JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematics and Mathematical Physics Vol. 71B, No. 4, October–December 1967

Symmetrizable Generalized Inverses of Symmetrizable Matrices*

John Z. Hearon**

(September 27, 1967)

The matrix A is said to be symmetrizable by V when V is positive definite and AV is hermitian. Several lemmas regarding symmetrizability are given. For three classes of generalized inverses it is shown that if A is symmetrizable by V there exists a generalized inverse in each class which is symmetrizable by V. The Moore-Penrose inverse (or pseudo-inverse) of a matrix symmetrizable by V is also symmetrizable by V if and only if the matrix and the pseudo-inverse commute.

Key Words: Generalized inverse, symmetrizable matrix.

1. Introduction

We call a matrix A symmetrizable if there exists a positive definite V such that AV is hermitian. In that case A is said to be symmetrizable by V. Given an Asymmetrizable by V we inquire for the existence of generalized inverses of A which are symmetrizable by the same matrix V. For several classes of generalized inverses which have been previously discussed [3, 4, 7 and references therein]¹ it is shown that such symmetrizable generalized inverses exist. In particular it is shown that the C_2 -inverse [3, 4] (also called reflexive generalized inverse [7] or semi-inverse [1]) of a symmetrizable matrix which commutes with the matrix is symmetrizable by the same V. Finally it is shown that the Moore-Penrose inverse, B, of a matrix A symmetrizable by V is symmetrizable by V if and only if A and B commute.

2. Preliminaries and Notation

All matrices are considered to have complex entries. For any matrix M, we denote by M^* and $\rho(M)$ the conjugate transpose and rank of M respectively. We write $A\epsilon \mathscr{S}(V)$ when and only when V is positive definite and AV is hermitian. If $A\epsilon \mathscr{S}(V)$, we say that A is symmetrizable to the right by V. We consider only symmetrizability to the right. Since we show, Lemma 1, that A is symmetrizable to the right by Vif and only if A is symmetrizable to the left by V^{-1} , an analogous set of results could be derived regarding left symmetrizability. For a given matrix A we define $C_i(A)$ to be the set of all matrices B which satisfy the first *i* of the relations (i) ABA = A, (ii) BAB = B, (iii) $AB = (AB)^*$ and (iv) $BA = (BA)^*$. A matrix $B \in C_i(A)$ is called a C_i -inverse of *A*. The correspondence between this terminology and others which are in use has been noted elsewhere [3, 4]. The set $C_4(A)$ contains a single uniquely determined matrix which is the Moore-Penrose inverse [6] of *A*. If $B \in C_i(A)$, i < 4, then *B* is not uniquely determined by *A* unless other conditions are imposed. For example, if $B \in C_2(A)$ and commutes with *A* then *B* is uniquely determined by *A* [4].

3. Symmetrizable Matrices

In this section we give several lemmas which are needed in the remainder of the paper.

LEMMA 1. Let A be a given matrix, V be positive definite, and T be the positive definite square root of V. If any one of the matrices $S_1 = AV$, $S_2 = V^{-1}A$ and $S_3 = T^{-1}AT$ is hermitian, then all are hermitian. There exists a positive definite H such that $H^{-1}AH$ is hermitian, if and only if A is similar to a real diagonal matrix.

PROOF. From $T^2 = V$ and the definitions of the S_i we have $S_1 = VS_2V = TS_3T$ from which it follows at once that if any S_i is hermitian then every S_i is hermitian. If $H^{-1}AH$ is hermitian then A is similar to a hermitian matrix and thus has real roots and is diagonable. Conversely, let $P^{-1}AP = \Lambda$ where Λ is real and diagonal. If P = HQ is the polar factorization of P, where H is positive definite and Q is unitary, then we have that $H^{-1}AH = Q\Lambda Q^*$ is hermitian.

For ready reference we have included the above simple proof of Lemma 1, but the content of the lemma is known: That $A \epsilon \mathcal{S}(V)$ is equivalent to $A^* \epsilon \mathcal{S}(V^{-1})$ has been shown [2]. Further if $S_1 = S_1^*$,

^{*}An invited paper.
**Present address: Mathematical Research Branch, National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, Bethesda, Maryland 20014.

