
JOURNAL OF RESEARCH of the National Bureau of Standards - B. Mathemati cs an d Mathematica l Physics
Vol. 71 B, No. 4, October- December 1967

Optimum Branchings*

Jack Edmonds
Institute for Basic Standa rds, Nationa l Bureau of Standards, Washington, D.C. 20234

To Professor Marcel Riesz on His 80th Birthday

(November ' 6 , 1966)

An arborescence T is a tree whose edges are directe d so that each is directed toward a different
node. Exactly one node of T, called the root , has no edge of T directed toward it. Le t C be any directe d
graph with a real numerical weight on each edge. A good algorithm is described for find ing in C (if there
is one) a s panning arborescence, with prescribed root, whose edges have maximum (o r minimum)
total weight.

Key Words: Algorithms, arborescences, branchings , combinatorics, graphs, linear programming,
traveling salesman, trees.

Section 1

A (di rected) graph G, for purposes here, is a finite
set of nodes and a 'finite set of edges, where each ed ge
is said to be directed toward one of the nodes, called
the front end of the edge, and said to be directed away
from a different one of the nodes, called the rear end
of the edge. An edge and each of its ends are said to
meet. A subgraph of G is a subcollection of its members
which, under the same incidence relations, is a graph.
A graph is called connected if it is not e mpty and its
members do not yartition into two di sjoint nonempty
subgraph s. A polygon is a connected graph Q such
that each node of () meets exactly two edges of (). An
(e lementary uniformly directed) circuit is a polygon
which contains one edge directed toward, and one
edge directed away from , each of its nodes. A forest
is a graph which contains no polygon. A tree is a
connecte d forest. A branching is a forest whose edges
are directed so that each is directed toward a differe nt
node. An arborescence is a connected branching. An
(e lementary uniformly directed) path P is an arbor­
escence such that e ach edge in P is directed away
from a different node, and such that there is at least
one edge in P.

W e shall occasionally use "obvious" fac ts about
graphs without justifying them.

Clearly, a branching (forest) is the union of a unique
family of disjoint arborescences (trees) .

Exactly one node in an arborescence T, called the
root of T, has no ed ge of T directed toward it. A
branching (fores t) is an arborescence (tree) if and

*Prepareti while the au thor was a visiting professor a l the Un iversi ty of Waterloo. Ontario,
Canada. Presented under the title Optimum Arborescences at the Int erna tiorul Sem inar
on Graph Theory and Its Appl ica tions, Rome, luly 1966.

only if it has exactly one less edge than nodes. No
branching (forest) has more e dges than this.

In a path P there are exactly two nodes, called the
ends of P, which eacW meet only M e edge in P. The
res t of the nodes in P each meet exactly two edges in
P. A path P is said to go from the node which is only
a rear end in P (the root of P) to the node which is
only a front end in P. For any arborescence T, and any
node IJ in T except the root , there is a unique path in
T O'oing from the root to IJ . Any path in l' going to IJ

and any path in T going from IJ have only IJ in common ,
and their union is a path. And so on.

Section 2

Let G be any graph with a real numerical weight
Cj corresponding to each edge ejEG. The problem
treated here is to find in G a branching B which has
maximum total weight, ~Cj, summed over ejEB. B is
called an optimum branching in G.

First we show that certain variation s of the problem
reduce immediately to it.

A spanning subgraph of G is a subgraph which
contains all the nodes of G. A branching in G is a
spanning arborescence of G if and only if the number
of its edges is one less than the number of nodes in G.
No branching in G can have more edges than this.

An optimum branching in G of course contains no
edge with negative weight, and indeed may be empty
if all Cj ,,;; O. Even if all Cj > 0 and G contains a spanning
arborescence, an optimum branching in G need not
be an arborescence.

If there is a spanning arborescence Tin G, then an
optimum one, i.e., one which has maximum total
weight, ~cj, ejET, can be found as an optimum branch­
ing in G where the edges carry new weights

233

A spanning arborescence in C which is optimum rela­
tive to weights Cj, ejEC, is also optimum relative to
weights Cj+ k, ejEC, for any constant k, since every
spanning arborescence has the same number of edges.
Constant h is larger than the difference in total
weights (relative to weights Cj, ejEG) of any two branch­
ings in C. It follows that an optimum branching in
C, relative to weights cJ = Cj + h, will be a branching
with a maximum . number of edges. In particular, it
will be a spanning arborescence if and only if C
contains a spanning arborescence_

A spanning arborescence Tin C which has minimum
total weight, ! Cj, ej ET, is the same as one which has
maximum total weight ! c}, ej ET, relative to weights
cJ =-Cj.

