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An arborescence T is a tree whose edges are directe d so that each is directed toward a different 
node. Exactly one node of T, called the root , has no edge of T directed toward it. Le t C be any directe d 
graph with a real numerical weight on each edge. A good algorithm is described for find ing in C (if there 
is one) a s panning arborescence, with prescribed root, whose edges have maximum (o r minimum) 
total weight. 
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Section 1 

A (di rected) graph G, for purposes here, is a finite 
set of nodes and a 'finite set of edges, where each ed ge 
is said to be directed toward one of the nodes, called 
the front end of the edge, and said to be directed away 
from a different one of the nodes, called the rear end 
of the edge. An edge and each of its ends are said to 
meet. A subgraph of G is a subcollection of its members 
which, under the same incidence relations, is a graph. 
A graph is called connected if it is not e mpty and its 
members do not yartition into two di sjoint nonempty 
subgraph s. A polygon is a connected graph Q such 
that each node of () meets exactly two edges of (). An 
(e lementary uniformly directed) circuit is a polygon 
which contains one edge directed toward, and one 
edge directed away from , each of its nodes. A forest 
is a graph which contains no polygon. A tree is a 
connecte d forest. A branching is a forest whose edges 
are directed so that each is directed toward a differe nt 
node. An arborescence is a connected branching. An 
(e lementary uniformly directed) path P is an arbor­
escence such that e ach edge in P is directed away 
from a different node, and such that there is at least 
one edge in P. 

W e shall occasionally use "obvious" fac ts about 
graphs without justifying them. 

Clearly, a branching (forest) is the union of a unique 
family of disjoint arborescences (trees) . 

Exactly one node in an arborescence T, called the 
root of T, has no ed ge of T directed toward it. A 
branching (fores t) is an arborescence (tree) if and 
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only if it has exactly one less edge than nodes. No 
branching (forest) has more e dges than this. 

In a path P there are exactly two nodes, called the 
ends of P, which eacW meet only M e edge in P. The 
res t of the nodes in P each meet exactly two edges in 
P. A path P is said to go from the node which is only 
a rear end in P (the root of P) to the node which is 
only a front end in P. For any arborescence T, and any 
node IJ in T except the root , there is a unique path in 
T O'oing from the root to IJ . Any path in l' going to IJ 

and any path in T going from IJ have only IJ in common , 
and their union is a path. And so on. 

Section 2 

Let G be any graph with a real numerical weight 
Cj corresponding to each edge ejEG. The problem 
treated here is to find in G a branching B which has 
maximum total weight, ~Cj, summed over ejEB. B is 
called an optimum branching in G. 

First we show that certain variation s of the problem 
reduce immediately to it. 

A spanning subgraph of G is a subgraph which 
contains all the nodes of G. A branching in G is a 
spanning arborescence of G if and only if the number 
of its edges is one less than the number of nodes in G. 
No branching in G can have more edges than this. 

An optimum branching in G of course contains no 
edge with negative weight, and indeed may be empty 
if all Cj ,,;; O. Even if all Cj > 0 and G contains a spanning 
arborescence, an optimum branching in G need not 
be an arborescence. 

If there is a spanning arborescence Tin G, then an 
optimum one, i.e., one which has maximum total 
weight, ~cj, ejET, can be found as an optimum branch­
ing in G where the edges carry new weights 
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A spanning arborescence in C which is optimum rela­
tive to weights Cj, ejEC, is also optimum relative to 
weights Cj+ k, ejEC, for any constant k, since every 
spanning arborescence has the same number of edges. 
Constant h is larger than the difference in total 
weights (relative to weights Cj, ejEG) of any two branch­
ings in C. It follows that an optimum branching in 
C, relative to weights cJ = Cj + h, will be a branching 
with a maximum . number of edges. In particular, it 
will be a spanning arborescence if and only if C 
contains a spanning arborescence_ 

A spanning arborescence Tin C which has minimum 
total weight, ! Cj, ej ET, is the same as one which has 
maximum total weight ! c}, ej ET, relative to weights 
cJ =-Cj. 

