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A nonrandom complex method is described for application to optimization problems characterized
by nonlinear objective and constraint functions involving continuous and/or discrete optimization
variables. The method is a mutation of the ““complex” method (involving a pseudo-random process)
developed by M. J. Box. Application of the method is demonstrated by two minimum weight structural
analysis problems: (1) an n-degree elliptical elastic ring with sinusoidally varying cross section dimen-
sions; and (2) a rib-stiffened, simply supported elastic plate. The ring problem has six continuous inde-
pendent variables, and the plate problem has four independent variables, two of which are discrete.
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1. Introduction

There are many engineering problems which have
an unlimited number of adequate solutions, but which
have an optimum solution with regard to some cri-
terion such as weight or cost. This paper describes a
nonrandom complex method for seeking the optimum
solution for a class of such problems characterized by
nonlinear objective and constraint functions of con-
tinuous and/or discrete variables. The nonrandom
complex method is a mutation of the “complex”
method of Box [1].?2 Both the nonrandom method and
the Box method have an important advantage over
many other methods for nonlinear optimization in that
they do not require computation of partial derivatives
of the functions.

The nonrandom method and the Box method begin
a search by generating a configuration of points (an
initial complex) whose coordinates are values of the
independent optimization variables. At least one point
of the initial complex (the initial point) must be known,
in advance, to fall inside all constraint bounds of the
problem. All other points of the complex are computed
to fall inside or on the constraint bounds.

In the Box method, the points of an initial complex
are generated by a pseudo-random process. Numerical
results by Hilleary [2], using the Box method, demon-
strate that the rate of convergence to a solution is
dependent on the character of the initial complex, and

! Present address: Mathematics Department, University of Maryland, College Park,
Maryland.
2 Figures in brackets indicate the literature references at the end of this paper.

that a poor initial complex may result in failure of the
method to converge.

In the nonrandom complex method reported here,
the character of the initial complex is influenced by
the initial point to a much greater degree than in the
Box method. Thus, a good initial point leads to a rela-
tively good initial complex. This characteristic is used
to advantage by generating a new initial complex about
a new initial point if the convergence of a search se-
quence becomes excessively slow or stops. The same
characteristic also facilitates a more efhcient discrete
variable optimization than would be expected from the
Box method. The nonrandom method imposes a lower
bound on initial complex size by selecting initial com-
plex points in such a way that at least one-half the
constraint bounded range of each independent variable
(in the one-dimensional subspace containing the initial
point) is included within the complex span.

The nonrandom complex method has been used
successfully for the following two minimum weight
structural analysis problems:

1. An n-degree elliptical elastic ring with sinusoidally
varying cross-section dimensions, loaded by two forces
acting in opposite directions along a diameter; and

2. A rib-stiffened simply supported plate, loaded by

in-plane compressive forces.
The ring problem has six continuous independent
variables, and the plate problem has four independent
variables, two of which are discrete. Both problems
have nonlinear objective and constraint functions. A
large class of optimization problems fall within the
range of mathematical complexity represented by
these two problems.
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List of Symbols

xx independent variable of the optimization
problem,

g implicit constraint function,

hi implicit constraint lower bound,

ki implicit constraint upper bound,

m-dimensional Euclidean space,

P; a point of the optimization complex,

ar lower explicit bound on xy,

br upper explicit bound on xj,

«a reflection factor of complex optimization method,

m the number of independent variables of the

optimization problem,

the number of independent discrete variables

of the optimization problem,

total force applied to ring,

= L./2, force applied to one quadrant of ring,

curved bar deflection, one-half ring deflection,

polar coordinates of ellipse,

degree of ellipse,

semimajor and semiminor axes of ellipse,

ring cross-section width,

ring cross-section thickness normal to tangent

of ellipse,

average of maximum and minimum ring width,

average of maximum and minimum ring thick-

ness,

dimensionless parameter of ring width variation,

N

S

D

.

dimensionless parameter of ring thickness
variation,

arc length variable measured along ellipse,
moment,

normal force,

shearing force,

curvature of ellipse,

integral defined in equations (7) and (8),
Poisson’s ratio,

modulus of elasticity,

normal stress,

design maximum stress,

scale factor,

weight,

material density,

normal force per unit width of plate,
length and width of rib-stiffened plate,
flat plate thickness,

rib thickness,

rib spacing,

rib width,

=1,+ by, total thickness of rib-stiffened plate.
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2. The Nonrandom Complex Method

The following paragraphs describe the nonrandom
complex method as it is applied to a continuous vari-
able problem. Adaptation of the method for discrete
variable optimization is described later.

