
JOURNAL OF RESEARCH of the Nationa l Bureau of Standards - A. Physics and Chemistry 

Vol. 70A, No. 6, November- December 1966 

General Treatment of the Thermogravimetry 
of Polymers 

Joseph H. Flynn and Leo A. Wall 

Institute for Materials Research, National Bureau of Standards, Washington, D.C., 20234 

(Augus t 1] , 1966) 

Theoretica l equations ar e de ve lo pe d for typical decompositions of polymers including those in 
which the vola tilization does not folJ ow a simpl e "reaction orde r" and those made up of a composite 
of seve ral reac tions of diffe ring ene rgies of ac tivation. The e ffects of order, activation energy, heating 
ra te and te mpe ra ture de pendence upon the calculated th ermograms is illustrated. The literature on 
thermogravime tri c kineti cs is criti cally re vi ewed and coalesced into a logical and coherent de velopme nt 
s tressing the inte rrelat ion of methods a nd e mplo ying a cons istent sys te m of notation . As a result , 
a nu mbe r of improved methods and ne w methods for the analys is of kineti c data applicable to the 
comple x sys te ms me ntioned above are developed . It is co nc luded th at methods involving a variable 
rate of hea ting or involving severa l thermogravimetri c traces at differe nt ra tes of hea ting a re capabl e 
of es tabli s hing the unique ness of kineti c pa ra me ters. A ne w method of de te rminjng init ial pa ra me te rs 
from rate·conve rs ion data is de veloped . A novel concept is e mployed of programming reac tion vari a bles 
(i n thi s case, the heating ra te) in a ma nne r whic h great ly simplifies the mathe matics of the kineti c 
s'ys te m and which shows promise of a wide ra nge of app lj ca bilit y in the area of rate processes. 

Ke y Word s: Degrad ation, noni sothe rm al kineti cs, polyme rs, pyrolys is, therma l deco mp osition, 
thermogra vimetry, the rmolys is, s tability of polyme rs. 

1. Introduction 
Thermogravimetri c analysis is used widely as a me thod to inves tigate the th ermal decomposi· 

tion of polymers and to assess their rela tive thermal s tabiliti es [1,2,3,4].1 Also, considerable 
attention has been direc ted recently toward the exploita tion of thermogravim etri c data for the 
determination of kineti c parameters. A number of these me thods will be di sc ussed later in thi s 
paper. 

Many of the methods of kinetic analysis which have been proposed are based on the hypothes is 
that, from a single thermogravimetric trace, meaningful values may be obtained for param ete rs 
s uch as activation energy, preexponential factor and reaction order. 

Thus, many of these methods make two assumptions , viz, these parame ters are useful in 
characterizing a partic ular polymer degradation, and that the thermogram for eac h partic ular set 
of these parameters is unique. 

Therefore, in this paper, we will test the validity of these assumptions by setting up several 
idealized typical cases of polymer degradation kinetics, observing how the structures of the cal· 
culated thermograms are affected by changes in order, activation energy, heating rate and tempera
ture dependence, and determining by means of a critical evaluation of both existing and new 
methods if there are any general treatments of these data that will permit the determination of 
parameters that may be useful in the interpretation of degradation mechanisms. 

2. Theory 

We shall assume for the present that the isothermal rate of conversion, dC/dt, is a linear 
function of a single temperature·dependent rate constant, k, and some temperature-independ e nt 
func tion of the conversion, C, i.e., 

:~=kf(c). (1) 

I Figures in brackets indicate the literature references at the end of this paper. 
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C, the conversion (degree of completion or advancement, extent of reaction), is defined here as 
the conversion with respect to initial material. Thus C = 1- (WIWo), where Wo is the initial 
weight and W is the weight at any time. Therefore, the residual fraction (1- C) = WIWo and the 
rate of conversion, dCldt=-I/Wo (dWldt). 

Some investigators prefer to define an instantaneous rate of conversion such that dC'ldt 
= l /W (dWldt) and thence C' is proportional to the logarithm of the residual fraction. However, 
unless perhaps dealing specifically with first order reaction kinetics, there seems to be little 
special appeal for this latter definition of conversion. 

When the polymer does not completely volatilize at T or t ~ 00, or if the volatilization takes 
place in steps, the conversion may for convenience, or depending upon one's insight into mech
anism, be defined differently based on the total weight loss between two successive horizontal 
portions of an integral thermogram. Equation (1) excludes composite cases where simultaneous 
or successive reactions involve several temperature dependent rate constants. Several of these ~ 
cases will be considered later. 

At a constant rate of heating, f3 = dTldt, and assuming k independent of C andf(C) independent 
of T, the variables in eq (1) may be separated and integrated to obtain: 

(C dC 1 (T 
F(C) = Jo fCC) =73 JTo kdT=4> (2) 

where F(C) is the integrated function of conversion and 4> represents the temperature integral. 
In analogy to simple cases in homogeneous reaction kinetics, we express the conversion func

tion by 

fCC) = (n + 1)(1- c)n (3) 

where n is defined as the order or reaction. n + 1 is the normalization factor for the isothermal 

cases such that (n + 1) f (dCI kdt) de = 1. n is equal in value to n and included only in the cal

culated curves so that they will exhibit maximum thermogravimetric rates at approximately the 
same temperature. 

Substituting eq (3) into eq (I) and integrating, one obtains 

(1- C)l-n-l 

(1- n)(n + 1) 
kt or-4> 

1 
-- In (1- C) = - kt or - 4> 
(n+ 1) 

(-kt, if T=const.; -4>, if T~ const.). 

(n ~ 1) 

(4) 

(n = 1) 

The normalized isothermal curves from eq (4) for rate versus conversion are plotted in figure 
1. Some of these curves indeed do approximate ones obtained in polymer degradation studies. 
For example, if the depolymerization is initiated at chain ends and the zip length of the depropaga
tion reaction is much shorter than the polymer chain length, as is the case in high molecular weight 
polymethyl methacrylate, then a large portion of the reaction follows zero order kinetics [5]. If 
the zip length is much larger than the polymer chain length, first order kinetics results [5]. Other 
cases of degradation kinetics, such as is found for branched polyolefins, may be fitted over a range of 
conversion by higher order curves [5]. 

However, in a large number of polymer decompositions, the isothermal rate of conversion goes 
through a maximum value. Such behavior describes a wide spectrum of polymers [5]. 
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FIGURE 1. Effect of order on normalized isothermal rate 
versus degree of conversion. 
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Random de polymerization , where most of the early scissions result in fragments too large to 
dis till off, produces an isothermal rate c urve with a maximum at 26 percent convers ion. 

For random de polymerization [6] , 

(5) 

where N - 1 is the initial number of carbon atoms in the chain skeleton, L is the number of carbon 
atoms in the s mallest chain that does not evaporate, and a , the fraction of bonds broken. 

Differentiating eq (5) with respect to kt , 

dC =(L -l)(l-C)-(l-a)L (N - L)(L -1) 
dkt N 

(6) 

and eliminating a from eqs (5) and (6) for the simplest case, N;;> L, L = 2, result in 

f(C) =6(C1/2- C) 

for the normalized isothermal equation. In formulating the above approximation (Case A), the 
term for the initial isothermal rate , [L(L + l)]/N has been assumed equal to zero since in practice 
N;;> L. Hence the expression goes to zero at C = 0 and is not applicable to initial situations. 
The solution of eq (5) for a involves an Lth order polynomial so that it is not practicable to obtain 
f(C) in analytic form for large L. Also, maximum rates are never obtained at greater than 26 
percent co nversion from random depolymerization. Therefore, an empirical cubic equ ation was 
de vised to fit several cases found in isothermal degradation kinetics . 

For the equation 

(7) 
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the following boundary conditions: 

(dC) =0' 
dkt C=l ' 

y 

are satisfied when 

_ 12[(y-1)(1-2w)-w2] a _2w3 -(y-1)(1-3w2) 

N - w2(6w 2 -16w -9) -(y-1) (6w 2 -6w -1)' 1- (y-1) (1-2w)-w2 ' 

w[(y -1) (2 - 3w) - w3 ] _----=-w.,...2('::-w_---=-'1)-;-2_-:: 
~= ~d~=-;-

(y-1)(1-2w)-w2 ' (y-1)(1-2w)-w2 

For Case B, we assume the maximum rate at 50 percent conversion and a maximum rate three 
times the initial rate, (w = 0.5, y = 3) and obtain, 

f(C)=-- C3+C2-- C-- . 24 ( 7 1) 
13 4 4 

For Case C, (w=0.25, y=3), eq (7) has a minimum as well as a maximum in the range C=O 
to 1. However, Case C was fitted satisfactorily by reduction of the order of eq (7) which gave after 
normalization, 

f(C)=-- C3/2+C-- C1/2--60 ( 7 1) 
31 4 4 . 

The normalized isothermal rates for Cases A, B, and C are plotted against converSIOn III 

figure 2. 
Curves A and C closely resemble theoretical curves for pure random depolymerization or 

for depolymerizations of moderate zip length involving considerable molecular transfer. Case B 
is representative of de polymerizations in which the initiation occurs at chain ends, the zip length 
is moderate and either a slight amount of transfer or random initiation take place. Such curves 
are characterized by a maximum in the 50 percent conversion region [7]. 

The equation for Case A may be substituted into eq (1) and integrated and if the solutions of 
the cubic in the equations for Cases Band C are expressed as partial fractions , substituted into 

1.5 ,---------:;~~:----____,__---------__, 

1 de 
Kdt 

. 5 

O'LO---------~.5---------...:'l 
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FIGURE 2. Normalized isothermal rate versus degree of 
conversion, Cases A, B , and C . 



eq (1) and integrated, one obtains : 

for Case A, 
3 In (1- Cl/2) =- kt or - <1> , 

for Case B, 

1 6 {In (1- C) + 0.6547 In (C + 1.8660) - 1.6547 In (C + 0.1340) -1.6219} =- kt or - <1> , 

and for Case C, 

16:5 {In (1- Cl /2) -1.2217 In (CI /2 + 1.8660) - 0.2217 In (CI /2 + 0.1340) + 0.5451} =- kt or - <I> 

(- kt , if T = cons ta nt ; - <1> , if T 7":- constant). 
The Arrhe nius equa tion , 

k=A e( - E/RT) (8) 

is almos t universally ass umed for the temperature dependence of k, where A, th e " preexponential 
fac tor ," is us ually assumed to be indepe nde nt of te mperature, E is the energy of activa ti on, and 
R, the gas constant = 1. 987 cal mol- 1 (OK)- 1 (l cal = 4.1840 ] ). 

