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1 . Introduction 

There are many e ngineering proble ms whic h have 
an unlimited numbe r of adequate solutio ns, but whi c h 
have an optimum solution with regard to so me cri · 
terion such as weight or cos t. Thi s pape r describes a 
nonrandom co mple x method for see kin g the optimum 
solution for a class of such problems characte rized by 
nonlinear objective and co nstraint fun ctions of co n
tinuous and/or dis cre te variables. Th e nonrandom 
complex me thod is a mutation of the "complex" 
method of Box [1).2 Both the nonrandom method and 
the Box me thod have an important advantage over 
many other methods for nonlinear optimization in that 
they do not require computation of partial de rivatives 
of the fun ctions. 

The nonrandom method and the Box method begi n 
a search by genera ting a co nfiguration of points (an 
initial complex) whose coordinates are values of the 
inde pende nt optimization vari ables . At least one point 
of the initial complex (the initial point) mus t be known , 
in advance, to fall inside all constraint bounds of the 
proble m. All other points of the co mplex are computed 
to fall in side or on the cons traint bounds. 

In the Box me thod, th e points of an initial co mplex 
are generated by a pseudo-random process. Numerical 
res ults by Hilleary [2] , using the Box method , de mon
strate that the rate of convergence to a solution is 
depe nde nt on the c haracte r of th e initial complex, and 

I Prese nt address: Mathemati cs Department , Univers it y of 1\:laryland. College Park , 
Maryland . . 

2 Figures ill bracke ts indi ca te Ihe lit era ture references a l the end of till S paper. 

that a poor initi a l co mplex may res ult in failure of the 
me thod to conve rge. 

In the nonrandom co m pie x me thod re ported here, 
the characte r of the initial complex is influe nced by 
the initi al point to a much greater degree than in the 
Box method. Thus , a good in itial point leads to a re la
tively good initial co mpl ex. This c harac teri sti c is used 
to advantage by generating a ne w initia l co mplex about 
a lI ew initial point if the convergence of a search se
quence beco mes excess ively slow or s top:,. Th ~ same 
characteri sti c also fac ilitates a more e ffi CIe nt dIscre te 
variable optimization than would be expected from the 
Box me thod. Th e nonrandom method imposes a lower 
bound on initial complex size by selecting initial com
plex points in s uch a way that ~t least one-hal~ the 
constraint bounded range of each lI1dependent van able 
(in the one-dimensional subspace containing the initial 
point) is included within the complex span. 

The nonrandom complex method has been used 
s uccessfully for the following two minimum weight 
s tru ctural analysis problems: 

1. An n-degree elliptical elastic ring with s i nu soidall y 
varying cross-section dimensions , loaded by two forces 
acting in opposite directions along a diame ter; and 

2. A rib-stiffened simply supported plate, loaded by
in-plane compressive forces. 
The ring problem has six co ntinuous inde pe nde nt 
variables, and the plate proble m has four inde pe nde nt 
variables two of whic h are di scre te. Both proble ms 
have nodlinear objective and cons traint functions. A 
large class of optimization proble ms fall within the 
range of mathematical co mplexity re presented by 
these two proble ms. 
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List of Symbols 

Xk independent variable of the optimization 
problem, 

gi implicit constraint function, 
hi implicit constraint lower bound, 
ki implicit constraint upper bound, 

Em m-dimensional Euclidean space, 
Pj a point of the optimization complex, 
ak lower explicit bound on Xk, 

bh· upper explicit bound on Xh', 

a reflection factor of complex optimization method , 
m the number of independent variables of the 

optimization problem, 
p the nllmber of indepeodent discre te variables 

of the optimization problem, 
L total force applied to ring, 
P = L/2, force applied to one quadrant of ring, 
a curved bar deflection , one-half ring deflection, 

r , () polar coordinates of ellipse, 
II degree of ellipse, 

a, b semimajor and semiminor axes of ellipse, 
h ring cross-section width, 

ring cross-section thickness normal to tangent 
of ellipse, 

c average of maximum and minimum ring width, 
d average of maximum and minimum ring thick

ness , 
e dimensionless parameter of ring width variation , 
f dimensionless parameter of ring thickness 

variation, 
s arc length variable measured along ellipse , 

M moment, 
N normal force , 
V shearing force, 
k curvature of ellipse, 
g integral defined in equations (7) and (8), 
p Poisson's ratio, 

E modulus of elasticity, 
r:r normal stress, 
S design maximum stress, 
A scale factor, 

W weight, 
y material density, 

Nt normal force per unit width of plate , 
I, w length and width of rib-stiffened plate , 

tp flat plate thickness, 
tr rib thickness , 
bp rib spacing, 
bl' rib width, 
H = tp + br , total thickness of rib-stiffened plate. 

