On Certain Discrete Inequalities and Their Continuous Analogs *

Allen M. Pfeffer

(May 24, 1966)

The purpose of this paper is to find inequalities between the L^2-norms of a function and its kth and mth derivatives.

Key Words: Inequalities, norms, Wirtinger.

1. Introduction

In 1955 [2] Fan, Taussky, and Todd discovered discrete analogs of certain integral inequalities involving functions and their derivatives. They considered inequalities of the Wirtinger type:

$$\int_0^{2\pi} x(t)^2 dt \leq \int_0^{2\pi} x'(t)^2 dt,$$

where x has period 2π and $\int_0^{2\pi} x(t)dt = 0$. By taking limits they were able to derive continuous inequalities by matrix techniques and avoided the differential equations of the calculus of variations. We have attempted to generalize the techniques of [2] to polynomials in the derivatives of x. We have also considered analogs of inequalities of Müller [5] and Redheffer [7] and have used these inequalities to derive a necessary and sufficient condition on ordered pairs of numbers so that the first number is the square norm of the kth derivative of some periodic function and the second number is the square norm of the mth derivative of the same periodic function. This last result is the L_2 analog of a result of Kolmogoroff [4] on the uniform norm.

2. General Technique

The following is the basic technique of Fan, Taussky, and Todd [2] and will be used to derive most of our inequalities. Let S be a real symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ and let v_1, v_2, \ldots, v_n be the corresponding linearly independent eigenvectors:

$$Sv_i = \lambda_i v_i (i = 1, 2, \ldots, n).$$

If P is a polynomial with real coefficients, then $P(S)$ is a real symmetric $n \times n$ matrix and we know that $P(S)$ has eigenvalues $P(\lambda_1), P(\lambda_2), \ldots, P(\lambda_n)$ with corresponding eigenvectors v_1, v_2, \ldots, v_n so that $P(S)v_i = P(\lambda_i)v_i (i = 1, 2, \ldots, n)$.

By a well-known property of symmetric matrices

$$\min \left[1 \leq i \leq n \{ P(\lambda_i) \} \right] \cdot (x, x) \leq (x, P(S)x) \leq \max \left[1 \leq i \leq n \{ P(\lambda_i) \} \right] \cdot (x, x)$$

for every n-vector x, where $(x, y) = x^Ty$ for n-vectors x and y.

Now we must have

$$\inf [\lambda_n \leq t \leq \lambda_1 \{ P(t) \}] \cdot (x, x) \leq \min \left[1 \leq i \leq n \{ P(\lambda_i) \} \right]$$

*An invited paper. This work was supported by the National Science Foundation and the Office of Naval Research. Part of this was included in a California Institute of Technology Ph. D. thesis (1965).

1 Present address: California Institute of Technology.

2 Figures in brackets indicate the literature references at the end of this paper.

221
and
\[\sup_{\lambda_n \leq t \leq \lambda_1 \{P(t)\}} \max_{1 \leq i \leq n \{P(\lambda_i)\}} \]

hence
\[\inf_{\lambda_n \leq t \leq \lambda_1 \{P(t)\}} \sup \left(x, x \right) \leq \left(x, P(S)x \right) \leq \inf_{\lambda_n \leq t \leq \lambda_1 \{P(t)\}} \sup \left(x, x \right) \]

for every \(n \)-vector \(x \).

We note that equality is possible in the last expression if and only if \(P(\lambda_i) = \lambda_n \leq t \leq \lambda_1 \{P(t)\} \)
\[\inf \]
for some \(i \) between 1 and \(n \) or \(P(\lambda_i) = \lambda_n \leq t \leq \lambda_1 \{P(t)\} \) for some \(i \) between 1 and \(n \). If equality does occur then the set of extremal vectors must be the space spanned by the eigenvectors corresponding to \(\lambda_i \).

For reasons of simplicity we will only consider vectors with real components and real symmetric matrices, in all cases the extension to complex vectors and Hermitian matrices will be apparent.

3. Periodic Boundary Conditions

Because of the absence of troublesome boundary conditions the periodic case is easiest to handle. We may periodically extend any \(n \)-vector \(x = (x_1, x_2, \ldots, x_n)^T \) by setting \(x_{i+r} = x_i \) for \(i = 1, 2, \ldots, n \) and \(r \) any integer.

DEFINITION: If \(x \) is a periodically extended \(n \)-vector then for \(m = 0, 1, 2, \ldots \)
\[x^{(m)} = (\Delta^m x_1, \Delta^m x_2, \ldots, \Delta^m x_n)^T, \]

where
\[\Delta^m x_i = \sum_{r=0}^{m} (-1)^m \binom{m}{r} x_{i-[m/2]+r}, \quad (i = 1, 2, \ldots, n). \]

We call \(x^{(m)} \) the \(m \)th difference of the \(n \)-vector \(x \).

It is clear that \(x^{(r+s)} = (x^{(r)})^{(s)} \) for \(r, s = 0, 1, 2, \ldots \).

The following lemma, which is crucial for our inequalities, was proved by Fan-Taussky-Todd [2] for \(m = 0, 1, 2 \).

