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A specia l application of Bassali's solution for transverse flexure of thin elastic plates supported 
at several points is presented for the case of symmetrical bending. Equations for moments , shearing 
forces. and stresses are developed which may be useful for design purposes. The experim ental 
results although limited in quantity are in good a.greement with the theoretical predic tions. 
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1. Introduction 

The determination of bending moments, tWlstmg moments, and shearing forces in a thin 
circular elastic plate subjected to symmetrical bending is a problem which is often encountered 
in the design and analysis of structural elements or systems. This study deals.,with the solution 
of this problem for a thin circular elastic plate supported at points equally spaced along a concen­
tric support c ircle and subjected to a transverse load which is symmetrically distributed over a 
concentric circular area. These structures may be typified as end closures, bulkheads, and dia­
phragms. UsualJy the analysis of such a structure is simplified by the introduction of engineering 
approximations which pertain to the particular structural system under examination. However, 
this paper presents a special application of a more general solution developed by Bassali [1]' 
which more closely represents the cond itions realized in practical structures and obviates the 
necessity for some of the approximations. 

This specialized treatment of Bassali's theory provides the equations necessary to calculate 
moments, shearing forces, and associated stresses anywhere within the plate. It also shows 
that the expressions for maximum bending stresses at the center are independent of the angular 
orientation and the number of supports. Further reduction of these expressions result in the 
Grashof [2] equations. 

A comparison between a limited amount of experimental results and the theoretical pre­
dictions of tangential strains along the concentric support circle show good agreement. This 
good agreement for strains along with that for deflections [3] tend to substantiate the theory. 

r, e polar coordinates 
c radius of the plate 

2. List of Symbols 

a radius of the concentric support circle 
b radius of the loaded area (region 1) of the plate 
h thickness of the plate 

1 Figures in brackets indicate the literature references al the e nd of thi s paper. 



p =r/c 
t = ale 
q =b/c 

b'=b~-
n'=n+2 
q'=b'/e 

m number of support points (m ;?; 3) 
0' = 21T/m, polar angle subtended by support points 
Os = sO', polar angle subtended by the sth support point (s = 1, 2, 3, ... m) 
cps = 0 - Os 
E modulus of elasticity 
v Poisson's ratio 
K = (3 + v)/(v -1) 

Po intensity of load 
PI transverse load intensity over 0 ~ r ~ b (region 1) 
P2 transverse load intensity over b ~ r ~ c (region 2) 
Po total load on the plate defined by eq (1.02) 
M moment 
Q shearing force 
IT stress 
E strain. 

Subscripts: 

1, 2 refer to regions 1 and 2, respectively 
r, t refer to radial and tangential, respectively 
rt refers to twisting. 

3. Background 

Bassali obtained the solution for the problem of flexure of a thin circular elastic plate sup­
ported at several arbitrarily located interior points and transversely loaded over a circular area 
eccentrically located with respect to the center of the plate. Bassali considers Jhe intensity of 
the transverse load over the circular area indicated as region 1 in figure 1 to be 

(n ;?; 2) (1.01) 

and the intensity over region 2 to be P2 = O. This, of course, shows that the load is distributed 
symmetrically with respect to the center of region 1, and the value of n defines the load distribution 
(n = 2 represents uniform load distribution). The total load on the plate is given by 

bn 
Po=21Tpo -. 

n 
(1.02) 

The boundary of the plate is considered to be free as the plate is supported at interior points, but 
no special treatment is required when some or all of the supports lie on the boundary. 

In a previous paper [3] a special application of this more general solution was used to obtain 
a method of determining the deflection of a plate subjected to symmetrical bending with the load 
uniformly distributed over region 1. A c9mparison of theoretical and experimental results indi­
cated that the theory adequately predicted the deflection of the plates over the range of geometries 
tested. Further observations indicated that the theory accounted for a constraining effect on the 
deflection which for the most part was due to the annular portion of the plate overhanging the 
support circle. It was also noted that this constraining effect decreased as the number of supports 
were increased, but did not vanish when the number of supports became sufficiently large to 
produce a support condition equivalent to that of a simple continuous line support. 
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F IGURE 1. Concentric arrangement of the circular plate. 