2. The Nonrandom Complex Method 

The following paragraphs describe the nonrandom 
complex method as it is applied to a continuous vari
able problem. Adaptation of the method for discre te 
variable optimization is described later. 

The nonrandom complex method searches for a se t 
of values of the independent continuous variables 

X I , X2, ... , XIII which gives a mInImum value of an 
arbitrary objective function f(XI, X2 , . . . , Xm), subject 
to explicit constraints on the variables, and subject 
to implicit constraint bounds on arbitrary functions of 
the variables . The implicit constraint functions 
gi(XI, X2, . . ., XIII) are subject to inequalities of the 
form hi ~ gi ~ ki' where the bounds hi and ki represent 
arbitrary limits and either one or both may appear. 

To begin the method it is required that a point 
(x; , x~ , ... , x;,.), in m-dimensional Euclidean space, 
Em , be known which is feasible (i.e., does not violate 
any constraint) and which does not lie on any constraint 
bound. Using this initial point , a set of 2m + 1 points 
in Em is then generated by the following procedure: 

1. Denote the jth point in the set of 2m + 1 points by 
Pj. Let PI = (x;, x~, ... , x:II ). 

2. Denote the explicit constraints on the independent 
variables byak ~ Xk ~ bk fork = 1, 2 , ... , m . Setk = L 

3. Let Pn = (x;, x~, . . "X~ _ I ' bk , X~'+ I' . .. , x:II )· 

This point is the same as the initial point PI except in 
the kth coordinate, where x~ has been replaced by 
its explicit upper bound bl> . 

4. Evaluate all implicit constraint functions at P2k . 

If all are satisfied, move on to step 5. If any implicit 
constraint is violated , set 

This moves P2k one-half the distance toward the initial 
point PI. Once again, evaluate the implicit constraint 
function s at P2k , go to step 5 if they are satisfied, or 
move P2k one-half the remaining distance to PI other
wise. Repeat the process until P2k is feasible . 

5. Let P2I;+ 1 = (x; , x~,. . . , <-I' ak, X~+ I ,. . . , x:,.). 
This point is the same as the initial point PI exce pt in 
the kth coordinate, where x~ has been replaced by 
its explicit lower bound a" . 

6. Proceed with point P2k + 1 as in step 4, moving 
P2k+1 one-half the distance to the initial point PI 
until P2k+ I is feasible. 

7. Reiterate steps 3 through 6 for k = 2, 3, ... , m. 
This gives a collection of2m+l points {P I ,P2 , • •• , 

P2 111+ 1} which is the initial complex. 
The method proceeds to search for an optimum by 

repeatedly altering the complex, one point at a time, 
as follows. The objective function f(XI , X2, . . ., XIII) 
is evaluated at each co mplex point Pj. The complex 
point with the worst (greatest) objective function value 
is selected, and the centroid of the remaining 2m points 
is computed. The worst complex point is then discarded 
and replaced by a new point, with the exception that 
the second worst point is discarded if the worst point 
is also the newes t complex point. That is, a given CO r.l

plex point is not permitted to be changed in consecu
tive iteration cycles. A provisional replacement point 
is computed which is: 

1. Collinear with the discarded (worst or second 
worst) point and the centroid of the 2m complex points 
excluding the worst point; 
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2. On the side of the ce ntroid opposi te the discarded 
point; and 

3. Located a times as far from the centroid as was 
the di scarded point , where a is a co nstant parameter 
called the reflec tion factor. 
If th e provisional replacem e nt point vio lates an explicit 
constraint on any variable, the corresponding coordi· 
nate is set equal to the violated constraint bound. If 
the new provisional point then violates an implicit 
constraint, it is repeatedly replaced by a new point , 
located one-half the di s tance to the centroid of the 2m 
points , until a feasible new co mplex point is found . 
The new centroid of a1l2m+ 1 complex points is then 
determined, and th e objective fun ction at that cen
troidal point is evaluated and used as an index of con
verge nce. Thi s co mpletes one cycle of th e iterative 
search process. 

During a search, a series of cycles may yield an 
oscillating value of the ce ntroidal objective function 
with little or no net convergence. If a preassigned 
number of consecutive oscillating cycles yield no net 
improvement in the ce nlroidal objective function value, 
a new initial complex is generated, usi ng the best 
ce ntroid yet co mputed as th e initial point. 

A search is s topped if a preassigned numbe r of 
co nsecutive cycles yield no change in the value of the 
centroidal objective function greater than a preas
s igned small amount. Thi s condition may indi cate 
that an approximation of the global optimum has been 
found. But, the same co ndition co uld indi cate that a 
relative (no nglobal) optimum has been found, or that 
the co mplex has collapsed to a small s ize du e to th e 
reflection factor being too small or due to so me other 
characteri sti c of the particular proble m. Cycle co unt 
and elapsed time sto ps are also used to prevent exces
sive computer time. 

