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Principal Submatrices VII: Further Results Concerning
Matrices With Equal Principal Minors *
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This paper characterizes real symmetric matrices 4 such that all ¢ X ¢ principal minors are equal
and all ¢ X ¢ nonprincipal minors are of fixed sign, for two consecutive values of ¢ less than rank 4. It
also characterizes matrices 4 (over an arbitrary field) in which all # X ¢ principal minors are equal and
all nonprincipal ¢ X ¢ minors are equal, for one fixed value of ¢ less than rank A.
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In the paper “Principal Submatrices V,” [5],! a classification was found for symmetric matrices
A for which all ¢ X ¢ principal minors of 4 are equal, for three consecutive values of t less than the
rank of 4. It is the purpose of this paper to present a similar theorem classifying the real symmetric
matrices in which the condition on the principal minors is weakened to requiring that all ¢ X ¢ prin-
cipal minors of 4 be equal, for two consecuitive values of ¢ less than the rank of A4, and in which a
sign condition is imposed on the nonprincipal ¢ X ¢ minors for these two consecutive values of ¢.
This result is presented in Theorem 1. In this paper we also classify all square matrices 4 (over an
arbitrary field and not necessarily symmetric) in which the condition on the principal minors of 4
is weakened to requiring that all 7 X ¢t principal minors of 4 be equal for one value of ¢ less than
the rank of 4, and for this value of ¢ the condition on the nonprincipal ¢ X ¢t minors of A4 is strength-
ened to requiring that they all be equal. This result is presented in Theorem 4.

THEOREM 1. Let r be a fixed integer and let A be an n X n symmetric matrix over the real number
field, such that:

(i) all r X r principal minors of A are equal;

(1) all (r+1)X (r+ 1) principal minors of A are equal;

(i1i) all nonprincipal r X r minors of A which do not vanish have a common sign;

(iv) all nonprincipal (r+ 1) X (r+ 1) minors of A which do not vanish have a common sign;

(v) rank A =r+2.

Then A is scalar: A= al,,.

PRrRoOF. The proof follows the pattern of the analogous theorem (Theorem 13) in [5].

First case. Let r=1. Let A= (ayj). The equality of the 1 X 1 principal minors forces all a;; to be
equal, say a;i=a. The equality of all 2 X2 principal minors forces all a}; to be equal, for i # j. Thus
aij==b, for i # j. Because all nonvanishing nonprincipal 1 X1 minors have a common sign, we
see that (choosing b properly) all a;;="b for i # j. We wish to show that 6= 0. The nonprincipal 2 X 2
minor det A[1, 2|1, 3]= b(a —b) and the nonprincipal 2 X 2 minor det A[2, 3|1, 2]=—b(a—b). The
sign condition on these nonprincipal 2 X 2 minors now shows that 5=0 or a—b=0. If a—b=0
then A=bJ/,, where J, is the n X n matrix in which each entry is one. Since J, has rank one, the
possibility a= b contradicts hypothesis (v). Therefore 6=0 and hence 4= al, as claimed.
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Before continuing, we explain a certain (known) device. Let A"=DAD-', where D is a diagonal
matrix in which the (i, i) entry is (—1)i for i=1, 2, . . ., n. Applying a well-known formula [7] to
A", we have

Cyadj A")=det A51C"3(A4’). (1)

Here, as in [5], adj A" is the adjugate of 4", Cs(X) denotes the sth compound of X, and C"=5(X) denotes
the corresponding supplementary compound. If iy, . . .,isandj;,. . .,Js are two strictly increasing
sequences of integers, the entry

(—1)irt - -+t - Hgdet A (i, .« ., ds|jia . - o0 Js)
of C"=5(4") equals
det Alisi1, .« oy inlfstts -« «» Jul-
Here isiy, . . ., in and js;1, . . ., ju are the increasing sequences in 1,2, . . ., n complementary
to i1, . . ., is and ji, . . ., js, respectively. (Note: round brackets A4(]) indicate rows and columns

deleted, and square brackets A[|| indicate rows and columns retained.) It follows from these re-
marks and (1) that if 4 has all (n—s) X (n —s) principal minors equal, then adj A" has all s X s prin-
cipal minors equal. It also follows that if all nonvanishing (n —s) X (n —s) nonprincipal minors of 4
have a common sign, then all nonvanishing nonprincipal s X s minors of adj 4" have a common sign.