The nonrandom complex method searches for a set
of values of the independent continuous variables

X1, X2, . . ., xm which gives a minimum value of an
arbitrary objective function f(x1, x2, . . ., xm), subject
to explicit constraints on the variables, and subject
to implicit constraint bounds on arbitrary functions of
the wvariables. The 1implicit constraint functions
gi(x1, x2, . . ., xm) are subject to inequalities of the
form h; < g; < k;, where the bounds h; and £; represent
arbitrary limits and either one or both may appear.

To begin the method it is required that a point
(x{, 9, . . ., x,,), in m-dimensional Euclidean space,
E™, be known which is feasible (i.e., does not violate
any constraint) and which does not lie on any constraint
bound. Using this initial point, a set of 2Zm+1 points
in E™ is then generated by the following procedure:

1. Denote the jth point in the set of 2m + 1 points by
P;. Let Pr= (x{, xy, . . ., X,,).

2. Denote the explicit constraints on the independent
variables by ay < xy < by fork=1,2,. . .,m. Setk=1.

3. Let Por=(x;, 29, - « s Xpeeyy by Xpys + + oy X))
This point is the same as the initial point P; except in
the kth coordinate, where x, has been replaced by
its explicit upper bound by.

4. Evaluate all implicit constraint functions at Psy.
If all are satisfied, move on to step 5. If any implicit
constraint is violated, set

bk i x,:

- / ’ o ’ r .
ng—<x1. .x?', e o oo xA_l, 2 ,xk+1, e e oo x'n)

This moves Py one-half the distance toward the initial
point P;. Once again, evaluate the implicit constraint
functions at Psi, go to step 5 if they are satisfied, or
move P, one-half the remaining distance to P; other-
wise. Repeat the process until Py is feasible.

5. Let Popy1 = (x4, x5, . X))
This point is the same as the initial point P; except in
the kth coordinate, where x, has been replaced by

its explicit lower bound ay.

6. Proceed with point Ps;,; as in step 4, moving
Psi+1 one-half the distance to the initial point P,
until Psy., is feasible.

7. Reiterate steps 3 through 6 for k=2, 3, . . ., m.
This gives a collection of 2m+1 points {P;, Ps, . . .,
Psni1} which is the initial complex.

The method proceeds to search for an optimum by
repeatedly altering the complex, one point at a time,
as follows. The objective function flx;, x2., . . ., xm)
is evaluated at each complex point P;. The complex
point with the worst (greatest) objective function value
is selected, and the centroid of the remaining 2m points
is computed. The worst complex point is then discarded
and replaced by a new point, with the exception that
the second worst point is discarded if the worst point
is also the newest complex point. That is, a given com-
plex point is not permitted to be changed in consecu-
tive iteration cycles. A provisional replacement point
is computed which is:

1. Collinear with the discarded (worst or second
worst) point and the centroid of the 2m complex points

excluding the worst point;

! /
by X1 Wy Xpeyys -
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2. On the side of the centroid opposite the discarded
point; and

3. Located « times as far from the centroid as was

the discarded point, where « is a constant parameter
called the reflection factor.
If the provisional replacement point violates an explicit
constraint on any variable, the corresponding coordi-
nate is set equal to the violated constraint bound. If
the new provisional point then violates an implicit
constraint, it is repeatedly replaced by a new point,
located one-half the distance to the centroid of the 2m
points, until a feasible new complex point is found.
The new centroid of all 2m + 1 complex points is then
determined, and the objective function at that cen-
troidal point is evaluated and used as an index of con-
vergence. This completes one cycle of the iterative
search process.

During a search, a series of cycles may yield an
oscillating value of the centroidal objective function
with little or no net convergence. If a preassigned
number of consecutive oscillating cycles yield no net
improvement in the centroidal objective function value,
a new initial complex is generated, using the best
centroid yet computed as the initial point.

A search 1s stopped if a preassigned number of
consecutive cycles yield no change in the value of the
centroidal objective function greater than a preas-
signed small amount. This condition may indicate
that an approximation of the global optimum has been
found. But, the same condition could indicate that a
relative (nonglobal) optimum has been found, or that
the complex has collapsed to a small size due to the
reflection factor being too small or due to some other
characteristic of the particular problem. Cycle count
and elapsed time stops are also used to prevent exces-
sive computer time.

A search may also be stopped if the centroid of the
2m nonworst complex points lies on or outside a con-
straint bound. This can be caused by a nonconvex
constraint surface or, if the complex is small, it can
be caused by numerical rounding errors.