A search may also be stopped if the centroid of the 
2m nonwors t complex points lies on or outs ide a co n
straint bound. This can be caused by a nonconvex 
constraint surfac,e or, if the co mplex is small, it can 
be caused by numerical rounding e rrors. 

If a search is stopped before a sati sfactory app roxi
mate optim um is found, it can be restarted by generat
ing a new initial co mplex, us in g one of the bette r 
complex centroids already computed as the initial 
point. A ce ntroid so mew hat offset inside all constraint 
bounds, and not necessarily the centroid with the 
lowest objective function value, is used for this 
purpose. 

J. Discrete Variable Optimization 

If variables X I through X p of the In optimization 
variables , where p :;:; In, are limited to known sets of 
di screte values , the following adaptation of the non
random co mplex procedure is applicable. All m 
optimization variables are te mporarily assu med to be 
continuous and an optimum continuous variable 
solution x= (X I , X2, ... , XIII) is found by the non
random co mplex method. A se t of 4.P neighborin g dis-
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crete valu e points IS the n generated by the following 
procedure: 

1. Select the two discre te valu es of the kth discrete 
variable, where k :;:; p , that are greater than Xk and 
that most nearly approxi mate XA- . 

2. Select the two discrete values of x .. that are less 
than or equal to x .. and that mos t nearly approximate 
Xk. 

3. Reiterate steps 1 and 2 for 1. = 1,2, . _ ., p. This 
gives 4 discrete approximate values [or each XI,- , 
I. :;:; p. 

4. Generate the 4P distinct combinations of the dis
crete values obtained by step 3. Each combination is a 
set of the discrete coordinates for a di screte approxi
mation to the continuous variable solution point 
x=(x" X2 , . .. , Xm). The remaining coordinates for 
the 4P discrete points that surround and approximate 
X are the continuous variable coordin ates XA-, where 
k > p. 

The objective and constraint fun ctions are then 
evaluated at each of the 4P discrete value points, and 
tli e bes t (lowes t objective fun ction value) and seco nd 
best feasible points are selected. These two points 
are used as th e initial points for two nonrandom 
co mplex optimization searches. For each search , the 
di sc rete variab les are he ld constant and the continuous 
variables are optimized within the s ubspace defined 
by the di screte coordinates. Th e two resulting solutions 
are th e n co m pared. If th e bette r of the two solutions 
results from the better initial point, that solution is 
assumed to be the optimum solution to the problem. 
If th e be tter so lution res ults from th e seco nd bes t 
initial point, the nex t (third) best feasible point of the 
41) disc re te points is used as the initial po int for a third 
co ntinuou s variable optimizat ion within the di sc rete 
coordinate subspace co ntainin g the point. The process 
is re peated si milarl y until a so lution results that is 
worse than a previous solution. 

If th e number of independent di sc rete variables is 
suc h that 4.P di scre te value points would be an exces
sive ly large number to eva lu ate, a n alternative pro
cedure is advisable. A reasonable compromi se would 
be to generate and evaluate the 2P adjacent discrete 
value points that bound the continuous variable 
solution X. 

4. Elastic Ring Problem 

An earli er paper [3] reported a minimum weight 
s tructural analysis of an n-degree ellipti cal elast ic 
ring, with s inusoidally varying cross section dimen
sions, by a sequential gri d me thod. The same elastic 
ring optimization problem is here used to demonstrate 
application of the nonrandom complex method to a 
difficult continuous variable problem. 

The objective of the optimization problem is to find 
the dimensions of the minimum weight ring that would 
satisfy the arbitrary force capacity, deflection, and 
dimensional requireme nts of the load suppo rting ele
ment of a force transducer. The force capacity require
ment is satisfied by a scaling procedure. Ring deflection 



2P= APPLI ED FORCE 

n=CHANGE IN 
THIS DIME N SION 

2' 

FIGURE 1. A 1,000,000 lb capacity n-degree elliptical ring with 
sinusoidally varying thickness. 

and critical ring dimensions are expressed as implicit 
constraint functions. 

An elastic ring force transducer is loaded by two 
forces acting in opposite directions along a diameter, 
as shown in figure 1. Corresponding ring deflections 
20 are measured and related to applied forces 2P 
by a calibration factor. A structural analysis (and 
FORTRAN computer program) for the elastic ring was 
given in the earlier paper [3]. The ring was analyzed 
as a thick curved bar, assuming small deflections, 
plane strain , Winkler-Bach bending stress distributio~ , 
uniform normal stress distribution , and parabolIc 
shear stress distribution. The following paragraphs 
summarize the structural analysis and give the equa
tions required for the nonrandom complex optimization. 

