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Propagation of radio waves in the earth-ionosphere waveguide is considered for the case where the

lower boundary is an inhomogeneous smooth surface.
lated in a direct fashion by utilizing the compensation theorem.

special cases are considered explicitly.

An integral equation for the problem is formu-
After some simplifications, several

For example, in the case of a two-section path consisting of
a long stretch of sea and a short section of land, a relatively simple working formula is obtained.

The

result shows that the modal excitation factors at VLF for an all sea path are significantly reduced when

the foreground is poorly conducting.

Another special case considered is when the propagation path
is all sea except for a short intermediate land section.

In this case, it is found that energy from low-

order modes will be transferred to high-order modes with a subsequent reduction of field strength.

1. Introduction

A great deal of attention has been given to the prob.
lem of predicting groundwave fields for mixed land/sea
paths. Furthermore, extensive calculations have been
made which show the interdependence of the various
parameters. Since a recent review of progress in
this area is now available [Wait, 1964, it is not neces-
sary to discuss this particular topic here. However,
it is rather surprising that, in propagation via iono-
spheric reflections, little attention has been given to the
influence of an inhomogeneous earth. It is the pur-
pose of this paper to consider this problem with special
reference to VLF radio propagation.

2. Formulation

The mutual impedance z, between two vertical
antennas at A and B (separated by a great circle dis-
tance d) located on a spherical earth of radius a is
considered. In order to account for the presence of
the ionosphere, an equivalent reflecting layer is lo-
cated at height h. For present purposes, we assume
this layer is characterized by a surface impedance Z;
which does not vary along the path. If over the earth’s
surface between the terminals A and B, the surface
impedance is Z everywhere, the mutual impedance
may be expressed as a sum of modes as follows

- dla 1/2
Zm =20 I:Sil’l (d/(l)] W(Z, d)’ (1)

where z, is the mutual impedance between the dipoles
A and B if they were located on a perfectly conducting
flat ground plane and separated by a distance d. In

the above expression, W(Z, d) is an attenuation func-

tion defined by [Wait, 1962]:

1/2 2
(d/N) e—iml4 Z exp (ikd %) An, (2

WZ, d=—F—

> D=

where C, is the cosine of a complex angle, and A, is
the excitation factor for modes of order n. The C,’s
are solutions of a modal equation which involves the
following dimensionless parameters:

(— tn)"2=Cu(ka[2)'?
yo=kh(ka/2)~1/3
q=—uZ[no) (ka/2)'?
qi=—1iZi/no) (ka/2)'3,

where k=2n/wavelength, and m,=1207 ohms.
After making a number of simplifying assumptions,
the modal equation mentioned above may be written

in the form [Wait, 1962]

[wé(tn) - qW:»(tn)]‘[W{(tn — o) + giws(tn— yo)] — g-i2mn, (3)
wy(tn) — qui(tn) J wy(tn — ¥0) + qiw(tn — ¥o)

where wi(t) and ws(t) are Airy functions while the
primes indicate derivatives with respect to the argu-
ments. An alternative form of (2) is

2 1/2 . X
Wig, x) = (L;f))— et 2 exp (—ixta) An (4)
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where
x=(d/a)(ka/2)13.

Numerical values of ¢, and the excitation factor
An are now available for a wide range of parameters
[Wait and Spies, 1964]. Thus, for the purposes of
this communication, the solution of the waveguide
problem with constant wall impedances Z; and Z is
taken to be known. What is of interest here is the
extension to the same waveguide when the surface
impedance of the lower boundary is a function of
position along the path connecting A and B. For
example, as indicated in figure 1, it is now assumed
that, over some area S on the earth’s surface, the sur-
face impedance is Z' which may be different from Z.
The method of approach is very similar to that used by
the author [Wait, 1964] in studying mixed-path ground-
wave propagation. As in that case, the problem may
be formulated in terms of the compensation theorem
in the form derived by Monteath [1951]. For example,
the mutual impedance z,, between dipoles A and B

over an inhomogeneous ground of variable surface
impedance Z' is given by

e f f Z'—DH,HydS | (5)
0
S

where z,, is the mutual impedance if the surface of the
earth were homogeneous with surface impedance Z
everywhere. The tangential magnetic field of dipole
A over the homogeneous earth is H, while the tan-
gential magnetic field over the inhomogeneous earth is
H;,. The currents in the dipoles are both taken equal
to I, for convenience. The surface of integration S
extends over the region of the earth which is charac-
terized by a surface where Z' differs from Z as indi-
cated in figure 1.