If a search is stopped before a satisfactory approxi-
mate optimum is found, it can be restarted by generat-
ing a new initial complex, using one of the better
complex centroids already computed as the initial
point. A centroid somewhat offset inside all constraint
bounds, and not necessarily the centroid with the
lowest objective function value, is used for this
purpose.

3. Discrete Variable Optimization

If variables x; through x, of the m optimization
variables, where p =< m, are limited to known sets of
discrete values, the following adaptation of the non-
random complex procedure is applicable. All m
optimization variables are temporarily assumed to be
continuous and an optimum continuous variable
solution x= (%, X2, . . ., Xy) is found by the non-
random complex method. A set of 4” neighboring dis-

crete value points is then generated by the following
procedure:

1. Select the two discrete values of the kth discrete
variable, where k£ =< p, that are greater than %; and
that most nearly approximate x.

2. Select the two discrete values of x; that are less
than or equal to x; and that most nearly approximate
Xk .

3. Reiterate steps 1 and 2 for k=1, 2, . . ., p. This
gives 4 discrete approximate values for each xy,
k< p.

4. Generate the 47 distinct combinations of the dis-
crete values obtained by step 3. Each combination is a
set of the discrete coordinates for a discrete approxi-
mation to the continuous variable solution point
X=(X;, X2, . . ., Xm). The remaining coordinates for
the 47 discrete points that surround and approximate
x are the continuous variable coordinates x,, where
k> p.

The objective and constraint functions are then
evaluated at each of the 47 discrete value points, and
the best (lowest objective function value) and second
best feasible points are selected. These two points
are used as the initial points for two nonrandom
complex optimization searches. For each search, the
discrete variables are held constant and the continuous
variables are optimized within the subspace defined
by the discrete coordinates. The two resulting solutions
are then compared. If the better of the two solutions
results from the better initial point, that solution is
assumed to be the optimum solution to the problem.
If the better solution results from the second best
initial point, the next (third) best feasible point of the
47 discrete points is used as the initial point for a third
continuous variable optimization within the discrete
coordinate subspace containing the point. The process
is repeated similarly until a solution results that is
worse than a previous solution.

If the number of independent discrete variables is
such that 47 discrete value points would be an exces-
sively large number to evaluate, an alternative pro-
cedure i1s advisable. A reasonable compromise would
be to generate and evaluate the 27 adjacent discrete
value points that bound the continuous variable
solution x.

4. Elastic Ring Problem

An earlier paper [3]| reported a minimum weight
structural analysis of an n-degree elliptical elastic
ring, with sinusoidally varying cross section dimen-
sions, by a sequential grid method. The same elastic
ring optimization problem is here used to demonstrate
application of the nonrandom complex method to a
difficult continuous variable problem.

The objective of the optimization problem is to find
the dimensions of the minimum weight ring that would
satisfy the arbitrary force capacity, deflection, and
dimensional requirements of the load supporting ele-
ment of a force transducer. The force capacity require-
ment is satisfied by a scaling procedure. Ring deflection
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FIGURE 1. A 1,000,000 lb capacity n-degree elliptical ring with
sinusoidally varying thickness.

and critical ring dimensions are expressed as implicit
constraint functions.

An elastic ring force transducer is loaded by two
forces acting in opposite directions along a diameter,
as shown in figure 1. Corresponding ring deflections
26 are measured and related to applied forces 2P
by a calibration factor. A structural analysis (and
FORTRAN computer program) for the elastic ring was
given in the earlier paper [3]. The ring was analyzed
as a thick curved bar, assuming small deflections,
plane strain, Winkler-Bach bending stress distribution,
uniform normal stress distribution, and parabolic
shear stress distribution. The following paragraphs
summarize the structural analysis and give the equa-
tions required for the nonrandom complex optimization.

For a ring of the shape shown in figures 1 and 2,
the locus of centroids of ring cross sections is an
n-degree ellipse defined by the equation

r=ab(b" cos" 0+ a" sin" 6)"V", n = 2. (1)

Ring rectangular cross-section width A and thickness
t are given by

h=c(l —e cos 20), (2)
and
t=d(1—f cos 20), (3)

in which ¢ and d are positive parameters and e and f
are parameters of absolute value less than unity.

Ff"/z (I —v?)gr cos 6 ds-—fﬂz k sin 6 dr—jﬂ/z kr cos 0 10
0 0 0

M2 (
Vr/2

n—DEGREE ELLIPSE —=+—"
{n=6)

FIGURE 2. Loads acting on one quadrant of a ring.