With regard to the preceding discussion it was deemed desirable to extend the previous 
work [3] to e ncompass moments, shearing forces, and stresses, for the purpose of presentin g 
equations which may be adapted to the design and analysis of structures of thi s type. 

4. Moments and Shearing Forces for Symmetrical Bending 

It can be shown that Bassali 's solution, reduced to the case of symmetrical bending, yields 
the following expressions for the radial and tangential bending moments in region 1 

M; =- Po(1 + v) ['I'!] + Po(1-v) [0:] 
I 81TmK 161TmKp2 (1.03) 

and 

M; = _ Po(l + v) ['1':] _ Po(1-v) [0:] , 
I 81TmK 161TmKp2 (1.04) 

respectively, where 

2mt2 2mKq'2 2mK (pn )] +--+ m----+ 2mK In q+-- --1 
(1 +v) K+l n qn 

(1.05) 
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and 

, _ [ m { 2 2 2 (1- p2t2)2 - 2t2(1- p2)2 
DI - L (K -1) In (1- 2pt cos CPs + P t ) + (1 2 2 2) 

s= I - pt cos CPs + P t 

(1.06) 

For region 2, 

(1.07) 

and 

(1.08) 

respectively, where 

[ 
m { (1 - t2)(1- p2t2) } 

\(r~ = L In (1- 2pt cos cps + p2t2) - K In (p2 - 2pt cos cps + t2) - 2 2 

s=1 (1- 2pt cos CPs + P t ) 

2mt2 2mKq'2 ] 
+ (1 + v) + m- K+ 1 + 2mK In p (1.09) 

and 

(1.10) 

It is noted here that the equation for the twisting moment is the same for regions 1 and 2 and 
may be expressed as 

(1.1W 

and that the equation for the tangential shearing force is also the same for regions 1 and 2. The 
tangential shearing force is given by 

01 = ~ [In { 2Kpt sin cps 2pt sin cps 2pt sin CPs(1- (2) (1- p2t2)} ] 
47TrmK S~I (p2 - 2pt cos cps + t2) (1 - 2pt cos cps + p2t2) (1 - 2pt cos tps + p2t2)2 

(1.12) 

2 Bassali 's eq (2.44) for M", was incorrect in that a factor, his p~. was omitted from the summation. No doubt this was a typographical error as his equation for 

M rt• was correct, and for the genera l so lution of eccentric loading AIr/I must equal Air'l at the boundary between regions 1 and 2. 
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The radial shearing forces in regions 1 and 2 as reduced from the general solution are 

(1.13) 

and 

respectively. 

5. The Uniformly Distributed Concentric Load 

The case of the uniformly distributed concentric load with its limiting cases of the concen· 
trated central load and the load uniformly distributed over the entire plate is of more general 
interest than the case of the symmetrically distributed load given in the preceding section. There­
fore this investigation will deal primarily with the case of the uniformly distributed load. It should 
be noted that no special treatment is required to examine the limiting cases mentioned above, as 
they are implicit in the solution. The concentrated central load is represented by permitting q to 
shrink to zero, and the load uniformly distributed over the entire plate is realized by setting q = 1. 
1t remains then only to select the appropriate equations for the region under analysis. 