LEMMA 1. If \(x \) is a periodically extended \(n \)-vector, then \((x^{(m)}, x^{(m)}) = (x, P^m x) (m = 0, 1, 2, \ldots) \), where \(P \) is the \(n \times n \) symmetric circulant
\[
\begin{bmatrix}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
-1 & 0 & \ldots & \ldots & -1 & 2
\end{bmatrix}
\]

222
PROOF:

\[
P_x = \begin{bmatrix}
-x_n + 2x_1 - x_2 \\
\vdots \\
-x_1 + 2x_n - x_{n-1}
\end{bmatrix} = -x^{(2)}, \text{ hence } P_x^{(j)} = -x^{(j+2)}.
\]

By partial summation

\[
(x, x^{(2)}) = \sum_{k=1}^{n} x_k(x_{k-1} - 2x_k + x_{k+1}) = -\sum_{k=1}^{n} (x_{k+1} - x_k)^2 = -(x^{(1)}, x^{(1)}),
\]

yielding

\[
(x^{(j)}, P_x^{(j)}) = (x^{(j+1)}, x^{(j+1)}).
\]

Thus if \(m\) is even we have

\[
(x^{(m)}, x^{(m)}) = (P^{\frac{m}{2}}x, P^{\frac{m}{2}}x) = (x, P^m x),
\]

while if \(m\) is odd

\[
(x^{(m)}, x^{(m)}) = (x^{(m-1)}, P_x^{(m-1)}) = (P^{\frac{m-1}{2}}x, P \cdot P^{\frac{m-1}{2}}x) = (x, P^m x).
\]

Rutherford [8] has shown that \(P\) has eigenvalues \(4 \sin^2 \left(\frac{k\pi}{n}\right) (k = 1, 2, \ldots, n)\), hence \(\lambda_n = 0, \lambda_{n-1} = \lambda_{n-2} = 4 \sin^2 \left(\frac{\pi}{n}\right), \ldots, \lambda_1 = 4 \sin^2 \left(\frac{n}{2}\right)\). The eigenvector corresponding to \(\lambda_n\) is \((1, 1, \ldots, 1)^T\).

At this point we have two alternatives open to us. If \(F\) is a polynomial with real coefficients then we may use the method that we have described in section 2 or else we may also add the auxiliary condition \(\sum x_i = 0\), which is equivalent to the requirement \((x, e) = 0\), where \(e = (1, 1, \ldots, 1)^T\). Since \(e\) is the eigenvector corresponding to \(\lambda_n = 0\), the auxiliary orthogonality condition implies that we need only take our maximum and minimum over \(\{F(\lambda_1), F(\lambda_2), \ldots, F(\lambda_{n-1})\}\).

The following example should illustrate the differences in the two approaches.

Let \(P(t) = tm\) for \(m \geq 1\). Since \(P(t)\) is increasing for nonnegative \(t\) and since \(0 = \lambda_n < \lambda_{n-1} < \ldots < \lambda_1\), we have \(1 \leq i \leq n\{P(\lambda_i) = 0\} = 1\) and \(1 \leq i \leq n-1\{P(\lambda_i) = P(\lambda_{n-1}) = 4m \sin^2 \left(\frac{\pi}{n}\right)\}.

Thus if \(x\) is a periodically extended \(n\)-vector then we have the trivial inequality \((x^{(m)}, x^{(m)}) \geq 0(x, x) = 0\); however if we add the auxiliary condition \(\sum x_i = 0\), then we obtain \((x^{(m)}, x^{(m)}) \geq 4m \sin^2 \left(\frac{\pi}{n}\right)(x, x)\).

We note that the above inequalities are best possible and we include a discussion of the possibility of equality. For brevity this will be the only case where we discuss equality in the discrete case.

If \((x^{(m)}, x^{(m)}) = 0\), then \(x\) must be in the subspace spanned by the eigenvectors corresponding to \(\lambda_n = 0\). Thus \(x = a \cdot (1, 1, \ldots, 1)^T\), where \(a\) is a real number.
If \(\sum_{i=1}^{n} x_i = 0 \) and \((x^{(m)}, x^{(m)}) = 4^m \sin^{2m} \left(\frac{\pi}{n} \right) \cdot (x, x) \), then \(x \) must be in the subspace spanned by the eigenvectors corresponding to \(\lambda_{n-1} = \lambda_{n-2} = 4 \sin \left(\frac{\pi}{n} \right) \). It is known, [2], that this subspace is spanned by the vectors \(u = (u_1, u_2, \ldots, u_n)^T \) and \(w = (w_1, w_2, \ldots, w_n)^T \), where \(u_j = \cos \left(\frac{2\pi j}{n} \right) \) and \(w_j = \sin \left(\frac{2\pi j}{n} \right) \). Thus \(x = a \cdot u + b \cdot w \), where \(a \) and \(b \) are real numbers.

Hence we have established the following extension of Theorem 10 of [2].

Theorem 1. If \(x \) is a periodically extended \(n \)-vector and if \(\sum_{i=1}^{n} x_i = 0 \), then

\[(x^{(m)}, x^{(m)}) = 4^m \sin^{2m} \left(\frac{\pi}{n} \right) \cdot (x, x). \]

Equality holds if and only if \(x \) is the periodic extension of a vector of the form \(a \cdot u + b \cdot w \).

Corollary 1.1. If \(x(t) \in C^m[a, b] \), \(x(t) \) has period \(b - a \), and \(\int_{a}^{b} x(t) dt = 0 \), then

\[\int_{a}^{b} \{x^{(m)}(t)\}^2 dt \geq \left(\frac{2\pi}{b-a} \right)^{2m} \int_{a}^{b} \{x(t)\}^2 dt. \]

Proof:

If we let \(\Delta = \frac{b-a}{n+1} \) and \(y_i = x(t_i) - \frac{1}{n} \sum_{j=1}^{n} x(t_j) \), where \(t_i = a + i\Delta \), then

\[\frac{(y^{(m)}, y^{(m)})}{\Delta^{2m}} \cdot \Delta \geq \frac{4^m \sin^{2m} \left(\frac{\pi}{n} \right)}{\Delta^{2m}} \cdot (y, y) \Delta. \]

The result now follows when we let \(n \to \infty \).