It will be evident that the efficiency of the method 
for treating optimum branchings is not seriously 
effected by a large change h (say of the form 10") in 
all the weights. In fact the method is easily modified 
to treat optimum spanning arborescences directly. 

If there is a spanning arborescence in C which is 
rooted at a prescribed node , say r, then an optimum 
one can be found by finding an optimum spanning 
arborescence in the graph C' obtained from C by 
adjoining a new edge eo (carrying arbitrary weight co) 
which is directed toward r and directed from a new 
node having no other incident edges_ Clearly, T is a 
spanning arborescence in C which is rooted at r if and 
only if T together with eo is a spanning arborescence 
of C'. 

If the edges in graph C represent the links for pos­
sible direct communication from one node to another, 
if each Cj is the cost of direct communication from the 
rear end of ej to the front end of ej, and if cost is 
additive, then a minimum-total-weight spanning ar­
borescence rooted at prescribed node r represents 
the least costly way to have a message communicated 
from r to all other nodes of C. 

Another application is where it is desired to ar­
range an institution into an optimum heirarchy 
(branchocracy). 

Section 3 

Our main result is 
THEOREM 1. There exists a good algorithm for find­

ing, in any graph G with a numerical weight corre­
sponding to each edge, an optimum branching. 

We sayan algorithm is good if there is a polynomial 
function fen) which, for every positive-integer valued 
n, is an upper bound on the "amount of work" the 
algorithm does for any input of "size" n. The concept 
is easy to formalize-relative, say, to a Turing machine, 
or relative to any typical digital computer with an 
unlimited supply of tape. 

For optimum branching, the largest number of 
significant digits in an edge weight, as well as the 
number of edges of C, must be figured somehow into 
the measure n of !nput "size." One might for example 

take .n to be the maximum of these two numbers or 
to be the vector consisting of both numbers. 

The proof of Theorem 1 is constructive. The theorem 
is proved by displaying one particular algorithm for 
optimum branching which is obviously good. 

If we remove from the optimum-spanning-arbores­
cence problem the condition that each member of the 
set T of edges being optimized must have a different 
front end, then we get the optimum-spanning-tree 
problem. That is to find, if there is one, in any graph 
C with a numerical weight on each edge, a spanning 
tree which has maximum (or minimum) total weight. 

Especially simple algorithms are well-known for 
this problem [cf_ 5 and 6).1 One is, starting with an 
empty bucket , build up a set of elements having 
"admissible structure" by putting elements into the 
bucket one after another as long as possible, so that 
each addition is a maximum weight element among 
those not in the bucket which, together with the ones 
already in the bucket, would preserve admissible 
structure. For the optimum-spanning-tree problem, 
the elements are the edges of C and "admissible" 
means "forest." The algorithm is certainly good. It 
is also valid for that problem. 

Where "admissible" means "branching," the above 
algorithm is not generally valid for finding an optimum 
spanning arborescence. Paper [3] abstractly charac­
terizes those structures for which this "greedy al­
gorithm" is valid for any numerical weighting_ 

If we add to the conditions of the optimum-spanning­
arborescence problem the condition that each member 
of the set of edges being optimized is to have a dif­
ferent rear end, then we have the problem of finding, 
if there is one, an optimum spanning (uniformly 
directed) path in any graph C with a numerical weight 
on each edge. This is a version of the well-known 
traveling saleman problem [cf. 4]- I conjecture that 
there is no good algorithm for the traveling saleman 
problem. My reasons are the same as for any mathe­
matical conjecture: (1) It is a legitimate mathematical 
possibility, and (2) I do not know. 

A good algorithm is known for finding , in any graph 
with a numerical weight on each edge, a maximum­
total-weight subset of edges such that no two of them 
meet the same node [1 , 2]. The treatment here of 
optimum branchings is similar. 

Section 4 

Here is the algorithm for finding a maximum-total 
weight branching in any (directed) graph C with a 
numerical weight Cj on each edge ejEC_ Recall that 
a branching is a forest such that each edge is directed 
toward a different node. 

Begin the algorithm by applying instruction (11) 
where Ci is CO=G and where Di and Ei are empty 
buckets, DO and EO. 

