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The matrix A is said to be symmetri zable by V when V is positive definite and AV is hermitian. 
Several le mmas regard ing symmetrizability are given. For three classes of generalized inverses it 
is s hown that if A is s mmetrizable by V the re exists a generali zed inverse in each class which is sy m­
metrizable by V. The Moore·Penrose inverse (or pseudo-inverse) of a matrix symmetrizable by V is 
also symmetrizable by V if and only if the matrix and the pseudo-inverse com mute. 
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1. Introduction 

We call a matrix A symmetrizable if there exis ts a 
positive definite V such that AV is hermitian. In that 
case A is said ~o be symmetrizable by V. Given an A 
symmetrizable by V we inquire for the existence of 
generali zed inverses of A which are symmetrizable by 
the same matrix V. For several classes of generalized 
inverses which have been previously discussed [3, 4, 
7 and references therein] 1 it is shown that such sym­
metrizable generalized inverses exist. In particular 
it is shown that the C2-inverse [3, 4] (also called 
reflexive generalized inverse [7] or semi-inverse [1]) 
of a symmetrizable matrix which commutes with the 
matrix is symmetrizable by the same V. Finally it is 
shown that the Moore-Penrose inverse, B, of a matrix 
A symmetrizable by V is symmetrizable by V if and 
only if A and B commute. 

2 . Preliminaries and Notation 

All matrices are considered to have complex entries. 
For any matrix M, we de note by M * and p(M) the 
conjugate transpose and rank of M respectively. We 
write AE.9' (V) when and only when V is positive 
definite and AV is hermitian. If A E.9' (V), we say that 
A is symmetrizable to the right by V. We consider 
only sym metrizability to the right. Since we show, 
Lemma 1, that A is symmetrizable to the right by V 
if and only if A is symmetrizable to the left by V- I, 
an analogous set of results could be derived regarding 
left symmetrizability. For a given matrix A we define 
C; (A) to be the se t of all matrices B which satisfy the 
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first i of the relations (i) ABA = A, (ii) BAB = B , (iii) 
AB= (AB)* and (iv) BA = (BA)*. A matrix BECi(A) 
is called a Ci-inverse of A. The correspondence be­
tween this terminology and others whic h are in use 
has been noted elsewhere [3, 4]. The set C4 (A) con­
tains a single uniquely determined matrix which is 
the Moore-P enrose inverse [6] of A. If BECi(A) , i < 4, 
then B is not uniquely determined by A unless other 
conditions are imposed. For example, if BEC2 (A) and 
commutes with A then B is uniquely de termined 
by A [4]. 

3. Symmetrizable Matrices 

In this section we give several lemmas which are 
needed in the re mainder of the paper. 

LEMMA 1. Let A be a given matrix, V be positive 
definite, and T be the positive definite square root of 
V. If anyone of the matrices SI = A V, S2 = V - I A and 
S3 = T- I AT is hermitian, then all are hermitian. There 
exists a positive definite H such that H - 1 AH is hermi­
tian , if and only if A is similar to a real diagonal 
matrix. 

PROOF. From T2 = V and the definitions of the 5 i 

we have 51 = V5 2V = T53T from which it follows at 
once that if any 5 i is hermitian then every 5 i is hermi­
tian. If H - IAH is hermitian then A is similar to a 
hermitian matrix and thus has real roots and is diag­
on able. Conversely, let P - IAP = A where A is real 
and diagonal. If P = HQ is the polar factorization of 
P , where H is positive definite and Q is unitary, then 
we have that H - 1AH=QAQ* is hermitian. 

For ready reference we have included the above 
simple proof of Lemma 1, but the content of the 
lemma is known: That Ae.9' (V) is equivalent to 
A*E.9'(V-I) has been shown [2]. Further if 51 =5;, 
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then A can be written as the product of two hermitian 
matrices one of which is positive definite. That this 
is possible if and only if A is similar to a real diagonal 
matrix is a known theorem [9]. 

LEMMA 2. If AEY(V) then APEY(V) for every integer 
p ~O. 

PROOF. AEY( V) , by Lemma 1, implies 

T - IAT=S=S*, 

where T2 = V and T is positive definite. But then 
T- IA JJT =Sp is hermitian and Lemma 1 then gives 
APEY( V). 