¹Figures in brackets indicate the literature references at the end of this paper.

then A can be written as the product of two hermitian matrices one of which is positive definite. That this is possible if and only if A is similar to a real diagonal matrix is a known theorem [9].

LEMMA 2. If $A \epsilon \mathscr{S}(V)$ then $A^{p} \epsilon \mathscr{S}(V)$ for every integer $p \ge 0$.

PROOF. $A \in \mathcal{S}(V)$, by Lemma 1, implies

$$T^{-1}AT = S = S^*$$
.

where $T^2 = V$ and T is positive definite. But then $T^{-1}A^pT = S^p$ is hermitian and Lemma 1 then gives $A^p \epsilon \mathcal{F}(V)$.

Lemma 2 has been proved in a much more general context [8] and a slightly different proof has been given elsewhere [2].

LEMMA 3. Let $A \in \mathcal{S}(V)$ and $B \in \mathcal{S}(V)$. Then $A B \in \mathcal{S}(V)$ if and only if A B = B A.

PROOF. Let C = AB and $T^{-1}CT = P$. Then

$$(T^{-1}AT)(T^{-1}BT) = P.$$

We choose T to be the positive definite square root of V and then, by Lemma 1, P is the product of two hermitian matrices. Thus $P = P^*$ if and only if A and B commute, But, by Lemma 1, $P = P^*$ if and only if

 $C \epsilon \mathscr{S}(V).$

LEMMA 4. Let $A \in \mathscr{S}(V)$, $B \in \mathscr{S}(V)$ and define $C_1 = AB$, $C_2 = BA$. If C_1 is hermitian, then C_1 is similar to C_2 . If C_1 and C_2 are hermitian, then $C_1 = C_2$.

PROOF. By Lemma 1 we may write C_1 as the product of two hermitian matrices: $C_1 = (AV)(V^{-1}B)$. If $C_1 = C_1^*$ we have $C_1 = V^{-1}BAV = V^{-1}C_2V$, and the first assertion is proved. If additionally $C_2 = C_2^*$, then $C_1 = V^{-1}C_2V = VC_2V^{-1} = C_1^*$ which implies $C_2V = VC_2$. But then $C_1 = C_2$.

4. Symmetrizable Generalized Inverses

THEOREM 1. Let $A \epsilon \mathscr{S}(V)$. Then there exist matrices $B_i \epsilon \mathscr{S}(V)$, i = 1, 2, 3, such that $B_i \epsilon C_i(A)$.

PROOF. Let $AV = S = S^*$. Then there exists [7] an $H = H^*$ such that $H \epsilon C_1(S)$. Given this,

$$SHS = S = AV = AVHAV$$

shows that $B_1 = VH\epsilon C_1(A)$. Further $V^{-1}B_1 = H$ implies, by Lemma 1, that $B_1\epsilon \mathscr{S}(V)$. By a known theorem [3], if $B_2 = B_1AB_1$ then $B_2\epsilon C_2(A)$. But

$$V^{-1}B_2 = (V^{-1}B_1)(AV)(V^{-1}B_1) = HSH$$

is hermitian and, by Lemma 1, we have $B_2 \epsilon \mathscr{S}(V)$. Now let $K \epsilon C_4(S)$. Then [6], $K = K^*$. Further,

$$SKS = S = AV = AVKAV$$

and KSK = K = KAVK show that $B_3 = VK\epsilon C_2(A)$. Since SK is hermitian and $SK = (AV)(V^{-1}B_3) = AB_3$, we have $B_3 \epsilon C_3(A)$. Finally $V^{-1}B_3 = K = K^*$ implies, by Lemma 1, that $B_3 \epsilon \mathcal{S}(V)$.

THEOREM 2. Let $A \in \mathcal{S}(V)$. Then there exists a

$$B \in C_2(A)$$
.

uniquely determined by A, such that AB = BA. Further, $B \in \mathcal{S}(V)$.