The formal equivalence of (5) with the formula of
mixed-path groundwave theory is a result of the im-
pedance boundary condition on the upper wall of the
waveguide. In other words, the surface impedance
Z;is assumed to be the same for both the homogeneous
and for the inhomogeneous earth cases. If this were
not permissible, there would be an additional surface
integral over the upper boundary of the waveguide.

-y, (a)

T
(=%
o
N

FIGURE 1. Plan view of the inhomogeneous region on the earth’s

surface.

To simplify the present problem, the mutual impedance
z,, is defined in terms of an attenuation W'(Z, Z’', d)
such that

. d/a 1/2 i [ 4
T [———sin : d/a)] Wz, 2, d 6)

in analogy to (1) for the homogeneous earth. The
next step 1s to express the tangential magnetic field
vectors, at the point of integration P in terms of at-
tenuation functions. Thus

_tkloha .. 1 sla U2 o
Hu="oms © (1 +i/cs) [sin (s/a)] W(Z, s) (inXis)
(7)
and
) _tklohy ( 1_) [_L/(_I_]l&
W= < &) [5n @)

W'Z, 2,1 (inxi), (8)

where s and [ are great circle distances from A and B
to P and i; and i; are unit vectors in the directions of
increasing s and [, respectively. In the above, hq
and hy, are the effective heights of the dipoles A and B
while i, is a unit vector normal to and into the surface
of the spherical earth.

Equation (5), when combined with (6), (7), and (8),
leads to the equation

e—ik(s+1-d)

, N tkd
Wiz, 2, =Wz, oo | [ 660

XZ'—Z)YW(Z,s\W'Z,Z', ) cos 8 dS, (9)

where 8 is the angle subtended by is and i; and where

B sla 1/2 lla 1/2 L _l_
GG, D= [sin (s/a)] [sin (l/a)] <l+iks) <1+ikl>’
(10)
_[_dla " N I
L _[sin (d/a)] <l+ikd k2d2) (1)

This is a two dimensional integral equation for the
unknown function W'(Z, Z’', d). To solve such an
equation directly appears to be hopeless. Therefore,
some simplifications are made at this stage in order
to achieve tractability.

3. Approximate Form of the Integral
Equation

We note that the function exp [—ik(s+[—d] is
rapidly varying compared with other factors in the
integrand. Therefore, one may expect that the prin-
cipal contribution to the integrand will occur when
s+10=d, provided that the surface impedance con-
trast Z'—Z does not change rapidly in a direction
transverse to the path. Therefore, in the other factors
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in the integrand, /[ may be replaced by «, and s may
be replaced by d—a, where « is the great circle dis-
tance from B to the point Q on the great circle between
A and B. (The arc QP is perpendicular to AB.)
Furthermore, over most of the range of integration,
(1/ks) and (1/kl) may be neglected compared with
unity and similarly cos & may be replaced by —1.
The latter approximations are obviously violated when
the terminals are near discontinuities of the surface
impedance Z'.

The reduced form of the integral equation is
tkd
27T7)()

e—ik(s+i-d) ,
[[rosg—= 1z@-2)
S

WZ,z2',d—WZ,d=—

XWZ, d—a)W'(Z,Z', a)dS, (12)
where
_[sin (d/a) 12 [sin (a/a)]~"2 [sin [(d—a)/a]]""2
ro="ga| ) | e

(13)
where all quantities, except the exponential factor,
vary with « only. The exponent s+[—d is now ex-
pressed in terms of the angle coordinates () and B
with reference to figure 2; these are defined by

Q=ala=QB/a and B=QP/a

From spherical trigonometry

cos (BOP)=cos  cos B

and
cos (AOP) — cos (— Q) cos B.
Thus,
BOP=£=Q+ [%] B?+terms in B4, B5, . . .,
(14)
and
AOP=2=p—0+ [E’—‘—((;;@] B
+terms in B4, B¢, . . . . (15)
Therefore, to a first order in 82,
s+l—d= g [cot Q-+ cot (6—€)]B2. (16)

FIGURE 2. Coordinates for describing the integration over the
spherical surface of the earth.

