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So me purposes of thi s paper are: (1) To take se riously the term , " term rank. " (2) To ma ke an issue 
of not " rea rra nging rows a nd colu mns" by not "a rranging" the m in the firs t place. (3) To promote the 
nu merica l use of Cra mer 's rul e. (4) To ill us tra te that the re levance of " numbe r of s teps" to "a mount 
of wo rk" depends on the amount of work in a step. (5) To ca ll a tt ention to the com puta tional as pec t 
of SDR's, an aspect where the subjec t di ffe rs fro m bein g an instance of fa milia r li near algebra. (6) To 
describe a n SDR in s ta nce of a theory on extre mal co mbi nato rics tha t uses linea r algebra in ve ry dif· 
fe rent ways than does to tall y unimodular theory. (The preceding paper, Optimum Branc hings, de· 
sc ribes another instanc e of tha t theory.) 

Key Words : Algorithms, combinatori cs, indeterminates, linear algebra, matroid s, syste ms of 
di s tinc t representa tives , term rank. 

1. Introduction 

The well· known concept of term rank [5, 6],' is 
shown he re to be a special case of linear·algebra rank. 
This observation is used to provide a simple linear
algebra proof of the well-known SDR theore m. Except 
for familiar linear algebra, the paper is self-contained. 

Incidentally to SDR's , an algorithm is presented for 
computing the determinant or the rank of any matrix 
over any integral domain. It is a variation of Gaussian 
(i. e., linear) elimination which has certain advantages. 
It is observed to be an interestingly bad algorithm for 
computing term rank. 

The final part of the paper discusses some simple 
matroidal aspects of SDR' s. 

2. Systems of Distinct Representatives 

Let Q be any finite family of subsets of a finite 
set E. " Different" members of Q may be identical in 
content. The number of members of a family H is 
denoted by IHI. The union of the members of H is 
denoted by U(H) . The SDR theorem says that it is 
possible to choose a different element from each me m
ber of Q if and only if there is no subfamily H of Q 
such that IHI > I U(H)I. The " only if' part is obvious. 

A subset of E formed by choosing a different ele
ment from each me mber of Q is called a system of 
distinct representatives of Q, or an SDR of Q. (Some· 
times, such as in [1], it is called a transversal of Q. 

· P repared while the author was a vis iting professor a l the Univers ity of Wa te rloo, Onta ri o. 
1 Figures in brackets ind ica te the literature a l the end of th is paper. 
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However , here the word " trans versal" will be used 
differently.) 

3. Matrices of Zeros and Ones 

The subject of SDR's is frequently treated in the 
context of matrices of O's and I ' s. The incidence 
matrix of the family Q of subse ts of E is the matrix 
A = [aij ], ifE , jfQ , such that aij = 1 if ifj , and aij = O 
otherwise. 

A matching in a matrix is a s ubset of its positions 
(i , J) such that fir st indices (rows) of members are all 
different and second indices (columns) of members are 
all different. A transversal (column transversal) of a 
ma trix is a matching in the matrix which has a member 
in each column. The product of the e ntries of a trans
versal , we call a transversal product. 

Clearly, Q has an SDR if and only if its incide nce 
matrix A has a I -valued transversal (or a I·valued 
transversal product). 

In the context 0(0,1 matrices ~h e SDR theorem says 
tha t a matrix A = [aij], ifE, jfQ , of O's and I' s has 
a I -valued transversal if and only if there is no H ~ Q 
and K~E such that IHI > IKI and suc h that s ub
matrix r au], i fK , jfH , contains all the 1 ' s of sub matrix 
[aij ], ifE,jfH. 

4. Permanents, Determinants, and Good 
Algorithms 

The maximum cardinality of a nonzero-valued 
matching (matching having no zero entries) in any 
ma trix A is well-known as the term rank r(A) of A . 



Clearly r(A) is the maximum cardinality of a subset 
of columns of A which has a nonzero-valued trans
versaL Thus the term rank of a family of sets is de
fined to be the maximum cardinality of a subfamily 
which has an SDK 

Clearly r(A) equals the maximum order of a square 
submatrix of A which has a nonzero-valued transversaL 
The permanent of a square matrix is defined to be the 
sum of all its transversal products. Thus r(A), for a 
nonnegative matrix A, equals the maximum order of a 
submatrix of A with non-zero permanent. The perma
nent of a square 0,1 matrix is the number of I-valued 
transversals of the matrix. 