Substituting eq (8) into eq (1), one obtains 

~; = f3 ~;=Ae(-E/flTlflC) 
(9) 

whic h upon integration becomes 

Ie dC A ~ T AE{ eX I X eX } AE F (C) = -=- e(- E/flT )dT = <I>=- - -+ - dx =-p(x) 
o fiC ) {3 TO f3R x - 00 x f3R 

(10) 

where x = ( - E/RT) . It is assumed that To is low enough for the lower limit to be negligible. 
If f(C) is given by eq (3) then eq (9) becomes , 

dC=f3 dC=Ae(- E/RT)(I-c)n 
dt dT 

(11) 

which, upon integration beco mes, 

(1-C)I-n-l AE 
1- n f3R p(x) 

(n 7":- 1) (12) 

AE 
In (I-C) = f3R p(x) 

(n = 1). 

p(x), whic h includes the expone ntial integral, has been tabulated for limited ranges [8- 11]. 
There are several seri es expansions and a semiempirical approximation for p(x). These are give n 
below as they are utilized in many of the kinetic methods which will be discussed la ter. 
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2.1. Asymptotic Expansion [12] 

eX ( 2! 3! 4! ) 
P(X)=2 1+-+2 + 2 + ... 

x x x x 

x ~ - 10; number of terms ~ Ixl. (13a) 

2.2. Expansion in Series of Bernoulli Numbers [12] 

p(x) = eX (-0.0000035+ 0.998710 + 1.98487646 + 4.9482092 + 11.7850792 
x x x2 x 3 X4 

+ 20.452340 + 21.1491469 + 9.5240411 + 0.35 X 10-5 ) 

x5 x6 x7 
(x ~ - 2). 

2.3. Schlomi Ich Expansion [13] 

4 + 14 ) 
(y+2)··· (y+4) (y+2)··· (y+5) ... 

2.4. Doyle's Approximation [14] 

log p(x) == - 2.315 + 0.457x 

(y=-x"", 15). 

(13b) 

(l3c) 

(- 20 "'" x "'" - 60). (13d) 

Doyle [15] has found that two and three term approximations for eq (l3c) are more accurate 
than the respective approximation for eq (13a). Equation (13b) is almost equivalent to eq (13a) 
for the first several terms. 

At the limits, - 20 "'" x "'" - 60, eq (13d) is accurate within ± 3 percent [11]. 
An extensive table of log p(x) for various x's was calculated from eq (13b) as this equation 

gives quite accurate values even for small x. This table was used for the calculation of the ther
mograms presented subsequently. 

If the preexponential factor, A, is linearly dependent on temperature, i.e., A =AIT 

k = Al Te(-E/RT) (14) 

then, 

(15) 

where, 

Pl(X) = eX (-0.0000035 _ 0.0010290 + 1.94~7646 + ... ). 
x x x 

(16) 

A table of log Pl(X) values was composed to investigate the effect of temperature dependence. 
Vallet [9] has derived expressions for A = A2T1/2, k = A2T1/2e( -E/RT) and recursion formulas 

for calculating the above three cases of temperature dependence. 
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3. Calculated Thermogravimetric Curves 

Integral thermo grams were obtained by calculating <I> and T at various x and substituting 
<I> into eq (17). 

(I-C)= {en + I)(n-I)<I>+ I}T=ii (n =P 1) 
(17) 

(n= 1). 

Figure 3 contains curves for the residual fraction , 1- C, versus temperature for various orders 
from 0 to 4 for the case A/f3 = IOI6rK, E = 60,000 cal/mol. 

The differential thermo grams corresponding to the integral curves in figure 3 were obtained 
by substitution of values of <I> at various T into 

(18) 

These thermogravimetric rate versus temperature curves are contained in figure 4. 
Zero and negative orders exhibit ever accelerating rates . Curves for orders between zero 

and unity go through a maximum raLe and, in the idealized case, reac h compl etion at a finit e 
te mperature . For c urves with n ~ 1, increasing order results in a more gradual slope and a more 
gradual asymptotic approac h to the abscissa. 

Integral thermograms for the " maximum" Cases A, B, and C were obtained for the same 
values of A/f3 and E by calculating <I> at variou s values of C from the integrated equations for the 
three cases. The corresponding x and T values were obtained from <1>. Residual fraction versu s 
te mperature c urves for these cases are contained in fi gure 5. The early negative-order character 
of these c urves manifes ts itself by a more precipitous slope than for the zero order c urve at the 
same activation energy. 

'"r-!liiiii~~;:;C::::-----'--------'-1 

.5 

FIGURE 3. Effect of order on residual fraction versus 
temperature. 

n = 0, 0.5, 1.0, 2.0, 3.0, and 4.0; 
A/fJ = 10"f K; E=60,ooo cal/mol. 
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FIGURE 4. Effect of order on thermogravimetric rate 
versus temperature. 

,, = 0, 0.5, 1.0, 2.0, 3.0, and 4.0; 
A/fJ=IO"fK; E= 6Q,ooo cal/mol. 
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FIGURE 5. Residual/raction versus temperature/or Cases 
A, B, and C. 

FIGURE 6. Thermogravimetric rate versus temperature 
for Cases A, B, and C. 

A/13= lO"rK; E=60,OOO cal/mol. A/f3 = IO"/" K: E = 60,OOO cal /mol. 

The corresponding differential thermograms for Cases A, B, and C were obtained by direct 
substitution of C and the corresponding T values from the integral calculations into eq (9). 

The thermogravimetric rate is plotted against temperature for these cases and the same values 
of A/{3 and E in figure 6. The first order curve is included for comparison. 

The minor detail of the differences among Cases A, B, and C is not significant as these curves 
are based on asymptotic or semiempirical equations. The slope is greatest in Case B where the 
maximum isothermal rate is at 50 percent conversion. As y (maximum rate/initial rate) approaches 
unity, the curves would more nearly resemble zero order with a tail. 

3.1. Thermogravimetric Rate Versus Conversion Curves 

The previous figures (figs. 3-6) of residual fraction or thermogravimetric rate versus tempera
ture have been the traditional methods of representing thermogravimetric data. It is surprising 
that plots of the rate as a function of degree of conversion (dC/dT versus C) have not been utilized 
as similar presentation has been found to be quite informative in isothermal studies, e.g., figure 1. 

Figure 7 exhibits the thermogravimetric rate as a function of conversion for zero through fourth 
order and Cases A, B, and C for A/ {3 = 1016tK and E = 60,000 cal/mol. 

The zero order curve is almost linear while higher order curves go through a maximum rate 
as C ~ 1. They approach the zero order curve as C ~ 0. Curves Band C also approach the 
zero order curve asymptotically at low conversion but deviate in the direction of negative order. 
Curve A is anomalous at C~ ° as was mentioned previously. 

A better insight into the behavior of the curves in figure 7 may be obtained by differentiating 
eq (9) with respect to conversion to obtain 

(19) 

where F(C) is the derivative of f(C) with respect to C. If f( C) is given by eq (3), then similar dif
ferentiation of eq (11) gives 

CPC E n dC 
dCdT= RJ'2 -l-C dT' (20) 
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FIGURE 7. Thermogravimetric rate versus degree oj 
conversion. 

,, ~ o, 0.5, 1.0. 2.0. 3.0. and 4.0 
Cases A, D, and C 
A./fJ~ lO"I"K; E~60,OOO cal/mol. 

05 
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Thus the slope of the zero order c urve will be given by E/RT2. At ordinary activation e nergies, 
the absolute temperature is a slowly changing variable over the reaction temperature range so the 
slope will be essentially a constant. The thermogravime tri c rate is quite small at low conversion 
so all other cases approach the ze ro order case as C ~ 0, subj ect to the condition , f ( C = 0) "" 0. 

Thus, one may obtain a qualitative understanding of the early kine tics from the limiting 
characteristics of dC/dt versus C. If the c urve is initially concave, a negative order c haracter, 
i.e., an initially increasing isothe rmal rate as in Cases Band C is indicated. Initial convexity 
s uggests positive order behavior, while approximate linearity connotes kinetics not far removed 
from zero order. Indeed such a plot may be of great practicable applicability, e.g., to test whether 
an appare nt maximum rate in an isothermal curve is due to an initial temperature lag or a n actual 
initial increase in rate . 

3.2. Effects of Activation Energy 

The effect of change in energy of activation upon the character and shape of the thermograms 
was investigated by considering three cases of first ord~r kinetics-I , E=60,000 cal/mol, II , 
E = 40,000 cal/mol, and III , E = 80,000 cal/mol. The parameters A/ f3 were adjusted so that the 
maximum slopes occur at the same temperature in each case. The integral curves are plotted in 
figure 8 and the corresponding differential c urves in figure 9. 

The maximum slope increases linearly with increasing energy of activation SInce, from eq 
(20), at the maximum 

E(l-C)max 
nRT2max (21) 

Other relationships at the maXImum will be discussed in the section on differential methods. 

3.3. Effect of a Temperature Dependence of the Preexponential Factor 

A slight temperature dependence of the preexponential factor is sometimes noted in isothermal 
studies. Indeed , according to collision theory, A is proportional to TI/2 for a bimolecular gas 
phase reaction and, according to transition state theory, the preexponential factor contains tern· 
perature to the first power. 
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FIGURE 8. Effects of activation energy and preexponen
tial temperature dependence on residual fraction versus 
temperature . 

n=1 
I E=60,OOO cal/mol; A//3=I0"/"K 
II E=40,OOO cal/mol; A//3=9.675 X lO'/"K 
III E=IIO,OOO cal/mol; A//3=9.318X lO"j"K 
IV E=60,OOO cal/mol; A//3=1.374x IO"/"K; A(T). 

m 

FIGURE 9. Effects of activation energy and preexponential 
temperature dependence on thermogravimetric rate 
versus temperature. 

n=1 
I E=60,OOO cal/mol; A//3= IO"j"K 
II E=40,OOO cal/mol; A//3=9.675XlOOj"K 
III E-ao,OOO cal/mol; A//3=9.318 X IO"j"K 
IV E=60,OOO cal/mol; A//3=1.374x lO"j"K; A(T). 

