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Partially Isometric Matrices* 

John Z. Hearon** 
(September 27. 1967) 

Th e complex, not necessaril y square matrix A is called a partial isometry if the vectors x and A x 
have the same Euclidean norm whenever x is in the orthogonal complement of the null space of A. The 
main result s of the paper give necessary and sufficient conditions for a matrix to be a partial isometry, 
for a partial isometry to be normal and for the product of two partial isometries to be a partial isometry. 
A factorization for an arbitrary matrix involving partial isometries is given. The concept of a ge neralized 
inverse is used in establishing the primary results . 
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1. Introduction 

It is the purpose of this paper to study certain 
properties and characterizations of partial isometries. 
In most cases the results are new but in some cases 
(Lemma 2, Corollary 2 and part of Theorem 5) we 
give generalizations of results due to Erdelyi [3].1 No 
attempt is made to give a complete review or a unified 
treatment. Emphasis is placed upon those properties 
and characterizations fo·r whic h analogous or parallel 
theorems exist with respect to other "partial prop
erties." In a later paper [8] we define matrices which 
are partially involutory, partially circular or partially 
orthogonal and devote some discussion to the com
parative anatomy of these four kinds of "partial" 
matrices (partial isometries, partial involutions, 
matrices which are partially circ ular and matrices 
which are partially orthogonal). 

2. Preliminaries and Notation 

All matrices considered have complex entries. For 
,any matrix V we denote by p(V) , N(V), R(V) and 
V* the rank, null space, range and conjugate-transpose, 
respectively of V. For a subspace S we denote by S .l 
the orthogonal complement of S. For any vector x 
we define the Euclidean norm in the usual way by 
IIxl12 = x*x. For generalized inverses we adopt the 
terminology previously used [5, 6, 7]: a matrix B is 
called a Ci-inverse of the matrix A if and only if B 
satisfies the first i of the relations (l) A = ABA, (2) 
B = BAB, (3) AB= (AB)*, (4) BA = (BA)*. The C4 -

inverse is the Moore-Penrose inverse and is unique. 
If B is a Ci-inverse of A we sometimes write BEC; (A). 
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3. Partial Isometries 

The primary definition of a partial isometry is taken 
to be: A is a partial isometry if and only if IlAxll = Ilxll 
whenever xEN(A) .l. In what follows many of the 
results deal with equivalent characterizations of a 
partial isometry. 

LEMMA 1. Of the following statements anyone 
implies each of the others : (i) A is a partial isometry, 
(ii) A * A is idempotent, (iii) AA * is idempotent, (iv) 
A = AA*A, (v) A* = A*AA *. 

PROOF. It is no restriction to assume that A has n 
columns and p(A) = r. Define E = A*A and let Xi , 
1 ~ i ~ r be orthonormal vectors such that Ex; = AiXi , 
Ai =l= O. The Xi form a basis for N (A) .l . If E is idempotent , 
Ai = 1, xiExi=xix; and A is a partial isometry_ Con
versely, let A be a partial isom etry. Then, 

xiExi = A; (X'iXi) = XiXi' 

which requires Ai = 1, and E is idempotent. Thus 
(i) ~ (ii)_ By a known theorem [5] the matrix B is a 
CI-inverse of A if and only if BA is idempotent and 
p(BA) =p(A) and if and only if AB is idempotent and 
p(AB) = p(A). By this theorem, (ii) is equivalent to 
(iii) and to (iv), and clearly (iv) is equivalent to (v). 

Lemma 1 is well known [3,4] and can be summarized 
by the statement: A is a partial isometry if and only if 
A* is the C4:inverse of A_ We present Lemma 1 for 
ready reference and to show clearly that A*EC 1 (A) 
characterizes a partial isometry and that, since 
p(A) = p(A*) and A*A and AA* are hermitian, 
A*EC1(A) implies A*EC4 (A). Later [8], we study 
matrices such that T(A)EC 1 (A), where T(A) is a 
matrix valued function of A, and draw analogies 
between such matrices and partial isometries 
(T(A) =A*). 
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The following lemma generalizes a theorem of 
Erdelyi [3] which states that if A is a partial isometry 
then every matrix unitarily similar to A IS 11 partial 
isometry. 

LEMMA 2. The matrix A is a partial isometry if 
and only if T1AT2 is a partial isometry, where Tl and 
T2 are unitary. 

PROOF: Let P = T1AT2, where Tl and T2 are any 
unitary matrices such that the product P is defined. 
Then PP* = T1AA*Tl*. If A is a partial isometry then, 
by Lemma 1, AA* is idempotent, hence PP* is idem
potent and, by Lemma 1, P is a partial isometry. By 
this very result, if P is a partial isometry then 

A = T iPT ~ 

is a partiahsometry. 
THEOREM 1. Let M be the m X n matrix with ones 

in the first r diagonal positions and zero entries else
where. Then an m X n matrix, A, of rank r is a partial 
isometry if and only if A = UMV where U and V are 
unitary. 

