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A heuristic theory for VLF and LF fields near and in a rough sea surface is obtained by
first finding the electromagnetic field configuration in air and then calculating the undersea

fields by means of the Helmholtz-Kirchoff Integral Theorem.

The fields above the water

are found by a succession of quasi-static approximations which depend on the observation
that the scale of irregularities on the sea surface is very small compared with an

M wavelength.

The theory prediets that the configuration of the H field above the water depends on

the direction of KM propagation relative to the wave crests.

It also predicts that for

underwater measurements made a few tens of feet below the troughs of the waves, the field

variations due to one- or two-foot sea waves are averaged out;

but for storm waves the

phase and attenuation of the field observed underwater varies with instantaneous water

height.

1. Introduction

The well-known stability of LLE and VLF propaga-
tion at great distances has produced an increasing
number of applications to international comparison
of frequency standards and to navigational aids.
In this latter connection, it is important to have
some estimate of local peltmlmtmm in field caused
by a rough or stormy sea surface. Since at these
frequencies, the attenuation of radio waves is only
of the order of a few decibels per foot in sea water,
it is also relevant to try to estimate the fields meas-
ured by an antenna located a few feet under the
water surface.

Both the above-the-surface and subsurface aspects
of this problem have received some attention [Rice,
1958; Herman, 1958; Wait, 1959] in the last few
years. Only one of the works referred to, that of
‘Wait, treats the problem of subsurface fields. Wait
uses the “Leontovitch” [1948] assumptions concern-
ing the relative magnitudes of the radius of curvature
of the sea surface, the inverse of the propagation
constant in sea water and the distance under the
sea surface at which one wishes to calculate the
fields.

There are, however, naturally occurring situations
in which the Leontovitch assumptions do not hold,
and in which we still may wish to calculate the fields.
Our approach is to find a solution to the field prob-
lem above the sea surface on the assumption that
the sea surface is perfectly conducting (to the extent
that the F-field is everywhere normal to the surface)
and that the water waves make the sea surface a

1 Operated with support from the U.S. Air Force.
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These theoretical predictions have been confirmed experimentally.

trochoidal cylinder; then (dropping the assumption
that sea water is a perfect conductor) we use the
integral theorem of Helmholtz and Kirchoff to find
the fields under the sea surface.

The general behavior of the fields above the sea
surface can be readily ascertained from the equations
which are developed for these fields. The F-field
in the air is locally enhanced over the crests of the
waves and diminished over the troughs, in accordance
with the local curvature of the surface. Whether
this effect is passed on to the H-field and (through
continuity of /7 at the boundary) to the subsurface
fields, depends on the angle between the direction
of propagation and the direction of wave crests.

The behavior of the fields at some distance
beneath the sea surface is not so evident from the
equations derived for them. The theoretical re-
sults obtained have been evaluated for typical sea
conditions at VLE. The result of these c: aleulations
is to predict that an observation made at reasonable
depths under storm seas should show variations in
amplitude and phase proportional to the instan-
taneous height of water above the point of observa-
tion. On the other hand, in calm seas (waves up
to 1 or 2 ft) the effect of the waves on the field ob-
served at depth is averaged out.

2. Trochoidal Coordinates

The shape of a periodic gravity wave on an in-
finitely extensive sea tends to be a trochoid [Lamb,
1945], a curve which is a generalization of a cycloid.
Such curves are described by a point on the radius
of a circle as the circle is rolled on a straight line;
they tend to have steeper peaks and broader troughs
than would be the case for a sine wave.
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Actual sea waves depart from the cycloidal curves
assumed in this paper in two ways: First, if the
waves have sufficient amplitude so that they are
cusped and breaking, the cycloidal-type trochoid
assumed is only an approximation to the actual
surface [Lamb, 1945]. Second, in actuality the
wind excites a random spectrum of waves, so that
each “wave’” is actually a superposition of wavelets
and no two waves are really alike. Moreover, the sea
is sometimes ‘‘crossed” by waves propagating in
several directions. Further, although real sea wave
“crests” do stretch for distances comparable to a
wavelength, they do not stretch indefinitely to pro-
duce a cylindric sea.

The willingness to ignore these differences be-
tween the real sea and the model is based on the
assumption that local sea-surface conditions affect
the surface fields in that same local area only.
For the fields above the water, this assumption
can be justified on the grounds that local surface
irregularities (the water waves) would produce
nonlocalized effects only if they tend to scatter the
propagating radio wave. These irregularities, how-
ever, have dimensions which are so small compared
with a radio wavelength in air * that little such
scattering can occur.