Since in both isothermal and thermogravimetric cases usually the same analytic process is 
involved in activation energy determination, i.e., the logarithm of some function of a rate is plotted 
against l/T(OK), any error resulting from ig~oring temperature dependence in the determination 
of E should be about the same in both cases. If A is linearly dependent on temperature, the dif
ferentiation of the logarithm of eq (14) with respect to l/T results in 

(22) 

Thus, at T = 500 OK, the correction for linear temperature dependence of A on the experimentally 
obtained activation energy will be about 1 kcal/mol. 

In order to observe the effect of linear temperature dependence of the pre exponential factor 
on the shape of a thermogram, Case IV, E=60,000 cal/mol, Ad{3= 1.374 X 1013 (OK)-2, was cal
culated for various orders using P1(X) values obtained from eq (16). The integral and differential 
curves for first order kinetics may be compared with Case I, E = 60,000 cal/mol, A/ {3 = 1016 (OK)-l 
in figures 8 and 9. The difference is trivial for these conditons. The effect is in the direction of 
increased slope and is greater for higher orders. It will be significant only at very low activation 
energies. 

If a single Arrhenius expression is applied to situations involving simultaneous reactions, the 
parameters E and A well may exhibit temperature dependence. This aspect is discussed in the 
section on composite cases . 

3.4. Effect of Rate of Heating 

Analyses of the changes in thermogravimetric data brought about by variation of the rate of 
heating, {3, are the basis for the most powerful methods for the determination of kinetic parameters 
and these methods are discussed in subsequent sections. 

Figure 10 contains the integral curves for Case B with maximum isothermal rate at 50 percent 
completion for A/ {32 = 1016rK, E = 60,000 cal/ mol and heating rates of {31 = 0.05, {32 = 0.10, and 
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FIGURE 10. Effect of heating rate on residual fraction 
versus temperature. 

FIGURE 11. Effect of heating rate on thermogravimetric 
rate versus temperature. 

Case B: A=IO"/sec, E=('j().OOO cal/mol, {J.=o.05, Ji,=O.IO, {J,=O.20 ·K/sec. 

Case B: A = 10"/sec, E=60,OOO cal/mol. {J. =0.05. {J.=o.IO, {J,=O.20 ·K/.ec. 

fh = 0.20 oK/sec. Figure 11 contains the thermogravimetric rate curves for the same case and 
conditions. Not only are the curves shifted to higher temperatures by increased heating rates 
but they become less steep. 

3.5. Composite Cases 

The majority of experimental thermograms found in literature represent cases in which two 
or more volatilization reactions take place. If the values for the kinetic parameters, e.g., E and 
A, for each reaction are such that the regions of weight loss occur at separated temperature ranges 
then a stepwise thermogravimetric trace results. In these cases, each curve between successive 
horizontal portions may be treated separately. However, many cases are more complex. An 
example is a polymer which undergoes both depolymerization and side group splitting or ring 
formation, followed by depolymerization of the thermally more stable product polymer. 

Here we investigate only two simple cases: 

(1) Two Independent First Order Reactions 

If a fraction of the material, a, volatilizes by a first order reaction with Arrhenius parameters 
A, and E" and the remainder of the material volatilizes by an independent first order reaction with 
parameters A2 and E2 , the residual fraction will be given by 

1 - C = a e flR P - RT + (1 - a) e flR P RT • [ 
_!!&J. ( E,) 1 [ _,1& (-E,) 1 (23) 

(2) Two Competitive First Order Reactions 

If the total material may be volatilized by two alternative paths, each having a rate propor· 
tional to the first power of all remaining volatilizable material and if the respective Arrhenius 
parameters are Al and E, and A2 and E2 for the two paths, then the residual fraction will be 

_ A,E, (_lb.) 6!b.. ( .fL) 1 - C = e f3R P RT - f3 R P - RT • (24) 
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FIGURE 12. Effect of heating rate on. residual fraction 
versus temperature for composite cases. 

E, =30,000 cal/mol; A, =4.458 x 10'/sec 
E, =60,000 cal/mol; A, = 10 "/sec 
/l=O.OOI, om, 0.1 and 1.0 'K/sec 
___ Case 0), independent first order reactions 
________ _ Case (2), competitive first order reactions. 
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FIGURE 13. Effect of rate of heating on the thermogravi-
metric rate versus temperature for composite cases. 

£1, £t. . A [, and A 2 as in figure 12 
(a) t:ase (2) competitive first order reactions 
(b) Case (1) independent first order reactions. 

To observe the effect of variation of heating rate in these composite cases, integral and differ
ential curves were calculated for a = 0.5, EI = 30,000 cal/mol, E2 = 60,000 cal/mol, A2 = lOl5/sec 
and Al = 4.458 X 106/sec for heating rates of 1.0, 0.1, and 0.01, and 0.001 OK/sec. The value of 
Al was selected so that for Case (1) at f3 = 0.1 OK/sec and C = 0.5, the first reaction contributes 
75 percent to l-C and the -second reaction, the remaining 25 percent. 

The integral curves are shown in figure 12 and the differential curves in figures 13a and 13b 
for the two cases. 

Such a thousand-fold variation in heating rate is not easily realizable experimentally, but was 
used in these theoretical calculations to illustrate as wide a variety of situations as possible. 

It is immediately apparent from inspection of figures 12 and 13 and eqs (23) and (24) that for 
these cases of two first order reactions with widely differing activation energies, the thermograms 
for Cases (1) and (2) exhibit quite different variations in structure upon changing the heating rate. 

Case (1), (independent reactions), at the highest heating rate (and temperature), (f3 = 1.0), 
gives the appearance of one simple thermogram as the two reactions broadly overlap one another. 
As the heating rate is lowered, (f3 = 0.1), the curve tends to flatten as the two reactions begin to 
separate. The decrease in the value of the thermogravimetric rate at the maximum with decreas
ing f3 is the opposite of simple reactions as seen in figure 11. 

At f3 = 0.01, the two reactions separate further and two peaks are obtained on the differential 
curve. It may be noted that at these conditions the "maximum" temperature for the higher 
activation energy reaction has been shifted five degrees by the perturbing influence of the low 
energy reaction. 

By f3 = 0.001, the low energy reaction, favored at the lower temperature, is almost completely 
separated from the high energy reaction. 

On 'the other hand', in Case (2) (competitive reactions), for the values of parameters considered, 
the low activation energy reaction takes over almost completely at low temperature and heating 
rates (f3 = 0.001 and f3 = 0.01). At the high heating rate, (f3 = 1.0), the low activation energy 
reaction dominates only during the first 30 percent of weight loss, with the high energy reaction 
considerably modifying the latter portion of the thermogram. Again, the inclusion of the high 
energy reaction causes a temporary increase in (dC/dT)max with increasing f3. In simple reactions 
the maximum rate decreases upon in'creasing f3 and T max, [see eq (21)]. 

Two competitive first order reactions with equal activation energies (E1 = E 2) appear as a 
simple first order reaction no matter how great the difference in pre exponential factors. This 
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is true of any set of competitive reactions of the same order. If they are of differing order, then 
they are, in theory, resolvable. 

The differentiation between two inde pe nd e nt first order reac tion s with th e same activation 
energies depends upon- how greatly A,/A2 deviates from unity. The resolution is relatively un
affected by changing the rate of hea ting. 

Thus, the technique of varying the rate of heating in composite cases not only often permits 
a separation of reactions but often gives information as to the nature of the competition be twee n re
actions . This aspect is discussed further in succeeding sec tion s on me thods of kine ti c analys is. 

The application of more complex e mpirical subs titutes for the Arrheniu s equation to experi
mental data involving composite reactions has been discussed by Farmer [16]. 

4. Critical Survey of Methods of Kinetic Analysis 

The methods of kinetic analysis of thermogravimetric data are divided into five categories 
to facilitate discussion and comparison. These are - (a) "Integral" methods utilizing weight loss 
versus temperature data directly, (b) "Differential" methods utilizing the rate of weight loss, 
(c) " Difference-Differential" methods involving differences in rate , (d) Methods specially appli
cable to initial rates, and (e) Nonlinear or cyclic heating rate methods. 

4.1. Integral Methods 

The fundamental criticism of integral methods as applied to a single thermogravimetric trace 
is that "best values" of A, E, and n are inevitably fitted to the data whether or not these parameters 
have any significance or even utility in the understanding of mechanis m. Also to obtain the activa
tion energy the order must be known or vice versa. This latter problem has been met with varying 
S UCCF,SS in several ways. 

As many of these methods involve an approximate integration of the exponential integral, 
they will be compared to e qs (13a, b, c, d) when applicable. 

The first serious theoretical treatment of thermogravimetric data was by van Krevelen et al., 
[17]. These authors approximated the exponential integral by making the substitution 

E ( I-.) E ( T) E e - 1ft = e - T m:: == 0.368 T max m:: (25) 

where T max is the temperature at the maximum thermogravimetric rate. 
eq (4) in logarithmic form 

Thus , they obtained for 

[ (1 - C) 1 -" - II 
In 1-n J 

(n 01 1) 
[ 

E 1 AR 0.368 RTm., E 
=In /3E(TmaJ (Tmax+ 1) +R(Tmax +1)lnT (26) 

In In (l-C) 

(n= 1) 

and tested for linearity of In T for various values of n. Reactions are insensitive to order at low 
conversion so in order to obtain n from this or similar methods linearity must be established at 
high conversion. However, linear plots over much of the conversion range were obtained from 
eq (26), n = 1, for Cases Band C with maximum isothermal rates. Thus , the method should be 
limited to cases in which a known isothermal order is followed. 
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Baur et al. [18], in 1955 applied a graphical solution of the exponential integral to the case of 1 

a linearly temperature dependent preexponential factor (eq (15» for data on the high pressure 
oxidation of metals and obtained good agreement between experimental values and theoretical 
values based on a parabolic rate law. Smith and Arnoff [8] in 1958 calculated a table of p(x) 
values for x = 1 to 50 and used it to fit data on the thermodesorption of gases from solids to first 
and second order kinetics by a method of trial and error. 

