermi surface. To < 
complete the story, one considers hole states defined 
by 

(4.5) 

Like <I>N(,t, <I>Nk,t is not an eigenstate of energy for the 
interacting system. Thus, the probability distribution 
of E for the hole state, which is defined by 

PIu(E) = L I (n, N-Il <I>'t- 1)12 
I! 

o(E + [E~- t - En + J-t) 

= L I (n, N -1 I Clu 10, N) 12 
n 

o(E + [E:~- t - EC'] + J-t) 
(4.6) " 

is not a delta function in general. Note the change of 
sign of the excitation energy term in the delta functions 
appearing in (4.2) and (4.6). This ensures that at 
zero temperature the holes have negative energy and 
electrons have positive energy. Within the IPA, <l>N -l _ Iu 
is an eigenstat~ of Hand P(;'A (E) given by 

(4.7) 

For the interacting system, if ks is just below the Fermi 
surface, a narrow, high "quasi-hole" peak centered 
about Elu appears in Pks (E), with a continuum 
background again occurring as sketched in figure 2. 
The quasi-hole and quasi-electron energies presumably 

o E 

FIGURE 1. Probability distribution Pk,(E)jor a "quasi-particle" 
corresponding to a bare Bloch state ksfor k > kp • 
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F IGURE 2. Probability distribution Pk,(E)[or a "quasi·hole" state 
with k < kF . 

join on smoothly at the Fermi surface so that m* is con· 
tinuous across Sf'. 

At nonzero temperature, one makes a statistically 
weighted average over initial states, rather than con­
sidering only the ground state 10 , N). In this case the 
electron and hole probability distributions overlap, in 
that they are both nonzero for E > 0 and for E < o. The 
overlapping corresponds to creating or destroying ther­
mally excited quasi-particles, amongst other things. 
From the Fermi statistics of electrons, there follows the 
rigorous sum rule 

One advantage of the Green's function description is 
that it allows the concept of quasi-particles to be use­
fully extended to systems which are not related by an 
adiabatic transform or by perturbation theory to the 
noninteracting states. For example, in a superconduc­
tor, P,,", (E) shows at low temperature a sharp peak at 
the "quasi·particle" energy 

(4.9) 

while i\,(E) shows a sharp peak at E -Eks as 
sketched in figure 3. In addition, P and P show 
background continua like in the normal metaL Note 
however that as k approaches the Fermi surface there 
is an energy gap between the quasi-hole and quasi-elec­
tron peaks, the gap being 2Ll k ,., as is well known from 
the pairing theory. Thus a minimum energy 2il k ,. is 
required to make a single-particle excitation in a super­
conductor (i .e. creation of a quasi electron-hole pair). 

We should mention that the "background con-
I tinuum" mentioned above corresponds physically to 

the creation of more complicated excitations, such as 
a quasi-particle plus electron-hole pairs , phonons, 
plasmons , etc. Generally these extra excitations are not 
strongly coupled together and therefore an incoherent 
(smooth) continuum appears. In special cases, how-

E 

(b) 

FIGURE 3. Pks(E) and Pk,(E) jar a superconductor showing (a) sharp 
peak at E = Ek , in Pk,(E) and (b) peak in i\,(E) at E = - Ek.,. 

ever, resonant scatterings states of th e excitations can 
appear , an example being the quasi-bound state of a 
hole and a plasmon, as Hedin et al. [8] have discussed. 

There is a great deal more one should say about 
quasi-particles. The interested reader can follow the 
story further in the books mentioned above and the 
references contained therein . It is the present author's 
view that a clearer physical picture of suc h questions 
as "drag c urre nts ," "back flow ," "screening," quasi ­
particle interactions (both forward and nonforward 
scattering amplitudes), particularly in real metals, 
deserve careful attention in the future. 
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