Using these equations, the shape of a ring within this
geometric class can be specified by the seven param-
etersa,b,c,d,e,f,and n. lfa=b,n=2,and e=f=0,
the ring shape is circular with uniform rectangular
cross section.

Figure 2 shows the loads acting on one quadrant of
the ring. The resultant moment and forces acting on a
typical normal cross section are

M= M — Pr cos 6=PM’, (4)
_pfainpgdr dO\ _ par
N—P<51n0ds+r cos@ds>—PN, (5)
and
(g d0dny
V—P(r smOdS 0080d5>—PV, (6)

in which ds is the increment of arc length of the n-
degree ellipse. With the assumed stress distributions,
the strain energy of the ring quadrant is obtained by
integrating over the quadrant volume. Castigliano’s
strain energy theorem is used to determine the mo-
ment and deflection at the point of load application
to be

-

B h ht ht
Mz =P fvr/Z (1—12)g ds | .
s 0 h B
and
P /2 1 ' 12 ' ’ ! AT /
877/2:E o N 2+§ (1+v)WV'"2—(1—v*gtr cos M+ EM'N" — kr cos ON' | ds, (8)
0
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in which
dr\* der
=2 (;1—5) g
= dr\2]32 °
=+ (76) |
k y :
g= T dy,

y2
t (“”“”L (Tt ky) @

v = Poisson’s ratio,

E = modulus of elasticity,

and y is the distance from a cross-section centroid to
a point in the cross section, positive in the outward
direction. The stress in the ds direction on the inner
surface of the ring is given by

M’k M't JrN’
or=P| ht f y> ht |- (9)
h(2—kt d
( ) ¢ (1+ky) Y

For the optimization analysis, it is assumed that the
force resisting capacity of the ring is limited by the
maximum value of o7 for all 8. The possibility of capac-
ity being limited by some other component of stress
or combined stress should be checked in any final
design analysis.

To make each numerical solution have the required
force capacity, all length dimensions in the r-0 plane
are scaled by a factor A that will make the maximum
value of o7, for the entire ring, equal a prescribed
maximum design stress S. Cross-section width A is
not scaled. The scale factor is

LMk M't N’

— 4
2S | ht Y2 ht .
h2—kt) | —X— 4
( ”f:(Hky) Y e

in which S = design maximum stress,
L) = required force capacity,
and the maximum value of the bracketed function for
all 0 is used.
In the optimization analysis the above equations are
first solved for a ring of unit value of mean radius,

that is

A

(10)

(11)

Since a and b are functionally dependent, the ring
shape can be specified by the six independent shape
parameters a, ¢, d, e, f, and n. After the structural
equations are solved for the unit size ring (using
Simpson numerical integration), the results are scaled
to full size using the scale factor A. The width param-
eter ¢ is not scaled during the entire analysis, and the
shape parameters e, f, and n are nondimensional and
are not scaled.

The six shape parameters a, ¢, d, e, f, and n are the
six independent variables xy, x2, . . ., x4, respectively,
of the constrained optimization problem. The objec-

tive function f(x;, x2, . . ., xg) is the scaled ring weight

W = 4y\? f

0

m/

2
ht ds, (12)

in which <y is the material density. The following six
implicit constraint functions g; are applied:

&1 = 2Ad=2 = total ring deflection, (13)
g:=Ad(1+ |f|) =maximum thickness of ring
cross section, (14)
g3=A(2a+ d+ df) = outside width of ring, (15)
g1=A(4—2a+ d+ df) = outside height of
ring, (16)
gs=c(1+ |e|) = maximum width of ring cross
section, (17)
and g¢= \(4—2a —d— df) = inside clear height of
ring. (18)

Implicit lower bounds A; and/or upper bounds k; are
imposed on the functions g; to limit ring deflection and
dimensions.

The scaling procedure used here could have been
avoided by expressing force capacity as an implicit
constraint function with a lower bound. It is not known
whether such a procedure would be more efficient than
the scaling procedure used.

Numerical solutions were obtained for seven dif-
ferent minimum weight elastic ring problems. Tables
I and 2 give the initial points, the constraint bounds
and the solutions obtained. The material properties
were: S = 150,000 Ib/in%, £'= 30,000,000 lb/in%, »=10.3,
and y=0.29 Ib/in3. The computations were coded in
FORTRAN V and run on a UNIVAC 1108 computer.
Time required for a solution ranged from 4 min to
18 min with a mean of 9 min. The number of initial
complex regenerations required for a solution ranged
from 2 to 21 with a mean of 9. A reflection factor of
1.5 was used for all seven solutions.