Doyle [10], in 1961, presented the most formal method for the precise c urve fitting of a single 
thermogram using calculated tables of log p(x). However, as in other such methods, its applica
bility is limited to cases of known isothermal order. As the method is quite tedious, Doyle devised 
an approximate method based on the first two terms of the asymptotic expansion (eq (l3a». 

(27) 

For cases of unknown order, Doyle [10] suggests making calculations as early in the reaction 
as experimental accuracy allows. However, even using C = 0.05, one obtains appreciable errors 
in the determined activation energy when this method is applied to maximum Cases A, B, and C. 
Nevertheless, such integral curve fitting of a single trace is more generally applicable than similar 
differential methods. 

Farmer [16] defines the relative error using the two term asymptotic approximation as 

p(x) 
r2=--' 

Pa,2(X) 
(28) 

This relative error , r2 , and r3, the relative error in using three terms of the asymptotic approximation, 
are shown for several values of x in table 1. 

or 

TABLE 1. Relative errors for two- and three-term asymptotic ap
proximations ofp(x) a as a/unction o/x=(-E/RT) [15, 16] 

10 

r, 0.844 
r, 1.055 

e' f' e' 'p(x)=--+ -rh:. 
x _ 00 x 

20 

0.913 
1.014 

-x 

30 40 50 

0.939 0.954 0.962 
1.006 1.001 1.002 

Farmer [16] substituted eqs (27) and (28) into eq (10) to obtain in logarithmic form 

fc dC 

I 0 f(C) 
og p 

fc dC 
o f(C) [Rll E 

-Tlog p -Tlog r2 (3EJ+2.303R· 

(29) 

where r 2 is a slowly changing function of temperature. The second expression was found to be 
sensitive to data point deviation. 

As r3/r2 = 1 +2/x= 1-(2RT/E), if the first three terms of the asymptotic approximation are 

500 

----- --- ----------



I 

1 

utilized and if f(C) is given by eq (3) then 

[ 1 - (l - C) 1 - n] 
log T2(1- n) 

(n "'" 1) AR [2RTJ E 
== log f3E 1-£ - 2.303RT (30) 

[ l-C] log ln~ 

(n= 1) 

which was developed by Coats and Redfern [2, 19]. A plot of log F(C)IT2 versus liT appears to give 
quite satisfactory results when the kinetics follow a simple order. However, as with previous 
methods, application to systems of "changing order," e.g., maximum Case B, results in erroneous 
values for E. 

As Doyle has done, Coats and Redfern [20] have gone to low conversion data to get around the 
problem of determining order. 

Assuming all reactions behave as zero order as C - 0, they obtain from eq (30) 

(31) 

and a plot of log CIP versus liT for low C or n == 0 should give a straight line with slope of - E14.6 
as log ARlf3E[l- 2RTIEJ is again sensibly constant. It is doubtful that this approximation may 
be generally used up to C = 0.3 as is suggested as for at n = 2, the error in F (C) amounts to 40 
percent at C = 0.3. 

Horowitz and Metzger [21] simplify the exponential integral with an approximation similar 
to but simpler than van Krevelen et aI., i.e., defining a characteristic temperature, 8, such that 
8= T- Ts where Ts is a reference temperature at which 1 - C = l ie . Then making the approxi· 
mation 

they finally obtain for n = 1, 

1 1 1 1 8 ----=---
T Ts+8 ( 8) Ts n 

Ts 1 + Ts 

E8 
In In(1 - C) == --2 

RTs 

so that a plot of In In(l- C) versus 8 should give linearity with a slope of EIRTl . 

(32) 

(33) 

For cases in which n"'" 1, more complicated expressions are suggested [21] involving derivative 
parameters and Ts is defined as the temperature at the inflection point. 

One may obtain from eq (12) using eq (13d) for log p(x) and making the approximation of eq (32) 

In In(l- C) == In ~~ - 5.33 _1.~:2 + 1.~~~8 (34) 

which gives the same slope as eq (33). However, eq (34) does not include the condition that Ts 
is the temperature at which 1-C = lie. 
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Thus, eq (34) suggests the generalization of Horowitz and Metzer's method to the case where 
n 0/= 1 and Ts is any reference temperature as in eq (35). (The "constant," 1.052, may be improved 
upon once an approximate E has been determined from a table of first differences oflog p(-E/RT) 
for various E/RT, [11].) 

1.052EO 
In[I - (1- C) 1 - "] == constant + ::...:....:..::...=.c=...c.... 

RTs2 
(35) 

(n 0/= 1) 

E may be calculated using eq (33) with fair agreement with theoretical values for E = 60,000 
cal/mol, A/ (3 = 1016tK for n = 1, but theoretical data for n = 1/2 as well as, for example, maximum 
Case C, also give nearly linear plots for In In(I- C) versus 0 over a wide range and high values 
for the energy of activation. 1 

Few papers on computational methods have been published [2 , 22] , but such methods are 
probably widely used. McCrackin [23], in an unpublished work, has programmed a method in 
which a series of weights, Wi, and temperatures, Ti, are fed to the computer and values of (1- C)i 
and F(C) are computed for each temperature, assuming n. From equations 

Ie dC 
F(Ci)= 0 (I-[}" 

A 
-x· {3 , (36) 

where Xi = (E/ R)f - I(E/ RT) and f - I is the incomplete gamma function of - 1 order, values of Xi are 
computed for an assumed E and data fitted to eq (36) to determine A/{3. Assuming the error in 
Ci is only experimental and independent of its value, F(Ci) will have a constant variance so the 
best estimate for AI {3 will be given by 

A 
(3 

~xiF(Ci)(I- Ci)2n 
i. 

~ xf(l - Ci)tn 
i 

From eq (36), F(Ci ) is computed for each i using the calculated values of A/{3. 
and Wi are computed. The standard error of fit is 

( E) = [Wi(calc) - Wi(exptW 
an, N-2 

N = No. of values of T and W. 

(37) 

Then, (I-C;) 

(38) 

This is computed for various values of nand E and the values that give the smallest a are 
chosen. 

To summarize, the computer calculates and prints a for values of E for n = 0,1/2,1,3/2,2, and 
3. Then, for each n, it chooses the value of E that gives the minimum a and prints E, a and A/{3 for 
each n. It then prints Wi(calc) - Wi(expt) for these values of E. 

Since only if Wi(calc)- Wi(expt) remains sensibly constant over the entire range can the system 
be said to have a particular nand E, it would appear that McCrackin's method tests the validity -,> 

of its assumptions. 
Reich and Levi [24] have developed a method involving the determination of the area under 

the initial part of an integral thermogram to obtain an approximate expression for the energy of 
activation. Doyle [25] points out that such a method should be less sensitive to experimental 
scatter than line or slope methods. The corrected derivation [25] of the equations includes the 
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approximation in eq (13d), i.e., p(x)= Ger, to obtain for n= l, 

In A = In i (EG)2 _.!£. 
I (3 R RT (39) 

which for two different initial areas becomes 

(40) 

where AI+IIJAJ is the ratio of initial areas. As will be shown subsequently, the coefficient of EJRT 
assumed to be unity in eq (39) is a slowly changing function of EJRT and more accurate values may 
be obtained for E by successive approximations. Also, the general utility of eq (40) depends on 
the lack of sensitjvity to order in the early conversion range. 

Reic h [26] has pointed out that at small and constant AT from eq (11) 

In C 
(n=O) 

In In (l-C) 
(n = 1) 

E A 
=--+1n- AT 

RT (3 (41) 

AT= constant. 

Utility of eq (41) is limited to cases in which a particular reac tion order, n, is known to be 
followed. 

Reic h [27] using the approximations made by Horowitz and Metzger [21] obtained at constant 
weight loss for two different heating rates, 

(42) 

by assuming that Ts, JJTS ,2= T1JTz. 
However a simpler expression has been developed [11] by the substitution of eq (13d) into 

eq (10) to obtain 

AE E 
log F(C) = log If -log (3- 2.315-0.457 RT (43) 

so at constant cOl1version for several heating rates a plot of log (3 versus IJT will have a slope of 

d log (3 = 0 457 Ii E = _ 4 35 d log (3 
1 . R or . 1 

d- d-T T 

(1- C) = constant. (44) 

Activation energies may be quite accurately and simply obtained from eq (44) by successive 
approximations as tables oflogp(-EJRT) and A log p(-E/RT) for various EJ RT are available [10, 11]. 
Once an approximate E is obtained from eq (44), the "constant," which changes from 0.477 at 
E/RT= 20 to 0.449 at E/RT= 60 , is redetermined for the approximate E/RT and successively more 
accurate values of E are obtained. 
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The independence of E from C and T may be tested by determining E at various constant 
conversion values. 

In an excellent and important paper, recently to come to our attention, Ozawa [27a] also de
velops eq (44) but employs it without further refinement to calculate E at several C values. He 
sets up appropriate theoretical master·curves of (1- C) versus log <P [= log (AE//3R)p(x)] for, e.g., 
simple nth order reactions and for the random degradation of polymers Ceq (6)J for N ~ Land 
L = 2, 3, 4, and 5. A more accurate experimental master curve is obtained by superimposing 
curves of log /3 versus l/T at several heating rates by displacement along the abscissa. Values 
of C and T from this curve are used to construct a plot of (1- C) versus log [(E//3R)p(E/RT)J which 
may be matched to the appropriate theoretical curve by displacement of log A along the abscissa, 
thus determining A and confirming the assumed kinetic equation. 

This appears to be one of the best and most generally applicable methods yet developed. 
If F(C) may be represented as a simple nth order reaction as in eq (3) then eq (44) becomes, 

[ (1- C)l - n - 1] AE E 
log 1- n = log """""if-log /3 - 2.315 - 0.457 RT (n ~ 1) (45) 

so for the slopes of plots of log /3 versus l/T at constant C, log [(1- C)l - n -lJ versus l/T at constant 
/3, and log [(1- C)l-I' - 1 J versus log /3 at constant T, one obtains 

(C = constant) 

dlog r(l-C)1 - n-1J 

d log /3 

(n ~ 1) 

d log In (1 - C) 
d log /3 

(n= 1) 

(46) 

(f3 = constant) (n ~ 1) 

=1 (47) 

(T= constant). 