Second case: r=n—2. This is the largest value of r permitted and implies that A4 is nonsingu-
lar. Taking s=1 and s=2 in the discussion of the previous paragraph, we see that adj 4’ is scalar,
and thus (4')7! is also scalar. But then A’ is scalar, which implies that 4 is scalar. The proof is
complete in case 2.

The general case: Let 1 < r<n—2. We seek to prove that each rX r principal submatrix A4,
of A is scalar. Since r > 1, it is quite easy to see from this fact that A4 is itself scalar.

If det A4, # 0, we may pass a complete nested chain through 4, (see [5]), and so we secure
(r+1)-square, (r+2)-square, and (r+ 3)-square principal submatrices 4,41, Ayi2, A3 such that

ArCAr+lCAr+2CAr+3 (2)

with at least one of A,.» or 4,3 invertible. If det 4,=0, then every r-square principal minor of 4
is singular, since these principal minors are all equal, and hence (as all (r+ 1)-square principal
minors are equal) all (r+ 1)-square principal submatrices of 4 are nonsingular. Let 4,,; be an
(r+ 1)-square principal submatrix containing 4,. Passing a complete nested chain through A4,.,,
we obtain the nested chain (2), with at least one of 4,2 or 4,.3 invertible.

If det A,,» # 0, we may apply case 2 to 4,,» and so conclude that A4,,» is scalar. Therefore A,
is also scalar.

If det A,,,=0, then det 4,,37# 0 and we let B=adj 4,.;. Applying the identity (1) to 4, ,, we
see that B has all 2 X 2 principal minors equal, all nonvanishing 2 X 2 nonprincipal minors of com-
mon sign, all 3 X3 principal minors equal, and all nonvanishing nonprincipal 3 X3 minors of
common sign. If we can show that B is scalar, it will follow that 4,3 is scalar, and hence that 4, is
scalar. To prove that B is scalar, it will suffice to prove that each 2 X 2 principal submatrix B of
B is scalar. Since B is at least 5X 5, we may embed B; in a nested chain

B,CB;CBsCBs 3)

with at least one of By or Bs invertible. If det By # 0, an application of case 2 to B4 shows that B,
is scalar. Therefore we may suppose every 4 X 4 principal submatrix of Bs containing B is singular.
If every 4 X 4 principal submatrix of Bs is singular, then B; satisfies the hypotheses of Theorem 13
of [5] and hence
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Br, = (lIr, + bDjsDil,

where D = diag (€, €, €3, €4, ¢5). Here €, . . ., € are each =1, and a#0 as Bj is nonsingular. We
wish to show that 6=0. Since for 1 <i<j<k <05, we have det Bs[i, j
Bsli, k|j, k]=ei€jab, the sign condition on the nonprincipal 2 X 2 minors of B; yields (for b # 0)
€ei=€;=€;=€;=¢€;. Thus, we have Bs=al5+bJs5. But now det Bs[1, 2|1, 3]=ba and det
B[2, 3|1, 2] =—ba. The sign condition on the nonprincipal 2 X 2 minors of Bs thus shows that 5= 0.
Hence Bs is scalar, and therefore B, is scalar.

Remaining in our discussion of B; and Bs is the case in which there is a By P B, which is non-
singular. Suppose B.= B;[i, jli, j] (i <j). Then either By overlaps B, in the (i, i) position or in
the (j, j) position. Our By satisfies the hypotheses of case 2. Hence B, is scalar, say By =aly with
a # 0. Suppose By and B; overlap in the (j, j) position. (The case in which B4 and B> overlap in
the (z, 1) position can be obtained from this case by reversing the order of the rows and columns
in Bs.) Let the (i, i) entry of B; be a+b. The equality of the principal 2 X 2 minors of B; shows
that the nondiagonal entries in column i of B are xi, . . ., xi-1, Xis1, - . ., x5 with x2= . . .
=x?,=x},= ... =xi=ab. If i=3, det B;[i, j|l, j]=ax,=—det Bs[2, i|1, 2]. If i=2,
det Bs[1, 5|1, 2] = axs =—det B5[3, 5|2, 3]. If i=1, det B5[2, 3|1, 2] =— axs=—det B;[3, 4|1, 4].
Therefore we must have one of x;, . . ., xi_1, Xit1, . . ., x5 zero, and hence b=0. Thus all of
X1, . - .5 Xi-1, Xit1, - - -5 X5, b are zero and hence Bj is scalar and therefore B; is scalar.