(II) Choose a node v in Ci and not in Di. Put v into 
bucket D i. If there is in Ci a positively weighted edge 

1 Figures in brackets indica te the literature references at the end of this paper. 
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directed toward v, put one of them havin g maximum 
weight into bucket Ei. 

Repeat (11) until 
(a) E i no longer comprises the edges of a branching in 
G i, or until (b) every node of G i is in Di, and E i does 
comprise the edges of a bran ching. When case (a) 
occurs, apply (12). 

For convenience assume that every branc hin g which 
we consider in graph Gi contains all the nod es of Gi. 
We say that a set of edges in Gi forms the unique 
subgraph of Gi consisting of those edges and all 
nodes in Gi. 

Eac h edge e put into E i accord ing to (I 1) is direc ted 
toward a node v which is the root of a connected 
component of the branching, say B, formed by the 
edges in E i before e is put into Ei. If the rear end Vs 

of e is in a different component of B than v, then B U e 
is a branc hing, and so when e is put into Ei, (a) does not 
hold. 

If Vs is in the same component of B as v, then B 
contains a unique path P going from v to Vs . In this 
case, Qi = P U e is a circuit contained in B U e, so as 
soon as e is put into E i, (a) does hold . 

(12) Store Qi and a specification of one of the edges, 
say eb, of Qi which has minimum weight in Qi relative 
to the edge-weights for Gi. Obtain a new graph Gi+l 
from Gi by "shrinking" to a single new node, vi+ 1, 

the circ uit Qi and every edge of Gi which has both 
e nds in Qi. The edges (denoted as eJ + I) of Gi + 1 are 
those ed ges (denoted as ej) of Gi which have at most 
one end in Qi. Every edge of Gi which has one end in 
Qi will in 0 + J have vi+ 1 at that end. All other edge­
ends are the same in Gi + 1 as in Gi. The nodes of Qi 
are not in Gi+ l. 

Every edge , say e1+ I, which as eJ in Gi is directed 
toward a node, say vA, in Qi and directed away from a 
node not in Qi, gets a possibly different weight for Gi + 1: 

c1 + 1 = cA + ci - c! (1) 

where c1 is the weight of eb for Gi; where c~ is the 
minimum weight for 0 of an edge, say ei, in Qi; and 
where c~ is the weight for Gi of the unique edge, say 
eL which is in Qi and directed toward vA . All other 
edges in Gi + 1 keep the same weight as for Gi_ 

In justifying the algorithm we shall make use of the 
following relations 

(2) ci ~ 0, 

Put into bucket Di+ J the nodes which are in both 
Ci + J and bucket Di. (Do not at this point put vi + J into 
Di +l_) Put into bucket Ei +l the edges which are in 
both Gi+ 1 and bucket Ei, i_eo, put into bucket E i+ 1 

the final contents of bucket Ei minus the edges of 
circuit Qi. It is easy to see that the edges in bucket 
Ei + 1 form a branching in Gi + 1. Continue the algorithm 
by applying (I 1) where i is one greater. 

Eventually, after a small number of applications of 
(I 1) and (12), case (b) must occur. 

As soon as (b) occurs, for say i = k, (11) and (12) 
are never applied again. Instead, (13) is applied suc­
cessively for i+l=k, k-l, ... , 1, until the graph 
Gi obtained is the original G. At that point, th e branch­
ing Bi = BO is a maximum-total-weight bran ching of C. 

The final contents of bucket E A' form a bran ching 
in graph Gk which we call Bk. 

(13) It is not difficult to see that si nce B i + 1 is a 
fores t in Gi+l and since Gi+lis obtained from Gi 
by shrinking the circuit Qi in Gi (and all edges of Gi 
with both ends in Qi) to the node v\ +J of Gi +J, the 
subgraph Hi of Gi, formed by the edges in B i+ 1 and 
the edges in Oi contains only one polygon , namely Qi. 