For each of the two 1,000,000 1b capacity n-degree
elliptical rings, the best solution reported in the earlier
paper [3] (weight=539.08 1b) was used as the initial
point. For the other five problems, the initial feasible
points were obtained by using the relatively simple
equations for a thin circular ring of uniform cross
section. The thin circular ring equations, although they
may be in error by several percent, give a good enough
approximation of ring characteristics for beginning an
optimization search. The coordinates obtained by the
thin ring equations were offset slightly inside their
explicit bounds, where that was necessary, to comply
with the requirements of the optimization method.
To hold a particular parameter constant, the upper and
lower explicit bounds were set equal to the initial
point coordinate value.
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TABLE 1. [nitial points and constraint bounds for elastic ring problems
Initial point coordinates and explicit bounds Implicit bounds

Force Problem

capacity dimension 1
a a b as c be as d bs a, e b4 as i bs as n be hy k1 ks ks k4 ks he
Lb Inch Inch Inch Inch. | Inch Inch Inch Inch Inch Inch Inch Inch Inch Inch Inch Inch

100,000 S 1.0 1.01 1.3 3.0 5.0 6.0 0.05 | 0.151 03] 0.0 00| 00(|—09| 0.0 09| 2.0 2.1| 20.0 0.25 0.55 4.0 40.0 40.0'| 6.0 9.0

300,000 5 1.0 1.01 1.3 4.0 8.0 10.0 1 .188 41 00 00| 00|—09| 0.0 09 20 2.1| 20.0 .25 .95 4.0 40.0 40.0 10.0 9.0
1,000,000 2 1.0 1.00 1.0 6.0 12.0 14.0 1 250 S5) 00] 00| 0.0 00| 0.0] 00f 20| 20| 20 2 .55 7.0 50.0 50.0 18.0 9.0
1,000,000 5 1.0 1.21 1.3} 6.0 13.3 14.0 B } 305 S]] 00} 00| 00|—09| 05| 09| 20| 6.0] 20.0 25 .55 7.0 50.0 50.0 18.0 9.0
1,000,000 6 1.0 =2 1.3 6.0 13.3 14.0 1 305 S4 09| 00 09}—09]| 05] 09| 20| 6.0] 20.0 25 O 7.0 50.0 50.0 18.0 9.0
3,000,000 ) 1.0 1.01 1.3 14.0 18.0 20.0 .25 311 St 00f 00 00—09] 00] 09| 20| 21| 20.0 25 29 9.0 60.0 60.0 20.0 9.0
9,000,000 5 1.0 1.01 1.3 20.0 28.0 32.0 3 .387 S5y 00| 00| 00|—09f 00| 09| 2.0 21| 20.0 .25 .55 15.0 85.0 85.0 32.0 9.0

TABLE 2. Solutions for elastic ring problems
Ring shape parameters of unit size ring Implicit constraint function values

Force Problem Scale Ring Cycles

capacity dimension factor weight
a c d e f n & &2 &3 &1 &5 86
Lb [ Inch Inch Inch Inch Inch Inch Inch Inch Inch Lb

100,000 S 1.07509 5.35807 0.14689 0.00000 0.79775 5.36445 0.2502 1.5078 12.4472 12.0703 5.3581 9.0546 5.710 52.40 210

300,000 S 1.09246 8.40706 19659 .00000 67392 4.52213 .2503 2.3088 15.7788 15.0431 8.4071 10.4256 ' 7.016 163.17 201
1,000,000 2 1.00000 12.32346 27146 .00000 .00000 2.00000 .2501 4.1548 34.7653 34.7653 12.3235 26.4558 15.305 1427.90 190
1,000,000 5 1.19033 11.87379 31110 .00006 56132 9.39859 .2509 3.8990 20.2053 16.8975 11.8738 9.0996 8.027 492.49 179
1,000,000 6 1.19717 11.77591 31561 —.02669 .56049 8.15270 2512 3.9900 20.5215 16.9984 12.0902 9.0184 8.102 497.78 263
3,000,000 S 1.02028 16.12696 .33864 .00000 62951 5.93016 .2504 6.6805 26.2232 30.4025 16.1270 17.0414 12.107 1686.69 522
9,000,000 5 1.02117 25.64302 45811 .00000 51622 5.69466 .2503 9.7050 31.6321 37.0573 25.6430 17.6474 13.972 4819.54 414




For the five n-degree elliptical rings with uniform
cross section width, the ratio of weight to force capac-
ity ranges from 4.92 X 10-* to 5.62 X 10-4. At least a
rough proportionality between weight and force capac-
ity might be expected for structures of this geometric
class. Thin ring equations would predict a constant
ratio of weight to force capacity for uniform cross
section, circular rings having the same deflection at
capacity load.