It will be evident that the efficiency of the method
for treating optimum branchings is not seriously
effected by a large change h (say of the form 10") in
all the weights. In fact the method is easily modified
to treat optimum spanning arborescences directly.

If there is a spanning arborescence in C which is
rooted at a prescribed node , say r, then an optimum
one can be found by finding an optimum spanning
arborescence in the graph C' obtained from C by
adjoining a new edge eo (carrying arbitrary weight co)
which is directed toward r and directed from a new
node having no other incident edges_ Clearly, T is a
spanning arborescence in C which is rooted at r if and
only if T together with eo is a spanning arborescence
of C'.

If the edges in graph C represent the links for pos­
sible direct communication from one node to another,
if each Cj is the cost of direct communication from the
rear end of ej to the front end of ej, and if cost is
additive, then a minimum-total-weight spanning ar­
borescence rooted at prescribed node r represents
the least costly way to have a message communicated
from r to all other nodes of C.

Another application is where it is desired to ar­
range an institution into an optimum heirarchy
(branchocracy).

Section 3

Our main result is
THEOREM 1. There exists a good algorithm for find­

ing, in any graph G with a numerical weight corre­
sponding to each edge, an optimum branching.

We sayan algorithm is good if there is a polynomial
function fen) which, for every positive-integer valued
n, is an upper bound on the "amount of work" the
algorithm does for any input of "size" n. The concept
is easy to formalize-relative, say, to a Turing machine,
or relative to any typical digital computer with an
unlimited supply of tape.

For optimum branching, the largest number of
significant digits in an edge weight, as well as the
number of edges of C, must be figured somehow into
the measure n of !nput "size." One might for example

take .n to be the maximum of these two numbers or
to be the vector consisting of both numbers.

The proof of Theorem 1 is constructive. The theorem
is proved by displaying one particular algorithm for
optimum branching which is obviously good.

If we remove from the optimum-spanning-arbores­
cence problem the condition that each member of the
set T of edges being optimized must have a different
front end, then we get the optimum-spanning-tree
problem. That is to find, if there is one, in any graph
C with a numerical weight on each edge, a spanning
tree which has maximum (or minimum) total weight.

Especially simple algorithms are well-known for
this problem [cf_ 5 and 6).1 One is, starting with an
empty bucket , build up a set of elements having
"admissible structure" by putting elements into the
bucket one after another as long as possible, so that
each addition is a maximum weight element among
those not in the bucket which, together with the ones
already in the bucket, would preserve admissible
structure. For the optimum-spanning-tree problem,
the elements are the edges of C and "admissible"
means "forest." The algorithm is certainly good. It
is also valid for that problem.

Where "admissible" means "branching," the above
algorithm is not generally valid for finding an optimum
spanning arborescence. Paper [3] abstractly charac­
terizes those structures for which this "greedy al­
gorithm" is valid for any numerical weighting_

If we add to the conditions of the optimum-spanning­
arborescence problem the condition that each member
of the set of edges being optimized is to have a dif­
ferent rear end, then we have the problem of finding,
if there is one, an optimum spanning (uniformly
directed) path in any graph C with a numerical weight
on each edge. This is a version of the well-known
traveling saleman problem [cf. 4]- I conjecture that
there is no good algorithm for the traveling saleman
problem. My reasons are the same as for any mathe­
matical conjecture: (1) It is a legitimate mathematical
possibility, and (2) I do not know.

A good algorithm is known for finding , in any graph
with a numerical weight on each edge, a maximum­
total-weight subset of edges such that no two of them
meet the same node [1 , 2]. The treatment here of
optimum branchings is similar.

Section 4

Here is the algorithm for finding a maximum-total
weight branching in any (directed) graph C with a
numerical weight Cj on each edge ejEC_ Recall that
a branching is a forest such that each edge is directed
toward a different node.