The right· hand side of eq (46) may be applied to a single thermogravimetric trace and has the 
advantage over the approximate methods of Farmer [16] and Coats and Redfern [19], [eq (29) and 
(30)], in that successive approximations in the manner described above can be used to determine 
accurate values of the parameters. The order, n, may be tested by eq (47), the correct n giving 
a horizontal plot. 

Once /3, n, E, T, and C are known, one may substitute into eq (45) to determine A. Thence, 
constancy of A with changing T and C should be a confirmation of the validity of n. 

As this method is the most adaptable of the integral methods, we demonstrate its utility with 
the theorietical cases of "changing order" (maximum Cases A, B, and C) and "changing activation 
energy" [composite Cases (1) and (2)]. 

Figure 10 contains the integral curves for /31 = 0.05, /32 = 0.10, and /33 = 0.20 OK/sec for Case 
B with a maximum isothermal rate at C = 0.5. Values of T at constant C were obtained from these 
curves for C=0.02, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.98 and plots of log /3 versus l/T are shown 
in figure 14. The slopes of these lines give, from eq (44), E approx . = 59,300 ± 200 cal/mol. Upon 
reevaluating the constant in eq (44) for (E/ RT)approx., one obtains Ecorrected = 59,850 cal/mol com
pared with the theoretical value of 60,000 [11]. 
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FIGURE 14. Logarithm of heating rate versus reciprocal 
absolute temperature for maximum Case B . 

A = l OIS/sec; £ = 60tOOO cal /mol 
{3, = 0.05, {3, = 0.10,13, = 0.20 oK/sec; 

C = 0.02, 0. 10, 0.25, 0.50, 0. 75, 0.90, and 0.98. 
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FIGURE 15. Logarithm oj heating rate versus reciprocal 
absoLute temperatllre for composite cases. 

£1 . £~, AI. A~ . a nd (3 as in fi gure 13 
(a) Case (2) cumpetitive first order reac t ions 
(b) C ast: ( I ) independent fi rst order reac tiun s 

• . C= O. IO O, C = 0.75 
"7 . C= 0.25 O . C= 0.90. 
6, C = 0.50 

Therefore, this not only permits determination of the correct activation energy for this case 
of "changing order" but es tablishes its independence of C and T over the reaction range. 

Equation (44) should not be expec ted to apply to composite cases since it was derived assuming 
a single te mperature dependent rate constant. However, application to the indepe ndent and 
competitive first order reactions shown in figure 12 and 13 demonstrate some of the limitations of 
the method and how it may be utilized to interpret these simple cases. 

In fi gure 15, log {3 is plotted against l/T for - (a) two first order competitive reaction, and 
(b) two first order inde pe ndent reactions , for E1 = 30,000, E2 = 60,000 cal/mol, {3 = 0.001, 0.01, 0.1 
and 1.0 oK/sec and C = 0.10, 0.25, 0.50, 0.75, and 0.90. The theoretical slopes for E1 = 30,000 and 
E2 = 60,000 cal/mol are included as guidelines. 

For two competitive reactions, (fig. 15a), at low conversion, (C = 0.10), the low activation energy 
reaction is dominant at all heating rates so a slope corresponding to 30,000 cal/mol is obtained. 
At high conversion, (C = 0.90), the low energy reaction is still dominant at slow heating rates but 
the intrusion of the high activation energy reaction can be observed at fast {3. A readjustment of 
the parameters could set up a situation in which the high energy reaction was dominant except 
at low C and {3. 

For two independent first order reactions (fig. 15b), at low conversion and slow {3, the low 
energy reaction is dominant but at low C and fast {3 the slope is perturbed by the high energy 
reaction. At high conversion, the high energy reaction is dominant at slow {3, but, as before, 
a mixture of E1 and E2 reactions contribute at fast {3. 

In general, employing the lowest practicable heating rate will best isolate competing reactions. 
However, it may occasionally be expedient to raise the heating rate to pick up a high energy reac· 
tion that may not be easily discernible under near·isothermal conditions. 

We conclude, therefore, that only methods involving several heating rates can give the correct 
activation e nergy for cases of "varying order" (Cases A, B, and C) and reveal and, to some extent, 
resolve cases of " varying activation energy" (Cases (1) and (2)) in which several competing reactions 
occur. 
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The integral methods involving a single thermogram appear to be applicable only in special 
cases in which the isothermal order is known and meaningful. However, integral curve fitting 
should be considered important corraborative evidence in the testing of mechanism. 

4 .2. Differential Methods 

"Differential" methods based on rate of weight loss versus temperature data have been 
devised whi ch are much simpler in application and, in some cases, are able to circumvent difficul· 
ties found in many "integral" methods. However, they suffer from an inherent weakness - the 
magnification of experimental scatter - often rendering their application to experimental data 
difficult, if not impossible. 

Van Krevelen et al. [17], calculated solutions for p(x) using two terms of eq (13c) and plotted 
families of curves for various Tmax for log (T(dC/dT))max and log (t:.T/T)max versus log E/R for 
first order reactions. t:. T is the half·width of the differential curve. 

Turner and Schnitzer [28] used three terms of eq (13c) for p(x) and refined van Krevelen's 
relationships for n = 1 to obtain expressions relating E/R to T max and t:.T. t:.T, T max and (dC/dT)max 
were estimated from a differential curve for each of several composite reactions and values for 
the parameters obtained. Turner et al. [29], using an identical development, obtained similar 
expressions for n = 213. However, the equations in references [28] and [29] are in error [15]. 

Kaesche·Krischer and Heinrick [30] used van Krevelen's method at several heating rates to 
investigate the composite kinetics of polyvinyl alcohol decomposition. The utility of this method 
depends on how closely the assumed order of kinetics is followed. If the kinetics , in reality, 
behaves as a lower order reaction, then the calculated value for E will be too high, and conversely, 
if n is greater than its assumed value, the calculated E will be too low. Application of this method 
to maximum Cases. A, B, and C gave activation energies from 70 to 150 kcal/mol compared with 
the theoretical value of 60. Van Krevelen [17], assuming n = 1, obtained activation energies for 
polystyrene and polyethyleIie of 82 and 98 kcal/mol. These polymers which often exhibit maximum 
type isothermal rate curves usually have activation energies of the order of 55 and 70 kcal/mol, 
respectively [5] . 

. -Equation (11) at the maximum rate becomes 

(dC) =:! (1-C)n e-E/RTmax 
dT max {3 max (48) 

which may be combined with eq (21) and eq (30) which utilizes the three term asymptotic approxi· 
mation to obtain 

and 

E A ---=- n(I-C)n-l e -E/RT max 
RT2max {3 max 

2RT 
n(I-C):\;,\ =1 + (n-l) max 

E 

(n> 0, #- 1) 

In (l-C)max = [1 2R~ max] 

(n= 1). 

(49) 

(50) 

These eqs (48), (49), and (50) were first derived for first order reactions and used by Murry 
and White [31]. The solution of eq (49) was facilitated by using several heating rates. Kissinger 
[32] extended Murry and White's method to any order, n, by deriving eqs (48), (49), and (50) as 
shown above. 
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Kissinger [33] differentiated the logarithm of eq (49) to obtain for n = 1 

d_1_ 
Tmax 

(51) 

Thus the activation energy may be obtained from the shift of the maximum temperature with 
heating rate. Equation (51) is identical to eq (42) which was also derived assuming n= 1 and a 
reference temperature [27, 21]. Substituting eq (50) into (49) and differentiating the logarithm 
assuming T max changes slowly with {3, Kissinger [32] again obtains eq (51) now for any n. 

Kissinger [32] also has developed a shape index, s, defined as the absolute value of the ratio 
of the tangents to the differential curves at the inflection points and related to the order by 

n= 1.26 SI /2. (52) 

Such higher derivative methods are seldom practical for polymer degradation studies. 
Fuoss et al. [34], suggest determining the three maximum values, T max, (dC/dT) max and (I-C) max 

from the inflection point of the integral curve and determining the activation energy from eq (21). 
The method as described [34] is applicable only to first order kinetics and not to all orders as is 
implied by the omission of n from eq (21). Such an omission leads, obviously, to the exceptionally 
high value for E for polystyrene indicated in this paper [34]. 

However, (1- C)max is relatively independent of the heating rate, {3. If eq (10) including two 
terms of the asymptotic approximation, eq (13a), is combined with eq (49) at the maximum, one 
obtains 

1 

(1- C)max == n1 - n (n > 0, ~ 1). (53) 

Equation (53) was first pointed out by Kissinger [32] and also was derived by Horowitz and 
Metzger [21] from their nearly equivalent approximation. Thus eq (21) becomes 

E = n:lR'1'2 (dC) - n .I. max dT max (n>O,~l). (54) 

The last two columns in table 2 give the approximate (1- C) max, [i.e., columns (1- C)max(x =00) 
and nn/n-lR(x = (0)], which .may be utilized with eq (54) to determine activation energies if the 
value and constancy of n have been established. If (1- C)max is independent of {3, then from 
eq (21) T:nax(dC/dT)max must also be independent. Such independence is inherent in the use of 
the two term asymptotic approximation as differentiation of eq (48) with respect to {3 assuming 
T:nax(dC/dT) max and (1- C)max constant results in eq (51). 

TABLE 2. Values of (1- C)m= for various orders and x's 

~ 
n l1 / JI - 1R 10 20 30 40 50 00 

(cal/ 
" mol OK) 

1/2 O.~ 0.273 0.266 0.262 0.260 0.250 3.97 
I .430 .401 .391 .385 . 382 .368,I/e . 5.40 
3/2 .516 .484 .472 .465 .461 .444 6.71 
2 .578 .544 .531 .523 .519 .500 7.95 
3 .661 .626 .612 .603 .599 .577 10.32 
4 .716 .681 .666 .658 .653 .630 12.62 
5 .755 .721 .706 .698 .693 .669 14.85 
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It also follows that 

d 1 (dC) 
2 d In T max == n dT max == 1 

d In {3 d In {3 1 + E 
2RT max 

(55) 

and from eq (8) that 

{3 (dC) 
k -A -E/RT - dT max 
max- e max-(l_C)n 

max 
(56) 

'f . kEd A b d . d f 1 f 1 {3 (~~tax 1 f 1 so, 1 n IS nown, an may e etermme rom a p ot 0 og (1- ""n versus T or severa 
""'max max 

{3 . Differentiation of eq (56) with respect to {3 assuming (1- C) max constant results in 

(57) 

which is an equivalent form of eq (51). 
Farmer [16] has developed equations for T1/2 , the temper,ature at which C = 0.5. The relative 

error [eq (28)], '2, in using the first two terms of the asymptotic approximation is related to con
version at the maximum by [16] 

(l-C)max=e- r • 

(n=l) 

(l-C)max= l-~n '2+ 1] 
(n =P 1) 

,, - I 

(58) 

Therefore the two-term approximation holds exactly ('2=1) only at x=-EIRT=CfJ. Utilizing 
values of '2 as functions of x from table 1, we can calculate the (l-C)max values for several values 
of x as is shown in table 2. 