In the case where v il + 1 is not a root of (a connected 
component of) branching B i+ 1 in Gi +J, there is a 
unique edge, say e\+l, of Bi +l which is directed 
toward V\ +l. In Gi, e\ is directed toward a node, say 
v~, of Qi. Since Qi is a circuit, there is a unique edge, 
say e1, of Q i which is directed toward vl. Clearly, ef and 
eJ are the only two edges of Hi whic h are directed 
toward the same node. Thu s. si nce Qi is in the only 
polygon of Hi, deleting d from H i yields a branching 
in Gi. which is called Bi_ 

In th e case where v \ + 1 is a root of branching B i + 1 

in Gi +J, i.e., where no edge of Bi +l is directed toward 
v \ + 1, no two edges of H i are directed toward the same 
node. Therefore, deleting a ny edge of Q i from H i 
yields a branching in Gi. To obtain the branching B i 
in Gi, delete from Hi one of the edges eb of Qi which 
has mini mum weight cj. 

That completes the description of the algorithm. 
Evidently it is a good algorithm. Evidently its output 
is a branching B O in graph G. In order to prove The­
orem 1, what remains to be done is prove th at BO has 
maximum total weight. 

Section 5 

Theorem 1 and the following geometric theorem are 
proven together. 

Let G be any graph. (No edge-weights -are specified. ) 
Let there be a real variable Xj for each edge ejEG. Let 
Pc; be the polyhedron of vectors x=[Xj] which sati sfy 
the sys tem Lc;, consis ting of inequalities L1 , L2 , and 
L3 • 

(L1) For every edge ejEG, Xj ~ 0. 
(L 2 ) For every node vEG , IXj ~ 1, s ummed over all 

j's such that ej is directed toward v. 
(L3 ) For every set 5 of two or more nodes in G, 

summed over all j's such that ej has both ends in 
5. (15 I denotes the cardinality of 5.) 

Any vector x = [Xj] of zeroes and ones is called the 
(incidence) vector of the subset of e/s such that Xj= 1. 

THEOREM 2. The vertices of polyhedron P c are pre­
cisely the vectors of the subsets of edges in G which 
comprise branchings. 
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A polyhedron (convex polyhedron) P is the set of all X-n ~ 0 for every 'Y}, and (5) 
the vectors, i.e., points, which satisfy some finite 
system L of linear inequalities. A vertex (extre me 7JIa€7Jx7J ~ Ibt for every ~ , (6) 
point) of P is a point which, for some linear function, 
is the unique point in P which maximizes that fun ction. and that y= [n ] is any vector which satisfies 

A basic point x = XO of a finite system L of linear 
inequalities is the unique solution of a system , n ~ 0 for every t , and (7) 
j I aijXj = bi , iEf, such that jI aijXj ~ bi , iE!, is a sub· 
system of L. €Ia€7Jn ~ C7J for every 'Y}. (8) 

If basic point XO of L is in the polyhedron P of L, 
then it is a vertex of P, because clearly XO is then the Since (6) and (7) imply 
unique point in P which maximizes j I(iIaij)xj, iE!. 

We shall see without difficulty that any point xO, 
which is the vector of a branching say B ~ in G, is a 
Vertex of p(;. Vector XO satisfies LI since it is all zeroes 
and ones. Vector XO satisfies L2 for any node vEG, 
since, by the definition of branching, at most one of 
the x/s in this inequality has value 1 for xO. 

The branching BO is a forest , so any set 5 of nodes, 
together with the subset E~ of the edges in BO which 
have both ends in 5 forms a forest. The number of 
edges in a forest is at most the number of nodes In 
the forest minus 1; in particular , IEg l ~ 151-1. There· 
fore, vector XO satisfies L 3 for any subset 5 of (two 
or more) nodes in G, since IE21 of the x/s in this 
inequality have the value 1 for xO. Summarizing the 
conclusion so far, XO is a point in Pc . 

Vector XO is the unique solution of the linear system: 
Xj = 0 for every edge ej not in BO, and IXj = 1 (summed 
over e/s directed toward v) for every node v whic h 
has some edge of BO directed toward it. This system 
can be obtained from certain of the relations of L I 
and L2 by replacing their inequality signs. Therefore 
XO is a basic point of Lc , and hence a vertex of Pc;. 

Most of this paper is directed toward proving: 
LEMMA 1: Every linear function, I Cjxj . (s!lmmed 

over all edges e jEG), is maximized in P G by the vector 
of some branching in G. 