Beneath the sea, the assumption of local influence
is justified by the high attenuation of radio waves
propagating through the water. The field beneath
the sea surface can be thought of as due to a con-
tinuous distribution of sources along the surface
(the strength of the field to be calculated by a
Green’s Theorem approach or the Helmholtz-
Kirchoff Integral Theorem). The effect of a given
source area diminishes exponentially with the distance
between the surface source and a given subsurface
observation point. Since this attenuation is of the
order of 1 dB per foot at 15 ke/s, the subsurface
field is for all practical purposes determined by the
surface field in the local area above the subsurface
point.

Thus, if we find the infinite trochoidal cylinder
which matches the /local sea conditions we are
concerned with, we may trust that the failure
of the match in other areas of the sea surface will
not produce local fields noticeably different from
these which we calculate.

Since the boundary conditions we must satisfy
are applied on the surface of a trochoidal cylinder,
it is convenient to use trochoidal coordinates in

solving the field problem. We generate these
coordinates as follows:
let z=x-+jy w=u-+7v, j=+/—1 (2.1

A A

z and w represent points in two Cartesian planes,

the abscissa and ordinate being given, respectively,
A A

by z and y in the z plane and » and » in the w plane.

2 At 15 ke/s the electromagnetic wavelength in air is 20 km. Ocean wave-
lengths seldom exceed 300 m. Ocean wave heights (peak to trough) seldom
exceed 10 m.

Further, let
w=z-+ja exp (jz). (2.2)

Equation (2.2) defines a transformation from the

A A

z plane to the w plane. All straight lines parallel
A

to the z axis in the z plane are transformed or

A
mapped by (2.2) into trochoids in the w plane
(whether or not aev<1). The mapping of the
A A . A
z and w is also conformal for values of z such that
ae™” is less than unity. We now define trochoidal
coordinates s and n, in the w plane, as follows:

=7 D=1 (2.3)
The curves, n=const are trochoids, and further-
more if y>In «,® the curves s=constant intersect
the curves n=constant at rigcht angles (because the
transformation (2.2) is conformal).
We may combine (2.1) and (2.2) to obtain

Uu=zr—ae Ysin z

v=y-+tae " cos (2.4)
and using (2.3) we get
U=s—ae " sin §
v=n-tae"" cos s. (2.5)

The scale factor A (the same for 7 as for s because of
conformality) may be found from

=HE)+G T

h=(1—2ae~"cos s+ae~2")12,

(2.6)

so that
(2.7)

We need only add a third coordinate axis normal
to the u, » plane to change trochoidal coordinates
to trochoidal cylindrical coordinates. If the third
coordinate is denoted by z, then wu, », and z are
the Cartesian coordinates of the three-dimensional
space. The scale factor associated with the third
coordinate is, of course, unity. We will denote

the unit vectors in the s, n, and z-directions by
> o -
s, €, and e,.

3. First Solution in Air

A radio wave propagating over the surface of an
unrippled sea at or below broadcast frequencies is
for all practical purposes vertically polarized. To
find the field outside the sea, we assume the sea to be
a perfect conductor with the surface having the form
of a trochoidal cylinder.

3 We use In to denote the natural logarithm.

274



The conductivity of the sea water is so large (4
mho-meter~" at standard temperature and salinity)
compared with the susceptance (107> mho-meter™!
at about 150 ke/s) of the air above it, that what little
loss power that enters the sea propagates essentially
straight down. If the sea surface is disturbed by
waves, the KM field above it will be correspondingly
perturbed. Since the conductivity of even a few
inches depth of water is high compared with either
the susceptance or the Y, of the air immediately
above it, we can expect that the effect of the disturbed
sea surface on the F-fields above it will be nearly the
same as that of a perfect conductor—the external
F-fields must remain perpendicular to the sea surface.

In the case of a static F-field in cylindric coor-
dinates, the problem is one of finding a scalar poten-
tial ¢ which satisfies Laplace’s equation

Vip=0

and for which ¢ is constant on the boundary.