A good algorithm is not known for computing the 
permanent of any square 0,1 matrix (relative to the 
order of the matrix as the "size" of input). For an 
algorithm to be good we mean th<!.t there is a poly
nomial function fen) which for every n is an upper 
bound on the "amount of work" the algorithm does 
for any input of "size" n. 

The transversals of any square matrix partition 
uniquely into two classes such that .a.ny two trans
versals which differ by just two posItlOns (of each) 
are in different classes. (The proof is left to the reader.) 
The determinant of a square matrix with a prescribed 
1- 1 correspondence between rows and columns, 
i.e_, with a prescribed transversal, is defined to be the 
sum of transversal products over whichever of these 
classes contains the prescribed transversal minus the 
sum of transversal products over the other class. 

A very remarkable formal property of determin~nts, 
of say integers, is that there exists a good algOrIthm 
for computing them - a version of Gaussian elimination 
which we will describe in section 7, It is also remark
able that there exists a good algorithm, the same one 
as above, for computing the linear-algebra rank of 
any matrix of say integers. The la.rgest .number of 
digits of an entry as well as the dlmenslOn~ of the 
matrix must of course be figured somehow mto the 
measure of "size" of possible inputs to the algorithm. 
For example, the "size" of an input may be taken to 
be the maximum of these numbers, or may be taken 
to be a vector consisting of these several numbers. 

An alaorithm which is good in the sense used here 
is not ne"'cessarily very good from a practical viewpoint. 
However the good-versus-not-good dichotomy is 
usefuL It'is easily formalized (say, relative to a Turing 
machine or relative to a typical digital computer with 
an unlirr:ited supply of tape), and usually it is easily 
recognized informally. Within limitations it does have 
practical value, and it does admit refinements to " h.ow 
good" and " how bad." The classes of problems whIch 
are respectively known and not known to have good 
algorithms are very interesting theoretically_ 

Good algorithms, not Gaussian elimination, are w~n
known for computing the term rank of any 0,1 matrIX_ 
For instance see a remark in section 8 of this paper 
together with [3]. We shall see that Gaussian elimina
tion is also an algorithm for computing term rank . 

5. Rank 

A main point of thi s paper is the following obser
vation_ Tutte in [7] uses the same idea in a deeper way. 

THEOREM 1. The term rank of a 0,1 matrix A is 
the same as the linear-algebra rank of the matrix 
obtained by replacing the l's in A by distinct inde
terminates (over any integral domain). 

Several "numbers" are called indeterminates if 
no polynomial function of them (over the given integral 
domain) equals zero unless it is identically zero. 

PROOF OF THEOREM 1. The linear-algebra rank of a 
matrix equals the maximum order of a minor with 
nonzero determinant. (A minor of a matrix is a sub
matrix with a prescribed 1-1 correspondence be
tween its rows and columns_) The determinant of a 
minor is a linear combination, with + 1's and -1 's 
coefficients, of all its transversal products. Thus, 
where the entries are zeros and distinct indetermi
nates, a determinant is nonzero if and only if one or 
more of its transversal products is nonzero. End of 
proof. 

6. A Linear-Algebra Proof of the 
SDR Theorem 

Suppose a matrix A of zeros and distinct indetermi
nates has no transversal of nonzeros. Then, by Theorem 
1, its rank is less than the number of columns, so the 
columns are linearly dependent. Let AI be a sub matrix 
consisting of a minimal dependent subset H of the 
columns of A. Let A2 be a submatrix consisting of a 
maximal independent subset K of rows of AI. Since 
row rank equals column rank, we have IHI = IKI + 1. 

If A has a column of all zeros then that column alone 
is a dependent set H , and K is empty. Otherwise , there 
is a column vector x such that Alx is all zeros and such 
that the components of x are nonzero polynomials in 
the entries of A2 • 

If any row, a, of A I , not in A 2, contained one or 
more indeterminates, then ax would be a polynomial 
function of indeterminates, equal to zero, but not 
identically zero. Hence , the rows of A I , not in A 2, 

contain only zeros. End of proof. 