For the present development it is further assumed
that Z'—Z does not vary in the transverse direction
(i.e., with B) over the surface S. Thus, Z' is regarded
only as a function of a.

Within the region of validity of the present approxi-
mations, the element of area dS may be approximated

by a?d{ddB. The integral now has the form

Wiz, 2" d)=WZ, d
_tkda f”z Z'(a)—7
270 Ja, ald— @)

W' Z, 2", )W(Z, d— )

By()
Xf exp [—i(ka/2) [cot O+ cot (6—QO)]B%]dBda,
B1(a)

(17)
where Bi(a)=1yi(a)/a, B2(a)=1y:(a)/a. In this case,
the limits of the surface S are yi(a) <y =< y»(a) and
o1 < @ < ap as indicated in figure 1. After a change
of the B variable, (17) may be written in the form

o /' (a)—2Z
No

a

g /
Wz, 2'.d)=WZ, d) — (?—“)1 *d

T

fla)

WZ,d—oW'(Z,Z', a)

X = = Fui, uz)da
ald—a) [Cot <g> + cot (d p = )] "
(18)
where
Flus, us) =/ f * exp (—imu?2du,  (19)
u1 = (ka/m)"*cot O+ cot (6 —Q)]V/2B,, (20)
and
uz2 = (ka/m)"*[cot QO+ cot (8 — Q)]'/2B,. (21)

As indicated before, the rapidly varying function
exp [—ik(s+/—d)] in the integrand of (9), deter-
mines the portions of the earth’s surface which are
significant. The phenomenon may be described in
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terms of Fresnel zones. These are determined by the

locus of the points where
ks+Il—d)=mm/2 for m=1,2,3 .. )
or, to within a good approximation,
(ka/2) [cot (a/a)+ cot ((d— a)/a)]B2= mm/2.

The width of the first Fresnel zone at any point « is
then obtained from

fmn=2Ba= (2ma\)"*[cot (a/a)+ cot ((d— a)/a)] V2.
The maximum width, denoted f:n, occurs where a=d/2.

Explicitly,

P

fm=(mAd[2)12X"2, (22)
where
_tan [d/Q2a)] _ . | [d/(2a)]*
X= d2a) =14 6 +. ... (23)

Under most conditions X may be replaced by unity
even when d is comparable with the earth’s radius a.
Within this approximation, the Fresnel zones are el-
lipses and the semiminor axes are f,,/2, while the semi-
major axes are (d/2)+(m\/8). In the classical sense,
the ““first Fresnel zone” corresponds to m=2. It is
immediately evident that F(u;, us) being replaced by
unity in (18), is equivalent to saying that the width of
the surface S extends to several Fresnel zones on both
sides of the propagation path.

It is convenient to rewrite (18) in the following form:

WZ,zZ',d=WZ, d)—(gc—:)m

ltz)

X f“z ﬂ%’LZF(ul’
ay 0

><W'(Z, d—aW'lZ, 7', a)da

[ad— )] s

where we have made use of the trigonometric identity

sin (d/a) 1/2 1

wB)on (S| [ I

When F(u1, us) is set equal to one, (24) bears a formal
equivalence to the one dimensional integral equation
developed for groundwave propagation over mixed
paths [e.g., Wait, 1964]. It is interesting to note
that (24), in the form given, is not restricted to dis-
tance d such that dfa <<1. This comes about be-
cause of the normalization factor [(d/a)/sin (d/a)]'*
which is not included in the definition of the attenua-

=1.