For a ring of the shape shown in figures 1 and 2, 
the locus of centroids of ring cross sections is an 
n-degree ellipse defined by the equation 

r= ab(bn cos" 8+ a" sin" 8)- I/n, n ~ 2. (1) 

Ring rectangular cross-section width h and thickness 
t are given by 

h = c( l - e cos 28), (2) 

and 

( = d(l-f cos 28), (3) 

in which c and d are positive parameters and e and f 
are parameters of absolute value less than unity. 

n-DEGREE ELLIPSE 

In = 61 

No 

FIGURE 2. Loads acting on one quadrant of a ring. 

Using these equations, the shape of a ring within this 
geometric class can be specified by the seven param
eters a,b, c, d , e,j, and n. If a= b, n=2, and e= j= 0, 
the ring shape is circular with uniform rectangular 
cross section. 

Figure 2 shows the loads acting on one quadrant of 
the ring. The resultant moment and forces acting on a 
typical normal cross section are 

M=M rr/ 2 - Pr cos 8=PM' , (4) 

N = P ( sin 8 ~~. + r cos 8 ~~ = PN' , (5) 

and 

( . d8 II dr) PV' V = P r sm 8 ds - cos u ds = , (6) 

in which ds is the increment of arc length of the n
degree ellipse. With the assumed stress distributions , 
the strain energy of the ring quadrant is obtained by 
integrating over the quadrant volume. Castigliano's 
strain energy theorem is used to determine the mo
ment and deflec tion at the point of load application 
to be 

Jo h Jo ht Jo ht l (rr/2 -'-.,(1_-_v_2=)g_r _co_s_8 ds - (rr/2_ ksi_n_8 dr - (rr/2 kr cos 8 d8j 

(7) 

and 

o /2 = f (rr/2 -.l [N'2 + 12 (1 + V)V'2 - (1- v2)gtr cos 8M' + kM' N' - kr cos 8N'] ds, (8) 
rr E Jo ht 5 
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in which 

J [~ + y 
g - t y2 

- 1 (l + ky) I (l + ky) 

v = Poisson 's ratio, 
E = modulus of elasticity, 
and y is the distan ce from a cross-section ce ntroid to 
a point in the cross section, positive in the outward 
direction. The stress in the ds direction on the inner 
s urface of the ring is given by 

[
M' k M ' t + N'] 

O"T = P ht h(2 -kt) (I T d ht· 
JI (l+ky) Y 

(9) 

For the optimization analysis, it is assumed that the 
force resis ting capac ity of the ring is limited by the 
maximum value of 0"1' for all e. The possibility of capac
ity being limited by some other component of s tress 
or combine d s tress should be checked in any final 
design analysis. 

To make each numerical solution have the required 
force capacity, all length dimensions in the r-e plane 
are scaled by a factor A that will make the maximum 
value of (FT , for the entire ring, equal a prescribed 
maximum design stress 5. Cross-section width h is 
not scaled. The scale factor is 

LA[M' k M't N'] 
1.. = 25 ht - h (2 _ kt) ( T dy + hi , 

JI (l + ky) max. 

in which 5 = design maximum s tress, 
LA = required force capacity , 

(10) 

and the maximum value of the bracketed function for 
all e is used. 

In the optimization analysis the above equations are 
first solved for a ring of unit value of mean radius, 
that is 

a+b = 1 
2 . (11) 

Since a and b are fun ctionally depende nt , the ring 
shape can be speci fi ed by the six independent shape 
parame ters a, c, d, e, f , and n. After the structural 
equations are solved for the unit size ring (using 
Simpson numerical integration), the results are scaled 
to full size using the scale factor A. The width param
eter c is not scaled during the e ntire analysis, and the 
shape parameters e, f, and n are nondimensional and 
are not scaled. 

The six shape parameters a, c, d, e , f , and n are the 
six independent variables XI, X2 , . .• , X6, respectively, 
of the cons trained optimization proble m. The objec-

tive functionf(x" X2, . •• , X6) is the scaled ring weight 

(1T/2 
W = 4YA2 Jo ht ds , (12) 

in which y is the mate rial de nsity. The following six 
implicit constraint fun ctions gi are applied: 

gl = 2Ao 1T/2 = total ring deflection, (13) 

g2 = Ad(1 + \f\) = maximum thickness ofring 
cross section, (14) 

g3 = A (2a + d + df) = outside width of ring, (15) 

g4 = A (4 - 2a + d + df) = outside height of 
ring, (16) 

go = c (l + \e\) = maximum width of ring cross 
section , (17) 

and g6 = 1..(4 - 2a - d - df) = in side clear height of 
ring. (18) 

Impli cit lower bounds hi and/or upper bounds Ie; are 
imposed on the fun ctions gi to limit ring deflection and 
di me nsions. 

The scaling procedure used here could have been 
avoided by expressing force capacity as an implicit 
constraint function with a lower bound. It is not known 
whether such a procedure would be more efficie nt than 
the scaling procedure used. 