In coordinates derived from a conformal trans-
formation, the two-dimensional Laplacian v* is
[Morse and Feshbach, 1953]

' 1 /0% , Q%
o= =—+== ) 3.1
2\ 082 T on? b
Obviously, then, if o= FEn, ¢ satisfies Laplace’s equa-
tion and

= Ey -

E(s, n):—V<p:——7LQ e),b (3.2)

is the corresponding electric field.

The equation we are really interested in solving
is the electromagnetic wave equation. When the
time variation is separated out of this partial dif-
ferential equation, the result is called the Helmholtz

=
equation. If /7 is a vector function of the spacial
coordinates, the Helmholtz equation has the form

- -
V2F4+ k2 F=0 (3.3)
where for good dielectrics k*=w?ue, and for good
conductors k*=—jwuoc. Here o is the radian fre-
quency of the signal; u, e and ¢ are the (magnetic)
permeability, permittivity (electric), and conduc-
tivity of the relevant medium, respectively.

It is a well-known property [Ramo and Whinnery,

=
1953] of cylindrical systems that if (&, &) is a
static two-dimensional field solution (i.e., one de-
rivable as the gradient of a potential satisfying
Laplace’s equation) in the plane perpendicular to
the cylinder axis (& and & being the coordinates of
this plane), then

E(él. £)e ke

satisfies the Helmholtz equation (3.3). One can

now state that

- 7 =
[’: - /l[m ()7j};:(,” (34)

satisfies (3.3) from (3.1), (3.2) and the discussion
between them. This field expression represents a
TEM wave traveling along the cylinder axis. In
the terms of the original physical problem, it repre-
sents a TEM wave traveling parallel to the sea wave
crests. If we examine the form of A [see (2.7)],
we note that the field becomes uniform as n becomes
infinite. This is what we would expect from physi-
cal reasoning, as water wave action at the surface
of the sea should not affect the fields at arbitrarily
large distances from it.  We also note that the rate of
decay of this “surface effect’” has nothing to do with
the electromagnetic wave number, 4. The way in
which (3.4) has derived from a static field solution
makes it obvious why this should be so.
We also note that

-> ->
—jouH=curl £
hence

- >y (V .
H= ‘/; % eV, (3.5)

4. Second Solution in Air

The results of section 3 apply only to T'EM waves,
those propagating parallel to the wave crests. We
wish now to examine cases of KM propagation at an
angle with respect to the sea wave crests; in par-
ticular, propagation perpendicular to the crests.
This problem is inherently more difficult than the
previous one, in that it requires manipulation of
solutions of the wvector Helmholtz equation in curvi-
linear coordinates. Helmholtz” equation for a vector

=
I and a scalar ¢ are symbolically the same.

Vio+k*e=0 (4.1)
= -
VE+RE=0 (4.2)

but the interpretations that must be given to the
operators V2 are (in curvilinear coordinates) different ;*
for this reason (4.2) may be solved by separation
techniques in only six coordinate systems, whereas
(4.1) can be so solved in eleven. With respect to
other coordinate systems (including those appro-
priate to the present problem), the difficulty is not
so much in finding solutions to the equations, as in
finding solutions that will also satisfy the boundary
conditions.

It is much easier to find solutions to (4.1) than to
(4.2), whether or not the equations separate. If ¢
is a solution to the scalar wave equation (4.1) in a
cylindrical coordinate system, then a set of orthog-

. = - - o
4 v is div grad ¢ for ¢ a scalar; v2E is grad div E—cur! curl E for E a vector
[Moon and Spencer, 1961].
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- -
M, and N, may be

N
onal solutions to (4.2), L,
constructed from ¢ as follows:

Z =grad ¢ (4.3)
- -

M=-curl (¢e.) (4.4)
]Tf:curl curl (tp;;) (4.5)

i
in which ¢,, the axial unit vector, is parallel to the

ry
surface of the water, L is a ‘“longitudinal’”’ wave,

- -
and M and N are called “transverse” waves. In

5
particular, the tangential component of M can be

=
made to vanish along a boundary parallel to e.; it is
therefore the appropriate wave by which to desecribe

=
the F-field outside the water. Thus, the problem

Ay
of finding the vector field £'reduces to that of finding
an appropriate scalar ¢ in the trochoidal curvi-
linear coordinate system.
In trochoidal cylinder
Helmholtz equation is

/: >+

If the propagation is parallel to the wave crests,
then for plane waves

coordinates, the scalar

® +ko=0. (4.6)