(25)

tion function W(Z, d). In the case of groundwave
propagation, this distinction is not of any consequence
since dfa is small in any case. However, in VLF
propagation in the earth-ionospheric waveguide, the
ratio d/a may be comparable with unity and the nor-
malization factor mentioned above may exceed unity
by a significant amount.

Equation (24) is in a reasonably tractable form for
direct numerical calculation of the attenuation func-
tion W'(Z, Z', d) when the limits of the surface S and
the surface impedance function Z' are specified. For
present purposes, some simple limiting cases will be
considered rather than attempting a frontal assault
on (24).

4. Two Section Path

An important special case of the general mixed path
problem is when Z' is sectionally homogeneous, as
indicated in figure 3. For example, if the path be-
tween A and B is characterized by a constant surface
impedance Z, from 0 to d—d; and Z; from d —d; to d,
the integral equation (24) simplifies to

; 1/2 —
vz, 2, d=wz, a-(59)" (22
“WZ,d—a)W'(Z, Z,, a)
. [wd—w] 9 (20

when d; > 0 and when the function F(u;, uz) has been
replaced by unity. Of course, if d; < 0 such that A and
B are both over the surface of the earth of surface
impedance Z, it is seen from (24) that

WI(Z, Zl9 (i)ZW(Zv d)

At least this is true to within the stationary phase
approximation which, in effect, reduces the area inte-
gration to a line integration. As a result of this reason-
ing it is equally justified to replace W'(Z, Z1, o) where
it occurs in the integrand of (26) with W (Z,, a) which
is the attenuation function for propagation from the
point B to distance a over a homogeneous earth of
surface impedance Z;.

Equation (26) with the simplification indicated in the
preceding paragraph may be written in terms of the
dimensionless coordinates mentioned earlier. Thus,

EQUIVALENT REFLECTING LAYER

FIGURE 3. Sectional view of earth-ionosphere waveguide for a two-
section path, such that Z, # Z.
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for the two section path,

X 1/2
W'(q, g1, x) =Wiq, x) + (;) (g1 —q)
B W(q’ X X)W(QI, X)
0 [ox —x)x]1Y2 cop
where

q=—1iZ/no)(ka/2)',
x = (d/a)(ka/2)",

@1 =—i(Z1/no)(ka/2)'3,
X; = (di/a)(ka/2)3, and
X = (a/a)(ka/2)"3,

Because of (4), we may write

W(g, x—X)_ 2 (m\'? G
LXR LIPS pewtn en)
n=1,2,35 """

and

qu’x

G (29)

1/2 _ .
( ) 2 Ame"X‘m,
}’0 i m=1,2,3 ...

where A, is the excitation factor corresponding to the
earth of surface impedance Z while A, is the excita-

tion factor corresponding to the earth of surface

impedance Z,. The t, are roots of (3) while 7, are

ioots of an equation identical to (3) if g is replaced
Yy q1.

On inserting (28) and (29) into (27), the integration
with respect to x may be readily carried out to yield

W,(q’ qi, X)zW(q’ X)

el(ln tm)x1 l

~03 5 At T

4
+_ 61371/4 ,n-X)l/Z
yg n m
(30)
The physical significance of this result is best seen by
examining the special case where the distance d—d;

or x—x1 is sufficiently large that only the n=1 term
is needed. Thus

2 (m\2
W', g1, X) =— (E) Ase-ii
Yo \1

ez';rr/4(77.x)1/2(ql QA e~ ixts

éilﬁ

= eilti—tx_,
o) —
(t1—12)

L
[ ez(tl X 1)
_tl)

(1)

-— ei(tl—g)xl_l :|
e
(81 —t3)

The first term on the right of (31) is the attenuation
function for a path which is homogeneous throughout
its length (with a surface impedance Z). The remain-
ing terms, proportional to g1 —q or Zy—Z are correc-
tions which result from the inhomogeneity extending
over the path of length d; (proportional to xi). The
terms proportlonal to A2, Az . . . etc., represent
conversion of energy in the waveguide from mode 1
to mode 2,3 . . . etc.