Begin the algorithm by applying instruction (11)
where Ci is CO=G and where Di and Ei are empty
buckets, DO and EO.

(II) Choose a node v in Ci and not in Di. Put v into
bucket D i. If there is in Ci a positively weighted edge

1 Figures in brackets indica te the literature references at the end of this paper.

234

i
~

l
I

directed toward v, put one of them havin g maximum
weight into bucket Ei.

Repeat (11) until
(a) E i no longer comprises the edges of a branching in
G i, or until (b) every node of G i is in Di, and E i does
comprise the edges of a bran ching. When case (a)
occurs, apply (12).

For convenience assume that every branc hin g which
we consider in graph Gi contains all the nod es of Gi.
We say that a set of edges in Gi forms the unique
subgraph of Gi consisting of those edges and all
nodes in Gi.

Eac h edge e put into E i accord ing to (I 1) is direc ted
toward a node v which is the root of a connected
component of the branching, say B, formed by the
edges in E i before e is put into Ei. If the rear end Vs

of e is in a different component of B than v, then B U e
is a branc hing, and so when e is put into Ei, (a) does not
hold.

If Vs is in the same component of B as v, then B
contains a unique path P going from v to Vs . In this
case, Qi = P U e is a circuit contained in B U e, so as
soon as e is put into E i, (a) does hold .

(12) Store Qi and a specification of one of the edges,
say eb, of Qi which has minimum weight in Qi relative
to the edge-weights for Gi. Obtain a new graph Gi+l
from Gi by "shrinking" to a single new node, vi+ 1,

the circ uit Qi and every edge of Gi which has both
e nds in Qi. The edges (denoted as eJ + I) of Gi + 1 are
those ed ges (denoted as ej) of Gi which have at most
one end in Qi. Every edge of Gi which has one end in
Qi will in 0 + J have vi+ 1 at that end. All other edge­
ends are the same in Gi + 1 as in Gi. The nodes of Qi
are not in Gi+ l.

Every edge , say e1+ I, which as eJ in Gi is directed
toward a node, say vA, in Qi and directed away from a
node not in Qi, gets a possibly different weight for Gi + 1:

c1 + 1 = cA + ci - c! (1)

where c1 is the weight of eb for Gi; where c~ is the
minimum weight for 0 of an edge, say ei, in Qi; and
where c~ is the weight for Gi of the unique edge, say
eL which is in Qi and directed toward vA . All other
edges in Gi + 1 keep the same weight as for Gi_

In justifying the algorithm we shall make use of the
following relations

(2) ci ~ 0,

Put into bucket Di+ J the nodes which are in both
Ci + J and bucket Di. (Do not at this point put vi + J into
Di +l_) Put into bucket Ei +l the edges which are in
both Gi+ 1 and bucket Ei, i_eo, put into bucket E i+ 1

the final contents of bucket Ei minus the edges of
circuit Qi. It is easy to see that the edges in bucket
Ei + 1 form a branching in Gi + 1. Continue the algorithm
by applying (I 1) where i is one greater.

Eventually, after a small number of applications of
(I 1) and (12), case (b) must occur.

As soon as (b) occurs, for say i = k, (11) and (12)
are never applied again. Instead, (13) is applied suc­
cessively for i+l=k, k-l, ... , 1, until the graph
Gi obtained is the original G. At that point, th e branch­
ing Bi = BO is a maximum-total-weight bran ching of C.

The final contents of bucket E A' form a bran ching
in graph Gk which we call Bk.

(13) It is not difficult to see that si nce B i + 1 is a
fores t in Gi+l and since Gi+lis obtained from Gi
by shrinking the circuit Qi in Gi (and all edges of Gi
with both ends in Qi) to the node v\ +J of Gi +J, the
subgraph Hi of Gi, formed by the edges in B i+ 1 and
the edges in Oi contains only one polygon , namely Qi.