In each of the seven solutions, ring deflection, g,
is near its lower bound, A;=0.25 in. In three of the
solutions, inside clear height, gs, is near its lower
bound, h¢=9.0 in. Exact minimum weight solutions
would apparently lie exactly on at least one of the
bounds. Continued iteration would have resulted in
closer approximations to exact solutions. But the
searches were stopped because of the relatively large
computer costs involved and because the convergence
rate decreases as an optimum is approached.

The seven solutions include three 1,000,000 1b
capacity rings of different geometric complexity.
One ring is circular with uniform cross section; one
is n-degree elliptical with constant cross-section width
and sinusoidally varying thickness; and one is n-degree
elliptical with sinusoidally varying width and thickness.
The three cases are respectively two-dimensional,
five-dimensional, and six-dimensional optimization
problems. All three cases have the same implicit
constraint bounds. Both n-degree elliptical rings have
a weight of about 35 percent of the weight of the cir-
cular ring, and the outside dimensions of the more
complex rings are significantly less than those of the
circular ring. Since the five-dimensional problem is a
special case of the six-dimensional problem, an exact
solution to the six-dimensional problem would have a
weight equal to or less than any solution to the five-
dimensional problem. Although both elliptical rings
have about the same weight, the ring with nonuniform
cross-section width would probably cost more to manu-
facture than would the other elliptical ring.

5. Rib-Stiffened Plate Problem

The minimum weight analysis of a rib-stiffened
elastic plate is presented here to demonstrate the
application of the nonrandom complex method to a
discrete variable problem. It is assumed that the rib-
stiffened plate is built-up from flat plates that are
available in only a limited number of thicknesses.

Figure 3 gives a schematic drawing of a rib-stiffened
plate of the type studied. The flat plate is reinforced
by a rectangular grid system of ribs having the same
dimensions and spacing in both directions. The rib-
stiffened plate is simply supported along all four edges
and loaded only with a compressive load N, in the
plane of the plate.

Schmit, Kicher, and Morrow [4] have studied the
application of gradient optimization methods to a
more general class of rib-stiffened plates, subjected
to combinations of both shear and biaxial normal
loads. They considered three possible elastic buckling

modes to be applicable to their problem. The follow-
ing specialized forms of the buckling equations used
in their study are assumed to apply to the present
problem:
1. Critical load for gross buckling of the simply
supported, rib-stiffened plate,

T w?  [® |
Ncr:iw_2 [Dl (‘[-2—4-?) +203], (19)
in which
_ERY) 1 (B L ) (4
D=5t () +5 0-3) ()

*aam () () (5)

+

(=) () + 0=30) G) ] =) )

E = modulus of elasticity,
v = Poisson’s ratio,

and the length dimensions are those indicated in
fhigure 3.

2. Ciritical load for local buckling of a stiffening rib
as a flat plate, simply supported along three edges
and free along the fourth edge,

V. = L tr\? bptp+brtr] ( by )2 o5 |.
Ner 12(1—17) (br> [ b, [ s +0.425]

(20)

3. Critical load for local buckling of a square panel
as a flat plate, spanning between two pairs of ribs and
simply supported along all four edges,

o w2t [b,,t,,-’r-brtr]. o1)

Ner = 3(1 —v2) (bp— tr) by

The critical material stress in the rib-stiffened plate
is assumed to be equal to the applied load divided by
the gross cross-sectional area of the flat plate and
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FIGURE 3. Rib-stiffened plate.
ribs. That 1s, A numerical solution was obtained for a rib-stiffened
N plate 30 in wide by 40 in long with an applied compres-
l

(22)

ag|— : *
—
p

The gross weight of the rib-stiffened plate is given
approximately by

- brtr L
W =vylwt, [1 == bots (2 b,,) ]

in which y is the material density. Equation (23) does

(23)

not include the net weight resulting from the fastening

of the stiffening ribs to the larger flat plate or to each
other.