A careful inspection of the proof of Theorem 1 will show that we only used the periodic extension property of the \(n \)-vector \(x \) on \(x_1 - \left[\frac{m}{2} \right], x_2 - \left[\frac{m}{2} \right], \ldots, x_0, x_1 + 1, x_2 + 2, \ldots, x_{n+m-\left[\frac{m}{2} \right]} \). Hence we may weaken our requirement \(x(t) \) has period \(b-a \) to a condition on the end points, namely \(x(a) = x(b), x'(a) = x'(b), \ldots, x^{(m-2)}(a) = x^{(m-2)}(b). \)

Halperin and Pitt [3], Müller [5], Nirenberg [6], and Redheffer [7] have developed inequalities of the form:

\[\int_{a}^{b} \{x'(t)\}^2 dt \leq \alpha \int_{a}^{b} \{x''(t)\}^2 dt + H(\alpha) \int_{a}^{b} \{x(t)\}^2 dt, \]

where \(x(t) \in C^2[a, b], \alpha > 0 \). Redheffer obtained the best possible value of \(H(\alpha) \). We will now develop generalizations of the form:

\[\int_{a}^{b} \{x^{(k)}(t)\}^2 dt \leq \alpha \int_{a}^{b} \{x^{(m)}(t)\}^2 dt + H_{k, m}(\alpha) \int_{a}^{b} \{x(t)\}^2 dt, \]

\[1 \leq k < m \] under the further restriction that \(x(a) = x(b), x'(a) = x'(b), \ldots, x^{(m-1)}(a) = x^{(m-1)}(b). \)

These inequalities will be established by taking limits of the appropriate discrete inequalities.

224
Incidentally we observe that \(H_{1,2}(\alpha) \) for our periodic case is much smaller than Redheffer’s general value of \(\frac{1}{\alpha} + \frac{12}{(b-a)^2} \).

If we let \(P(t) = \theta^k t^k - \alpha t^m \), then we wish to maximize \(P(t) \) on \([\lambda_n, \lambda_1] = \left[0, 4 \sin^2 \left(\frac{n}{2} \frac{\pi}{n} \right) \right] \).
Since \(P'(t) = k \theta^k t^{k-1} - m \alpha t^{m-1} \), if we assume that \(\theta > 0 \) then the maximum value of \(P(t) \) on \(t \geq 0 \) occurs at \(t = \frac{1}{\theta} \left(\frac{k}{m \alpha} \right)^{1/m-k} \). Thus \(\lambda_n \leq t \leq \lambda_1 \{ P(t) \} \leq P \left(\frac{1}{\theta} \left(\frac{k}{m \alpha} \right)^{1/m-k} \right) = \left(\frac{k}{m \alpha} \right)^{k/m-k} \left(1 - \frac{k}{m} \right) \).

An inspection of the graph of \(P(t) \) will yield the following cases:

If \(\lambda_1 \geq \frac{1}{\theta} \left(\frac{k}{m \alpha} \right)^{1/m-k} \) then
\[
\sup_{\lambda_n \leq t \leq \lambda_1} \{ P(t) \} = P \left(\frac{1}{\theta} \left(\frac{k}{m \alpha} \right)^{1/m-k} \right) = \left(\frac{k}{m \alpha} \right)^{k/m-k} \left(1 - \frac{k}{m} \right).
\]

If \(\lambda_1 \leq \frac{1}{\theta} \left(\frac{k}{m \alpha} \right)^{1/m-k} \) then
\[
\sup_{\lambda_n \leq t \leq \lambda_1} \{ P(t) \} = P(\lambda_1) = P(4 \sin^2 \left(\frac{n}{2} \frac{\pi}{n} \right)) = 4k^k \sin^2 k \left(\frac{n}{2} \frac{\pi}{n} \right) \left\{ 1 - 4^{m-k} \theta^{m-k} \alpha \sin^{2m-2k} \left(\frac{n}{2} \frac{\pi}{n} \right) \right\}.
\]

If \(n \) is even then \(P(\lambda_1) = 4k^k \{ 1 - 4^{m-k} \theta^{m-k} \alpha \} \).
Hence we have the following result.

Theorem 2. If \(x \) is a periodically extended \(n \)-vector, \(\alpha \) and \(\theta \) are positive constants, \(1 \leq k < m \) then we have the following inequality:
\[
\theta^{k}(x^{(k)}, x^{(k)}) \leq \alpha \theta^{m}(x^{(m)}, x^{(m)}) + \left(\frac{k}{m \alpha} \right)^{k/m-k} \left(1 - k/m \right) (x, x).
\]

If \(4 \leq \frac{1}{\theta} \left(\frac{k}{m \alpha} \right)^{1/m-k} \), then we may improve the above inequality to:
\[
\theta^{k}(x^{(k)}, x^{(k)}) - \alpha \theta^{m}(x^{(m)}, x^{(m)}) \leq 4k^k \{ 1 - 4^{m-k} \theta^{m-k} \alpha \} \cdot (x, x).
\]

Proof:
We note that
\[
4 \leq \frac{1}{\theta} \left(\frac{k}{m \alpha} \right)^{1/m-k}
\]
certainly implies that
\[
4 \sin^2 \left(\frac{n}{2} \frac{\pi}{n} \right) \leq \frac{1}{\theta} \left(\frac{k}{m \alpha} \right)^{1/m-k}
\]
and \(P(t) \) is increasing on the interval \(\left[0, \frac{1}{\theta} \left(\frac{k}{m \alpha} \right)^{1/m-k} \right] \).

225
If we take \(\theta = \left(\frac{n+1}{b-a} \right)^2 \) and let \(n \to \infty \) then we obtain a continuous analog of Theorem 2.

Corollary 2.1. If \(x(t) \in C^n[a, b] \), \(1 \leq k < m \), \(x(a) = x(b) \), \(x'(a) = x'(b) \), \(\ldots \), \(x^{(m-1)}(a) = x^{(m-1)}(b) \), and if \(\alpha > 0 \) then we have the following inequality:

\[
\int_a^b \{x^{(k)}(t)\}^2 dt \leq \alpha \int_a^b \{x^{(m)}(t)\}^2 dt + \left(\frac{k}{m \alpha} \right)^{k/m-1} (1 - k/m) \int_a^b \{x(t)\}^2 dt.
\]

If we let \(k = 1 \), \(m = 2 \) then our constant has the value \(\frac{1}{4\alpha} \) as compared to the Redheffer value of \(\frac{1}{\alpha} + \frac{12}{(b-a)^2} \).