Numerical solutions we re obtained for seven dif
ferent minimum weight elastic ring problems. Tables 
1 and 2 give the initi al points, the constraint bounds 
and th e solutions obtained. The material properties 
were : 5=150,000 Ib/in2 , E = 30 ,000 ,000 lb/in~, v = 0.3 , 
and y = 0.29 Ib/in3. The co mputation s were coded in 
FORTRAN V and run on a UNIVAC 1108 computer. 
Time required for a solution ranged from 4 min to 
18 min with a mean of 9 min. The number of initial 
complex regenerations required for a solution ranged 
from 2 to 21 with a mean of 9. A reflection factor of 
1.5 was used for all seven solutions. 

F or each of the two 1,000,000 lb capacity n-degree 
elliptical rings, the best solution reported in the earlier 
paper [3] (weight = 539.08 lb) was used as the initial 
point. For the other five problems, the initial feasible 
points were obtained by using the relatively simple 
equations for a thin circular ring of uniform cross 
section. The thin circular ring equations, although they 
may be in error by several percent, give a good e nough 
approximation of ring characteristics for begi nning an 
optimization search. The coordinates obtained by the 
thin ring equations were offset slightly inside their 
explicit bounds , where that was necessary , to comply 
with the requireme nts of the optimization method. 
To hold a particular parameter constant, the upper and 
lower explicit bounds were set equal to the initial 
point coordinate value. 
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"-l 
tn 
J>,. 

Force 
capac ity 

Lb 

100,000. 

300,000. 

1,000,000. 

1,000,000. 

1,000,000 

3,000,000. 

9,000,000 

Force 
capacity 

Lb 

100,000 

300,000 

1,000,000 

1,000 ,000 

1,000,000 

3,000,000 

9,000,000 

~-

Problem 
dimension 

5 

5 

2 

5 

6 

5 

5 

Problem 
dime nsion 

5 

5 

2 

5 

6 

5 

5 

T AB LE 1. Initial paints and con.straint bounds fo r elastic ring problems 

Initial point coordinates and explicit boun.ds_ 

a , a b, a, c b, a,. d. b, a. e b, a, t b, a, n b, h , 

Inch Inch Inch Inch. Inch Inch Inch Inch Inch Inch 

LC 1.0.1 1.3 3.0. 5.0. 6.0. 0.05 0..151 0..3 0..0. 0..0. 0..0. -0..9 0..0. 0..9· 2.0. 2.1 20.0. 0..25 

1.0. 1.0.1 L3 4.0. 8.0. 10.0. .1 .188 .4 0..0. 0..0. 0. .0.. - 0..9 0. .0. 0..9· 2.0. 2.1 20..0. .25 

LC l.00 LQ 6.0. 12.0. 14.U .1 .25U .5 c.a 0.. 0. 0..0. 0..0.. 0. .0. 0..0. 2.0. 2.0. 2.0. .25 

1.0. 1.21 1.3 6.0. 13.3 14.0. .1 .30.5 .5 0..0. 0..0. 0..0 -0..9 0. .5 0..9 2.0. 6.0. 20..0. .25 

1.0. 1.21 1.3 6.0. 13.3 14.0. .1 .3US .5 0..9 0..0. 0..9 - 0..9 0..5 0..9 2.0. 6.0. 20..0. .25 

l.Q 1.0.1 1.3 14.a 18.0. 2Q.a .25 .311 .5 Q.a 0..0. 0..0. - 0..9 Q.a 0.·.9 2.0. 2.1 20..0. .25 

l.Q l.Ql l.3 2Q.a 28.0.. 32.0. .3 .387 .5 0..0. 0..0. D.O.· - 0.·.9 0. .0. 0..9 2.0. 2.1 20..0. .25 

T AB LE 2. Solutions f or elastic ring problems 

Ring s hape parameters of uni t s ize ring Implic it c onstraint function values 

a c d. e t n g , g, g, g. g , 

Inch Inch Inch Inch Inch Inch Inch Inch 

l.Q7509 5.35807 0..14689 0..00000 0..79775 5.36445 0..2502 1.507& 12.4472 12.0.70.3 5.3581 

1.0.9246 8.40706 .19659 .00000 .67392 4.52213 .2503 2.30.88 15.7788 15.0431 8.40.71 

1.00000 12.32346 .27146 .00000 .00000 2.00000 .2501 4.1548 34.7653 34.7653 12.3235 

1.19033 11.87379 .31110. .00000 .56132 9.39859 .2509 3.8990 20..20.53 16.8975 11.8738 

1.19717 11.77591 .31561 -.0.2669 .56049 8.15270. .2512 3.9900 20..5215 16.9984 12.090.2 

1.02028 16.12696" .33864 .00000 .62951 5.930.16 .2504 6.6805 26.2232 30..40.25 16.1270. 