From Lemma 1 and from the definition of vertex, 
it follows immediately that every vertex of Pc is the 
vector of a branching in G. This will concl_ude the 
proof of Theorem 2. 

A branching BO in graph G has maximum total weight 
relative to the vector c= [Cj] of edge-weights if and 
only if the vector xO=[x~] of BO maximizes (c, x) = jIcjxj 
over all vectors of branchings in G. If XO maximizes 
(c, x) over Pc, then it maximizes (c, x) over the vectors 
of branchings in G, since the latter are in Pc. 

Our task , therefore , is to show that the vector of 
the branching BO, produced by the algorithm , maxi­
mizes (c, x) over Pc. This will prove that the algorithm 
is valid and will prove Lemma 1. 

Section 6 

The following computations are well-known in 
linear programming. Suppose that x= [X7J] is any 
vector which satisfies 

€I (7JIa€7Jx€) n ~ €Ib€y€ = (b, y) , (9) 

and since (5) and (8) imply 

'1I(€Ia€'1n)x'1 ~ '1Ic'1x1j = (c, x), (10) 

we have 

(c,x) ~ (b,y). (11) 

Since (11) holds for any x and any y, if (c, XO) = (b, yO) 
holds for particular x = XO and y= yO, then XO must 
maximize (c, x) and yO must minimize (b, y). 

Suppose for particular x=x l and y=yl that 

'1Ia€'1x~ = b€ for ~ such that yJ #- 0, (12) 

and 

€Ia€'1yJ = C'1 for 'Y) such that x~ #- O. (13) 

Since (12) implies equality in (9), and (13) implies 
equality in (10), we have (c , Xl) =(b, yl). Therefore, 

Xl maximizes (c, x) 

and (14) 

y l minimizes (b, y). 

Our present interest is where (5) is (L I ) , and (6) is 
(L2) and (L3) ' For any linear function (c, x)= jIcjxj of 
points XEPC , we get a dual system (7), (8), (b, y), by 
letting a variable n correspond to each inequality 
of L2 and L 3• That is let a variable Yh correspond to 
each node VI!EG and let a variable Ys correspond to 
each set 5 of two or more nodes in G. 

For (7) we have, 

for every VI! , Yh ~ 0, (15) 

and 

for every 5 , Ys ~ O. (16) 

Coefficient ahj = 1 if edge ej is directed toward 
node Vh, and ahj = 0 otherwise. Coefficient asj = 1 
if edge ej has both ends in 5, and asj = 0 otherwise. 
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For every v", b,,= 1. For every S, b8 = lSI-I. 
Therefore, (8) becomes 

for every edge ej EG , 
y" + Wj ~ Cj, where v" is the front end 
of ej, and where Wj= !. Y8, summed over 
all sets S which contain both ends of e j. 

Fun ction (b, y) becomes 

summed over all v" and over all S. 

(17) 

Recall that our task is to show that the vector XO 

of the branching BO , produced by the algorithm, 
maximizes (c, x) over Pc. 

In view of (14), we do so by constru cting a vector 
y= [Y" , Y8] which satisfies (15), (16), (17), and which 
satisfies (12) and (13). For the present system , (12) is 

for every node VI. such that YI. ~ 0, 
!.xJ= 1, sum med over j's such that ej 
is directed toward v,,; (18) 

and 

for every se t S such that Y8 ~ 0, 
!.xY = lSI- I , summ ed over j's 
such that ej has both end s in S. (19) 

In other words (18) says that if YI. ~ 0 the n an edge 
of the branching BO is directed toward VI! , a nd (19) 
says that if Y8 ~ 0 the n exactly IS 1-1 edges of BO 
have both e nds in S. 

For the present system (13) is 

for every edge ej in the branching BO , 
y" + Wj = cj, where v" and Wj are as in (17). (20) 

Section 7 

For each graph Gi(i= k , k-l, ... , 0 ) with 
weight cj on each edge eJEGi, and for the branching 
Bi in Gi, we will describe a vector yi which satisfies 
(15)-(20), where G and BO are replaced by Gi and Bi 
and where vector Y is yi. 

