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For the usual straight-line model, in which the independent variable takes on a fixed, known set

of values, it is shown that the sample correlation coefficient is distributed as Q with (n —2) degrees
of freedom and noncentrality 6=(8/0) VZ(x;—x)?. The Q variate has been defined and studied else-
where by Hogben et al. It is noted that the square of the correlation coefficient is distributed as a
noncentral beta variable.
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1. Introduction

Consider the straight-line model

Y,-=a+Bx,-+€,~. 1=1,2,...,n (])

where

(i) the €; are assumed to behave as normally and independently distributed random variables
with mean zero and common variance o2,

(ii) @ and B are unknown parameters, and

(iii) lowercase italic letters denote fixed, known constants and uppercase italic letters denote
random variables, i.e., x is fixed and Y is random. This and other straight-line models are dis-
cussed in detail by Acton [1959].

The sample correlation coefficient rpy is defined by

2 ) )

Tzy=

n n o ’ (2)
D (xi—x)* %y (Yi—Y)*

where x= i xi/n and Y= i Yi/n.

i—1 i-1

It is of some interest in the calibration problem where a fitted straight-line is used in reverse for
estimating an unknown x, corresponding to an observed Y,. The distribution of ryy where X and Y
follow the bivariate normal is well known; see for example Kendall and Stuart [1961, pp. 383—390].
In the present paper the distribution of r,y as defined by (2) is derived for x fixed. This distribution
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is well known for the special case with all ¥; identically distributed (i.e., 3= 0), in which case it
is the same as the distribution of ryy for X, Y independent and normal. See, e.g., Hotelling [1953,
p. 196]. J. N. K. Rao and an unidentified person have pointed out that the distribution of r%y can
be obtained as a special case of the conditional distribution of the multiple correlation coefficient
for the multi-variate normal; see, e.g., C. R. Rao [1965, p. 509].

2. Derivation

In an analysis of variance for the model (1) the (corrected) total sum of squares with (n—1)
degrees of freedom may be partitioned into two independent components; the first being the sum
of squares due to the slope with 1 degree of freedom and the second being the residual sum of
squares with (n —2) degrees of freedom. This partition can be expressed by

[2 (xi—X) (Y,-—?)]2

S (=)= R O

i=1 2 (ci—x)* (3)
where ?i:?+é(xi—§)
o =3 -0 ¥i-7) /3 (-7

is the usual least squares estimator for 8. Let the random variables W and X* be defined by

S (xi—x) (Yi—Y)
W= . (4)
0’\[2 (x,-—-a_c)z
and x:=3 (Yi—Y)¥o2 (5)

Using (4) and (5) and dividing both sides of eq (3) by o we have
2 (Yi_?)2/02=W2+X2. (6)
=

If both the numerator and denominator of ryy are divided by o2 and the first factor of the
denominator is combined with the numerator, the correlation coefficient may be written as

/4
SRV 2o &

Since the Y; are normally distributed, it is easily shown that ¥ is normally distributed with mean

0= (Blo)VZ(xi—x)? and variance 1. Further, it is well known from the theory of the general
linear hypothesis that under model (1) #/ and X? are independently distributed and X2 is distributed
as chi-squared with (n—2) degrees of freedom. Therefore, rry is equal to the random variable Q
defined and studied in Hogben et al., [1964a] and [1964b]|. Hence, the following theorem is proved.

THEOREM: The correlation coefficient r,y, defined by (2) under model (1), is distributed as Q with
(n—2) degrees of freedom and noncentrality 0= (B/o) VZ(xi—Xx)2.
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Various properties of Q are given in the previous two references, including analytic expres-
sions and recurrence relations for the moments about zero, numerical values for the first four
central moments and an approximation to the distribution of () by that of a linearly transformed
beta variable. It follows from (7) that r%y is distributed as noncentral beta; see for example Seber

[1963], where in his notation n; =1, n.=n—2 and A= 60*/2. Furthermore, t= \/(n =2 =)
is distributed as noncentral ¢ with noncentrality # and (n —2) degrees of freedom. The distribution
of rpy also follows from the interesting and easily derived relation

Be SR
VB2 + (n—2)sz

TFxy

Thanks go to Joan Rosenblatt for pointing out the looseness of an earlier proof of the theorem
and to her and Edwin L. Crow for constructive suggestions.
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