One may now inquire about the possibility of equality in Corollary 2.1; by our previous discussion we see that this is possible if and only if

\[
\lim_{n \to \infty} \max_{1 \leq i \leq n} \left\{ \frac{\theta^k \lambda_i^k - \alpha \theta^m \lambda_i^m}{\lambda_i} \right\} = \left(\frac{k}{m \alpha} \right)^{k/m-1} \left(1 - \frac{k}{m} \right).
\]

However a brief investigation shows that the above expression is not always satisfied, hence Corollary 2.1 is in general not best possible. A little more work will yield the best inequality.

We notice that the smaller eigenvalues of \(P \) approach zero as \(1/n^2 \) and the positive root of \(\theta^k \lambda_i^k - \alpha \theta^m \lambda_i^m \) exhibits a similar behavior:

\[
\lambda_n = 0, \lambda_{n-1} = 4 \sin^2 \left(\frac{\pi}{n} \right) = \frac{4\pi^2}{n^2}, \lambda_{n-3} = 4 \sin^2 \left(\frac{2\pi}{n} \right) = \frac{8\pi^2}{n^2}, \ldots
\]

The root is

\[
\text{root} = \frac{(b-a)^2}{(n+1)^2} \cdot \left(\frac{1}{\alpha} \right)^{1/m-1}.
\]

Hence if we set

\[
L = \left\lfloor \frac{b-a}{2\pi} \cdot \left(\frac{1}{\sqrt[1/m-1]{\alpha}} \right) \right\rfloor,
\]

where \(\lfloor \rfloor \) is the greatest integer function, then \(L \) is the limiting number of distinct eigenvalues of \(P \) which are greater than 0 and less than or equal to the root.

If \(L = 0 \), which occurs when \(\alpha > \left(\frac{b-a}{2\pi} \right)^{2m-2k} \), then

\[
\lim_{n \to \infty} \max_{1 \leq i \leq n} \left\{ \theta^k \lambda_i^k - \alpha \theta^m \lambda_i^m \right\} = 0,
\]

yielding the best possible result:

Corollary 2.2. Let \(x(t) \), \(k \), \(m \) be as in Corollary 2.1 and let \(\alpha > \left(\frac{b-a}{2\pi} \right)^{2m-2k} \), then

\[
\int_a^b \{x^{(k)}(t)\}^2 dt \leq \alpha \int_a^b \{x^{(m)}(t)\}^2 dt.
\]
If we add the auxiliary condition \(\int_a^b x(t)dt = 0 \), then

\[
\lim_{n \to \infty} \max_{1 \leq i \leq n-1} \left\{ \theta^k \lambda_i^k - \alpha \theta^m \lambda_i^m \right\} = \left(\frac{2\pi}{b-a} \right)^{2k} - \alpha \left(\frac{2\pi}{b-a} \right)^{2m} \leq 0
\]

and we obtain the best possible result:

COROLLARY 2.3. Let \(x(t) \), \(k \), \(m \), \(\alpha \) be as in Corollary 2.2 and let \(x \) also satisfy \(\int_a^b x(t)dt = 0 \), then

\[
\int_a^b \{x^{(k)}(t)\}^2dt \leq \alpha \int_a^b \{x^{(m)}(t)\}^2dt + \left\{ \left(\frac{2\pi}{b-a} \right)^{2k} - \alpha \left(\frac{2\pi}{b-a} \right)^{2m} \right\} \cdot \int_a^b \{x(t)\}^2dt.
\]

If \(L \geq 1 \) then there are limiting eigenvalues between zero and the positive root. Hence if we set

\[
J = \left[\frac{b-a}{2\pi} \cdot \left(\sqrt{\frac{k}{m\alpha}} \right)^{1/m-k} \right]
\]

then \(J \) is the limiting number of distinct eigenvalues of \(P \) which are greater than 0 and less than or equal to the maximum of \(\theta^k \lambda_i^k - \alpha \theta^m \lambda_i^m \).

Thus if

\[
\left[\frac{b-a}{2\pi} \cdot \left(\sqrt{\frac{k}{m\alpha}} \right)^{1/m-k} \right] = \frac{b-a}{2\pi} \cdot \left(\sqrt{\frac{k}{m\alpha}} \right)^{1/m-k}
\]

then

\[
\lim_{n \to \infty} \max_{1 \leq i \leq n} \left\{ \theta^k \lambda_i^k - \alpha \theta^m \lambda_i^m \right\} = \left(\frac{k}{m\alpha} \right)^{k/m-k} (1 - k/m)
\]

and Corollary 2.1 is best possible. Otherwise we may replace

\[
\left(\frac{k}{m\alpha} \right)^{k/m-k} (1 - k/m) \text{ by max } \left\{ \left(\frac{2J}{b-a} \right)^{2k} - \alpha \left(\frac{2J}{b-a} \right)^{2m} \cdot \left(\frac{2J+1}{b-a} \right)^{2k} - \alpha \left(\frac{2J+1}{b-a} \right)^{2m} \right\}.
\]

We may summarize the above results by the following best possible inequalities.