First we describe a y", a nd the n, assuming a 

yi+ l( i=k-l, ... ,0), 

we describe a yi. Thus by induction we obtain a y= yO 
and the proof of Theorems 1 and 2. 

The vector yk = [y~, y;J is y;' = 0 for every se t S of 
two or more nodes in Gk, y~'= 0 for e very node v~ in 
Gk which has no edge of B" directed toward it, and, 
for every other node vt in Gk, y~. = c} where edge el 
of B k is directed toward vk. Conditions (15)- (20) for 
yk can be immediately verified from the fact that for 
every node vtEGk either the re is no edge of Bk directed 
toward vk and there is no positively weighted edge 

directed toward vk , or else, among all the positively 
weighted edges directed toward v~', the one in Bk has 
maximum weight. 

Now, suppose that we have a y jt J for eac h node 
vh+1 and a y1+1 for each set S of two or more nodes in 
Gi+l, such that (15)-(20) are satisfi ed (where BO is 
replaced by Bi+l, etc.). 

Let tit l = ~y~+ I, summed over the se ts S which 
contain node vitI. 

To make the induction go through we ass ume fur­
ther that in Gi+1 

for every node v", such that tIl + y" > 0, 
there exists at leas t one edge ej directed 
toward v" such that Cj = tIl + Yl! . (21) 

This clearly holds for G", and we will prove from 
(15)- (21) for O +J that (15)-(21) holds for Gi . 

Obtain the vector yi as follows: 
Where A is the set of nodes in circuit Qi of 0, where 

e~ is the edge of Qi not in Bi, where v~ is the fron t end of 
eL where cb is the minimum weight in Qi, and where 
vi+1 is the node in O +J to which Qi was shrunk , let 

y~ = y\+ I + d - cb, (22) 

and 

(23) 

Where v~ is any node in A othe r than v~, and where 
d is the edge in Qi which is direc ted toward vb, le t 

(24) 

Observe that (24) holds also for v~ = v~. 
Where v~ is any node of 0 which is not in Qi, let 

(25) 

Where R is a nonempty subset of nodes in 0 +1 

which does not contain v;+ J , where J = R U vi+ I , where 
K = R U A, and where L is any set of two or more nodes 
in 0 such that L nA is a proper subset of A, let 

and 

yi.= o. 

(26) 

(27) 

(28) 

That comple tes the description of vector yi. Now we 
must verify (15)-(21) for it. 

For every edge of Gi which is directed toward a node 
not in A, for e very node not in A, and for every se t S, 
except A, in 0, conditions (15)-(18), (20), and (21) 
follow immediately from those same conditions for 
yi+ l, (25)-(28), and the local nature of the change 
from 0 +1 , Bi+l, and Ci+1 to 0, Bi, and ci . 
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For every subset of nodes in Ci which does not con­
tain all of A, condition (19) follows immediately as 
above_ For set A and for every set K as in (27), condi­
tion (19) follows from (27), condition (19) for set J 
in 0 + I, and the fact that there are exactly 

IKI-IJI= IAI-l 

more edges of Bi with both ends in K than there are 
ed"es of Bi+1 with both ends in J, namely the edges of b 

BinQi. 
It follows from (24), (27), and (28), that (21) holds 

for every node v~ in A (in particular where ej is the e~of 
(24)), and that (20) holds for every edge of Bi n Qi, and 
that (17) holds for e~. 

Condition (18) follows immediately for each node of 
A except v1 since there is an edge of Bi n Qi directed 
toward it. If there is an edge e\+1 in Bi+l which is di­
rected toward vi+l , then e1 is an edge of Bi which is 
directed toward vL and so in this case (18) follows for 
d. Otherwise, if there is no edge of 8 i+1 directed 
toward vi+!, then by (18) for V\+l, yi+l = 0. Also in this 
case the d of (22) was chosen in the algorithm to be co. 
The;efore if there is no edge of Bi+1 directed toward 
vi+l , then '(22) is y4 = 0, and so (18) follows for vd .. 

For el, the only edge, if any, which is in B' - QI and 
directed toward a node in A, we have 

ci+l = ci + cJ- d (from (1)), (22), yi+! + wi+! = ci+l 

which is (20) for ei+I, and wi = wi+l from (27) and (28). 
Combining these we get y~ + wi = Gi, which is (20) 
for ei. 