The approximate values for (1- C)max(- x = co) may be in considerable error for cases of low 
EI RT max and use of eq (53) will result in large error in determining n. However, if the approximate 
EI RT max is known, appropriate corrections may be made from table 2. 

If dCldllT is plotted versus liT, the maximum rate is 

_ (df2\ = (E + 2T max) (1 - C)max 
d~ J max nR 

T 

(21a) 

which is practically independent of temperature. Other equations at the maximum will be modi
fied accordingly. 
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The actual application of these many mathematical excercises at the maximum rate are limited 
to cases where n is known and its validity over the entire range of conversion has been es tabli shed. 
An example of the magnitude of the e rror whi ch may result in the misapplication of a single point 
method may be observed from the calculation of E fro~ Case B. Firs t order kin etics would appear 
to hold as (I-Omax =0.35 for this case. However, calculation of E from eq (21) for n = I gives 
E apparent = 135,000 cal/mol compared with Etheo,·etica i = 60,000 cal/mol. Subseq uently , it will be 
shown that a first order curve will give a deceptively good fit for both the differential and integral 
curves for such cases of maximum isothermal rate . 

The simplest differential method for determining kinetic parameters is an Arrhenius plot of 
the logarithm of the nth order rate constant, kn, against the reciprocal of the absolute temperature 
since from eq (11), 

dC 

[ 
dT] d In (1 - C) 

log kn = log f3 (1 _ 0" = log f3 dT 
E (n-I) log (I-C)=logA---

2.3RT 

or at f3 = constant, 

[ ~~] A E 
log (I-C)" =log 73- 2.3RT· 

(59) 

Kofstand [35] used eq (59) to test for linear (n=O), parabolic (n=-l) and cubic (n=-2) rate laws 
and determine activation energies for the oxidation of metals. 

Barrer and Bratt, Newkirk , and others [36-40, 2] have employed eq (59) for n= 1 to determine 
activation energies from thermogravimetric data. This method may be used early in the reaction 
to determine initial parameters as the early parts of most reactions are more or less independent of 
order. However, it has been sugges te d that this method be used over the whole range of volatiliza
tion [2 ,37] with values for E obtained from linear portions of the log (d In C) /dT versus I/T plot- As 
with other differential procedures this will lead to too high values for E if n < 1 and too low values 
if n > L Thus, when this method is applied to Cases Band C, high values are obtained for E. 
In order to obtain accurate activation energies, one would have to know or guess the approximate 
value of n that the reaction appeared to follow in the range of determination. 

Ingraham and Marier [41] have used this method for a zero order reaction assuming a linear 
temperature dependence of the preexponential factor and obtained a linear relationship between 
log I/T (dC/dT) and liT. 

The differential methods treated thus far assume the existence of a single order, n. At worst , 
they determi ne order at a single point such as the maximum rate. At best , they do not rigorously 
and sufficiently test their initial postulate as to the constancy of the parameters as does the inte
gral method at several heating rates or as does a similar differential method which follows. 

As in the case of integral methods, it is necessary to perform experiments at several heating 
rates in order to reveal changes in the kinetic mechanism which might affect the reliability of param
eters determined from the data. Anderson [42] solves the three simultaneous equations for eq 
(59) at three different f3 with an electronic computer for the parameters A, n, and E at a series of 
constant (1- 0 values. Any systematic drift in parameters with changing conversion would be 
indicative that the assumptions-single order and single temperature dependent rate constant
do not hold. 

The most generally applicable differential method was developed by Friedman [43] who utilized 
eq (9) in logarithmic form, i.e., 

( dC) dC In dt = In f3 dT = In Af( C) 

509 

E 
RT (60) 



(dC/dt) and T are determined at constant C for several (3, thus a plot of In (dC/dt) versus liT will 
have a slope of E/R and an intercept of In AI(C). If E proves to be constant over a range of C 
values then, from eq (59) and (60), a plot of In AI(C) versus In (1- C) will have a slope of nand 
intercept of In A if an nth order kinetic mechanism is operative. 

In general, differentiation of eq (60) at constant C or constant dC/dt gives 

or if/(C)=(l-C)n, 

dIn dC 
dt 

(C=const) (~~ =const) 

dIn dC 
dt E dIn (l-C) 

R=n d l 
T 

(C=const) (~~=const) 

dIn dC 
dt 

-::-:-----,---".'__=" = n 
d In (I-C) 

(T=const). 

(61) 

(62) 

(63) 

The validity of I( C) = (1- C)'l may be tested from several runs at different {3 either at constant 
rates or constant temperature. 

The right-hand side of eq (62) may be applied to a single differential plot when n > 0, since 
under these conditions dC/dt is a dual-valued function. The constancy of E/n may be tested at 
a series of constant dC/dt values. However, such constancy does not "prove" that the reaction 
is nth order. Experiments at several heating rates are essential for such proof. 

Chatterjee [44] quite recently has expressed eq (6~) in terms of W, the weight of sample 
remaining, 

.llog (_ d!D 
. dtJ 

.llog W 

(T= const) 

n (64) 

and the order n may be determined at several temperatures from two runs differing only in their 
initial weights. ' 

It may be noted that the preexponential factor of the dC/dt equation is WS- 1 times thecorre
sponding preexponential factor of the dW/dt equation [45]. Also, if an initial order is determined by 
this method, a distinction between the "order with respect to initial weight" and the "order with 
respect to temperature (time)" may be useful in the interpretation of the mechanism of complex 
reactions. The order with respect to initial weight, nw , may be determined from two or more runs 
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at different Wo from an integral method, since from eq (43) 

Lllog Wo= 0.457E 
Ll! -(nw-l)R 

T 

at constant Wand {3. 
After the determination of n , Chatterjee [44] suggests determining E from a single run by a 

difference-differential method. However, his method may be extended to apply to any j(W) 'i= W" 
since eq (62), for two or more runs at different initial sample weights becomes 

dIn dW 
E dIn' Af( W) dt 

(65) 
d! R d! 

T T 

(const W) (const ~f). 

Chatterjee [44] suggests using eq (64) to determine the order of competitive reac tions by firs t 
calc ulating Al and EI early in th e first reaction and subtracting off the portion of the rate (calc ulated 
from AI and E I ) due to the first reaction from the second and so on. When change in n is due to 
competitive reactions this method may be applied only when the orders of the severa l reac tions 
are different [16] and the rates of each s tep are proportional to a power of the total weight of mate
rial. An added problem is the determination of n early in the reac tion. 

We may test the applicability of Friedman's method [43] to the cases of "changing order" 
and "changing activation energy." Figure 16 is a plot of log dC/dt versus l/T for Case B with 
a maximum isothermal rate at 50 percent conversion. As with the integral me thod, parallel s traight 
lines are obtained for degrees of conversion ranging between 0.04 and 0.95. The average value 
of E calc is 59,800 ± 1500 compared with 60,000 cal/mol , theoretical. 

In {3 (dC/dT) is plotted against l/T for two first order independent composite reactions in 
figure 17, as was done for the integral method in figure 15b. Figure 18 is a similar plot for two 
first order competitive reactions . Again, theoretical slopes for EI = 30,000 and E2 = 60,000 cal/mol 
are included for comparison purposes _ The close similarity of these results to those of the integral 
method is obvious and the interpretation of figures 17 and 18 is identical to that of fi gure 15. Com
parison of eqs (61) and (44) shows the dominance of Ll In {3 over Ll In (dC/dT) and thus, explains 
the close similarity of the two methods. 

FIG URE 16. Logarithm. of thermogravimetric rate versus 
reciprocal absolute temperature for Case B. 

A = 10"/scc: £ = 60,000 (, ai/mol 
/3, = 0.05. /3,= 0. 10. /3,, = 0.20 'K/scc 
C= O.04, 0.10, 0.20, 0.30, 0.40. 0.50, 0.60, 0. 70.0.80.0.90, and 0.95. 
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FIG URE 18, Logarithm of thermogravimetric rate versus 
reciprocal absolute temperature for Case (2) competive 
first order reactions , 

FIG URE 17. Logarithm of thermogravimetric rate versus 
reciprocal absolute temperature for Case (1) independent 
first order reactions. 

£ 1. E~ . AI. At. . f3 as in figure 13 
•. C~ O . IO O,C~ O.75 
\/ , C ~ O.25 O . C ~ O.90 . 
6 . C~ O.50 

£ 1. £2. AI. A~, /3. as in figure 13 
• . C~ O.IO ' O,C ~ O, 75 
\/ . C~ O.25 O . C~ O.90. 
6 . C ~ O. 50 

The practical merits of the two methods may now be compared. The integral method [eq 
(44)] is simpler than the differential [eq (61)] method and quicker as it does not involve the deter
mination of rates. However, no successive approximations are necessary for the differential 
method. (It will be shown that the integral method may become exact by appropriate programming 
of the heating rate.) 

On the . other hand, many polymer decompositions are subject to early kinetic irregulari
ties (e.g. , a temperature dependent induction period). : Such complications may modify param
eters obtained from an integral method as they de pend upon c umulative values of the experimental 
parameters. Differential methods which give instanteous values for parameters are not subject 
to these complication~. The preexponential factor, A, and the order, n , if it exists, may be deter
mined directly from the intercept in either method and both methods are equally capable of inter
preting cases of changing order or activation energy. 

To summarize, of the differential methods, only those involving several thermograms appear 
to be generally applicable. Methods involving a single thermogravimetric trace should be applied 
only to systems where all material volatilizes by the same simple kinetic process. 