The equations for moments and shearing forces given in the preceding section were derived 
for the symmetrically distributed concentric load as defined by eq (1.01). In order to obtain similar 
equations for the uniformly distributed concentric load it is a simple matter of supplying the ap­
propriate values for n, n', and q', viz, n = 2, n ' = 4, and q ,= q/Y2. Thus, eqs (1.03) and (1.04) 
become 

(1.15) 

and 

(1.16) 

respectively, where eqs (1.05) and (1.06) become 

'VI = [ ~ {In (1- 2pt cos 'Ps + p2t2) - K In (p2 - 2pt cos <ps + t2)-
(1 - t 2 ) (1 - p2t2 ) } 

(1 - 2pt cos <ps + p2t2) 

2mt2 (1 + 2~2t2) 
(1 2) 2 I mKp2 - mKl 

K + 1 + m . + t + mK n q + q2 J (1.17) 

and 
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l_ 

respectively. Following this same procedure, the radial and tangential bending moments in region 
2, obtained from eqs (1.07) and (1.08) are 

and 

M,. = - Po(1 + v) ['l'2] + Po(l- v) [!1] 
2 87TmK 167TmKp2 (1.19) 

(1.20) 

respectively, where eqs (1.09) and (1.10) become 

2mt2(1 + Kq2) 
2t2 ] K + 1 + m (1 + (2) + 2mK In p (1.21) 

and 

(1 - p2) (1- (2) (1- p2(2)2 

(1 - 2pt cos cps + p2t2)2 

(1.22) 

respectively. 

Since the expressions for the twisting moment, Mrt , the tangential shearing force, Ot, and the 
radial shearing force in region 2,0;·2 are independent of the load distribution, eqs (1.11), (1.12), 
and (1.14) are also appropriate for the case of the uniformly distributed load. However, O~! of 
eq (1.13) being dependent on n, becomes 

Q' = ~ [ m { K(p2 - t2) + (1 - 2p2 + p2t2)t2 

r, 47TrmK ~ (p2 - 2pt cos CPs + (2) (1 - 2pt cos CPs + p2t2) 

(1.23) 

for uniform loading. 

6. Stress at the Center of the Plate 

An examination of eq (1.11) shows that Mrt=O as a limit when p~O, and is independent of 
the angular orientation. Therefore Mohr's circle becomes a point, Mt, = Mr" and (Tr, = (Tt,. It 
is noted that Mr , and M t , given in eqs (1.15) and (1.16), respectively, differ only in the sign of the 
second term of each equation, and that these terms, having p2 in the denominator cannot be solved 
directly when p = O. However, they can be evaluated by setting M r , = M t , . Thus, eqs (1.15) 
and (1.16) yield 
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from which it is obvious that the second terms of eqs (1.15) and (1.16) are equal to zero when p = o. 
The moments at the center of the plate (p = 0) may now be writte n as 

and the stresses on the surface are given by 

[ ( q2) ] 2t2 1--
= =+ 3Po(l + v) 2t2 +21 fl-l " . 

(Tr, (Tt, - 4 12 , + 1 n 
1T t , K t p=O 

As a matter of convenience for graphical representation eq (1.25) may be written as 

where 

and 

(1- v) 
~= (I+v) In q2+ _ _ q2 

2 

A=(I+v)( I + ln t2)+(I - v)t2. 

(1.24) 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

Figure 2 is the graphical r e presentation of eqs (1.27) and (1.28) for v = 0.3. It is a pparent 
from the A curve that the stresses at the center of the plate are also affected by the portion of the 
plate that overhangs the s upports. The ~ c urve shows how q affects the stresses at the center. 
It should be noted that when q ~ 0, (T,. and (Tt ~ 00. It is obvious that this theory cannot be used 
to compute stress at or very near a concentrated load or reaction point. 

An examination of eq (1.25) shows that the stresses at the center of the plate are independent 
of m and e, and it can be shown that thi s equation reduces to 

(1.29) 

2 

eq (1.28) .... 