Thus conditions (18), (19), (20), and (21) are now 
completely accounted fOL Condition (17) for edges not 
in Qi but directed toward nodes in A, condition (16) 
for y~ , and condition (15) for nodes in A , remain to be 
verified. 

Let e~ be any edge of 0 which has both ends in A, 
and let vj be its front end_ To prove (17) for eJ, which is 
yJ + w~ ~ cJ where wJ = y~+ ti+l , combine (24) and 
cj ~ c~. 

Let d be any edge of Ci which has its front end vj 
in A and its rear end not in A. To prove condition (17) 
for el, which is Yd+wJ ~ cd where W~=W~+ I, combine 
(24), (23), (22), (1), and (17) for e~+ l. 

To prove (16) for A, that is YA ~ 0, we use (21) for 
vi+!. Assuming ti+1 + y\+1 > 0, let e~+ ! be the ej of that 
relation, let v~ be the front end of e~ in A, and let eJ 
be the edge of Qi which is directed toward vd. Here (21) 
is C~+I = ti+! + yi+l . In this case, obtain YA ~ ° by com­
bining (23), (22), (21) for vi+l, (1), and (4). 

If there is no e~+1 directed toward V~+I such that 
Ci +1 = tHl + yi+1, then t~+ l + y~+1 = 0, and all edges 
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directed toward V~+I have negatlve welg t m , so 
none of them are in Bi+I. Therefore since in this ease 
the ci of (22) was chosen to be cb, (22) becomes y~ = 0, 
and (23) becomes y~ = c~. By (2), we have y~ ~ 0_ 

Prove (15) for any node v1 in A by combining (24), 
(23), (22), (3), and y\+1 ~ 0. 

That completes the proof of Theorems 1 and 2. 

Section 8 

Notice from the proof that if every weight Cj, ej fC , 
is an integer, then the vector yO, as well as vector xo, 
is integer-valued_ In particular, where every Cj= 1, 
vector yO is O,l-valued and max(c, x)=min(b, y) is a 
simple "Konig-type" theorem, analogous to the maxi­
mum-cardinality-matching duality theorem in [1]. 

The following two theorems can be proved by the 
methods used here. 

THEOREM 3. Where (L4) is LXj = n, summed over all 
edges ejfG , the vertices of the polyhedron given by 
(L I ), (L2), (L3), and (L4) are precisely the vectors of the 
n-cardinality subsets of edges in G which comprise 
branchings. (In particular, where n is one less than the 
number of nodes in G, these branchings are the span­
ning arborescences of G). 

The present research began when A. J. Goldman 
asked for a description of "the convex hull of the 
spanning trees of a graph." Theorem 4 is proved in [3]. 
THEOREM 4. The vertices of the polyhedron F G given by 
(L l ) and (L3) are precisely the vectors of the subsets of 
edges in G which comprise forests. The vertices of the 
intersection of F G with (L4) are a subset of the vertices 
ofFG • 

Section 9 

Figures (A) through (E) illustrate the algorithm for 
finding an optimum (i.e., maximum total weight) 
branching in graph (A). Each dashed edge is dashed 
because it has maximum positive weight among those 
edges directed toward its front end. As soon as a 
dashed circuit arises it is shrunk and certain new edge 
weights are computed, thereby producing the edge­
weighted graph of the next figure. The final graph is 
not drawn since it is simply a node. After the sequence 
of figures is completed, except for the boldness of the 
bold edges, then working backwards through the 
sequence, appropriate dashed edges are made bold. 
The answer is the branching in (A) formed by the bold 
edges. It is the only correct answeL 

Figure (F) illustrates a "dual answer," y, for the 
same problem. The numbers in the squares on the 
nodes are the values of the nodal y-variables. The 
numbers in the squares on the closed curves are the 
nonzero values of y-variables corresponding to sub­
sets of nodes. Each closed curve encloses the subset 
of nodes to which its number corresponds. Observe 
that the vector y, thus represented, satisfies relations 
(15)-(20), and thus guarantees that the branching is 
optimum. This y is not the one described in section 8. 