4.3. Difference-Differential Methods 

The difference-differential method of Freeman and Carrol [46] and its modification [38] is 
the most widely used method for the kinetic analysis of thermogravimetric data, It has been 
applied both to the investigation of inorganic materials [46, 2, 39, 47,48] and polymers [38,49,2, 
50, 44]. 

The difference form of eq (59) is 

dC dC E 1 
.1 log -=.1log,B-= n.1log'(l-C)---.1-

dt dT 2.3R T 

and the difference forms of eqs (62) and (63) are 

dC 
.1 log ,B dT 

.1 log (1- C) 

E .1 (~) 
n---

2.3R .1 log (1- C) 
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FIGURE 19. ~ logO -C) versus ~ 10g( I -C) for Case B. 

A = 10" sec: E= 60,OOO cal/ mol : {3 = O. IO OK/sec 
int e rcept =" s lope = E/'2. 3/? 

dC 
illog {3 dT 

. dC 

2.3nR il log (1- C) 
E dC 

illog {3 dT 

E 

0.1 

2.3R 
E 

il log {3 dT il log (1 - C) 
= n ---. 

il (~) 2.3R 

6 lIT 
6l0Gli-Ci 

0.2 

6. lIT 
6l0Gli-Ci 

0.3 

- 60 

- 40 

-10 

6LOG~ 
6lllGlI' CI 

(68) 

(69) 

Equations (67) and (69) have been used to obtain the parameters, E and n, from thermogravi
metric data with reported success not only for simple inorganic decompositions but also for com
plex polymeric systems. Therefore it is of interest to apply these equations to Case B with a 

dC 
illog {3 dT 

maxImum isothermal rate at 50 percent conversion. Figure 19 is a plot of illog (1- C)against 

ill 
il log (~ _ C) for this case with a constant energy of activation of 60,000 cal/mol. Similar results 

are obtained from eqs (68) and (69). 
Three conversion ranges of constant slope may be obtained from figure 19 as might be antici

pated for a cubic. These give the following values for nand E, 

1-13% conversion 
13-50% conversion 
50-95% conversion 

E = 66,500 cal/mol 
E = 105,000 cal/mol 
E= 175,000 cal/mol 

n=-2.4 
n=+0.3 
n = 1.25. 

The data may be interpeted as follows: between 1 and 13 percent convers ion, the data are 
fitted by the parameters E = 66,500 cal/mol, and n =- 2.4, etc. Since n is negative initially and 
becomes positive the isothermal rate must pass through a maximum value. The value of E does 
not have any corres pondence to its theoretical value except in the initial conversion range. Treat
ing each linear range independently does not improve the results. Therefore, the djffere nce
differential method gives a procedural nand E for the different ranges but these have no mech-
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petitive first order reactions. 
£\. E"!.. AI. A2 , and {3 as in figure 13. 

allIs tIC significance, e.g_, the activation energies obtained for the middle converSIOn range of 
polystyrene and polyethylene in reference [38] may well be in error. 

The Freeman-Carrol method is applied to two competitive first order reactions (Case 2) of 
30,000 and 60,000 cal/mol, respectively, in figures 20 and 21. 

Analysis of these figures allows a critical investigation of this method as first order kinetics 
is followed by both reactions_ The scatter of points at low conversion in figure 19 due to the 
determination of 1-C and dC/dt values from theoretical curves was cut down by determining them 
directly from the theoretical equations for figures 20 and 21. 

dC 
~ log -dt . . ~ log (1-C) --1-- IS plotted agamst (1) 
~T ~ T 

in figure 20. The theoretical intercepts at C~ ° for E=30,000 and 60,000 cal/mol and the the
oretical slopes for n= 1 are indicated. As C~ 0, the curve approaches the correct intercept, 
(E = 30,000), but the slight perturbation by the E=60,000 reaction coupled with the lack of sensi
tivity toward n at low conversion tends to make the reaction appear to be zero order. The slope 
approaches n= 1 only at high conversion, but with an intercept of E == 40,000. 

dC 1 
~ log - ~-

dt . I d· T 
-'~---:I'-o-g-(I---C-=)ls p otte agamst~log(l_C) 

in figure 21. The theoretical intercepts at C~ 1.0 for n= 1 and the theoretical slopes for E=30,000 
and 60,000 cal/mol are indicated. In the less than 30 percent conversion range, a slope reasonably 
close to 30,000 may be obtained but the perturbation of the high energy reaction is great enough 
to throw the intercept toward zero order. The intermediate conversion range gives slopes between 
30,000 and 60,000 and intercepts less than unity_ Only as C~ 1 may n be accurately determined 
from the intercept. 
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It is obvious from the above cases that it is diffic ult to differentiate between deviations from 
cons ta ncy due to "changing order" and "changing ac ti vation e nergy" with thi s method . 

If the reaction follows a simple order, n may bes t be de termined at high conversion either from 
the slope of eq (69) or the intercept of eq (67). The activation energy may be dete rmin ed either 
from the intercept at low conversion for eq (69) or the slope of eq (67). 

In general one may obtain the initial parameters only if values of high accuracy can be obtained 
for Ll dC/dt at low conversions. The experimental scatter, doubly magnified by taking the differ
ence of a derivative, often will not allow the determin ation of order at low co nversion where the 
dependence on n is slight. 

These methods seem to be of limited applicability to polymeric systems where the kineti cs 
often is complex. 

4 .4. Initial Rates 

Even where f(C) in eq (1) is unknown, the activation energy often can be determined as near 
to initial conditions as possible since all well-behaved reactions approach zero order as C ~ O. 

Since the initial conditions for a thermally decomposing sys tem are usually those most pre
cisely characterized, the initial values of the kinetic parameters are often parti cularly useful 
in determining mechanis m. Accurate initial weight-loss values are unattainable in isothermal 
studies due to an inevitable time-lag in reaching experime ntal te mperature_ 

This inde pendence of order at low conversion means that a plot of the logarithm of a "zero 
order rate constant," e .g., dC/dt, C/'P [20], C [26] , or the logarithm of a " first order rate constant," 
e.g., (d In C)/dT [36-40,4, 16], log (I-C) [26], or the logarithm of an " nth order rate constant ," 
[1/(1- C)n] dC/dT, [35], versus l/T or l/T + a In T will give approxim ately the same values for 
activation energy at low C. Difference-differential equations, e.g., eq (69), to determine initial 
E have been sugges ted [44] but are not usually practical for reasons stressed in 'the previous section. 

The In T term which modifies the reciprocal temperature may e nter as a temperature depend
ence of the preexponential factor, through an integral series approximation or a temperature 
de pendence of the heating rate. It has been shown to be trivial except at low E. In ge neral , 
if the order assumed in calc ulating E is higher than is actually the case, the res ultant activation 
energy will be greater than the true value, although, where integral expressions are used other 
approximations may reverse this effect. 

From eqs (19) and (20) for n= O, the slope of a plot of dC/dT versus Cis E/RP . [In fact, for 
any n, plots of [1 /(1 - C)n] dC/dT versus (1- C)I- n/ l - n, (n ~ 1), and dIn (l-C)/dT versus In (I -C), 
(n= 1), have a slope of E /RT2. ] E may be determined from the initial slope of a dC/dT versus C 
curve as the second term in eq (19) is negligible at low C. This is shown for Case B in fi gure 22. 
From the slope, one obtains Eca1c = RTl (slope) = 6702 X 2 X 0.0068 = 61,000 cal/mol compared with 
E theO,.=60,OOO. The error in the calc ulated E results from difficulty in assignin g a value to T, the 
average te mperature over which the slope was determined. 

This proble m may be overcome by plotting - dC/d(1 /T) (= 'P(dC/dT)) versus C. The slope then 
becomes 

(70) 
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Thus at low C, the slope will equal E/R + it where E/R p 2T_ In practice an average E may be 
obtained from a set of C, dC/dT and T at low C since 

(71) 

RTf (dC) 
E=- dT i 2RTi at C ~ L e 

Several methods have been applied to determine the initial activation energies for simple 
orders and the "maximum" cases. At C=0.05, Doyle's method [10] give E=62,400 cal/mol for 
Case B. Equation (31) of Coats and Redfern [20] gave E = 61 ,800 at C=0.04. Equation (41) of 
Reich [26] gave a low value of 59,000 as eq (41) differs from eq (31) by 2 In T. 

In general, (dC/dT) versus C plots remain linear to higher conversions than log (dC/dT) versus 
l /T plots. Methods involving log k" versus l /T gave the correct slope up to C =- 0.01 for Case B, 
while dC/dT versus C is linear to C =- 0.03. 

If a procedural n may be approximated, log [(1/(1- C)n]dC/dT versus l/Tor [(1/(1- C)n]dC/dT 
versus (1- CP-"/l- n may remain linear over a wide range of concentration. However, a linear 
plot of log k" versus l /T at low conversion does not imply nth order kinetics as has been stated by 
some inves tigators. 

The apparent a<Jvantage of thermogravimetric over isothermal methods for the determina
tion of initial parameters is not always experimentally realizable. Accurate data are necessary 
at low conversions and should be obtained at low heating rates to separate any competing reac
tions such as volatilization of solvent.. 

4.5. Nonlinear and Cyclic Heating Rates 

Techniques involving the programming of reaction variables are as yet a quite undeveloped 
tool for the elucidation of kinetic mechanisms. In general, we may write, 

dC =1.. dYi=ji(Y Y Y Y) dt Yi dt 1 , t , .. , i, · . ., 11 (72) 
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wh ere the reaction variables, Yi, may include concentration of any reacting species , te mperature, 
li ght inte nsity, dose of ionizing radi ation, catalys t conce ntration, inhibitor concentration, product 
concentration, intermediate concentration, solve nt concentration, dielec tri c constant of solvent , 
pH, ionic strength , e tc. 

Time, of course, is a unique monotonously increasing variable. Howe ver all other reaction 
variables may, at least in theory, be programmed to increase or decrease with time during the 
course of the reaction at a r ate give n by 

(73) 

{3 may be any function from zero (isothermal case , if lj = T) to an integral transform and may in· 
clude several arbitrary constants and reaction variables. 

