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Symmetrizable Generalized Inverses of

Symmetrizable Matrices*

John Z. Hearon**
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The matrix A is said to be symmetrizable by ¥ when ¥ is positive definite and AV is hermitian.
Several lemmas regarding symmetrizability are given. For three classes of generalized inverses it
is shown that if 4 is smmetrizable by V there exists a generalized inverse in each class which is sym-
metrizable by V. The Moore-Penrose inverse (or pseudo-inverse) of a matrix symmetrizable by V is
also symmetrizable by ¥ if and only if the matrix and the pseudo-inverse commute.
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1. Introduction

We call a matrix 4 symmetrizable if there exists a
positive definite V' such that AV is hermitian. In that
case A is said to be symmetrizable by V. Given an A
symmetrizable by V' we inquire for the existence of
generalized inverses of A which are symmetrizable by
the same matrix V. For several classes of generalized
inverses which have been previously discussed [3, 4,
7 and references therein] ! it is shown that such sym-
metrizable generalized inverses exist. In particular
it is shown that the Cs-inverse [3, 4] (also called
reflexive generalized inverse [7] or semi-inverse [1])
of a symmetrizable matrix which commutes with the
matrix is symmetrizable by the same V. Finally it is
shown that the Moore-Penrose inverse, B, of a matrix
A symmetrizable by V is symmetrizable by V if and
only if 4 and B commute.

2. Preliminaries and Notation

All matrices are considered to have complex entries.
For any matrix M, we denote by M* and p(M) the
conjugate transpose and rank of M respectively. We
write Ae% (V) when and only when V is positive
definite and AV is hermitian. If 4% (V), we say that
A is symmetrizable to the right by V. We consider
only symmetrizability to the right. Since we show,
Lemma 1, that 4 is symmetrizable to the right by V
if and only if 4 is symmetrizable to the left by V-1,
an analogous set of results could be derived regarding
left symmetrizability. For a given matrix 4 we define
Ci(A) to be the set of all matrices B which satisfy the
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first i of the relations (i) ABA=A, (i) BAB=B, (iii)
AB= (AB)* and (iv) BA= (BA)*. A matrix BeCi(A)
is called a Ci-inverse of 4. The correspondence be-
tween this terminology and others which are in use
has been noted elsewhere [3, 4]. The set C4(A) con-
tains a single uniquely determined matrix which is
the Moore-Penrose inverse [6] of A. If BeCi(A), i <4,
then B is not uniquely determined by 4 unless other
conditions are imposed. For example, if BeC,(A4) and
commutes with 4 then B is uniquely determined
by A4 [4].

3. Symmetrizable Matrices

In this section we give several lemmas which are
needed in the remainder of the paper.

LEMMA 1. Let A be a given matrix, V be positive
definite, and T be the positive definite square root of
V. If any one of the matrices S;=AV, S;=V~'A and
S;=T-1AT is hermitian, then all are hermitian. There
exists a positive definite H such that H-'AH is hermi-
tian, if and only if A is similar to a real diagonal
matrix.

PROOF. From 7%=V and the definitions of the S;
we have S;=VS,V=TS;T from which it follows at
once that if any S; is hermitian then every S; is hermi-
tian. If H-'4H is hermitian then A4 is similar to a
hermitian matrix and thus has real roots and is diag-
onable. Conversely, let P~1AP=A where A is real
and diagonal. If P=HQ is the polar factorization of
P, where H is positive definite and () is unitary, then
we have that H-'AH = QAQ%* is hermitian.

For ready reference we have included the above
simple proof of Lemma 1, but the content of the
lemma is known: That Ae¥ (V) is equivalent to
A*e# (V') has been shown [2]. Further if S;=S%,
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then A can be written as the product of two hermitian
matrices one of which is positive definite. That this
is possible if and only if 4 is similar to a real diagonal
matrix is a known theorem [9].

LEMMA 2. If AeF (V) then A% (V) for every integer
p=0.

ProOF. Ae#(V), by Lemma 1, implies

T-'AT=S=S%,

where T2=V and T is positive definite. But then
T-'APT=SP is hermitian and Lemma 1 then gives
Ares (V).

Lemma 2 has been proved in a much more general
context [8] and a slightly different proof has been
given elsewhere [2].