PROOF: Let A = VMV. Since M*M is idempotent, 
M is, by Lemma 1, a partial isometry and, by Lemma 2, 
A is a partial isometry. Let A be m X nand p (A) = r. 
Then by a known theorem [2J we can write A = VfV. 
Here V and V are unitary, the first r diagonal elements 
of f are the nonzero roots of A * A and all other entries 
of f are zero. If A is a partial isometry then, by Lemma 
1, A * A is idempotent, the first r diagonal elements of 
f are unity and f = M. 

The following corollary of Theorem 1 has been given 
direct proof elsewhere [6]. 

COROLLARY 1. The square matrix A is a partial 
isometry if and only if A = QE and if and only if 
A = FQ where Q is unitary, E and F are orthogonal 
projections. 

PROOF: If the partial isometry A = VMV is square, 
we can write 

A= (VV)(V*MV) = QE= (VMV*)(VV) =FQ, 

where Q = VV is unitary, E = V*MV and F = VMV* 
are orthogonal projections. Conversely if A = QE then 
A * A = E and, by Lemma 1, A is a partial isometry. 
Similarly if A = FQ, then AA* = F implies A is a 
partial isometry. 

THEOREM 2. If A is an m X n partial isometry of 
rank r, then A = UrV, where Ur is an m X n matrix 
the first r columns of which are an orthonormal set of 
vectors while the remaining columns are zero vectors, 
and V is unitary. Conversely every matrix of the form 
UrV with Ur and V as described is a partial isometry. 

PROOF: If A is a partial isometry of rank r we have 
from Theorem 1, 

A= (VM)V=[ut, U2 , ... , ur, 0, .. . ,O]V, 

where Ui, 1 ,,;;; i ,,;;; r, are the first r columns of V. Con
versely, given orthonormal vectors Ui, 1 ,,;;; i ,,;;; r, in 
m-space, the m X n matrix 

Vr= [ut, U2, ... , ur, 0, ... ,0] 

is by Lemma 1, a partial isometry, since V:Vr is idem
potent. By Lemma 2, VrV is a partial isometry if V is 
unitary. 

COROLLARY 2. A square matrix of rank r is a partial 
isometry if and only if it is unitarily similar to a matrix 
the first r columns of which are an orthonormal set 
of vectors and the remaining columns of which are zero 
vectors. 

PROOF: By Theorem 2, the square partial isometry 
A of rank r can be written A = VrV and we have 
VAV*=VV,.=[ql, q2 , ... , qr, 0, . .. ,0] where 
qi = VU;, 1,,;;; i ,,;;; r. Conversely, given orthonormal 
vectors qi, 1 ,,;;; i ,,;;; r, the square matrix 

[ql , q2, .. . ,qr,O, ... , 0] 

is a partial isometry and by Lemma 2 so is any matrix 
unitarily similar to it. 

REMARKS: There are evidently " row versions " of 
Theorem 2 and Corollary 2. Further, in Theorem 2 
and Corollary 2, the non-zero columns of VI' can be 
placed in any r positions by replacing V by pp*v 
where P is a permutation matrix. Corollary 2 was 
given as a theorem by Erdelyi [3]. A more direct 
proof is: By Corollary 1, A=QE. Let T*ET= diag(Ir, 0), 
T unitary. Then from T*AT = (T*QT) diag (II" 0) the 
'only if statement is read. The 'if statement is proved 
as above. 

The following theorem may be viewed as a generali
zation of the theorem [1, 4, 6], which we obtain as a 
corollary below, that a square matrix A can be factored 
as A = PH where P is a partial isometry and H is 
positive semidefinite. 

THEOREM 3. Every matrix of rank r can be factored 
as A = PlfV = UfP2 =' P lfP2 where U and V are 
unitary, PI and P2 are partial isometries , r has positive 
entries on the first r diagonal positions and zero 
entries elsewhere. 

PROOF: We factor A as A = vrv where V, V and f 
are as in the proof of theore m 1. Let L be the C4 -

inverse of f. Then rLr = f and EI = fL and E2 = Lr 
are orthogonal projections. Further 

Thus we have 

But by Corollary 1, PI = VEl and P2 = E2V are partial 
isometries. 

COROLLARY 3. The square matrix A can be factored 
as A = PH where P is a partial isometry and H is 
positive semidefinite. 

PROOF: From Theorem 3, if A = PlfV is square we 
have A = (PI V) (v*rV) where H = v*rv is positive 
semidefinite and, by Lemma 2, P = PIV is a partial 
isometry. 

THEOREM 4: Let A be a partial isometry of rank r. 
Then A is unitarily similar to diag (C, 0), where C is 
r-square and nonsingular, if and only if A is normal. 
I n that case C is unitary. 
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PROOF: Let A = P* diag (C, O)P, where P is unitary. 
Then , by Lemma 1, AA* = P* diag (CC*, O)P is idem· 
potent and hence CC* is idempotent. But then , since 
C is nonsingular, C is unitary and A is normal. Con· 
versely , let A be a normal partial isometry of rank r. 
Then there is a unitary P such that A = P* diag (C, O)P, 
where C is r·square of rank r. Then as above C is 
unitary. 