7. A Bad Algorithm for Term Rank 

Theorem 1 also suggests using Gaussian elimination 
as an algorithm for computing term rank. With the 
excuse of trying to give this approach every possible 
advantage, we describe an improved version of 
Gaussian elimination (possibly due to Gauss)_ 

The rank of any matrix AO, or the determinent of 
any matrix AO (with mutually corresponding index 
sets), with entries from an integral domain, can be 
computed as follows. 

In each step, k, beginning with k= 1, obtain a new 
matrix Ak=[ar-J from Ak-l=[aki/], by first choosing 
some row, call it i(k), and some column, call it j(k), 
neither of them chosen on previous steps and such that 
a~k~. j(k) =Ie- 0. The algorithm stops when this is no 
longer possible. 
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The matrix Ak is determined as follows. Each row i(h), 
1:",; h:",; k, is the same in Ak as in Ak-l. Each column 
j(h) . of Ak is all zeros except for entries a~g)j(h)' 
1 :",; g:",; h. For any other row i and any other column j, 

where a~(O) ·(0) is defined to be 1. It follows from 
Theorem 2) that this quotient exists in the integral 
domain (without fractionalizing). 

THEOREM 2. The at, as defined above, is equal to the 
determinent of the minor of AO whose rows and columns 
are as listed in the brackets: 

( 
i(l) 

j(l) 

i(2) 

j(2) 

i(k) 

j(k) 

The rank of matrix A 0 equals the number of steps in the 
algorithm. 

PROOF: Since each row i(h), 1 :",; h :",; k, is the same 
in Ak as in Ak- J , we may denote 

- k 
. . - a i(lI)j(lI) 

simply by a~lI)j(II)' and denote a?(O)j(O) = 1 by a;(O)j(O)· 

Each of the other rows, i , of Ak is obtained from ele
mentary row operations in Ak- J in a manner such that 
the determinent of any minor of A''', containing all of 
the rows and columns, i(h) and j(h) , and say mother 
rows and m other columns, is different from the de
Lermin e nt of the corresponding minor in A, .. - J by a 
factor of (a;(k)j(k/a;(k - l)j(l .. - J0111. (Recall from the theory 
of de terminents that replacing any single row by c 
times that row multiplies the value of the determinent 
by c, and that subtracting any multiple of one row from 
another row does not change the value of the 
determinent.) 

By iterating the above relationship between deter
minents , for the minors 

( 
i(l) 

j(l) 

i(2) 

j(2) 

i(k) 

j(k) :) 
of AO, A 1, . . ., and A", we find the determinent of 
this minor of A k is different from the determinent of 
this minor of AO by a factor of 

a~J)j(J ) , ( * )'. 
a;(O)j(O) 

~2)j(2 ) (
a* )k-l 
ai(J)j(J) 

( 
a;(h');(k) ) J . .. * 

ai(k- J )j(k - J) 

On the other hand, this same minor of Ak has de
terminent equal to 

because it is triangular aik(g)j(h) = 0 for 1 :",; h < g:"'; k, 
and at(ll) = 0 for 1 :",; h :",; k), and it has that value as the 

243 

product of its diagonal elements. Therefore the de· 
terminent of the corresponding minor of AO is equal 
to aij. 

The statement that the rank of AO equals the num· 
ber of steps of the algorithm follows in the same way 
as the same statement for a usual form of Gaussian 
elimination (the one where you divide so as to get l 's 
in a diagonal, or the one where you cross multiply 
without dividing): Where n is the total number of steps , 
the final A" has the same rank as AO since it is obtained 
from AO by elementary row operations (which are 
reversible). The rank of A" is n because A" contains 
the minor 

(
i(l) 

i(l) 

i(2) 

i(2) 

i(n») , 

j(n) 

having nonzero determinent, and because any row of 
A II not included in this minor is all zeroes. End of proof. 