% 2
bzzz_kw
and (4.6) reduces to
0% 0% =
0s it on* 0 (4.7)

which is precisely the problem treated in section 3.
Let the propagation be at some angle 6 with respect
to the z-direction; because the boundary has cylin-
dric symmetry, because the electrical wavelengths
are very long, and because we would like a solution
closely related to the plane wave solution of section 3,
we assume that the variations of ¢ with z are ex-
ponential only:

o(x, ¥, 2)=(, y)e ik s, (4.8)

In this manner (4.6) becomes the two-dimensional
scalar wave equation:

0. (4.9)

hi O)'Z>+k2¢ sin? 6=

In discussing the solution of this equation, nothing
is lost by settm(r sin 6=1, i.e., considering propaga-
tion perpendlculqr to the wave crests.

Unfortunately (4.9) does not separate in the tro-
choidal coordinate system.” Even though a suitable
exact solution cannot be found for (4.9) in closed
form, it may be possible to build up a series solution
in ascending powers of k, if k is small; we can termi-
nate the series at whatever term yields a satisfactory
approximation to the desired solution. The method
of obtaining the series solution is described in
appendix A, together with the details of the calcula-
tion for the case of interest here. The result is

E,

‘p:}% —m|: _|_kaz —ka(n-+1)e-
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cos s——Ta e‘ﬁ”:l- (4.10)

The principal part of ¢ in (4.10) is the quasi-static
term (Fy/7k) e 7. All the other terms are smaller
by at least a factor of k£ and die out with increasing
curvilinear height, n, above the water surface. We
have assumed a wavelength of 27 for the water
wavelengths, whose actual wavelengths L range
between 40 and 300 m. The actual wavelengths N
of EM waves in air at VLEF and LF range from 3000
to 30,000 m; the corresponding value of £ to be used
in these equations is found by expressing N in units
of L/2m:

2r 27 L

== (4.11)

thus % ranges from less than 0.001 for short L at
10 ke/s to 0.05 for long L at 100 ke/s.

The E—ﬁeld follows directly from (4.10).

=vX (:p_;z) :%” G l:l +7k{a(n+1)e~" sin s} —k?

ag a’ =
{-4— 6”2”——-; e *"+a(n+1)e " cos s :le,,
—ikE, _. [a® . i
*7J7796—]Ls il (6_2"—(5_}"")‘}—(lll€—" cos s ey
h 2
(4.12)

The main features of this expression are first, that
the F-field 1s essentially a propagating static field;
-
that the tangential component of £, the
-
terms in e;, does in fact vanish at the water’s
surface, n=0; third, that the correction terms are
small. >
The expression for the magnetic intensity /1 is
somewhat simpler in that we have from Maxwell’s
equations

second,

- v><14 (4.13)

5 The condition for separation is that h2 be the sum of a function of s only and a
function of » only [see Morse and Feshbach, op. cit. pp. 498-500].
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-
But since div (ye.) is zero, we have from Maxwell’s
equations °

VX E=VXVX ($e) =k (Ye.).
Hence
a2 -
H=2% 4o — k¥ ope,
am

in which Y,, the characteristic admittance of free
space has been written for k/wu.” What is note-

=
worthy about this expression for /7 is that it does

=
not contain the scale factor A. Thus, the £ fields
are essentially the same and essentially given by the
static field configuration for propagation both
parallel and perpendicular to the wave crests, pro-

=
vided % is small. The [ fields, however, are not

s
the same; in the former case, the magnitude of 71
varies with the scale factor A from point to point
near the waves; in the latter case, the magnitude of

=
H is substantially unvarying with respect to position
above the waves.

Finally, we return to the question of propagation
at an arbitrary angle, 0, with respect to the wave
crests. With respect to the entire argument in
appendix A, we can replace £ by k sin 6 without
changing either the argument or the result. In
accordance with (4.8), we can multiply ¢(k sin 0)
by exp (—jkz cos 6) to obtain a function ¢ which

satisfies the three-dimensional scalar Helmholtz
equation
o=y (k sin §) ¢~ ¥z 0086, (4.14)
N
The FE-field is then given by
— -
E=VX[y(k sin §)e—*=cosbg | (4.15)

but the term exp (—jkz cos 6) is constant with
respect to the curl operation on a vector in the
z-direction; hence

—

E— 70309 [y (k sin 0)e]. (4.16)

=
Thus the E-field is exactly the same as that obtained

with sin 6=1, except that k is replaced by k sin 6
and the whole field 1s multiplied by exp (—ykz cos ).