In the case where v il + 1 is not a root of (a connected
component of) branching B i+ 1 in Gi +J, there is a
unique edge, say e\+l, of Bi +l which is directed
toward V\ +l. In Gi, e\ is directed toward a node, say
v~, of Qi. Since Qi is a circuit, there is a unique edge,
say e1, of Q i which is directed toward vl. Clearly, ef and
eJ are the only two edges of Hi whic h are directed
toward the same node. Thu s. si nce Qi is in the only
polygon of Hi, deleting d from H i yields a branching
in Gi. which is called Bi_

In th e case where v \ + 1 is a root of branching B i + 1

in Gi +J, i.e., where no edge of Bi +l is directed toward
v \ + 1, no two edges of H i are directed toward the same
node. Therefore, deleting a ny edge of Q i from H i
yields a branching in Gi. To obtain the branching B i
in Gi, delete from Hi one of the edges eb of Qi which
has mini mum weight cj.

That completes the description of the algorithm.
Evidently it is a good algorithm. Evidently its output
is a branching B O in graph G. In order to prove The­
orem 1, what remains to be done is prove th at BO has
maximum total weight.

Section 5

Theorem 1 and the following geometric theorem are
proven together.

Let G be any graph. (No edge-weights -are specified.)
Let there be a real variable Xj for each edge ejEG. Let
Pc; be the polyhedron of vectors x=[Xj] which sati sfy
the sys tem Lc;, consis ting of inequalities L1 , L2 , and
L3 •

(L1) For every edge ejEG, Xj ~ 0.
(L 2) For every node vEG , IXj ~ 1, s ummed over all

j's such that ej is directed toward v.
(L3) For every set 5 of two or more nodes in G,

summed over all j's such that ej has both ends in
5. (15 I denotes the cardinality of 5.)

Any vector x = [Xj] of zeroes and ones is called the
(incidence) vector of the subset of e/s such that Xj= 1.

THEOREM 2. The vertices of polyhedron P c are pre­
cisely the vectors of the subsets of edges in G which
comprise branchings.

235

A polyhedron (convex polyhedron) P is the set of all X-n ~ 0 for every 'Y}, and (5)
the vectors, i.e., points, which satisfy some finite
system L of linear inequalities. A vertex (extre me 7JIa€7Jx7J ~ Ibt for every ~ , (6)
point) of P is a point which, for some linear function,
is the unique point in P which maximizes that fun ction. and that y= [n] is any vector which satisfies

A basic point x = XO of a finite system L of linear
inequalities is the unique solution of a system , n ~ 0 for every t , and (7)
j I aijXj = bi , iEf, such that jI aijXj ~ bi , iE!, is a sub·
system of L. €Ia€7Jn ~ C7J for every 'Y}. (8)

If basic point XO of L is in the polyhedron P of L,
then it is a vertex of P, because clearly XO is then the Since (6) and (7) imply
unique point in P which maximizes j I(iIaij)xj, iE!.

We shall see without difficulty that any point xO,
which is the vector of a branching say B ~ in G, is a
Vertex of p(;. Vector XO satisfies LI since it is all zeroes
and ones. Vector XO satisfies L2 for any node vEG,
since, by the definition of branching, at most one of
the x/s in this inequality has value 1 for xO.

The branching BO is a forest , so any set 5 of nodes,
together with the subset E~ of the edges in BO which
have both ends in 5 forms a forest. The number of
edges in a forest is at most the number of nodes In
the forest minus 1; in particular , IEg l ~ 151-1. There·
fore, vector XO satisfies L 3 for any subset 5 of (two
or more) nodes in G, since IE21 of the x/s in this
inequality have the value 1 for xO. Summarizing the
conclusion so far, XO is a point in Pc .

Vector XO is the unique solution of the linear system:
Xj = 0 for every edge ej not in BO, and IXj = 1 (summed
over e/s directed toward v) for every node v whic h
has some edge of BO directed toward it. This system
can be obtained from certain of the relations of L I
and L2 by replacing their inequality signs. Therefore
XO is a basic point of Lc , and hence a vertex of Pc;.

Most of this paper is directed toward proving:
LEMMA 1: Every linear function, I Cjxj . (s!lmmed

over all edges e jEG), is maximized in P G by the vector
of some branching in G.

From Lemma 1 and from the definition of vertex,
it follows immediately that every vertex of Pc is the
vector of a branching in G. This will concl_ude the
proof of Theorem 2.