Crucial implicit parts of our algorithm are the 
algorithms for arithmetic operations in the appro· 
priate integral domain . These include an algorithm 
for dividing one member of the domain by another 
whenever that quotient exists in the domain. 

The algorithm for matrices AO of integers is good. 
This follows from (a), (b), and Theorem 2. (a) The 
familiar algorithms, for arithmetic operations on 
integers in arabic notation , are good relative to the 
numbers of digits in the operands. (b) A determinant 
of order n is a sum of n! terms, each, except for sign, 
being a product of n entries. Where m is the largest 
number of digits in an entry , nm is an upper bound on 
the number of digits in one such term , and so 
(nm+log n!) < n(m+log n) < n(m+n) is an upper 
bound on the number of digits in the value of the 
determinant. (The base of the log is the base of the 
arabic notation.) Theorem 2 tells us that each entry of 
each Ah' is the determinent of a minor of AO. Thus, 
relative to the number of rows of AO, the number of 
columns of AO, and the maximum number of digits in 
any entry of AO, we get an algebraic upper bound on 
the work of carrying out the computation of each al~. 
Since, relative to the number of rows of AO and the 
number of columns of AO, there is an algebraic upper 
bound on the number of such computations in the 
algorithm, we get an algebraic upper bound on the 
amount of work in the whole algorithm. 

The .present algorithm is more efficient, for sayan 
integer-valued AO, than either the fractional or the 
purely cross·multiplicational versions of Gaussian 
elimination, because it divides out common integer 
factors of the entries, typically the only common inte
ger factors, thereby keeping down the number of 
digits in entries, and thus the amount of arithmetic 
work. Of course, most computational uses of Gaussian 
elimination are approximating procedures where the 
entries are repeatedly rounded off to a smaller number 
of digits. When used with the same extent of round·off, 
the present algorithm is no less work than any other 
version of Gaussian elimination - in fact, more work 
because of all the divisions to do. However, I suspect 
that, when used with the same extent of round·off, 
it is more accurate. 



Curiously, the algorithm for matrices of zeros and 
distinct indeterminates is not good. For such matrices , 
the at's are polynomials in indeterminates. Algorithms 
for arithmetic operations on polynomials in indetermi· 
nates are evident; these algorithms are good relative 
to "size" of the polynomials. However, using a known 
way to represent the polynomials , their "size" in 
general increases too fast relative to k. In particular, 
aij might have as many as k! terms. 

A problem suggested by these considerations is to 
find a good algorithm for computing the rank of any 
matrix whose entries are polynomials (or monomials) , 
with integer coefficients, in any number of indetermi· 
nates not necessarily different in different entries. 
Presumably such an algorithm, if one exists, would 
somehow combine Gaussian elimination with the 
techniques for term rank. It would be interesting to 
determine whether there exists a good algorithm for 
computing the rank of any matrix whose entries are 
zeros and indeterminates not necessarily distinct. 

8. Transversal Matroids 

A matroid M =(E, F) is a set E of elements and a 
nonempty family F of so-called independent subsets 
of E such that (1) every subset of an independent set is 
independent, and (2) for any 5 c;,E, all maximal inde
pendent subsets of 5 contain the same number of 
elements , called the rank r(5) of 5. (F contains at least 
the empty set.) Where independent subset of columns 
means linearly independent subset of columns, the 
set of columns in a matrix (over any integral domain) 
forms a matroid, called the matroid of the matrix. 

In [1] it was shown by an elementary combinatorial 
argument that for any finite family 'Q of sets, the 
subfamilies of Q which have SDR's are the independent 
sets of a matroid whose elements are the members 
of Q. Such matroids were dubbed transversal matroids. 

It is not clear a priori that, from a good algorithm 
for deciding whether any given family Q has an SDR, 
we can obtain a good algorithm for finding the term 
rank of any Q, i.e., the maximum cardinality of a sub· 
family of Q which has an SDR. To take an analogy, a 
good algorithm is known for deciding whether the 
members of any given Q are mutually disjoint, but a 
good algorithm is not known for finding , for any Q, 
the maximum cardinality of a subfamily with this 
property. 