For the particular numerical problem presented here,
plate length and width, [ and w, are held constant and
the four plate dimensions t,, t,, by, and b, are the vari-
able parameters of the optimization search. The plate
thicknesses, t, and t,, are discrete variables. The
objective function is the gross weight of the plate, .
The following implicit constraint functions are applied:

21 = N¢r = gross buckling load, (24)
2> = N, = rib buckling load, (25)
23 = N..= panel buckling load, (26)
g4 = o= critical stress, (27)
and g5 =t, + b, = total stiffened plate thickness.  (28)

The applied load that the plate is required to support
is a lower bound on g;. g2, and g;. The design stress,
S, is an upper bound on gs.

sive load N;=350 lb/in. Lower and upper bounds of
0.5 in and 0.7 in, respectively, were imposed on total
stiffened plate thickness, g5. Explicit constraint bounds
on the variable optimization parameters were as
follows (in inches):

0.005 = t, = 0.500
0.005 = ¢, = 0.500
2.000 = b, = 6.000

0.100 = b, = 0.700.

The material properties were: S=20,000 lb/inZ,
E=10,500,000 1lb/in?, »=0.32, and y=0.101 Ib/in3.
Forty-four discrete plate thicknesses from 0.0040 in
to 0.5800 in were assumed to be available. The compu-
tations were coded in FORTRAN V and run on a
UNIVAC 1108 computer. Total computer time re-
quired for the solution was 55 s. A reflection factor of
1.6 was used.

It was determined by direct computation that a
0.2043 in thick plate was the thinnest available plate
that would support the applied load as a flat plate,
without stiffening ribs. Such a plate would weigh about
24.76 1b. The 0.2043 in flat plate thickness combined
with a reasonable set of rib dimensions were used as
the initial point coordinates for the first continuous
variable search.

Table 3 gives the initial points and results for the
series of five optimization searches employed in finding
a discrete variable solution. The result of the first
continuous variable search was a solution point near
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TABLE 3. [Initial points and results for rib-stiffened plate problem
Optimization Variable parameters Implicit constraint function values Gross Cycles
search = - weight
ty Ly bp br N('r Ner Nl-r i H
Inch Inch Inch Inch Lb/Inch Lbl/Inch Lbl/Inch Lb/Inch? Inch Lb
0.20430 0.20430 4.00000 DLBOB00 L .. c cosvucunmmsainneli e summasssiaios v s sibnmeasss sss nxsnsunsshens sssis suvssnmniessmesasi sonsansuisossens 28.3805
First (Initial point)
continuous
04541 .04526 3.44039 64625 350.00 945.27 371.19 6492.0 0.69166 7.5510 246
(Result)
04767 .05041 3.72198 .63748 350.10 1242.35 365.24 6216.3 68515 7.8563
Second (Initial point)
continuous
.03068 02961 2.00111 .64446 350.10 350.00 374.79 8703.1 67514 6.0128 215
(Result)
.03068 .02961 2.00110 64444 350.10 350.10 37491 8702.2 67512 60133
Third (Initial point)
continuous *
.02989 .02988 2.00000 .64409 350.15 350.51 350.00 8858.2 67398 5.9375 111
(Result)
.03200 03200 2.00000 .64409 376.95 430.72 430.46 8273.2 67609 6.3565
First (Initial point)
discrete
03200 .03200 2.19138 64465 350.00 406.67 350.00 8451.3 67665 6.1436 9]
(Result)
.03590 02850 2.00000 .64409 351.38 363.79 575.24 7764.3 67999 6.5600
Second (Initial point)
discrete
.03590 02850 2.08008 65105 350.01 350.00 528.17 7809.0 68695 6.4985 114
(Result)
| o

the gross buckling constraint and not far from both the
panel buckling constraint and a total plate thickness
constraint. The continuous variable search was re-
started, in a second computer run, using a complex
centroid somewhat offset inside all constraints as the
initial point. The result of the second continuous vari-
able search was a solution point near a rib spacing
constraint, near the gross buckling constraint, near
the rib bucklmg constraint, and not far from the panel
buckling constraint. The continuous variable search
was again restarted, in a third computer run, and the
resulting solution point was near a rib spacing con-
straint and all three buckling constraints. As a con-
tinuation of the third computer run, the two best
discrete solution points near the continuous variable
solution were selected and used as initial points for
two searches within the subspaces defined by the
discrete coordinates. The better of the two discrete
solutions resulted from the better discrete initial point.
Therefore, no additional discrete subspace searches
were executed. The gross weight for the discrete solu-
tion is about 25 percent of the weight of the thinnest
available flat plate that would support the applied load
without stiffening ribs. Initial complex regeneration,
to overcome excessively slow convergence, was not
required during any of the five optimization searches.