A branching BO in graph G has maximum total weight
relative to the vector c= [Cj] of edge-weights if and
only if the vector xO=[x~] of BO maximizes (c, x) = jIcjxj
over all vectors of branchings in G. If XO maximizes
(c, x) over Pc, then it maximizes (c, x) over the vectors
of branchings in G, since the latter are in Pc.

Our task , therefore , is to show that the vector of
the branching BO, produced by the algorithm , maxi­
mizes (c, x) over Pc. This will prove that the algorithm
is valid and will prove Lemma 1.

Section 6

The following computations are well-known in
linear programming. Suppose that x= [X7J] is any
vector which satisfies

€I (7JIa€7Jx€) n ~ €Ib€y€ = (b, y) , (9)

and since (5) and (8) imply

'1I(€Ia€'1n)x'1 ~ '1Ic'1x1j = (c, x), (10)

we have

(c,x) ~ (b,y). (11)

Since (11) holds for any x and any y, if (c, XO) = (b, yO)
holds for particular x = XO and y= yO, then XO must
maximize (c, x) and yO must minimize (b, y).

Suppose for particular x=x l and y=yl that

'1Ia€'1x~ = b€ for ~ such that yJ #- 0, (12)

and

€Ia€'1yJ = C'1 for 'Y) such that x~ #- O. (13)

Since (12) implies equality in (9), and (13) implies
equality in (10), we have (c , Xl) =(b, yl). Therefore,

Xl maximizes (c, x)

and (14)

y l minimizes (b, y).

Our present interest is where (5) is (L I) , and (6) is
(L2) and (L3) ' For any linear function (c, x)= jIcjxj of
points XEPC , we get a dual system (7), (8), (b, y), by
letting a variable n correspond to each inequality
of L2 and L 3• That is let a variable Yh correspond to
each node VI!EG and let a variable Ys correspond to
each set 5 of two or more nodes in G.

For (7) we have,

for every VI! , Yh ~ 0, (15)

and

for every 5 , Ys ~ O. (16)

Coefficient ahj = 1 if edge ej is directed toward
node Vh, and ahj = 0 otherwise. Coefficient asj = 1
if edge ej has both ends in 5, and asj = 0 otherwise.

236

J

t
I

(f

For every v", b,,= 1. For every S, b8 = lSI-I.
Therefore, (8) becomes

for every edge ej EG ,
y" + Wj ~ Cj, where v" is the front end
of ej, and where Wj= !. Y8, summed over
all sets S which contain both ends of e j.

Fun ction (b, y) becomes

summed over all v" and over all S.

(17)

Recall that our task is to show that the vector XO

of the branching BO , produced by the algorithm,
maximizes (c, x) over Pc.

In view of (14), we do so by constru cting a vector
y= [Y" , Y8] which satisfies (15), (16), (17), and which
satisfies (12) and (13). For the present system , (12) is

for every node VI. such that YI. ~ 0,
!.xJ= 1, sum med over j's such that ej
is directed toward v,,; (18)

and

for every se t S such that Y8 ~ 0,
!.xY = lSI- I , summ ed over j's
such that ej has both end s in S. (19)

In other words (18) says that if YI. ~ 0 the n an edge
of the branching BO is directed toward VI! , a nd (19)
says that if Y8 ~ 0 the n exactly IS 1-1 edges of BO
have both e nds in S.

For the present system (13) is

for every edge ej in the branching BO ,
y" + Wj = cj, where v" and Wj are as in (17). (20)

Section 7

For each graph Gi(i= k , k-l, ... , 0) with
weight cj on each edge eJEGi, and for the branching
Bi in Gi, we will describe a vector yi which satisfies
(15)-(20), where G and BO are replaced by Gi and Bi
and where vector Y is yi.

First we describe a y", a nd the n, assuming a

yi+ l(i=k-l, ... ,0),

we describe a yi. Thus by induction we obtain a y= yO
and the proof of Theorems 1 and 2.

The vector yk = [y~, y;J is y;' = 0 for every se t S of
two or more nodes in Gk, y~'= 0 for e very node v~ in
Gk which has no edge of B" directed toward it, and,
for every other node vt in Gk, y~. = c} where edge el
of B k is directed toward vk. Conditions (15)- (20) for
yk can be immediately verified from the fact that for
every node vtEGk either the re is no edge of Bk directed
toward vk and there is no positively weighted edge

directed toward vk , or else, among all the positively
weighted edges directed toward v~', the one in Bk has
maximum weight.