We find H by taking the curl of E to obtain

[1* V><E

;’; VX { e~ om0y [k sin B)er] }.  (4.17)

6 Morse and Feshbach, op. cit., p. 1766, eq 13.1.6.

7 While k or A is measured in units of L/2x asin (3.41), Yy is invariant to a change
of scale in length and is measured in whatever units are consistent with those
assigned to F and H, e.g., 1/377 mho for E in volts per meter and H in amperes
{)er nlleter. The units of u are then dependent on those chosen for E, H, and
ength.

By directly performing the curl operations [Morse
and Feshbach, 1953, p. 115)] and by noting (4.9),
we obtain after some manipulations

1[7 , cos 0

]7* —} == —sz cos 6 a¢(k sin 0) +9¢Lk;”l 0) 7ﬂ]
“()

h s Cs on

+ Yok sin? B¢ =7 30y (f sin O)¢,  (4.18)

in which we have once more written Y, for k/wu.
If we discard all terms having higher order in £,

- -
the expressions for ¢, I, and H reduce, respectively, to

Eoe—jk(s sin #+2z cos 6)

Y= (4.19)

7k sin 0

— 7 -
i_l_‘Q — jk(s 8in §+2z cos §)
h¢ e

L=

(4.20)
]1 Y, E, ] ﬁ+5|11 0€> —Jk(s sin 0+z cos0) (4 21)

5. Modified Helmholtz-Kirchoff Integral
Theorem

The Helmholtz-Kirchoff Integral Theorem [Born
and Wolf, 1959] provides a method of calculating
the fields inside a source free volume when the fields
and their normal derivatives are known on the sur-
faces bounding it. TIf a scalar field, U, satisfies the
Helmholtz equation

(V*+EHU =0 (5.1)
everywhere within a volume V" whose bounding sur-
face is S, and U is continuous and has continuous
first and second derivatives in V and on S, then the
field at a point P within the volume is given by

[Born and Wolf, 1959]

P . ﬁ”‘5> pma(f:l ——
UP)=p f f [( bn( S (5.2)

where ¢ is the distance from the point P within the

volume to the element of area dS on the surface.

. .. O [ekE ol

The normal derivatives — ( ——— ) and —— are taken
on \ & on

along the inward normal at the loc ation of the sur-
face element dS. Although (5.2) is usually derived
for a scalar field, in Czu'tesmn coordinates, u, v, z, the

=
Helmholtz equation for a vector field H in a source
free isotropic medium is simply

,+

2 —Hc2> 11— (5.3)

2+

Hence, (5.1) holds individually for each of the

-
Cartesian components of /1 and (5.2) may be applied
to each of these in turn.
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Now, the geometry of our problem is cylindric so
we may adapt (5.2) to simplify computation in this
case. We let S be a cylindric surface with the
cylinder axis in the z-direction. The Cartesian
coordinates of the plane perpendicular to the cylinder
axis at z=0 will be denoted by w (abscissa) and »
(ordinate). Furthermore, let us suppose that U(u,
v, 2) can be expressed as follows:

Uu, v, 2)=U(u, v)e=?* (5.4)

where b 1s a constant.
integral (5.2) as

D i, (5
T om e dS. (5.5)

Then we may rewrite the

Now, a plane, z=constant, intersects S in a curve
(', which is the same for all such constants because
of the cylindric geometry. In appendix B this sur-
face integral is reduced to a line mtegral along C by
integration with respect to z. The result obtained
1s

=

UP)= f [kl e k')' " — H (r) ](ZS (5.6)

. Lo : .
in which 7 is the vector distance from a point » on
C to P, (' being taken so as to lie in the same plane

as . The vector n in (5.6) is a unit inward normal
from € at point P; the functions H§" and H® are
Hankel functions of the first kind, zero and first
order. This result is the Modified Helmholtz-
Kirchoftf Integral Theorem (MHKIT) for cylindric
geometry.