It may be simpler in some cases, e .g., the pH of an unbuffered solution, to allow a reaction 
vari able to c hange in a prescribed manner rather than to keep it constant. If the change in a 
reac tion vari able may be meas ured , then an empirical equation may be fitted to its change with 
time. In suc h a case, any dependence of the e mpirical constants on the reaction variables should 
be inves tigated. 

Combining eqs (72) and (73), 

(74) 

A judicious selection of g may simplify the kine ti cs and information concerning the kinetic mech
anism may be elicited through the vari a tion of the parameters . Also, thi s permits the analyses 
of a large variety of differential expressions of the form - dYddYj . 

An application of suc h techniques has been made recently by Ozawa [27a] and is well adapted 
to his method of kineti c analysis. For simple random degradation of polymers, the rate of c hange 
of frac tion of bonds broken , da/dt , is given by a s imple firs t order equa tion 

(3 ~~ = ~;= Ae- EI IlT(1 - a) . (75) 

Equa60n (75) may be combined , upon integration, with eq (5) to construct master curves of (1- C) 
versus cP for N iJ> L and L = 2, 3, 4 , 5 , .. . . In general, if W = Wo(l -C)=g(Y;), and dY;/dt 
= A e- EIRTh(Y;), the n integration results in relationship between conversion and CP . 

Since E and the reduced time, 8= cp/A= (1 e- EIRTdt=8({3 , E, R, T) , are independent of C, 
J/o 

Ozawa [27a] sugges ts that they be used to define thermal stability for materials for which the 
temperature depe nde nce of the measured property can be expressed by a single Arrhenius 
equation. 

Many of the analytical kinetic procedures discussed in this article may be greatly simplified 
by the appropriate programming of the heating rate, for if 

dT 
{3 = - = aTIII 

dt 

and the te mperature dependence of the preexponential factor is TO , Ti lt, or TI, res pec tively and 
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then if m=2, 2112, or 3, respectively, one obtains 

which is easily integrated to obtain 

l !lr;= dC =.:'i f(C)T-2e-E!IIT 

f3 dt dT a 

f C dC A R J x A R , F(C) = -=- exdx=- e- E! IIT 
o f(C) aE .1'0 aE 

eliminating all problems associated with the exponential integral. 

(76) 

(77) 

Programming of f3 =aT2, i.e., time proportional to l iT, should pose no special problem; for 
example, between 200 and 600°C only a three-fold increase in heating rate would take place. 

All integral approximations are now unnecessary as, 

f3R2 
p(x)=- e- E! I1T 

aE2 

and, for example, 

(const C) (const a) 

dIn [(I-C)I-n-lJ - 1 = d In In (1-C) 
d In a d In a 

(n =1= 1) (const T) (n= 1). 

The slope of the rate versus conversion curve now becomes, 

cf2C E 2 f'(C) dC 
dCdT= RT2 -T+ f(C) dT 

and 

!i+f'(C) dC 
R f(C) d ~ 

~ ( T2 dC) = 
T 

dC dT 
E n dC 
------
R l-C 1 

d-
T 

so that 

RH (dC) 
E == I C~T i at C <:g, 1. 

The relationships at the maximum rate are simplified in some cases, 

( dC) = (E - 2RT max)(l- C)max 
dT max nR~ax 
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or 

etc. 

(:i\ = - n~ (1 - C)max 

T)max 

n[l- C]n - t = 1 + (n-l) 2RTmax 
max E 

d In a E 
R 

(21a') 

(50') 

(51') 

All differential and difference·differential equations are the same if f3(dC/dT) = dC/dt IS 

replaced by aT2(dC/d1), thus, 

or 

dC 
d In a dT E d In (l - C) 

1 ="R+ 2T= n 1 
d- d-T T 

(cons t C) (:: = const) 

(C = const) 

E 
R 

and eq (63) does not change as is true of all equations at constant temperature. 

(61') 

etc. (62') 

Thus, in summary, the programming of the heating rate proportional to the square of the 
temperature greatly simplifies integral me thods rendering approximate equations exact. Rate 
versus composition equations are simpler as are expressions relating rate, composition and tem· 
perature at the maximum rate. Rate versus temperature me thods are modifi ed by the s ubstitution 
dC/dt = f3 (dC/dT) = aP (dC/dT) =- a dC/(d 1/T) . 

Other cases of nonlinear heating rates have been developed for the investigation of the ageing 
of insulating material [51,52]. The case in which the rate of heating increases a nd decreases as 
an exponential function of time is of some interest as such behavior approxim<J.tes the heating and 
cooling curves of an electrical oven heated at a constant load and then shut off to cool. Thus, at 
least in theory, once the time constant has been determined, such an apparatus may be used in 
thermogravimetric investigations without temperature control. 

The differential eq (9) is independent of heating rate so in many differential methods in which 
the simultaneous determination of T, l-C, and dC/dt (dW/dt) are utilized, the analytic form or 
the value of the heating rate need not be known. Thus in eq (59), since f3 (dC/dT) = dC/dt, there 
is no need to know f3 or to keep it constant unless a method comparing several heating rates is 
to be used. 

On the other hand, all integrated expressions assume a particular function for {3 so methods 
including integral forms depend on assumptions made concerning the rate of heating. 

Equations at the maximum, e .g., eq (21), are independent of the conditions used in reaching 
the maximum but assume that f3 is constant in the region of the maximum , otherwise an additional 
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term containing the temperature acceleration would be necessary. Many of the other equations 
at the maximum are combinations of differential and integrated equations. 

Equations (61), (62), and (63) should be applicable in a two-point difference form irrespective 
of the previous variation of f3 for at any two temperatures at which (dC/dth = (dC/dth· 

E ( 1 1 ) - --- =n In[(l-C)d(l-Ch] 
R Tl Tz 

(62'') 

or if the same temperature is obtained by any rate of heating followed by any rate of cooling, then 
at T1=T2 , 

(63') 

In order to utilize the left-hand sides of eqs (61) and (62), in a similar manner, two separate 
runs must be performed at different rates of heating such that at the same degree of conversion 
there will be different rates and temperatures so that at (l-Ch =(l-Ch 

In(dC) /(dC) /(1._1.)-§. 
dt 1 dt 2 Tl T2 - R 

(61'') 

for any f(C). 
Reich, Lee and Levi [53] have applied eq (69) at constant dC/dT, 

.1 log W E 
n 1 2.3R 

.1T 
(69') 

(~;=const) 

to cases where f3 was changed in magnitude and/or sign during a single run to obtain values for 
nand E. In runs in which the sample was both heated and cooled, eq (63') was also used to 
determine order. 

The above methods should be used with caution for polymeric materials. Except for the 
most simple systems, the initial starting material may undergo one or more condensed phase 
physical or chemical transformations before volatilization. In such cases, where two samples at 
the same degree of conversion have different heating histories, the rates of volatilization may not 
be comparable. Anderson [42] suggests, as a test for compositional constancy, that a series of 
M identical heating cycles be performed. If the relationship in eq (78) 

(78) 

holds, then the kinetics follow a simple nth order relationship and a plot of the logarithm of the 
residual fraction after M cycles versus the number of cycles, M, should give a straight line whose 
slope should equal the logarithm of the residual fraction after the first cycle. 

Anderson [54] also suggests that since for a case following a simple order n , 

(dC) = k[(l- C)M]n 
dt M I 

(79) 
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a plot of (dC/dt)M versus M could be matched with curves for various orders. Better still, a plot 
of 10g(dC/dt)M versus M log(l- C)I should yield a slope equal to n. 

5. Concerning the Uniqueness of TGA Plots With Respect to Kinetic Parameters 

It is quite clear from pre vious sections that, e ve n for cases in which a s ingle Arrhenius expres
sion is operable, only methods involving several rates of heating determine a reliable activation 
energy parameter. Single point or even single c urve me thods may give spurious values for the 
parameters E and n as both the slope and the inflec tion point are dependent on f(C) and E/RT. 
A number of such methods give a reasonable fit for Case B (EtheO,.= 60,000 cal/mol, iso thermal 
maximum rate at C= 0.5) with a firs t order reaction but with an activation energy of approximately 
135,000 cal/mol. 

Therefore, in the final three figures, we compare these two cases in which the isothermal 
kinetics differ so drastically and observe to what extent their thermogravimetric curves are 
distinguishable . 

Three integral curves (1- C versus T) are shown in figure 23. Curve 1 is for n = 1, E = 80,000 
cal/mol and A/f3=9.3179 X 1021/sec; Curve 2, Case B (isothermal rate rises to a maximum three 
times the initial rate at 50 percent conversion), E=40,000 cal/mol, A/f3= 1.2057 X lOla/sec, and 
Curve 3, Case B, E=35,000 cal/mol, A/f3=3.6000 X lOS/sec. A/f3 values were adjusted so that 
the te mperatures of the maximum rates would coincide. 

The "maximum" Curves 2 and 3 deviate from the first order curves only in the first 20 percent 
conversion range. Better fit in this range could undoubtedly be obtained with a different value 
of n. 

Thermogravimetric rate versus temperature curves are shown in figure 24 for the same cases. 
The closeness of fit well explains the especially poor results obtained when methods involving 
maximum temperature, rate, conversion, or half· width are applied to Case B. 

Thermogravimetri c rate versus co nversion curves are shown in fi gure 25 for the same cases. 
The su periority of thi s type plot for distinguishing between the two cases is e vide nt. The depend· 
ence of the initial slope upon only E and T permits a quick es timate of the initial activation energy 
whose constancy with increasing conversion may be established through other methods . 

I-e 

O~6570----------~~----------~~~b-~ 

FIGUIlE 23. Residual fraction versus temperature. 

I. First urder £ = 00,000 cal/ mol: ~= Y.3179 X I021/sec. 

2. Case B: £ = 40,000 ca l/mol: ~= 1.2057 X 10"/sec . 

A 3. Case B: £ = 35 ,000 cal/mol: jl= 3.600 X IO"/sec. 
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FIGU RE 24_ Thermogravimetric rate versus temperature. 
I.. 2 .. and 3. as in figure 23. 



FIGURE 25. Thermogravimetric rate versus degree of 
conversion. 

1. ,2., and 3. as in figure 23. 

de 
df 

03 

To conclude, although there are some special cases for which a theoretical order has real 
significance, in general, n must be looked upon as a purely empirical parameter, sometimes useful 
in curve fitting. 
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