Now, suppose that we have a y jt J for eac h node
vh+1 and a y1+1 for each set S of two or more nodes in
Gi+l, such that (15)-(20) are satisfi ed (where BO is
replaced by Bi+l, etc.).

Let tit l = ~y~+ I, summed over the se ts S which
contain node vitI.

To make the induction go through we ass ume fur­
ther that in Gi+1

for every node v", such that tIl + y" > 0,
there exists at leas t one edge ej directed
toward v" such that Cj = tIl + Yl! . (21)

This clearly holds for G", and we will prove from
(15)- (21) for O +J that (15)-(21) holds for Gi .

Obtain the vector yi as follows:
Where A is the set of nodes in circuit Qi of 0, where

e~ is the edge of Qi not in Bi, where v~ is the fron t end of
eL where cb is the minimum weight in Qi, and where
vi+1 is the node in O +J to which Qi was shrunk , let

y~ = y\+ I + d - cb, (22)

and

(23)

Where v~ is any node in A othe r than v~, and where
d is the edge in Qi which is direc ted toward vb, le t

(24)

Observe that (24) holds also for v~ = v~.
Where v~ is any node of 0 which is not in Qi, let

(25)

Where R is a nonempty subset of nodes in 0 +1

which does not contain v;+ J , where J = R U vi+ I , where
K = R U A, and where L is any set of two or more nodes
in 0 such that L nA is a proper subset of A, let

and

yi.= o.

(26)

(27)

(28)

That comple tes the description of vector yi. Now we
must verify (15)-(21) for it.

For every edge of Gi which is directed toward a node
not in A, for e very node not in A, and for every se t S,
except A, in 0, conditions (15)-(18), (20), and (21)
follow immediately from those same conditions for
yi+ l, (25)-(28), and the local nature of the change
from 0 +1 , Bi+l, and Ci+1 to 0, Bi, and ci .

237

For every subset of nodes in Ci which does not con­
tain all of A, condition (19) follows immediately as
above_ For set A and for every set K as in (27), condi­
tion (19) follows from (27), condition (19) for set J
in 0 + I, and the fact that there are exactly

IKI-IJI= IAI-l

more edges of Bi with both ends in K than there are
ed"es of Bi+1 with both ends in J, namely the edges of b

BinQi.
It follows from (24), (27), and (28), that (21) holds

for every node v~ in A (in particular where ej is the e~of
(24)), and that (20) holds for every edge of Bi n Qi, and
that (17) holds for e~.

Condition (18) follows immediately for each node of
A except v1 since there is an edge of Bi n Qi directed
toward it. If there is an edge e\+1 in Bi+l which is di­
rected toward vi+l , then e1 is an edge of Bi which is
directed toward vL and so in this case (18) follows for
d. Otherwise, if there is no edge of 8 i+1 directed
toward vi+!, then by (18) for V\+l, yi+l = 0. Also in this
case the d of (22) was chosen in the algorithm to be co.
The;efore if there is no edge of Bi+1 directed toward
vi+l , then '(22) is y4 = 0, and so (18) follows for vd ..

For el, the only edge, if any, which is in B' - QI and
directed toward a node in A, we have

ci+l = ci + cJ- d (from (1)), (22), yi+! + wi+! = ci+l

which is (20) for ei+I, and wi = wi+l from (27) and (28).
Combining these we get y~ + wi = Gi, which is (20)
for ei.

Thus conditions (18), (19), (20), and (21) are now
completely accounted fOL Condition (17) for edges not
in Qi but directed toward nodes in A, condition (16)
for y~ , and condition (15) for nodes in A , remain to be
verified.

Let e~ be any edge of 0 which has both ends in A,
and let vj be its front end_ To prove (17) for eJ, which is
yJ + w~ ~ cJ where wJ = y~+ ti+l , combine (24) and
cj ~ c~.

Let d be any edge of Ci which has its front end vj
in A and its rear end not in A. To prove condition (17)
for el, which is Yd+wJ ~ cd where W~=W~+ I, combine
(24), (23), (22), (1), and (17) for e~+ l.