0 

\. eq (1.27) 
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FIGU RE 2. Factors which affect the stress at the center of the plate. 
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FIGURE 3. Distribution of maximum principal stresses in the plate. 

for the case of a simply supported, uniformly loaded plate (t = q = 1). Furthermore, for the case 
of a simply supported circular plate having a central load (q = b/e and t = 1) eq (1.25) reduces to 

(1.30) 

Thus, it is shown that for these limiting cases eq (1.25) reduces to the Grashof equations. 
It should be noted that the usable strength of a plate is usually greater than that implied by 

eqs (1.25), (1.26), (1.29), and (1.30) [4]. These are elastic equations, and experience shows that 
local yielding of materials at a highly stressed point does not necessarily indicate structural failure 
or excessive deflection. Therefore, predictions of structural failure based on these equations 
would require the use of an appropriate theory of failure. 

Moments and Stresses Elsewhere in the Plate. To illustrate the stress distribution over a 
segment of a plate, figure 3 presents lines of equal maximum principal stress sensitivity (IT/Po) 
over one half the period of symmetrical distribution. This figure was prepared from the results ob­
tained from eqs (1.11), (1.19), and (1.20) for the following conditions: m = 3, t = 0.8, q = 0, jJ = 0.3, and 
h=O.125. It can be noted from the figure that the support is located on the ray 8=0°, and that 
the larger values of the maximum principal stress sensitivity extend the farthest out from the center 
along the ray 8 = 7T/m. These rays have further distinction in that an examination of the twisting 
moment, eq (1.11), shows that M rt = 0 for any values of p and t along these angular orientations. 
It follows then that the bending moments, Mr and Mt, along these rays produce principal stresses. 

7. Comparison of Theoretical and Experimental Results 

The test results presented herein were obtained from retesting specimen A of a previous 
investigation [3]. Since the specimens, materials, and test methods were fully described in the 
previous paper, it suffices here to indicate that the dead load method of testing was used, and the 
tangential strains were measured along the support circle (t = 0.976 and m = 3) by means of foil 
type electrical resistance strain gages having a gage length of 1/8 in. These gages were mounted 
on the top and bottom surface of the specimen at the angular locations indicated in figure 4. 
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The tangential s train s were co mputed for the express ion 

1 6 
Et, =-E (a-, -va-,. )=± EI2 (M/ -vM,.). 

2 2 1 2 2 

o 
o 

(1.31) 

Inserting t he appropriate values for radial and tan gential bending moment from eqs (1.19) and 
(1.20) yields 

(1.32) 

where '1'2 and 112 are given by eqs (1.21) and (1.22), respectively. 
The agreement between the experimental data ,; which represents two separate sets of test 

results, and the theoretical results shown in figure 4 is very good. This , along with the good 
agreement reported for deflection [3], lends credence to the use of the theory to predict the flexural 
behavior of the plates. 

8. Summary 

The special application of Bassali's more general solution presented herein provides the equa­
tions necessary to calculate the elastic moments, shearing forces , and stresses anywhere in a thin 
c ircular elastic plate supported at points equally spaced along a concentric support circle and 
subjected to symmetrical bending. However, the maximum stresses at the center of the plate 
are probably of more general interest in the design and analysis of the thin circular plate subjected 
to a uniformly distributed concentric load. It is interesting to note that the equations take on a 
very si mple form for these stresses and appear to be well adapted for design purposes_ It is of 
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further interest that these stresses, eq (1.25), are independent of angular orientation and the num­
ber of supports. As in the case of deflection [31 the effect of the annular portion of the plate over­
hanging the support circle is evident as illustrated by the >-.. curve in figure 2. 

Caution should be exercised in the use of these elastic equations for design purposes as local 
yielding may not be a valid design criterion for the partic ular material and structure under con­
sideration. The selection of an appropriate theory of failure is of the utmost importance in this 
case . 

The good agreement between the theoretical and experimental strains presented herein along 
with that for deflection [3] serve to substantiate the ability of the theory to predict the flexual be­
havior of the plates. 

The authors are indebted to W. H. Pell of the National Science Foundation for his advice 
during the initial phases of this investigation , and to D. R. Tate for his valuable suggestions. 
Special mention is due L. J. Davis for his active participation in the Laboratory. 
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