Both (5.6) and the usual form of the Theorem (5.5)
determine the field U at any point P inside the curve
C from the value of {J and its normal derivative on
the curve, given k for the material within this
boundary. While this is indeed a correct result, it
seems to require too much information in that either
the field or its normal derivative at the surface
should suffice to specify the function inside the sea
[Stratton, 1941]. Tt is beyond the scope of this
paper to enter an extended discussion of the mathe-
matical subtleties of this apparent overspecification
of the boundary conditions. The following obser-
vations are nevertheless helpful:

(a) The Helmholtz-Kirchoff Theorem is essentially
an application of Green’s functions. If we could
find the Green’s function for the bounded region,
V, we could calculate the fields in the interior from
their values on the surface alone [Morse and Fesh-
bach, 1953, pp. 803-807]. In our problem, we know
of no way of determining the Jequmte Green’s
function. The HelmholtzKirchoft Integral Theorem
is a means of using the Green’s function appropriate
to a known solvable problem in a problem which has
an arbitrary boundary. The usual HKIT makes

V7 fue.

use of the Green’s function for a spherical boundary;
the modified theorem uses the Green’s function for a
circular ecylinder. The price that one pays for
using the simple Green’s function is that one must
know both the field and its normal derivative at the
boundary. So, if we are able to provide extra infor-
mation, we can use the MHKIT to avoid mathe-
matical difficulties.

(b) Once the field U is specified at the boundary,
the oU/on required in the equation is also deter-
mined. Tt must be calculated or estimated by other
means before the Integral Theorems can be used.

. oU :
The required o generally cannot be found from the

theorem itself, even by successive approximations
[Franz, 1949 ; Shelkunoff, 1951].

We have already calculated the electromagnetic
field propagating above a trochoidal sea.

What remains is the question of determining the

s
normal derivative of the tangential H on the sea
surface. The tangential component of the magnetic
field is always continuous across a boundary between
two media, but its normal derivative is not. For
this normal derivative to be continuous across a
boundary, it is necessary that both the conduectivity
and permittivity of the two media be the same.
This condition is not satisfied here. Our method of
attack is outlined in the next section.

6. Estimating the Normal Derivative
Suppose we have a circular cylindrical (air filled)
cavity in an infinite conducting medium. The con-

A
medium has wave number k=(—1-y)
Now suppose there is a cylindrical scalar
wave propagating outward from the cylinder axis
which 1s given in the conducting medium only by

ducting

U(r)=AH (kr) (6.1)
where 7 and 6 are the usual cylindrical coordinates.
Now, if the radius of the circular cross section of
the cavity is p, the field on the surface of the con-

ducting medium may be denoted by U/, and we
have
1)
U~ (k’)zv\. (6.2)
H v (ko)

which reduces to U(r)=
==,

U, at the cylinder surface
For the normal derivative we then have

T 1)
dU| _ _ HPO )

= (6.3)
dr p H 1)(k,p)

What we shall attempt to do is to estimate the
value of the normal derivative on the sea surface
by representing the tangential component of the
field at each point on the surface (or just beneath
it) by a cylindrical wave of the form given in (6.2),
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where p will be chosen to be the radius of curvature
of the cross section of the sea surface normal to the
wave crests, at the point in question. Hence, (5.6)

becomes
kp)] s
]m (kp)

(6.4)

1)) k/flrl:llu (/\ “/+][<1)(/\

This procedure suggests that the sea surface is made
to conform locally, with the boundary of the cylin-
drical cavity referred to above. Now, the center of
the circle (of radius equal to the radius of curvature
of the curve at point p) that best conforms to the
curve at p is on the concave side of the curve.
Throughout most of its length, the cross section of
the sea surface is concave upward, so the idea of a
cylindrical wave propagating into the sea from an
axis above 1t makes some sort of physical sense.
On the portions of sea surface cross section which
are concave downward, we expect the cylinder axis
in question to be beneath the sea surface. The
wave appropriate to the physical conditions of the
problem s then an H§® wave. H§” is a Hankel funec-
tion of zero order and second kind, and represents a
wave propagating inward toward the cylinder axis.
Now, if

UGr)=AH® (br)e. (6.5)
au - STTTE ? X
= ARH (e (6.6)

The expression has a positive sign because the inward
normal makes an angle of 7 radians with the direc-
tion of increasing ». If again we are given that the
surface value of (/1s U,

Us

A=—"T— (6.7)
H (kp)
and
aU| 1 o) s
dn I<2> (kp) ()

If the rectangular coordinates (u, ») of a curve are
oiven parametrically in terms of an auxiliary variable
x, then the radius of curvature, p, is given by

= [(G)+(@) ]