A somewhat simpler approach to the two section
problem is appropriate when the section of the path
of length d; is very small compared with the total length
of d (i.e., x1 << x). Then, from (27), it is seen that

) 91—¢q

WI(Qa qi, X) = W(q’ X +(i7T)1/2

X -~ -~ dA
< [ W x= R D g 32
0 (X)

which is a slight simplification. When the latter re-
sult is applied to a long sea path (of length d—d,) and
a short land path (of length d;), further simplifications
are possible. For example, W(q, x—X), in the inte-
grand, is replaced by W(q, x) and, thus,

W'(q, qi, x) =W(q, x)[1+Q] (33)
where
Xy Wigi, X)
= =i (q):mx dy. (34)

On inserting the mode series expansion given by (29)
into (34), the integration with respect to X is readily
carried out. However, because of the assumed small-
ness of x1, the resulting expansion would be very poorly
convergent. An alternative approach is to recognize
that W(X, q1) may be replaced by the groundwave at-
tenuation function for ¥ ranging from 0 to x;.

The form appropriate for short distances is [Wait,
1964]

W(ql ’ i) = 2

m=0,1,2...

Ameimn/4q;n(ﬁ)m/2’ (35)

where

A():l, A1=_l vV, A2=—2, A3:l\/; <1+L>,

4q}
4
A4:§<1+ 1) . efe,

q

Using (35), the integration indicated in (34) is carried
out to yield the following series form for the correction
factor:
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: 12
Q=__21_<1_Z_>pi/2 [1..@___2171

YD Z, 2 3
it 2pdz o 1 %( _1_> ]
P (1) + B g+ w0
where
pY2 = (kdy[2)VX(Z 1| mo)e~ il (37)

and
q1=—1i(ka/2)V¥(Z1/m0).

It is seen from this series expansion that the earth
curvature only influences the correction factor ()
through the higher order terms in powers of pl/2
Also, if Z and Z; correspond to sea and land respec-
tively, the factor 1—(Z/Z,) may be replaced by unity.
Furthermore, at VLF, displacement currents in the
ground are negligible, which means that oy, +i€,0
may be replaced by oy, in the definition of p;. Thus

P2 = (1/N)(d1/og,)V2(mr|60)12

is areal quantity. Then, to a first order

Q=0 +:Q"
where

Q' =—p; and Q"'=—(2/7r'/?)pl2.

Thus, the fractional reduction in the amplitude of the
field is p; while the phase lag is increased by 2(p,/r)!/2
radians. For example, if the length d; of the land
path is 100 km, for a land conductivity oy, of 1 milli-
mho/m and a frequency of 15 ke/s (i.e., A=20 km), it
is easily found that

0'=—2.62X10"% and "=—0.129 rad=—17.4°.

For this example, the short land section has a negligi-
ble effect on the propagation over the total distance d.

5. Propagation Across a Strip

An interesting situation occurs when the path
between A and B is homogeneous with surface im-
pedance Z everywhere except for a relatively short
stretch of length d» where the surface impedance is
a constant Z, as indicated in figure 4. Assuming
that the inhomogeneity is effectively a strip of in-
finite transverse dimension, F(u:, u2) in (24) may be
replaced by unity. The resulting integral equation
for the attenuation function may then be written

W'=W(q, x) + <ﬁ>1/2 (g2—q)

xf Wia. x=0W (g 42 %) 4o (3q)
X

: [x—0x]1"?

EQUIVALENT REFLECTING LAYER

FIGURE 4. Sectional view of the earth-ionosphere waveguide for an
intermediate section where 7, # 7.

where g =—1i(ka/2)'3 (Z2/no), x1= (ka/2) '3 d;/a and
X2 =(ka/2)"® dy/a. The function W', as it occurs in
the integrand in the preceding equation, may be
identified as the attenuation function appropriate for
propagation from the point B to a varla%le point on
the strip (i.e., x1+x2> X >x1). In accordance with
the previous discussion, this particular function W’
may be replaced by the appropriate form for a two
section path which, in effect, ignores reflection at
the boundary x=yx. (i.e., at distance d;+d> from B).
If the series representation given by (30) is used, the
subsequent integration leads to a triply infinite series
for the resultant attenuation function for the path
A to B. Convergence of this type of expansion is
satisfactory provided that the distance parameters
X> X1, and x: are all somewhat greater than one.