To prove (16) for A, that is YA ~ 0, we use (21) for
vi+!. Assuming ti+1 + y\+1 > 0, let e~+ ! be the ej of that
relation, let v~ be the front end of e~ in A, and let eJ
be the edge of Qi which is directed toward vd. Here (21)
is C~+I = ti+! + yi+l . In this case, obtain YA ~ ° by com­
bining (23), (22), (21) for vi+l, (1), and (4).

If there is no e~+1 directed toward V~+I such that
Ci +1 = tHl + yi+1, then t~+ l + y~+1 = 0, and all edges

3 1 1. ., h . CHI
directed toward V~+I have negatlve welg t m , so
none of them are in Bi+I. Therefore since in this ease
the ci of (22) was chosen to be cb, (22) becomes y~ = 0,
and (23) becomes y~ = c~. By (2), we have y~ ~ 0_

Prove (15) for any node v1 in A by combining (24),
(23), (22), (3), and y\+1 ~ 0.

That completes the proof of Theorems 1 and 2.

Section 8

Notice from the proof that if every weight Cj, ej fC ,
is an integer, then the vector yO, as well as vector xo,
is integer-valued_ In particular, where every Cj= 1,
vector yO is O,l-valued and max(c, x)=min(b, y) is a
simple "Konig-type" theorem, analogous to the maxi­
mum-cardinality-matching duality theorem in [1].

The following two theorems can be proved by the
methods used here.

THEOREM 3. Where (L4) is LXj = n, summed over all
edges ejfG , the vertices of the polyhedron given by
(L I), (L2), (L3), and (L4) are precisely the vectors of the
n-cardinality subsets of edges in G which comprise
branchings. (In particular, where n is one less than the
number of nodes in G, these branchings are the span­
ning arborescences of G).

The present research began when A. J. Goldman
asked for a description of "the convex hull of the
spanning trees of a graph." Theorem 4 is proved in [3].
THEOREM 4. The vertices of the polyhedron F G given by
(L l) and (L3) are precisely the vectors of the subsets of
edges in G which comprise forests. The vertices of the
intersection of F G with (L4) are a subset of the vertices
ofFG •

Section 9

Figures (A) through (E) illustrate the algorithm for
finding an optimum (i.e., maximum total weight)
branching in graph (A). Each dashed edge is dashed
because it has maximum positive weight among those
edges directed toward its front end. As soon as a
dashed circuit arises it is shrunk and certain new edge
weights are computed, thereby producing the edge­
weighted graph of the next figure. The final graph is
not drawn since it is simply a node. After the sequence
of figures is completed, except for the boldness of the
bold edges, then working backwards through the
sequence, appropriate dashed edges are made bold.
The answer is the branching in (A) formed by the bold
edges. It is the only correct answeL

Figure (F) illustrates a "dual answer," y, for the
same problem. The numbers in the squares on the
nodes are the values of the nodal y-variables. The
numbers in the squares on the closed curves are the
nonzero values of y-variables corresponding to sub­
sets of nodes. Each closed curve encloses the subset
of nodes to which its number corresponds. Observe
that the vector y, thus represented, satisfies relations
(15)-(20), and thus guarantees that the branching is
optimum. This y is not the one described in section 8.

The example (A)-(E) was actually obtained by con­
structing it all except the edge-weights first. Then all
the numbers in (F) were chosen so as to yield the
structure (A)-(E).

Figure (G), by coincidence, nicely represents three
different things.

It illustrates a nonoptimum branching obtained by
applying the greedy algorithm. Thi~ branchin~ has
total weight 128, whereas the branchmg shown m (A)

238

FIGURES A- G

239

- -----

has total weight 131. One other branching that might
be obtained by applying the greedy algorithm has total
weight 127.