The example (A)-(E) was actually obtained by con­
structing it all except the edge-weights first. Then all 
the numbers in (F) were chosen so as to yield the 
structure (A)-(E). 

Figure (G), by coincidence, nicely represents three 
different things. 

It illustrates a nonoptimum branching obtained by 
applying the greedy algorithm. Thi~ branchin~ has 
total weight 128, whereas the branchmg shown m (A) 
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has total weight 131. One other branching that might 
be obtained by applying the greedy algorithm has total 
weight 127. 

Since the optimum branching shown in (A) is a 
spanning arborescence, it is an optimum spanning 
arborescence, and thus it is still an optimum spanning 
arborescence when all of the edge· weights are changed 
by adding any constant. However, when all the edge· 
weights are changed by adding the constant, - 10, the 
branching shown in (A) is no longer an optimum 
branching, even though all the weights in this branch· 
ing are still positive, and even though this branching 
is still an optimum spanning arborescence. For these 
new edge-weights there are two optimum branchings, 
quite different from each other, and both quite differ­
ent from the branching shown in (A). Neither one of 
them is a spanning arborescence. One of them con­
sists of all the bold edges in (G) except for the edge 
which is weighted - 5 (relative to the new weights). 
This branching has total weight , 53, whereas the 
branching shown in (A) has total weight , 51. 

A direct algorithm for finding, if there is one, an 
optimum spanning arborescence is ootained from the 
algorithm for finding an optimum branching simply by 
deleting the words "positively weighted" from (II). 
This follows from the fact that the only effect on the 
resulting algorithm of adding a constant to each num· 
ber of an input is to add the same constant to every 
number that arises in the algorithm. 

Because of the words " positively weighted" in the 
optimum branching algorithm , the effect of adding 
-10 to each edge-weight in (A) is that the resulting 
application of the optimum branching algorithm does 
not dash the edge that is weighted - 5, and does not 
dash in (D) the edge that is weighted - 1. Thus there is 
no shrinking in (D); the sequence of graphs stops at (D). 
In (D), only the edge that is weighted 7 is made bold 
since it is the only one that gets dashed. (The present 
computation is not explicitly illustrated.) Unlike in the 
spanning arborescence problem, we have in (e) no 
bold edge directed toward a node in the dashed circuit . 
Therefore , the edges of the dashed circuit in (e), 
except for one or the other of its minimum-weight 
edges, are made bold. The choice here is what gives 
rise to the two correct answers. It is interesting to 
note that the two edges which are tied in this step of 
the computation do not have the same edge-weights 
in (A), and that the two optimum branchings, arising 

from the two choices, are globally quite different. I 
recommend carrying through the completion of each. 

Figure (G) , also illustrates an optimum spanning 
arborescence having the lower left node prescribed as 
root. The first phase of the algorithm for obtaining it is 
the dashing and shrinking and computing of new edge 
weights just as in (A)-(E). The only difference from 
(A)-(E) is the way the edges are chosen from among the 
dashed ones to be made bold. An optimum spanning 
arborescence rooted at any other prescribed node is 
obtained from this same first phase of (A)-(E) by 
appropriately choosing edges from among the dashed 
ones. The subgraph of (A), formed by the image in (A) 
of all edges dashed somewhere in (A)-(E), in general 
contains nonoptimum spanning arborescences with 
prescribed root as well as optimum ones. Therefore, 
the choosing does depend on the structure of the 
sequence (A)-(E). In general, it is a nice feature of 
the computations for finding in the same edge-weighted 
graph, when they exist, optimum spanning arbores­
censes with various prescribed roots , that these compu­
tations are identical except for the (13) part. 

This paper was to have appeared in the published proceedings 
of the International Seminar on Graph Theory and Its Applications, 
Rome, July 1966, sponsored by the International Computation Cen· 
ter. Various international failures of communication during the 
editorial process precluded it. I am sorry to have lost that oppor· 
tunity to record my contribution to an outstanding sy mposium. I 
wish to acknowledge here my appreciation to the organizers of the 
symposium for the excellent job they did and for their kindness 
to me. 
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