A somewhat simpler approach to the strip problem
is to regard the midsection as a perturbation to
the homogeneous path. In this approximation,
W'(a, g2, X) in the integrand of (38) is replaced by
Wiq, x), which is the attenuation function for propaga-
tion over a homogeneous earth of surface impedance
Z. Furthermore, if the strip is relatively narrow
(i.e., x2<<x: and ), the integrand may be replaced
by its value at the midpoint of the strip. Thus,

. X 1/2 N X2
W W(q,x)+<m~> (g:—q) [xo(x — x0) ]2

X W(Qa X—XO)W(Qa XO)a (39)

where

Xo= X1t (x2/2)=(ka/2)"3(do/a),  do=d+ (d2/2).
The perturbation term, which is proportional to g, —g¢,
may now be regarded as a first order or single scatter-
ing from the strip.

Using the modal representation of the form given by
(28), it readily follows from (39) that

W' =Wq,x) +AW, (40)

where

__.4‘—77. Ll/? o
aw=—i% (m.) (@—axe

X 2 e=ix = x0ltn A, E e~ixotmA,,. (41)
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If x is sufficiently large, only the n=1 term is needed
and the above representation for AW may be written
in the more meaningful form,

AW 12 .
=L e K — —i(t2 — t1)
W oy (g2 — @)x2[ A1+ Aze~ilz = t1)x0

+ Ageilts — X0+ Aye—ilta —tixo4 . | ] (42)
or, what is the same thing,
AW Z,—7\d .
2 ( 2”’)0 Z) —hg [ A1 F fApe=iia= S0k

+ Age i3 - Svkdo ] (43)

where

Sm — (1 o C12n)1/2 =]— (C?n/z)’
and
Con= (= t) (2l ka).

Thus, as indicated, the strip will modify the strength of
the first mode by a factor proportional to A; and, at the
same time, it will produce higher order modes propor-
tional to A, Az, . . . etc.

For negligible displacements in the earth, the multi-
plicative factor in (43) may be written

(B9 %) 0-(2)) 5

— e 1— padd em/4
Mo h g, oy h ’
where o, is the conductivity of the earth over the
strip of width d». For o4> oy,, d>=100 km, h="70

km, f=w/2m =15 kc/s, o4, =1 milli-mhos/m, it follows
that

(44)

él ~—0.040 eim/4 |:/\1 + Ay e iSa=Spkd
W
+ A3 e #S3—Spkdg 4 :| : (45)
For this example, the excitation factors Ay, Az, . . . are

not appreciably different from unity and they are
nearly real. Thus the strip produces approximately a
0.03 fractional diminution of the amplitude of first
mode and a change of phase of the order 0.03 rad.
The higher modes are excited with a relative strength
of about 0.04. The resultant effect of the higher
modes, of course, depends on the magnitude of the
electrical distance kd, and the relative phase velocities

of the modes. In general, the higher modes are attenu-
ated as a result of the increasing value of the imaginary
part of S, as m increases. As indicated above,
numerical values of the excitation factors A, and the
propagation factors S,, are available [Wait and Spies,
1964] for a variety of conditions appropriate in the
VLF range.

6. Concluding Remarks

It would appear that the inhomogeneity of the ground
is an important factor in the propagation of VLF radio
waves in the earth-ionosphere waveguide. In certain
practical applications, such as to navigation systems
and worldwide communications, the influence of
inhomogeneous land sections on the path may alter
significantly the normal behavior of the transmission.
In particular, abrupt changes in conductivity from
sea to land may convert appreciable amounts of energy
to the higher modes. Not only will this change the
resultant attenuation, but the effective phase velocity
will be modified as a result of modal interference.

I thank K. P. Spies and R. L. Gallawa for their
helpful comments.
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