1.0.2117 25.6430.2 .45811 .00000 .51622 5.69466 .2503 9.70.50 31.6321 37.0.573 25.6430. 

Implicit bounds 

k, k, k, Ie., k, h. 

Inch Inch Inch Inch Inch Inch 

0..55 4.0. 40..0.· 40..0.: 6.0. 9,0. 

.55 4.0. 40..0. 40..0. 10.0. 9.0. 

.55 7. 0. 50..0. 50..0. 18.0. 9.0. 

.55 7.0. 50..0. 50.. 0. 18.0. 9.0. 

.55 7.0. 50..0. 5Q.a 18.0 9.0 

.55 9.0. 60.0. 60.0.· 20..0. 9.0. 

.55 15.0. 85.0. 85J} 32.0.' 9.0. 

Scale Ring Cycles 
factor weight 

g, 

Inch Lb 

9.0.546 5.710. 52.40. 210. 

10.4256 7.0.1 6 163.17 20.1 

26.4558 15.3US 1427.90. 190 

9.0996 8.027 492.49 179 

9.0.184 8.102 497.78 263 

17.0414 12.107 1686.69 522 

17.6474 13.972 4819.54 414 



For the five n-degree elliptical rin gs with uniform 
cross section width , the r .:ltio of weight to force capac
ity ranges from 4.92 X 10- 4 to 5.62 X 10- 4. At least a 
rough proportionality between weight and force capac
ity might be expecte d for structures of thi s geometric 
class. Thin rin g equations would predi ct a constant 
ratio of weight to force capacity for uniform cross 
section , circular rings having the same de fl ection at 
capacity load. 

In each of the seven solutions, ring deflection, g l , 
is near its lower bound , hi = 0.25 in. In three of the 
solutions, inside cle ar he ight , gs, is near its lower 
bound , h6 = 9.0 in . Exact minimum weight solutions 
would apparently li e exactly on at least one of the 
bounds. Continu ed iteration would have resulted in 
closer approxim ations to exact solutions . But the 
searches were stopped because of the relatively large 
computer costs involved and because the convergence 
rate decreases as an optimum is approached. 

The seven solutions include three 1,000,000 lb 
capacity rings of different geometri c co mplexity. 
One ring is circ ular with uniform cross section; one 
is n-degree elliptical with cons ta nt cross-section width 
and sinusoidally varyin g thickness; and one is n-degree 
ellip~i cal with sinusoidally varying width and thi ckness . 
The three cases a re r espectively two-dime nsional , 
five-dim ensional, and six·dimensional optimization 
proble ms. All three cases have the same implicit 
constraint bounds. Both n-degree elliptical rings have 
a weight of about 35 percent of the weight of the cir
cular ring, and the outside dime nsions of the more 
complex rings are s ignificantly less than those of the 
circular ring. Since the five-dime nsional proble m is a 
special case of the six-dimensional proble m, an exact 
solution to the six-dime nsional problem would have a 
weight equal to or less than any solution to the five
dime nsional problem. Although both elliptical rings 
have about the sam e weight , the r~ n g with nonuniform 
cross-section width would probably cost more to manu
facture than would the other elliptical rin g. 

S. Rib-Stiffened Plate Problem 

The minimum weight analysis of a rib-stiffened 
elastic plate is presented here to demonstrate the 
application of the nonrandom complex method to a 
discrete variable problem. It is ass umed that the rib
stiffened plate is b uilt-up fro m fl at plates th at are 
available in only a limited number of thicknesses. 

Figure 3 gives a schematic drawing of a rib-sti ffe ned 
plate of the type s tudi ed. The fl at pla te is reinforced 
by a rectangular grid sys te m of ribs having the same 
dime nsions and spacing in both directions . The rib 
stiffened plate is simply s upported along all fo ur edges 
and loaded only with a compressive load Nl in the 
plane of the plate . 

Schmit , Kicher, a nd Morrow [4] have s tudied the 
appli cation of gradient optimization methods to a 
more ge neral class of rib -s tiffened plates, subjected 
to combinations of both shear and biaxial normal 
loads. They considered three possihle elasti c buckling 

modes to be appli cable to their proble m. The follow
ing specialized for ms of the buckling equations used 
in their study are assumed to apply to the present 
problem: 

1. Critical load for gross buckling of the simply 
supported, rib-stiffe ned plate , 

in which 

D, J:' {3(1 ~ v'l (~r +H \-~r (~) 
+2(l~ V2) (1-~) (~) GJ 

E= modulus of ~las ti city , 
v= P oisson's ra tio, 

(19) 

and the le ngth dimensions are those indi cated in 
fi gure 3. 