Lemma 2 has been proved in a much more general 
context [8] and a slightly different proof has been 
given elsewhere [2]. 

LEMMA 3. Let AEY(V) and BEY(V). Then ABEY(V) 
if and only if AB = BA. 

PROOF. Let C = AB and T -ICT =P. Then 

(T - IAT)(T- IBT) = P. 

We choose T to be the positive definite square root of 
V and then, by Lemma 1, P is the product of two 
hermitian matrices. Thus P = P* if and only if A and 
B commute, But, by Lemma 1, p = p* if and only if 

LEMMA 4. Let AEY(V), BEY (V) and define C I = AB, 
C2 = BA. If C I is hermitian, then C I is similar to C2 • 

If C I and C2 are hermitian, then C I = C2• 

PROOF. By Lemma 1 we may write C I as the product 
of two hermitian matrices: CI = (AV) (V - IB). If 
CI=Ci we have CI =V- IBAV =V- IC2 V, and the 
first assertion is proved. If additionally C2 = C:, then 
CI = V - IC2V= VC2V - I = Ci which implies C2V=VC2 • 

But then CI = C2• 

4. Symmetrizable Generalized Inverses 

THEOREM 1. Let AEY (V). Then there exist matrices 
BjEY(V), i = 1, 2, 3, such that BjECj(A). 

PROOF. Let AV=S = S*. Then there exists [7] an 
H=H* such that HECI(S). Given this , 

SHS=S=AV=AVHAV 

shows that BI = VHECI(A). Further V - IBI = H implies, 
by Lemma 1, that BIEY (V). By a known theorem [3], 
if B2 = BIABI then B2EC2(A). But 

is hermitian and, by Lemma 1, we have B2EY (V). Now 
let KEC4(S). Then [6], K = K*. Further, 

SKS=S=AV=AVKAV 

and KSK=K =KAVK show that B3=VKEC2(A). 
Since SK is hermitian and SK= (AV) (V - IB3) =AB3, 

we have B3EC3(A). Finally V - 1B3=K=K* implies, 
by Lemma 1, that B3EY(V). 

THEOREM 2. Let AEY(V). Then there exists a 

uniquely determined by A, such that AB = BA. Further, 
BEY(V). 

P ROOF. From Lemma 1, AEY(V) implies that A 
is diagonable and hence that peA) = p(A2). Given thi s 
condition on the rank of A, it follows from a known 
theorem [4] that there exists a uniquely determined 
BEC2(A) which commutes with A ; furthermore thi s B 
is a polynomial g(A) in A. From the construction [4] 
of B = g(A), the coefficients of g are real if the roots 
of A are real, a condition insured QY Lemma 1. This 
being the case, AEY(V) implies, by Lemma 2, that 
g(A )EY(V) and the theorem is pro ved. 

THEOREM 3. Let At:Y(V) and BEC 2(A) commute. 
Th en T - IBTEC4 (T - IAT), where T is the positive definite 
square root 0/ V. 

PROOF. By Theorem 2, BEY(V) and given this we 
have, from Lemma 3, that the projection C=AB = BA 
is such that CEY(V). By Lemma 1, T - ICT is a hermitian 
projection. Since BEC2(A) is clearly equivalent to 
T - IBTEC2(T-IAT) we have T-IBTEC4 (T - IAT) , for 
we have shown 

to be hermitian. 
THEOREM 4. Let AEY (V) and BEC4(A). Then BEY(V) 

if and only if AB = BA. 
PROOF. Let BEY(V). Then from BEC4(A) we have 

that AB and BA are hermitian and it follows from 
Lemma 4 that AB = BA. Conversely let AB = BA. Then 
it follows from Theorem 2 that BEY (V). 

It is known [4, 5] that BEC4 (A ) commutes with A 
if and only if B is a polynomial in A, and that BEC4(A) 
is a polynomial in A if and only if A is an EPr matrix 
[5). W e combine these results with Theorem 4 to obtain : 

THEOREM 5. Let AEY(V) and BEC 4 (A) . Then the 
foLLowing conditions are equivalent. 

(i) BEY (V) 
(ii) AB = BA 
(iii) B is a polynomial in A 
(iv) A is an EPr matrix. 
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