The proof is now finished.

As immediate consequences of Theorem 1 we have Theorems 2 and 3.

THEOREM 2. If a symmetric completely nonnegative matrix A of rank =r+2 has all rXr
principal minors equal, and all (r+ 1) X (r+ 1) principal minors equal, then A is scalar.

THEOREM 3. A symmetric oscillation matrix cannot have all t Xt principal minors equal for
two consecutive values of t.

It is not difficult to construct nontrivial examples of 3 X 3 completely positive matrices having
all £ X ¢ principal minors equal, for one value of ¢. Therefore the hypothesis in Theorem 1 on the
principal minors can be weakened only at the price of greatly strengthening the hypothesis con-
cerning the nonprincipal minors.

THEOREM 4. Let A be an n X n matrix with elements in a field . Let r be a fixed integer,
1 <r <n. Suppose:

(1) all r Xt principal minors of A are equal;

(ii) all r X r nonprincipal minors of A are equal;

(iii) rank A=r+1 if r # 1.

Then:

(@) if r=1, A=al,+ bl,, where a, beX:

(b) if r=n—1, A=D(al, +bJ,)D~!, where a, be;}, and D=diag(—1,1,—1,1,. . .,(—1),...,
(=DM;

(©)if 1<r<n—1, A=al, is scalar.

PRrRooF. First case: r=1. This is trivial.

Second case: r=n—1. Here adj DAD-! satisfies the conditions of case 1. Therefore adj
DAD-'=al,+ BJn. Thus (DAD-')"'=a'l,+ B'J,, and hence DAD-'=al,+ bJ,. This yields the
result in case 2.

General case: The assumptions (i) and (ii) of Theorem 4 are equivalent to

i, k] =¢€jexba and det

C,(A)= (LI(,,)+ b,](,,), where a, bey. (4)

rank A
r

Since rank C,(A4) =<
(r+1)-square submatrix of 4. Then C,(A4,;:) is a principal submatrix of C,(4), so that (4) yields

) > 1 (because rank A > r), we see that a # 0. Let A, be any principal

Cr(Ar+1):(llr+1+b.lr+l- (5)
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Let the eigenvalues of A,,; be Ay, . . ., Ar+1. These lie, of course, in an extension field of ;§. Then,
as the eigenvalues of al,.,+ b/, are a+ (r+1)b (once), and a (r times), we may choose our
notation for the eigenvalues of 4,,; so that

)\1 550 )\r=u+(r+l)b, )\2)\3 & 5o Ar+1:(l:A1A;g 5oa o )\r+1- (6)

From (6) we see that all of Ay, . . ., \,4; are nonzero and hence 4,,; is nonsingular.
Since A,.; now satisfies the hypotheses of case 2, we see that 4,,, has the form

Ar+1:D(ar+11r+1+br#1Jr+l)D_lg (7)

where a,,; and b,,; are in ¥ and D=diag (—1,1, —1,. . ., (—1)"*"). From the formula (7) for
A1, it follows that the (i, j) element of A, (i <j<r+1) is the negative of the (i,j+ 1) element
of A;,;. Applying this result to any 4,,, containing rows and columns i, j, j+1 of 4, where
1 <i<j<n, we see that the (i, j) element of A is the negative of the (i, j+ 1) element of 4, for
1 <i<j<n. (An A,;, exists containing rows and columns i, j, j+ 1 because r+ 1 = 3.) Next notice
that

b=det A[1,2,. . .,r|1,2,. . .,r—=2,r+1,r+2], (8)

since all nonprincipal r-square minors of 4 equal . The last column of the minor in (8) is now known
to be the negative of the second last column of this minor (8). Therefore b= 0.

Hence each C.(A4,,;) =al, ; . From the argument in case 2, it now follows that each 4, is
scalar. Hence A is scalar. The proof is complete.

We remark that this proof can be shortened if ¥ is the real or complex number field.

We also remark that Theorem 4 is closely related to the question of the solvability of the
matrix equation C,(X)= B, where B is given. Recent results relating to this problem have been found
by M. Marcus, M. Newman, A. Yaqub, H. Schwertdtfeger, W. Utz, and less recent results are to be
found in papers by C. Ko, H. C. Lee, C. Yen, A. W. Wallace, D. E. Rutherford, A. C. Aitken,

J. Williamson.
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