= /dud® (11_ (Lu)
<([J’ dr*  dx dr®

where the sign is chosen to achieve a positive result.
In particular, for a trochoid, we can place n=0 in
(2.3) and (2.5) to obtain from (6.9) the radius of

(6.9)

curvature
(1—2a cos x+-a?)*/

a(a—cos )

D==Er

. (6.10)

Any point p on the curve, at which the curve is
concave away from the sea, corresponds to a value
of x for which (a—cos z) >0. For such values of p,
we use (6.3) to estimate the normal derivative

oU/on. Infinite radius of curvature occurs when
(a—cos r)=0; and any point p at which the curve

s concave into the sea corresponds to a value of
for which (a—cos x)<0, for which (6.8) is used to
estimate oU//on.

7. Calculating the Subsurface Fields

We must now assemble the results derived in
previous sections to obtain an expression for the
subsurface magnetic field.

At VLF and LF frequencies, it suffices to use the

—
quasi-static approximation to /7 above the water,
as given by (4.21)

[1 Y olls ( - / (:_\.+Sill 0(/)2>(; —jk(s sin 0+z cos 6) (42])

=3
In order to use the MHKIT on this vector /7, we
need to express it in rectangular coordinates. For
a trochoid expressed parametrically as in (2.5) with

N
n=0, the unit tangent e, to the water surface is
given by
5> l—acosz-> asinz-
o= eu— e,

i I (7.1)

Thus, the magnetic field becomes in rectangular

coordinates

= 1—a cos J) cosf- a Sin  cos 0
H=)) oEo <( }l o Cu— 12 — €y

+blll 0€> —jk(s sin 6+z cos 6) (72)

Moreover, s can be expressed parametrically in terms
of z, so that

ds=hdx. (7.3)

Since the MHKIT applies individually to each of
-

the rectangular components of H, it applies to the

5
vector I when it is expressed in rectangular co-
ordinates as in (7.2). By placing (7.2) and (7.3),
(6.10), and either (6.3) or (6.8), as required, in (5.6),
we could write down a general integral for the sub-
surface field in which all variables are expressed in
terms of the parameter z. Such a general expression
is complicated. Either it must \llllplll\' by way of
approximations, or the entire process must be re-
duced to a computer calculation. Unfortunately,
at VLF and LF frequencies, skin depths in sea
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water are of the order of a few meters (1 to 3 dB of
attenuation per foot in the 10 to 100 ke/s region).
wave heights are of the order of a few meters, and
the depth at which one can make observations is
limited by attenuation from a few meters to a few
tens of meters. Thus, many of the variables that
appear in the MHKIT must be integrated over
ranges in which the Hankel functions do not have
the sort of simple asymptotic form which would
permit analytic simplification of our expressions.
In such a case, the recourse is computation. The
-
expressions for H were programmed onto a 7090
computer. Typical results are shown for 2-ft waves
at 20 ke/s in a “normal” sea ® in figure 2 and for 25-
ft waves in figure 3. The values of @ were taken
to be /20, values typical of actual sea conditions.
The figures give the attenuation (solid lines) and
phase shift (dashed lines) of the magnetic field at a
receiver located in a fixed horizontal plane, which
plane is located 25 ft below the troughs of the waves.
The data are plotted as functions of the height of
the water directly above the position of the receiver
in the horizontal plane. The portions of the curves
drawn with thin solid lines represent points inter-
polated from computed (solid and dashed) data.
The reason for the existence of the vertical com-

s
ponent of H, for propagation parallel to the wave
crests, can be surmised by substituting H, from (7.2)
for U in (6.4). This component is zero at any
point directly under the crest or trough of a wave
because of symmetry. It has a maximum value
(for a fized vertical coordinate) somewhere between
the wave crest and the wave trough.

& Conductivity assumed 4 mho meter ~1,

LINES OF s = CONST AT z=0

A

|
SN & LINES OF n = CONST
Y
:://)\\:’\/:% AT z=0
/
7
2 / //

- u

— PROPAGATION
DIRECTION
PERPENDICULAR
TO CRESTS

PROPAGATION
DIRECTION
PARALLEL

TO CRESTS

Ficure 1. Coordinates for EM propagation over trochoidal

cylinder.
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Ficure 3. Fields at a horizontal plane 25 ft under troughs of
25-ft storm waves.