COROLLARY 2.4. If \(x(t) \in C^n[a, b], 1 \leq k < m, x(a) = x(b), x'(a) = x'(b), \ldots, x^{(m-1)}(a) = x^{(m-1)}(b) \), and if \(\alpha > 0 \) then

\[
\int_a^b \{x^{(k)}(t)\}^2dt \leq \alpha \int_a^b \{x^{(m)}(t)\}^2dt + H_{k, m}(\alpha) \int_a^b \{x(t)\}^2dt,
\]

where

\[
H_{k, m}(\alpha) = 0 \text{ for } \alpha > \left(\frac{b-a}{2\pi} \right)^{2m-2k},
\]

\[
H_{k, m}(\alpha) = \left(\frac{k}{m\alpha} \right)^{k/m-k} (1 - k/m) \text{ if } \frac{b-a}{2\pi} \cdot \left(\sqrt{\frac{k}{m\alpha}} \right)^{1/m-k}
\]

227
is a positive integer, and otherwise

$$H_{k,m}(\alpha) = \max \left\{ \frac{2J\pi}{b-a} - \alpha \left(\frac{2J\pi}{b-a} \right)^{2m}, \left(\frac{2(J+1)\pi}{b-a} \right)^{2k} - \alpha \left(\frac{2(J+1)\pi}{b-a} \right)^{2m} \right\}. $$

Corollary 2.5. Let \(x(t), k, m, \alpha\) be as in Corollary 2.4 and let \(x\) also satisfy \(\int_a^b x(t)dt = 0\), then

$$\int_a^b \{x^{(k)}(t)\}^2 dt \leq \alpha \int_a^b \{x^{(m)}(t)\}^2 dt + G_{k,m}(\alpha) \int_a^b \{x(t)\}^2 dt,$$

where

$$G_{k,m}(\alpha) = \left(\frac{2\pi}{b-a} \right)^{2k} - \alpha \left(\frac{2\pi}{b-a} \right)^{2m} \text{ for } \alpha > \left(\frac{b-a}{2\pi} \right)^{2m-2k},$$

and otherwise

$$G_{k,m}(\alpha) = H_{k,m}(\alpha).$$

It is not difficult to see that \(H_{k,m}(\alpha)\) and \(G_{k,m}(\alpha)\) are piecewise linear functions of \(\alpha\), which are monotonic decreasing, and that the jumps in the derivatives of \(H_{k,m}\) and \(G_{k,m}\) occur for those positive numbers \(\alpha_i\) which yield

$$\left(\frac{2\pi i}{b-a} \right)^{2k} - \alpha_i \left(\frac{2\pi i}{b-a} \right)^{2m} = \left(\frac{2\pi i + 2\pi}{b-a} \right)^{2k} - \alpha_i \left(\frac{2\pi i + 2\pi}{b-a} \right)^{2m},$$

where \(i\) is a nonnegative integer. We have \(\infty > \alpha_0 > \alpha_1 > \ldots > 0\) and \(\lim_{i \to \infty} \alpha_i = 0\). Note that

$$\int_a^b \left(\sin^{(k)} \left(\frac{2\pi i t}{b-a} \right) \right)^2 dt = \alpha \int_a^b \left(\sin^{(m)} \left(\frac{2\pi i t}{b-a} \right) \right)^2 dt + H_{k,m}(\alpha) \int_a^b \left(\sin \left(\frac{2\pi i t}{b-a} \right) \right)^2 dt,$$

for \(\alpha_i \leq \alpha \leq \alpha_{i-1}\). This accounts for the piecewise linearity of \(H_{k,m}\) and \(G_{k,m}\) and will be a great importance in section 4.

At this stage it is apparent that there is an unlimited number of possible inequalities, in fact every polynomial will give discrete inequalities and polynomials in \(\theta t\) yield continuous analogs.

It is known, see for example [1], that if \(f(t)\) is represented by a power series with real coefficients and if \(A\) is a real symmetric matrix with eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n\) which lie strictly within the circle of convergence of the power series for \(f(t)\), then \(f(A)\) is real symmetric and has eigenvalues \(f(\lambda_1), f(\lambda_2), \ldots, f(\lambda_n)\). This result enables us to extend our polynomial inequalities to discrete inequalities on analytic functions.

Theorem 3. If \(x\) is a periodically extended \(n\)-vector and if \(f(t) = \sum_{m=0}^\infty a_m t^m\), where the \(a_m\) are real numbers and the series converges on a set containing \([0, 4]\) in its interior — if \(n\) is odd then we need only require convergence on a set containing \([0, 4 \sin^2 \left(\frac{\pi}{2n} \right)]\) in its interior — then

$$\inf_{0 \leq t \leq 4\{f(t)\}} |x, x| \leq \sum_{m=0}^\infty a_m (x^{(m)}, x^{(m)}) \leq \sup_{0 \leq t \leq 4\{f(t)\}} |x, x|.$$

The following inequalities are examples of the application of Theorem 3.
Corollary 3.1. If x is a periodically extended n-vector then

$$\sum_{m=1}^{\infty} \frac{1}{m!} (x^{(m)}, x^{(m)}) \leq (e^4 - 1)(x, x).$$

Corollary 3.2. If x is a periodically extended n-vector and $\theta > 0$ then

$$- (x, x) \leq \sum_{m=0}^{\infty} (-1)^m \frac{\theta^{2m+1}}{(2m+1)!} (x^{(2m+1)}, x^{(2m+1)}) \leq (x, x).$$

Proof:

$$\sin t = \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)!} t^{2m+1} \text{ and } |\sin t| \leq 1.$$

Corollary 3.3. If $x(t) \in C^\infty[b-a]$ and $x(t)$ has period $b-a$ then

$$-\int_a^b \{x(t)\}^2 dt \leq \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)!} \int_a^b x^{(2m+1)}(t)^2 dt \leq \int_a^b \{x(t)\}^2 dt.$$

4. Inequalities of Kolmogoroff Type

In analysis one frequently wants to obtain inclusion regions for the norms of functions; i.e., if M is in the inclusion region, then there exists a function f, from a certain set of functions, with norm of f equal to M. Kolmogoroff [4] established a result of this type using the uniform norm over the function set $C^m[0, \infty]$ if we set $M_k(x) = 0 \leq t \leq \infty \{ |x^{(k)}(t)| \} (k=0, 1, 2, \ldots, m)$, then Kolmogoroff [4] gave a necessary and sufficient condition “in order that to a triple of positive numbers $M_0, M_k, M_m (0 < k < m)$ there should correspond a function $x(t)$ for which

$$M_0 = M_0(x), M_k = M_k(x), M_m = M_m(x).$$

In this section we will establish a similar result on a triple of positive numbers relative to the square norm, where our set of functions will be $C^m[a, b] \cap \{ x(x(a) = x(b), x'(a) = x'(b), \ldots, x^{(m-1)}(a) = x^{(m-1)}(b) \}$. We will also add the restriction $\int_a^b x(t) dt = 0$ in order to eliminate the constant function.