Since the optimum branching shown in (A) is a
spanning arborescence, it is an optimum spanning
arborescence, and thus it is still an optimum spanning
arborescence when all of the edge· weights are changed
by adding any constant. However, when all the edge·
weights are changed by adding the constant, - 10, the
branching shown in (A) is no longer an optimum
branching, even though all the weights in this branch·
ing are still positive, and even though this branching
is still an optimum spanning arborescence. For these
new edge-weights there are two optimum branchings,
quite different from each other, and both quite differ­
ent from the branching shown in (A). Neither one of
them is a spanning arborescence. One of them con­
sists of all the bold edges in (G) except for the edge
which is weighted - 5 (relative to the new weights).
This branching has total weight , 53, whereas the
branching shown in (A) has total weight , 51.

A direct algorithm for finding, if there is one, an
optimum spanning arborescence is ootained from the
algorithm for finding an optimum branching simply by
deleting the words "positively weighted" from (II).
This follows from the fact that the only effect on the
resulting algorithm of adding a constant to each num·
ber of an input is to add the same constant to every
number that arises in the algorithm.

Because of the words " positively weighted" in the
optimum branching algorithm , the effect of adding
-10 to each edge-weight in (A) is that the resulting
application of the optimum branching algorithm does
not dash the edge that is weighted - 5, and does not
dash in (D) the edge that is weighted - 1. Thus there is
no shrinking in (D); the sequence of graphs stops at (D).
In (D), only the edge that is weighted 7 is made bold
since it is the only one that gets dashed. (The present
computation is not explicitly illustrated.) Unlike in the
spanning arborescence problem, we have in (e) no
bold edge directed toward a node in the dashed circuit .
Therefore , the edges of the dashed circuit in (e),
except for one or the other of its minimum-weight
edges, are made bold. The choice here is what gives
rise to the two correct answers. It is interesting to
note that the two edges which are tied in this step of
the computation do not have the same edge-weights
in (A), and that the two optimum branchings, arising

from the two choices, are globally quite different. I
recommend carrying through the completion of each.

Figure (G) , also illustrates an optimum spanning
arborescence having the lower left node prescribed as
root. The first phase of the algorithm for obtaining it is
the dashing and shrinking and computing of new edge
weights just as in (A)-(E). The only difference from
(A)-(E) is the way the edges are chosen from among the
dashed ones to be made bold. An optimum spanning
arborescence rooted at any other prescribed node is
obtained from this same first phase of (A)-(E) by
appropriately choosing edges from among the dashed
ones. The subgraph of (A), formed by the image in (A)
of all edges dashed somewhere in (A)-(E), in general
contains nonoptimum spanning arborescences with
prescribed root as well as optimum ones. Therefore,
the choosing does depend on the structure of the
sequence (A)-(E). In general, it is a nice feature of
the computations for finding in the same edge-weighted
graph, when they exist, optimum spanning arbores­
censes with various prescribed roots , that these compu­
tations are identical except for the (13) part.

This paper was to have appeared in the published proceedings
of the International Seminar on Graph Theory and Its Applications,
Rome, July 1966, sponsored by the International Computation Cen·
ter. Various international failures of communication during the
editorial process precluded it. I am sorry to have lost that oppor·
tunity to record my contribution to an outstanding sy mposium. I
wish to acknowledge here my appreciation to the organizers of the
symposium for the excellent job they did and for their kindness
to me.

References

[II Jack Edmonds, Paths, trees , and flowers , Canadian J. Math.
17, 449-467 (1965).

[2J lack Edmonds, Maximum matching and a polyhedron with
O,l-vertices, J. Res. NBS 698 (Math. and Math. Phys), Nos.
1 & 2, 125-130 (1965).

[31 l ack Edmonds, Matroids and the greedy algorithm . to appear.
[41 R. E. Gomory, The traveling salesman problem, Proceedings

of the IBM Scientific Computing Symposium on Combinatorial
Problems, 1966, pp. 93- 117.

[5] J . B. Kruskal , On the shortest spanning subtree of a graph and
the traveling salesman proble m, Proc. Amer. Math. Soc. 7,
48-50 (1956).

240

[6] P. Rosenstiehl , L'arbre minimum d'un graphe, International
Seminar on Graph Theory, Rome, July 1966.

(Paper 7lB4-249)

	jresv71Bn4p_233
	jresv71Bn4p_234
	jresv71Bn4p_235
	jresv71Bn4p_236
	jresv71Bn4p_237
	jresv71Bn4p_238
	jresv71Bn4p_239
	jresv71Bn4p_240