LEMMA 3. Let Ae¥# (V) and Be¥ (V). Then ABe% (V)
if and only if AB=BA.
ProoF. Let C=AB and T-'CT = P. Then

(TAT)(T-'BT) = P.

We choose T to be the positive definite square root of
V and then, by Lemma 1, P is the product of two
hermitian matrices. Thus P=P* if and only if 4 and
B commute, But, by Lemma 1, P=P* if and only if

CeZ (V).

LEMMA 4. Let Ae¥(V), Be# (V) and define C, = AB,
C,=BA. If C, is hermitian, then C, is similar to C,.
If Ci and C; are hermitian, then C, = Cs.

PRrOOF. By Lemma 1 we may write C, as the product
of two hermitian matrices: C,= (4AV)(V-'B). If
Ci=C¥ we have Ci,=V-'BAV=V-1C,V, and the
first assertion is proved. If additionally C, = C¥, then
Cl == 1C2V= I/C‘zl/-1 = C;k which lmphes CgV: VCZ
But then C, = C,.

4. Symmetrizable Generalized Inverses

THEOREM 1. Let Ae.# (V). Then there exist matrices
BieZ(V), i=1, 2, 3, such that B;eCi(A).

Proor. Let AV=S=S* Then there exists [7] an
H=H* such that HeC(S). Given this,

SHS=S=AV=AVHAV
shows that B;=VHeC,(4). Further V' ~-'B;= H implies,
by Lemma 1, that B, (V). By a known theorem [3],
if Bo= B1AB; then ByeC,(A4). But
V-1By= (V-'By) (AV)(V-'B,) =HSH

is hermitian and, by Lemma 1, we have B.e¥ (V). Now
let KeC4(S). Then [6], K= K*. Further,

SKS=S=AV=AVKAV

and KSK=K=KAVK show that B3;=VKeCyA).
Since SK is hermitian and SK= (AV) (V' ~'B3) = AB3,

we have BseCs3(A). Finally V-'B;=K=K* implies,
by Lemma 1, that BseZ (V).
THEOREM 2. Let Ae# (V). Then there exists a

BGCZ(A)s

uniquely determined by A, such that AB=BA. Further,
BeZ (V).

ProOF. From Lemma 1, Ae#(V) implies that A
is diagonable and hence that p(4)=p(4?). Given this
condition on the rank of A, it follows from a known
theorem [4] that there exists a uniquely determined
BeCy(A) which commutes with A; furthermore this B
is a polynomial g(A4) in A. From the construction [4]
of B=g(A), the coeflicients of g are real if the roots
of A are real, a condition insured by Lemma 1. This
being the case, Ae% (V) implies, by Lemma 2, that
g2(A)e# (V) and the theorem is proved.

THEOREM 3. Let Ae¥ (V) and BeCy(A) commute.
Then T-'BTeC4(T-'AT), where T is the positive definite
square root of V.

Proor. By Theorem 2, Be¥ (V) and given this we
have, from Lemma 3, that the projection C=A4B=BA
is such that Ce# (V). By Lemma 1, T-1C7 is a hermitian
projection. Since BeCy(A) is clearly equivalent to
T-'BTeC,(T-'AT) we have T-'BTeC,(T-'AT), for

we have shown
(T-'AT)(T-'BT)=(T-'BT)(T-'AT)=T-'CT

to be hermitian.

THEOREM 4. Let Ae¥ (V) and BeC4(A). Then Be# (V)
if and only if AB=BA.

Proor. Let Be# (V). Then from BeCyA) we have
that AB and BA are hermitian and it follows from
Lemma 4 that AB= BA. Conversely let AB=BA. Then
it follows from Theorem 2 that Be¥ (V).

It is known [4, 5] that BeC4(A) commutes with A
if and only if B is a polynomial in 4, and that BeC(A)
is a polynomial in 4 if and only if 4 is an EPr matrix
[5]. We combine these results with Theorem 4 to obtain:

THEOREM 5. Let Ae?(V) and BeC4(A). Then the
following conditions are equivalent.

(i) BeZ(V)

(i) AB=BA

(iii) B is a polynomial in A

(iv) A is an EPr matrix.
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