Remarks on Measurable Sets and Functions

Roy O. Davies

(October 19, 1965)

A. J. Goldman (On measurable sets and functions, J. Res. NBS 69B (Math. and Math. Phys.) Nos. 1 and 2, 99–100 (1965)) conjectured that the Borel sets are characterized by their property of having measurable inverse images under all Lebesgue measurable functions; here it is pointed out that the existence of analytic non-Borel sets refutes this and a related conjecture. Also an error in Goldman’s Theorem 2 is corrected.

Key Words: Measure, integration, real function.

We deal exclusively with subsets of the real line \(R \), and with real-valued functions having \(R \) as domain. Let \((BS) \) and \((BF) \) denote the respective families of Borel sets and Borel-measurable functions, while \((LS) \) and \((LF) \) denote the respective families of Lebesgue-measurable sets and functions. Then \(f \in (LF) \) if and only if

\[
f^{-1}(B) \in (LS) \quad \text{for all} \quad B \in (BS). \tag{1}
\]

Recently Goldman \(^2\) asked whether (1) characterized \((BS)\), in the sense of the following

Conjecture: If \(S \) is not in \((BS)\), then there is an \(f \in (LF) \) such that \(f^{-1}(S) \) is not in \((LS)\).

We can disprove this conjecture as follows. Let

\[
n = \{n(1), n(2), \ldots \}
\]

be generic notation for an infinite sequence of positive integers. If \(\hat{\mathcal{A}} \) is a family of sets, then any set

\[
\bigcup_{n \in \mathbb{N}} F(n(1), \ldots , n(r)),
\]

where each \(F(n(1), \ldots , n(r)) \in \hat{\mathcal{A}} \), is said to be “obtained from \(\hat{\mathcal{A}} \) by operation \((\mathcal{A})\)”. If \(\mathcal{A}(\hat{\mathcal{A}}) \) consists of all sets obtainable from \(\hat{\mathcal{A}} \) by operation \((\mathcal{A})\), then for any function \(f \),

\[
f^{-1}(\mathcal{A}(\hat{\mathcal{A}})) = \mathcal{A}(f^{-1}(\hat{\mathcal{A}})). \tag{2}
\]

When \(\hat{\mathcal{A}} = (BS) \), \(\mathcal{A}(\hat{\mathcal{A}}) \) is called the class of analytic sets, and it is known \(^3\) that

\[(BS) \subset \mathcal{A}(BS) \quad \text{but} \quad (BS) \neq \mathcal{A}(BS). \tag{3}\]

For any \(f \in (LF) \), it follows from (1) and (2) that

\[
f^{-1}(\mathcal{A}(BS)) \subset \mathcal{A}(LS) \tag{4}.
\]

It is also known \(^4\) that \((LS)\) is closed under operation \((\mathcal{A})\), so that (4) implies

\[
f^{-1}(\mathcal{A}(BS)) \subset (LS) \quad \text{for all} \quad f \in (LF). \tag{5}\]

Considering \(S \in \mathcal{A}(BS) - (BS) \), as permitted by (3), we are led via (5) to a contradiction of the conjecture.

Denote functional composition by an asterisk \((f \ast g)(x) = f(g(x))\), and let \((LCF)\) be the class of functions \(f \) such that

\[
ge \in (LF) \quad \text{implies} \quad f \ast g \in (LF). \tag{6}
\]

Goldman (Theorem 4, op cit) also showed that we should have

\[(BF) = (LCF) \tag{6}\]

if the Conjecture were true. That (6) fails together with the Conjecture can be proved by choosing as \(f \) the characteristic function of some \(S \in \mathcal{A}(BS) - (BS) \); clearly \(f \) is not in \((BF)\), but for any \(B \in (BS) \) we have \(f^{-1}(B) \) a member of \(\mathcal{A}(BS) \), namely \(R \) or \(\phi \) or \(S \) or \(R - S \).

\(^1\) Department of Mathematics, The University, Leicester, United Kingdom.

\(^4\) K. Kuratowski, op. cit., p. 64.
so that for any $g \in (LF)$ it follows from (5) that

$$(f * g)^{-1}(B) = g^{-1}(f^{-1}(B)) \in (LS),$$

proving $f * g \in (LF)$ and hence $f \in (LCF)$.

Thus the problem of finding a satisfactory characterization of (LCF) remains open. If (QS) is the class of sets Q such that

$$g^{-1}(Q) \in (LS) \quad \text{for all } g \in (LF),$$

then $f \in (LCF)$ if and only if

$$f^{-1}(B) \in (QS) \quad \text{for all } B \in (BS).$$

Hence characterizing (LCF) is closely related to characterizing (QS).

Finally, Goldman’s Theorem 2 (op cit) should be amended to read as follows:

Theorem: For any $B \in (BS)$ and $L \in (LS)$, with sole exceptions $(B = \phi, L \neq \phi)$ and $(B = R, L \neq R)$, there is an $f \in (LF)$ such that $L = f^{-1}(B)$.

Proof: If $B = \phi$ and $L = \phi$, or $B = R$ and $L = R$, then any $f \in (LF)$ will do. If $B = \phi$ and $L \neq \phi$, or $B = R$ and $L \neq R$, then no f will do. Finally, if $B \neq \phi$ and $B \neq R$, then we can define f on L so that $f(L) \subset B$, and on $R - L$ so that $f(R - L) \subset R - B$.

(Paper 70B1–169)