6. Discussion

Unfortunately, a general method is not available
for determining whether or not a solution found by
the nonrandom complex method is (approximately)
the true optimum. But a careful study of the search

record can yield a basis for judgment. The study
should include not only the final values (centroidal)
of the variables and functions, but also the varia-
tion of these values for the entire search. The entire
complex, at regular cycle intervals, should also be
examined.

Multiple searches along different paths can be used
to test apparent optimum solutions. The search path
depends on the objective and constraint functions,
the constraint bounds, the initial point, the reflection
factor, the complex regeneration criterion, and nu-
merical errors. A change in one or more of these
factors can cause a search to progress along a differ-
ent path. Of course the rate of convergence is, in
general, different for different search paths.

Discrete variables can occur in practical problems
in several different forms. The rib-stiffened plate
problem involves two discrete variables with tabu-
lar noninteger values. That problem could have been
written to include an integer optimization variable by
expressing rib spacing as a function of the number
of equally spaced longitudinal ribs. Schmit and
Mallett [5] have discussed the optimization of ma-
terial selection by initially treating one material
property as an independent variable, with other
material properties expressed as continuous func-
tions of the independent material property. With
such a procedure, material selection could be treated
as a discrete optimization variazble in a nonrandom
complex search. Similarly, the selection of com-
mercially available elements, such as metal beams
and columns, could be optimized by initially express-
ing element geometric properties as continuous
functions of a single independent variable, for example
weight per unit length.
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Numerous other optimization methods applicable
to problems with nonlinear objective and constraint
functions have been discussed in the literature, for
example by Box [1], Hilleary [2], Schmit, Kicher,
and Morrow [4], Schmit and Mallect [5], and Wilde
and Beightler [6]. The limited computational ex-
perience reported in the present paper is insufficient
to warrant a definitive claim of superiority of the non-
random complex method over other available methods.

7. Conclusion

A nonrandom complex method has been devel-
oped for application to optimization problems charac-
terized by nonlinear objective and consiraint func-
tions involving continuous and/or discrete optimiza-
tion variables. The nonrandom method appears to
offer significant advantages over the Box [1] method
which involves a pseudo-random process. The method
was successful in finding approximate minimum
weight solutions to:

1. Seven elastic ring structural problems involv-
ing from two to six independent variables each; and
2. A rib-stiffened elastic plate structural problem
involving four independent variables, two of which
are discrete.

These results, for problems of this complexity, sug-
gest that the method is applicable to a large class
of optimization problems.

The subroutines for solving the structural equa-
tions of the elastic ring problem were coded in FOR-
TRAN V by R. M. Slesser while he was an employee
of the National Bureau of Standards Center for
Computer Sciences and Technology.

8. References

[1] Box, M. J., A new method of constrained optimization and a
comparison with other methods, The Computer Journal 8,
42—52 (Apr. 1965).

[2] Hilleary, R. R., The tangent search method of constrained
minimization, U.S. Naval Postgraduate School Tech. Rep./Res.
Paper No. 59 (Mar. 1966).

[3] Mitchell, R. A., Analysis of n-degree elliptical elastic rings of
nonuniform cross section, J. Res. NBS 72C (Engr. and Instr.).
No. 2,139-160 (1968).

[4] Schmit, L. A., Jr., Kicher, T. P., and Morrow, W. M., Structural
synthesis capability for integrally stiffened waffle plates, J.
ATAA 1, No. 12 (Dec. 1963).

[5] Schmit, L. A., Jr., and Mallett, R. H., Structural synthesis and
design parameter hierarchy, J. Struct. Div. ASCE 89, No. ST4,
(Aug. 1963).

[6] Wilde, D. J., and Beightler, C. S., Foundations of Optimization
(Prentice-Hall, Inc., 1967).

(Paper 72C4-282)

- 258



	jresv72Cn4p_249
	jresv72Cn4p_250
	jresv72Cn4p_251
	jresv72Cn4p_252
	jresv72Cn4p_253
	jresv72Cn4p_254
	jresv72Cn4p_255
	jresv72Cn4p_256
	jresv72Cn4p_257
	jresv72Cn4p_258
	jresv72Cn4p_259
	jresv72Cn4p_260
	jresv72Cn4p_261
	jresv72Cn4p_262
	jresv72Cn4p_263
	jresv72Cn4p_264
	jresv72Cn4p_265
	jresv72Cn4p_266
	jresv72Cn4p_267
	jresv72Cn4p_268
	jresv72Cn4p_269
	jresv72Cn4p_270