The fact that any Q forms a matroid, as described, 
says that we can find the term rank of any Q as fol· 
lows. Consider the n members of Q one after another 
in any predetermined order. Let LO be the empty sub· 
family of Q. At the kth step (k = 1, . . ., n) determine 
whether the family consisting of U '-I C Q together with 
the kth member of Q has an SDR. If it does, then it is 
U. Otherwise, LA' = U - I. The cardinality of L" is the 
term rank of Q. 

Suppose, given any Q with a nonnegative numerical 
weight corresponding to each member, that we wish 
to find a maximum weight-sum subfamily of Q which 
has an SDR. It is proved in [2] that we get such a 
subfamily as [n of the preceding algorithm simply 

by first ordering the members of Q according to non· 
increasing weights. Some other consequences of 
the matroid property of SDR's are developed in [1]. 

Can every transversal matroid be represented as 
the matroid of a matrix? By appealing to Theorem 1, 
we see that the answer is yes: the matroid whose inde· 
pendent sets are the subfamilies of Q having SDR's 
is the matroid of the matrix obtained from the inci· 
dence matrix A of Q by r-eplacing the ones by distinct 
indeterminates. Indeed, Theorem 1, together with the 
well-known fact that matrices yield matroids as de· 
scribed, provides an immediate "non elementary" 
proof that any finite family Q yields a matroid as 
described: Relative to the incidence matrix A of the 
family Q, the independent sets of the transversal 
matroid of Q are the subsets of columns that have 
I-valued transversals . Theorem 1 says that, upon 
replacing the l 's by distinct indeterminates these are 
precisely the linearly independent subsets of columns. 

(The matroid of the incidence matrix A is not gen· 
erally a transversal matroid. In fact the matroid of A 
generally depends on what integral domain its zeros 
and ones come from. One can of course define the 
transversal matroid of any matrix, so that relative to 
it the rank of a subset of columns equals term rank 
of those columns.) 

Notice by considering the transpose of incidence 
matrix A, that the rows of A are the elements of a 
matroid whose independent sets are the subsets of 
rows that have I-valued " row transversals ." In other 
words, for any family Q of subsets of a finite set E, 
the members of E are the elements of a matroid for 
which the independent sets are the subsets of E that 
are SDR's of subfamilies of Q. A corresponding ver· 
sion of the SDR theorem says that a subset Pc;,E 
is an SDR of some subfamily of Q if and only if there 
is no 5c;,P that has nonempty intersection with fewer 
than 151 members of Q. 

A -number of papers have developed a certain other 
relationship between SDR's and linear algebra which 
(along with much else on the subject) we do not dis· 
cuss here. This was one of the purposes of Hoffman 
and Kuhn in [4]. Their other purpose was to extend 
the SDR theorem to characterize when a family Q 
of subsets of E has an SDR which contains a prescribed 
subset Pc;,E. In view of the SDR theorem, their con
ditions are (1) that Q have an SDR, and (2) that P be 
an SDR of some subfamily of Q. 

As a final illustration here of the present linear
algebra viewpoint, we prove the Hoffman-Kuhn 
theorem: If set Pc;,E is an SDR of some subfamily 
of Q, then, by the matroid property for such sets, P 
can be extended to some maximum cardinality subset 
of E, say To, which is an SDR of some subfamily ofQ, 
say Qo. If family Q itself has an SDR, say T, contained 
in E, then we have IQI = ITI = ITol = IQol, and thus 
Q = Qo. End of proof. 

This paper was originally submitted to the American Mathematical 
Monthly, I am indebted to the referee for several changes in wording 
and for the following comments : 

"The well· known SDR theorem" is not well· known to the Monthly 
readers and the author should give credit at some point to Philip 
Hall. 
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Using integers iJ etc., to represent both sets and elements is 
logically inconsistent. Thus "i" represents both an element of E 
and a set of Q. The author should stick to conventional means. 

The author is unnecessarily sophisticated in defining "minor of a 
matrix." It can be simply and clearly defined as a square submatrix. 

The author should give a reference for a conventional proof of 
Philip Hall's SDR theorem, e.g., Halmos and Vaughn (Amer. J. 
Math. 72, 1950) which I believe to be at least as simple as the proof 
given here. 
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