2. Critical load for local buckling of a s tiffe ning rib 
as a flat pla te , simply s upported along three edges 
and free along the fourth edge, 

N Cl' = 1T2 E 2 (~) 2 [bptp + brtr] [( ~)2+ 0.425] . 
12(1- v ) b,. bp bp - tr 

(20) 

3. Critical load fo r local buckling of a square panel 
as a flat piate, spanning betwee n two pairs of ri bs a nd 
simply supported along all four edges, 

(21) 

The critical material stress in the rib-stiffe ned plate 
is assumed to be equal to the applied load divided by 
the gross cross-sectional area of the flat plate and 
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FIGURE 3. Rib-stiffened plate_ 

ribs_ That is , 

N, 
(J, = (tl") 

tp+ bl" b p 

(22) 

The gross weight of the rib-stiffened plate is given 
approximately by 

[ bl"tl" ( tl" ) ] W = ylwtp l + b- 2--b ' 
pIp p 

(23) 

in which y is the material density_ Equation (23) does 
not include the ne t weight resulting from the fas te ning 
of the stiffe nin g ribs to the large r Rat plate or to each 
other-

For th e particular numerical proble m presented here, 
plate length and width , land w, are held cons tant and 
the four plate dim ensions tp, tl" , bp, and bl" are the vari
able parameters of the optimization search_ The plate 
thicknesses, tp and tl" , are discre te variables_ The 
obj ective fun ction is the gross weight of the plate, W_ 
The following implicit cons traint fun c tions are applied: 

gl = NCI" = gross buckling load , (24) 

g2 = NCI" = rib buckling load , (25) 

g3=Ncr= panel buckJjng load , (26) 

g4 = (J, = critical stress, (27) 

a nd go = tp + bl" = total stiffe ned plate thi c kness. (28) 

The applied load that the plate is required to s upport 
is a lower bound on gt, g2, and g3- The design stress, 
S, is an upper bound on g4. 

A numerical solution was obtained for a rib-stiffe ne d 
plate 30 in wide by 40 in long with an applied compres
sive load N, = 350 Ib/in . Lower and upper bounds of 
0.5 in and 0_7 in , respectively, were imposed on total 
stiffe ned plate thickness, g5. Explicit constraint bounds 
on the variable optimization parameters were as 
follows (in inc hes) : 

0.005 ,;:;; tp ,;:;; 0.500 

0.005 ,;:;; t, ,;:;; 0_500 

2.000 ';:;; bp ';:;; 6.000 

0.100 ,;:;; b,. ,;:;; 0. 700_ 

The material properti es were: S = 20,000 Ib/in2 , 

E = 10,500,000 Ib/in2 , v = 0_32 , and y = 0_101 Ib/in3 • 

Forty-four discrete plate thi ckn~sses from 0.0040 in 
to 0.5800 in were assumed to be avai lable_ The compu
ta tions were coded in FORTRAN V a nd run on a 
UNIV AC n08 computer- Total computer time re
quired for the solution was 55 s_ A reRection factor of 
1.6 was used . 

It was determined by direct com putation that a 
0_2043 in thi c k plate was the thinnes t available plate 
that would support the applied load as a Rat plate , 
without s tiffe nin g ribs_ S uch a plate would weigh about 
24.76 Ib_ The 0_2043 in Rat plate thickness combi ned 
with a reasonable set of rib dime nsions were used as 
the initial point coordinates for the fir st continuous 
variable search. 

Table 3 gives the initial points and results for the 
series of five optimization searc hes e mployed in finding 
a di sc re te variable solution. The result of the fir st 
continuous variable search was a soluti on point near 
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TABLE 3. I nitial points and results for rib·stiffened plate problem 

Optimizat io n Variable parame ters Implicit constraint fu nction values Gross Cycles 
search we ight 

I " I , b" b, N" N" N" ,n H 

In ch In ch Inch Inch Lbllnch Lbllnch Lbll nch Lbll nch' Inch Lb 
0.20430 0.20430 4.00000 0.30000 . 28.3805 

First (In itia l point ) 
continuous 

.04541 I .04526 3.44039 .64625 350.00 945.27 37 1.1 9 6492.0 0.69166 7.5510 246 
(Result ) 

.04767 I .05041 3.72 198 .63748 350.10 1242.35 365.24 6216.3 .68515 7.8563 
Second (Initial point) 

continuous 
.03068 1 .02961 2.00 11 I .64446 350. 10 350.00 374.79 8703. 1 .675 14 6.0 128 215 

(Result ) 

.03068 1 .02961 2.00110 .64444 350.10 350.10 374.9 1 8702.2 .675 12 6.0 133 
Third (Initial point) 

continuous 0298~ I .02988 2.00000 .64409 350.15 350.51 350.00 8858.2 .67398 5.9375 III 
(Result ) 