If $x(t)$ is an element of our function class, then we set

$$A_k(x) = \int_a^b \{x^{(k)}(t)\}^2 dt \quad (k=0, 1, 2, \ldots, m).$$

We may assume without loss of generality that we have normalized x so that $A_k(x) = 1$. We will establish the following result:

Theorem 4. In order that to a pair of numbers a_k, a_m there should correspond a function $x(t) \in C^m[a, b] \cap \{ x(x(a) = x(b), x'(a) = x'(b), \ldots, x^{(m-1)}(a) = x^{(m-1)}(b), \int_a^b x(t) dt = 0 \}$ for which

$$A_k(x) = a_k, A_m(x) = a_m.$$

229
it is necessary and sufficient that

\[
a_k \geq \left(\frac{2\pi}{b-a} \right)^{2k}, \quad a_m \geq \left(\frac{2\pi}{b-a} \right)^{2m}, \text{ and}
\]

\[
a_k - \alpha a_m \leq G_{k,m}(\alpha) \text{ for all } \alpha > 0.
\]

Proof of Theorem 4:

The necessity of the conditions is a direct consequence of Corollaries 1.1 and 2.5.

The proof of the sufficiency will be divided into several cases and we will use the notation of section 3 throughout. We will denote the normalized \(\sin \left(\frac{2\pi t}{b-a} \right) \) by \(S(t) \). We recall that on the interval \(a_i \leq \alpha \leq a_{i+1} \) we have \(A_k(S_i) - \alpha A_m(S_i) = G_{k,m}(\alpha) \).

Case 1: \(a_k - \alpha a_m = G_{k,m}(\alpha) \) for at least two values of \(\alpha \), say \(\alpha = t_1 \) and \(\alpha = t_2 \).

We immediately have that \(a_k - \alpha a_m = G_{k,m}(\alpha) \) for all \(\alpha \in [t_1, t_2] \). Since we know that the \(S_i \) are maximizing functions there is an integer \(i \) with \(\alpha_i \leq t_1 < t_2 \leq \alpha_{i+1} \) and \(a_k - \alpha a_m = G_{k,m}(\alpha) = A_k(S_i) - \alpha A_m(S_i) \) for \(\alpha_i \leq \alpha \leq \alpha_{i+1} \). Thus \(a_k = A_k(S_i) \), \(a_m = A_m(S_i) \).

Case 2: \(a_k - \alpha a_m = G_{k,m}(\alpha) \) for only one value of \(\alpha \), say \(\alpha = t_1 \).

We immediately have that \(t_1 = \alpha_1 \) for exactly one integer \(i \).

Thus

\[
a_k - \alpha a_m = G_{k,m}(\alpha_i) = A_k(S_i) - \alpha A_m(S_i) = A_k(S_{i-1}) - \alpha A_m(S_{i-1}).
\]

Also since \(a_k - \alpha a_m = G_{k,m}(\alpha) \) for all \(\alpha > 0 \) we must have \(A_m(S_i) < a_m < A_m(S_{i+1}) \). Thus there exist \(b_i, b_{i+1} \) with \(0 < b_i, b_{i+1} < 1, b_i^2 + b_{i+1}^2 = 1 \), and \(a_m = A_m(b_i S_i + b_{i+1} S_{i+1}) = b_i^2 A_m(S_i) + b_{i+1}^2 A_m(S_{i+1}) \).

[Note that the last equality follows from the orthogonality of \(S_i \) and all its derivatives to \(S_{i+1} \) and all its derivatives.]

Now,

\[
A_k(b_i S_i + b_{i+1} S_{i+1}) - \alpha a_m = A_k(b_i S_i + b_{i+1} S_{i+1}) - \alpha A_m(b_i S_i + b_{i+1} S_{i+1})
\]

\[= b_i^2 [A_k(S_i) - \alpha A_m(S_i)] + b_{i+1}^2 [A_k(S_{i+1}) - \alpha A_m(S_{i+1})] = (b_i^2 + b_{i+1}^2) (a_k - \alpha a_m).
\]

Hence \(a_k = A_k(b_i S_i + b_{i+1} S_{i+1}) \).

Case 3: \(a_k - \alpha a_m < G_{k,m}(\alpha) \) for all \(\alpha > 0 \) and \(a_m \geq \left(\frac{4\pi}{b-a} \right)^{2m} = A_m(S_2) \).