COROLLARY 4: Let A be a partial isometry of rank r. 
Then A is an EPr matrix (i.e., N(A) = N(A *» if and 
only if A is normal. 

PROOF: By a known theorem [9], A is an EPr matrix 
if and only if A is unitarily similar to diag (C, 0), where 
C is r·square and nonsingular. But, according to The· 
orem 4, this is the case for a partial isometry if and 
only if A is normal. 

REMARK: Corollary 4 can be obtained in a different 
way and without reference to Theorem 4. It is known 
[11] that a matrix A co mmutes with its C4·inverse if 
and only if A is an EPr matrix. If A is a partial isometry, 
then by Lemma 1 and the remarks following that 
lemma we have A*€C4 (A). Thu s if A is an EPr partial 
isometry, A and A* commute and A is normal. Con· 
versely every (complex) normal matrix is an EP,. 
matrix. 

The next lemma is a special case of a generalization 
[8J of the statement [10] that an isometry is an involu
tion if and only if it is hermitian. We prove it here 
from a different point of vi ew as a step toward Lemma 
4 which is repeatedly used in the proof of Theorem S. 

LEMMA 3. A partial isometry is a projection if and 
only if it is an orthogonal projection. 

PROOF: By a known theorem [4], if E is a projection 
then IIExl1 ~ Ilxll, for all x, if and only if E = E*. With 
thi s in mind we observe from Theorem 1 that if A is a 
partial isometry then IIAxl1 = IIUMVxl1 = IIMVxl1 ~ Ilxll, 
since M * M is an orthogonal projection, and the lem ma 
follows. 

LEMMA 4: Let E and F be orthogonal projections. 
Then C = FE is a partial isometry if and only if C is 
an orthogonal projection. 

PROOF: Let C be a partial isometry, then 

C*C=EFE=EC and C=CC*C = CEC=C2, 

where the first equality follows from Lemma 1 and the 
last from CE = C. But now C is both a partial isometry 
and a projection and by Lemma 3, is an orthogonal 
projection. Conversely, by Lemma 1, every orthogonal 
projection is a partial isometry. 

THEOREM 5: Let Wand V be partial isometries and 
P = WV. Then P is a partial isometry if and only if 
W*W and VV* commute. If either Wand VV* or V 
and W*W commute then P is a partial isometry. 

PROOF: If both Wand V are square, the proof of 
the first statement in the theorem is quite direct and 
we give this special case first: By Corollary 1, write 
W = QE and V = FU, E and F orthogonal projections, 
Q and U unitary. Then P = QEFU. If P is a partial 
isometry then, by Lemma 2, EF is a partial isometry 
and is thus, by Lemma 4 an orthogonal projection. 
Thus EF=FE. butE= W*W and F= VV*. Conversely, 

if EF=FE then EF is a partial isometry and so, by 
Lemma 2, is P = QEFU. Now let Wand V be arbitrary 
except that WV is defined, and still define E = W*W 
and F= VV*. Then PP*P= WFEV. If EF = FE, we 
have PP*P= (WE)(FV) = WV=P, since by Lemma 
1, WE= Wand FV= V, and then, by Lemma 1, P is 
a partial isometry. Now suppose P is a partial isometry. 
Then by Lemma 1, PP*P = P , or WFEV= WV, from 
which it follows (left multiplication by W* and right 
multiplication by V*E) that EFEFE = EFE = (EFE)(EFE). 
Thus EFE is a projection. But EFE= (FE)*(FE) and, 
by Lemma 1, FE is a partial isometry. By Lemma 4, 
FE is an orthogonal projection and hence EF=FE. 
As for the second assertion of the theorem , suppose 
Wand F commute. It then follows that E and F 
commute and by what we have proved so far WF=FW 
is sufficient for P to be a partial isometry. Similarly 
if V and E commute it follows that E and F commute 
and VE = EV is sufficient for P to be a partial isometry. 

The last statement of Theorem 5 is a theorem of 
Erdelyi [3]. It assumes that either W or V is square. 
The above proof was based on the first statement in 
the theorem and implications 

W(VV*) = (VV*)W ~ (W*W) (VV*) = (VV*) (W*W) 

and 

V(W*W)= (W*W)V ~ (W*W)(VV*) = (VV*)(W*W).-

(Note that neither reverse implication is necessarily 
true.) A greatly shortened direct proof of Erdelyi's 
theorem is this: With W, V, E and F defined as in 
Theorem 5 and its proof, we observe that if Wand F 
commute then F co mmutes with both E and WW *. 
If so, the n PP*= WF/P*= F(WW*)= (WW*)F shows 
PP* to be idempotent and by Lemma 1, P is a partial 
isometry. In the same way if V and E commute then 
E commutes with both F and VV* so that 

P*P= V*EV= (V*V)E=E(VV*), 

P*P is idempotent, and P is a partial isometry. 
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