.03200 1 .03200 2.00000 .64409 376.95 430.72 430.46 8273.2 .67609 6.3565 
First (Initial point) 

discrete 
.03200 I .03200 2. 19138 .64465 350.00 406.67 350.00 8451.3 .67665 6. 1436 91 

(Resu lt) 

.03590 I .02850 2.00000 .64409 35 1.38 363.79 575.24 7764.3 .67999 6.5600 
Second ( Initial I)oint) 
d iscrete 

.03590 I .02850 2.08008 .65105 350.01 350.00 528. 17 7809.0 .68695 6.4985 114 
(Resuh ) 

the gross bucklin g co nstrai nt and not far from both the 
panel bu ckling co nstraint and a total plate thickness 
cons traint. Th e cont inuous variable searc h was re
started , in a second co mputer run , us in g a co mplex 
centroid so me wh at offse t inside all constraints as the 
initi al point. The res ult of the second continuous vari 
able search was a solution point near a rib spacin g 
constraint, near the gross bu ckling constraint, near 
the rib buckling constraint, and not far from the panel 
buckling constraint. The continuou s variable search 
was again restarted , in a third computer run, and the 
resulting solution point was near a rib spacing con
straint and all three buckling constraints . As a con
tinuation of the third computer run , the two best 
discre te solution points near the continuous variable 
solution were selected and used as initial points for 
two searches within the subs paces defined by the 
discre te coordinates. The better of the two discrete 
solutions resulted from the better discrete initial point. 
Therefore, no additional discrete subspace searches 
were executed. The gross weight for the discrete solu
tion is a bout 25 percent of the we ight of the thinnest 
availabl e flat plate that would support the applied load 
without s tiffe ning ribs. Initial complex regeneration , 
to overcome excessively slow convergence, was not 
required during a ny of th e five optimization searches. 

6. Discussion 

Unfortun ately, a ge neral method is not available 
for determining whether or not a solution found by 
the nonrandom com plex me thod is (approximately) 
the true optimum. But a carefu l stud y of the search 

record can yield a basis for judgme nt. The s tud y 
should include not only the final values (ce ntroid al) 
of the variables and fun ctions, but also the vari a
ti on of these values for the e ntire searc h. The e ntire 
co mplex, a t regular cycle intervals, should also be 
examined. 

Multiple searches along diffe re nt paths can be used 
to tes t apparent optimum so lutions. The search path 
de pe nds on th e objec tive and constraint fun c tion s, 
the cons tra int bounds, th e initial point , the re flecti on 
factor, the co mplex rege neration criterion, and nu
merical errors. A chan ge in one or more of these 
factors can cause a search to progress along a differ
ent path. Of co urse th e rate of co nvergence is, in 
general, differe nt for differe nt search paths . 

Discrete variables can occ ur in practi cal proble ms 
in several different forms. The rib-stiffe ned plate 
proble m involves two discrete variables with tabu
lar noninteger values. That proble m could have been 
written to include a n integer optimizati0n variab le by 
expressing rib spaci ng as a function of the number 
of equally spaced longitudinal ribs. Schmit and 
Mallett [5] have discussed the optimization of ma
terial selection by initially treatin g one material 
property as an independent variable , with oth er 
material properties expressed as co ntinuous fun c
tions of the indepe nde nt mate ri al prope rty. With 
such a procedure, material selec ti on could be treated 
as a discrete optimization vari " ble in a nonrandom 
complex search. Similarly, the selec tion of co m
mercially available elements , s uc h as me tal beams 
and columns , could be optimized by initially express
ing element geometric properti es as continuous 
functions of a single independent variable, for example 
weight per unit length. 
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Numerous other optimization methods applicable 
to problems with nonlinear objective and constraint 
functions have been discussed in the literature, for 
example by Box [1], Hilleary [2], Schmit, Kicher, 
and Morrow [4], Schmit and Mallert [5], and Wilde 
and Beightler [6]. The limited computational ex
perience reported in the presen,t paper is insufficient 
to warrant a definitive claim of superiority of the non
random complex method over other available methods. 

7. Conclusion 

A nonrandom complex method has been devel
oped for application to optimization problems charac
terized by nonlinear objective and constraint func
tions involving continuous and/or discrete optimiza
tion variables. The nonrandom method appears to 
offer significant advantages over the Box [1] method 
which involves a pseudo-random process. The method 
was successful in finding approximate minimum 
weight solutions to: 

1. Seven elastic ring structural problems involv
ing from two to six independent variables each; and 
- 2. A rib-stiffened elastic plate structural problem 

involving four independent variables, two of which 
are discrete. 
These results, for problems of this complexity, sug
gest that the method is applicable to a large class 
of optimization problems. 

The subroutines for solving the structural equa
tions of the elastic ring problem were coded in FOR
TRAN V by R. M. Slesser while he was an employee 
of the National Bureau of Standards Center for 
Computer Sciences and Technology. 
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