We know that there is exactly one integer \(i \geq 2 \) with \(\frac{2\pi}{b-a} \leq a_m < \left(\frac{2\pi}{b-a} \right)^{2m} \) or \(A_m(S_i) \leq a_m < A_m(S_{i+1}) \). If we repeat the construction of Case 2 we can find \(b_i, b_{i+1} \) with \(a_m = A_m(b_i S_i + b_{i+1} S_{i+1}) \) and since \(a_k - \alpha a_m < G_{k,m}(\alpha_i) = A_k(b_i S_i + b_{i+1} S_{i+1}) - \alpha A_m(b_i S_i + b_{i+1} S_{i+1}) = A_k(b_i S_i + b_{i+1} S_{i+1}) - \alpha a_m \) we have

\[
a_k < A_k(b_i S_i + b_{i+1} S_{i+1}).
\]

By our conditions on \(a_k \) and \(a_m \) there is an integer \(j > i + 1 \) and an \(\bar{\alpha} > 0 \) such that \(A_k(S_j) - \bar{\alpha} A_m(S_j) = A_k(S_j) - \alpha A_m(S_j) < a_k - \bar{\alpha} a_m \). Now \(A_m(S_1) < A_m(S_i) \leq a_m < A_m(S_{i+1}) < A_m(S_j) \), hence there are \(b_i, b_j \) with \(a_m = A_m(b_i S_i + b_j S_j) \) and since

\[
a_k - \bar{\alpha} a_m > G_{k,m}(\bar{\alpha}) = A_k(b_i S_i + b_j S_j) - \bar{\alpha} A_m(b_i S_i + b_j S_j) = A_k(b_i S_i + b_j S_j) - \alpha a_m
\]

230
we have
\[a_k > A_k(b_i S_1 + b_j S_j). \]

By the orthogonality of \(b_i S_1 + b_j S_j \) and \(b_k S_1 + b_{i+1} S_{i+1} \) there are constants \(c \) and \(d \) with \(c^2 + d^2 = 1 \) for normalization and

\[a_m = A_m(c b_i S_1 + Cb_j S_j + db_i S_i + db_{i+1} S_{i+1}), \]
\[a_k = A_k(c b_i S_1 + c b_j S_j + d b_i S_i + d b_{i+1} S_{i+1}). \]

CASE 4: \(a_k - \alpha a_m < G_{k,m}(\alpha) \) for all \(\alpha \) and \(a_m < \left(\frac{4\pi}{b-a} \right)^{2m} = A_m(S_2) \).

If we repeat the process of Cases 2 and 3 we can find \(b_1, b_2 \) such that \(a_m = A_m(b_1 S_1 + b_2 S_2) \) and \(a_k < A_k(b_1 S_1 + b_2 S_2) \).

We cannot simply repeat the process of Case 3 because \(b_i S_1 + b_j S_2 \) will not be orthogonal to \(b_i S_1 + b_j S_2 \). However we note that the normalized multiple of \(\cos \left(\frac{2\pi t}{b-a} \right) \), which we denote by \(C_1(t) \), also satisfies \(A_k(C_1) - \alpha A_m(C_1) \) for \(\alpha_1 \leq \alpha \leq \alpha_0 \) and is orthogonal to all the \(S_i \). Hence we can find \(c_1, c_2 \) such that

\[a_m = A_m(c_1 C_1 + c_2 S_j) \]
and we continue as in Case 3.

Thus we have proven Theorem 4.

5. References

(Paper 70B3–184)

Presented are methods that avoid the need to employ an extrapolation technique in the region of the critical points for evaluation of the apparent emissivity of diffuse cylindrical and conical cavities. The methods involve appropriate substitutions in the integrals of equations that are used in analytical solutions for determining the thermal radiation characteristics of diffuse and conical cavities. Equations for either isothermal or nonisothermal surface temperature conditions are provided in a direct form for computations. Numerical results are presented for a general linear temperature distribution along the length of a cylindrical cavity. The method is equally applicable for the solution of other problems in integral equations where discontinuities are encountered.

Using high speed computing techniques measurements were made for the first time of a two-dimensional probability distribution in a turbulent field generated by a grid in a wind tunnel. The two-dimensional probability distribution of simultaneous turbulent velocities at two points separated transversely to the mean flow (in the initial stage of decay) is presented, and the departure from the customarily assumed Gaussian distribution is shown.

The propagation of electromagnetic waves over the earth's surface is considered under transient conditions. The source is taken to be a vertical electric dipole whose current moment is suddenly established. The build-up of the radiated field is calculated under various assumed conditions. It is shown, even in the absence of an ionospherically reflected wave, that the influence of earth curvature has a pronounced effect on the distortion of the original pulse shape. For great distances (i.e., \(d > 2000 \) km), it is found to be more convenient to regard the field as a sum of modes. Particular attention is given to the transient characteristics of the dominant mode as a function of the source waveform.

There may be distinguished two approaches to characterizing the properties of biological images: the statistical approach traditionally used for mechanized image-processing, and the articular approach generally used among biologists. We discuss both approaches, but focus attention on the second, for we hold that an articular approach allows the expression of much that is effectively impossible to express in the form of numerical measurements; and we know of no inherent reason why a computer cannot deal with information of a nonquantitative nature.

The articulation of biological images necessarily takes place on two fronts: the imposition of an articular structure on the image itself; and the expression of this construal in English sentences. We will study both kinds of articulation, and we will suggest how they may be brought together, in the form of linked pictorial and linguistic grammars. The computer system which this paper envisions will be able to analyze a presented image with respect to a pictorial grammar, and to formulate and accept descriptions of that image, in English sentences, with respect to a linguistic grammar. It will be able to present pictorial instances of English descriptions, and in other ways to respond to English directives.

It is shown that in situations where the fluxes of the various components of a system are not linearly independent, previously derived linear relations among the heats of transport contain no physical information, but serve only to complete the definition of these quantities. Other defining equations are possible but physical predictions are unaffected by the choice so presented. This resolves the paradox of the apparent inconsistency of these linear relations with kinetic theories of heats of transport.
The seasonal variation of nightglow Na I 5890–96 Å, An atlas of solar
outlines for cooperative action on the determination of Earth’s fields
(Formerly the Central Radio Propagation Laboratory of the National Bureau of Standards, now Environmental Science Services Administration, Boulder, Colo.)
Crystal and molecular structure of C6B2H2, bis (o-dodecylcarbo-
Comparison of uncertainty ellipses calculated from two spectro-
Deposition of energy by neutrons in spherical cavities, R. S. Caswell, Radiation Res. 27, No. 1, 92–107 (Jan. 1966).
Comparison of xenon and carbon arcs as radiation sources for

Proposed

The low temperature removal of small quantities of nitrogen or

Departures from local thermal equilibrium in a magnetically·driven

Effect of

Mossbauer line broadening in SnO2, R. H. Herbener and J. Spijkerman,

NMR studies of inorganic fluorides.