PROOF. From Lemma 1, $A\epsilon \mathscr{S}(V)$ implies that A is diagonable and hence that $\rho(A) = \rho(A^2)$. Given this condition on the rank of A, it follows from a known theorem [4] that there exists a uniquely determined $B\epsilon C_2(A)$ which commutes with A; furthermore this B is a polynomial g(A) in A. From the construction [4] of B = g(A), the coefficients of g are real if the roots of A are real, a condition insured by Lemma 1. This being the case, $A\epsilon \mathscr{S}(V)$ implies, by Lemma 2, that $g(A)\epsilon \mathscr{S}(V)$ and the theorem is proved.

THEOREM 3. Let $A\epsilon \mathscr{S}(V)$ and $B\epsilon C_2(A)$ commute. Then $T^{-1}BT\epsilon C_4(T^{-1}AT)$, where T is the positive definite square root of V.

PROOF. By Theorem 2, $B\epsilon \mathcal{S}(V)$ and given this we have, from Lemma 3, that the projection C = AB = BA is such that $C\epsilon \mathcal{S}(V)$. By Lemma 1, $T^{-1}CT$ is a hermitian projection. Since $B\epsilon C_2(A)$ is clearly equivalent to $T^{-1}BT\epsilon C_2(T^{-1}AT)$ we have $T^{-1}BT\epsilon C_4(T^{-1}AT)$, for we have shown

$$(T^{-1}AT)(T^{-1}BT) = (T^{-1}BT)(T^{-1}AT) = T^{-1}CT$$

to be hermitian.

THEOREM 4. Let $A\epsilon \mathscr{S}(V)$ and $B\epsilon C_4(A)$. Then $B\epsilon \mathscr{S}(V)$ if and only if AB = BA.

PROOF. Let $B\epsilon \mathscr{S}(V)$. Then from $B\epsilon C_4(A)$ we have that AB and BA are hermitian and it follows from Lemma 4 that AB = BA. Conversely let AB = BA. Then it follows from Theorem 2 that $B\epsilon \mathscr{S}(V)$.

It is known [4, 5] that $B \in C_4(A)$ commutes with A if and only if B is a polynomial in A, and that $B \in C_4(A)$ is a polynomial in A if and only if A is an *EPr* matrix [5]. We combine these results with Theorem 4 to obtain:

THEOREM 5. Let $A \in \mathcal{S}(V)$ and $B \in C_4(A)$. Then the following conditions are equivalent.

(i) $B \in \mathscr{S}(V)$

- (ii) AB = BA
- (iii) B is a polynomial in A
- (iv) A is an EPr matrix.

5. References

- J. S. Frame, Matrix functions and applications. I. Matrix operations and generalized inverses, IEEE Spectrum 1, 209-220 (1964).
- [2] J. Z. Hearon, Theorems on linear systems, Ann. N.Y. Acad. Sci 108, 36-68 (1963).
- [3] J. Z. Hearon, Construction of *EPr* generalized inverses by inversion of nonsingular matrices, J. Res. NBS **71B** (Math. and Math. Phys.), Nos. 2 and 3, 57-60 (1967).
- [4] J. Z. Hearon, A generalized matrix version of Rennie's inequality, J. Res. NBS **71B** (Math. and Math. Phys.), Nos. 2 and 3, 61-64 (1967).
- [5] M. H. Pearl, On generalized inverses of matrices, Proc. Camb. Phil. Soc. 62, 673-677 (1966).

- [6] R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc. 51, 406-418 (1955).
 [7] C. A. Rohde, Some results on generalized inverses, SIAM Rev. 8, 201-205 (1966).
 [8] J. P. O. Silberstein, Symmetrizable operators, J. Austral. Math. Soc. 2, 381-402 (1962).

- [9] O. Taussky, On variation of the characteristic roots of a finite Matrix under various changes of its elements, in Recent Advances in Matrix Theory, Hans Schneider (the University of Wisconsin Press, 1964).

(Paper 71B4-248)