Multivibrator provides bidirectional output pulses, F. C. Ruegg,

Dissociation of acetic acid-d2 in aqueous solution and related isotope

effects from 0 to 50%, M. Paabo, R. G. Bates, and R. A. Robinson,

Journal of Chemical Physics.

Magnetic isotope ratios in natural samples, E. J. Catanzaro and

T. J. Murphy, J. Geophys. Res. 41, No. 4, 1271-1274 (Feb. 15,

NMR studies of inorganic fluorides. I. High-resolution 19F spectra of

SiF6 and (SiF3)2O, O. R. Johannesen, R. C. Farrar, F. E. Brinckman,

and T. D. Coyle, J. Chem. Phys. 44, No. 3, 962-964 (Feb. 1,

On the limiting shape of the distribution function of lengths of a

single polymer molecule with excluded-volume effects, J. Mazur,

Viscosity and density of boron trioxide, A. Napodito, P. B. Macedo,

and E. T. Hawkins, J. Am. Ceramic Soc. 48, No. 12, 613-616

(1965).

Comparison of xenon and carbon arcs as radiation sources for

laboratory weathering of asphalts, K. G. Martin, P. G. Campbell,

and J. R. Wright, Am. Soc. Testing Mater. Proc. 65, 809-830

(1965).

Proposed standard for measuring and reporting physical properties

of optical glasses, G. W. Cleck, F. J. Frick, and W. D.

The low temperature removal of small quantities of nitrogen or

methane from hydrogen gas by physical adsorption on a synthetic

single polymer molecule with excluded·volume effects, J. Mazur,

Departures from local thermal equilibrium in a magnetically-driven

9, No. 1, 81-89 (Jan. 1966).

Effect of normal-fluid motion on third sound in liquid-helium films,

Mossbauer line broadening in SnO2, R. H. Herber and J. Spijkerman,

Multivibrator provides bidirectional output pulses, F. C. Ruegg,

Electronics 38, No. 17, 87 (Aug. 8, 1965).

Precision of cubic lattice parameter measurements by the Kossel

technique, H. Yakowitz, Trans. Symp. Electron Probe Analysis,

Radiative corrections. I. High-energy bremsstrahlung and pair

production, K. Mork and H. Olsen, Phys. Rev. 140, No. 68,

Random-walk calculations of diffusion coefficients, R. E. Howard,

Proc. 5th Intern. Symp. Reactivity of Solids, Munich, Germany,

1964, pp. 250-255 (Elsevier Publ. Co., Amsterdam, The

Netherlands, 1965).

Relative transition probabilities for prominent N1 and N2 lines in

the near-ultraviolet, G. D. Bell, D. R. Faquette, and W. L. Wiese,

Resonances in the elastic and inelastic electron scattering from N2,

Stress-strain properties of textile yarns subjected to rifle bullet

impact, C. A. Fenstermaker and J. C. Smith, J. Appl. Polymer

Sci. 12, 125-146 (1965).

The correction factor for fast neutron reactions on sulfur and oxygen

in the manganous-sulfate-bath calibration of neutron sources,

The effect of humidity on ionization measurements with cavity and

free-air chambers, T. P. Loftus, B. Petree, and J. T. Weaver,

An investigation of concentric ring antennae with low sidelobes,

No. 6, 856-863 (Nov. 1965).

On radiation of electromagnetic and electroacoustic waves in plasma.

Adsorption isotherms for polymer chains adsorbed from theta solvents,

J. J. Hovee, J. Chem. Phys. 44, No. 4, 1505-1509

(Feb. 15, 1966).

Critical scattering of the perfluorohexane-iso-octane system,

G. W. Brady, D. McIntyre, M. E. Myers, Jr., and A. M. Wims,

Polymer property-structure studies at the National Bureau of Stan-

dards; thermal stability, C. M. Kline, Proc. European Plastics

Polymers and telomers of perfluoro-1, 4-pentadiene, J. E. Fearn,

(1966).

The vaterite-type ABO3 rare-earth borates, W. F. Bradley, D. L.

Accuracy and preciseness of standards and measurements, W. A.

Time-resolved electrical measurements in high current discharges,

Experimental verification of superachromatism, R. E. Stephens,

Force fields for the boron trihalides, I. W. Levin and S. Abramowitz,

Interpretation of Brillouin spectra, R. D. Mountain, J. Chem.

Isotopic effects in the v3 fundamental of matrix-isolated BCh, J. J.

Comeford, S. Abramowitz, and I. W. Levin, J. Chem. Phys. 43,

No. 12, 4536-4537 (Dec. 15, 1965).

On the quantum-mechanical pair-correlation function of 4He gas

at low temperatures, S. Y. Larsen, K. Witte, and J. E. Kilpatrick,

Spectral distribution of scattered light in a simple fluid, R. D.

Spin-lattice relaxation in some rare-earth trichlorides, B. W.

(Jan. 15, 1966).

The crystal structure of the strontium and lead tetraborates, SrO·

2BaO and PbO·2BaO, A. Perloff and S. Block, Acta Crystal. 20,

Search methods used with transistor patent applications, J. R.

1966).

*Publications for which a price is indicated are available for pur-

chase from the Superintendent of Documents, U.S. Government

Printing Office, Washington, D.C. 20402 (foreign postage,

one-fourth additional). The NBS nonperiodical series are also available from the
Clearinghouse for Federal Scientific and Technical Information, Springfield, Va. 22151. Reprints from outside journals and the
NBS Journal of Research may often be obtained directly from the
authors.