8. Discussion of Results

There are three points worth noting about the
foregoing results:

(a) With respect to the theory, we have assumed
a simple trochoidal cylinder as the curve for the
surface of the sea. However, the methods developed
can be applied directly to any cylindric surface
whose generating curve can be put in the form

U=8—0; SIN b1s—a, SIn bys—as SIn bys— . . .

| v=a cos bis+as cos bos+ . ... (8.1)
In particular, a wave which is the sum of individual
trochoidal wavelets has this form (provided the sea
is not crossed). The static fields above such a sur-
face can be obtained by a conformal transformation
which is an extension of (2.2):

W="2+ja, exp jb,2+jas exp jb.2+ ... (8.2)

and so on, through all the formulas of section 2. In
particular, the scale factor A is given by



h=~1—2>7 ae~ %" cos bis+ > auare™ %t cos (b,—b,,)s.

If all the quantities @, are much less than one (as is
usually the case for waves in the ocean), then this
scale factor is approximately

h=1—>a,e %" cos b;s (8.3)
T

so that, roughly speaking, the superposition of waves
results in a superposition of effects on the fields out-
side the water. With respect to fields inside the
water, the effects of superposing several waves are
not clear a priori, since the boundary surface itself
is altered.

It is also worthwhile to remark that the MHKIT
for the underwater fields was obtained under the
assumption that the external fields do not vary
with the z-coordinate; clearly, except for 6=90°

=
(propagation perpendicular to the wave crests), I
does have a z-variation. However, the underwater
propagation constant £ is so large as compared with
k sin 6 above the water that we are justified in ignor-
ing the effects of a z-variation in the integrand in
arriving at (5.6) from (5.5).°

(b) With respect to the calculations, figures 2
and 3 represent two extreme situations. In the
former, the skin depth is large compared to the
wave height and the depths of observation are
comparable with the radius of curvature of the
waves. Accordingly, the fields at depth show sub-
stantial averaging-out of the variations. In the
case of the 25-ft waves, the skin depth is less than
the wave height and the depths of observation are
small as compared with the radius of curvature of
the waves. 'The fields in this case seem to behave
substantially as if a flat sea were moving up and
down over the point of observation.

(¢) With respect to possible experimental con-
firmation of the theory, there are three possibilities.
One can attempt to verify the predicted difference

=

in the dependence of H on the configuration of the

waves, either above or below the water surface. In

figure 2, the phases of vertical and horizontal com-
-

ponents of H depend differently on the amount of
water above the observation point, and therefore
vary differently with time; one could attempt to
verify the elliptization thus introduced by the bound-
ary. Finally, there is the difference in the phase
behavior of the fields predicted at modest depths
under relatively calm and strong sea conditions, as
in figures 2 and 3. All three experiments are made
uncertain by the fact that the real sea is not a simple
trochoidal cylinder. The last two are also difficult

 The eflect of assuming an e/*z dependence of the fields amounts to replacing &
by V(k)2+(k)2in (5.6). Since k<<<k, this change is small indeed.

T48-159—65——10

m, k

in that the effect to be measured is small . . . only
a few degrees of elliptization or of phase change or
a decibel or two difference in field strength.

Experimental observations of VLE fields do, how-
ever, confirm both the gross dependence of attenua-
tion and phase on instantaneous wave height as
predicted by the theory and also confirm the depend-
ence of the local scale factor effect on the direction
of atmospheric propagation with respect to the
running of the sea.!” The details of these experi-
ments are described in the next section.

9. Experimental Results

The two conclusions of the theory that we put to
experimental test are as follows:

(a) For sea waves running from 5 ft swell to
20 to 30 ft storm waves, the subsurface field is the
same as if the sea were flat and the antenna were
moving up and down, to within a few degrees in
phase and a decibel or two in attenuation.

(b) The FE-field in the air is locally enhanced over
the crests of the waves and diminished over the
troughs, in accordance with the local curvature of
the surface. Whether this effect is passed on to the
H-field and (through continuity of H at the bound-
ary) to the subsurface fields depends on the angle
between the direction of propagation and the direc-
tion of the wave crests.

To test the validity of conclusion (a) we made
arrangements to tow a submerged float about 30 ft
below the troughs of 20 to 30 ft storm seas in the
North Atlantic, and to record the instantaneous
variations in the magnitude (in decibels) and phase
of VLF transmissions received on antennas in the
float.

Some of the results are shown in the strip chart
recording of figure 4. The upper two traces are the
received field strengths of VLI station NSS at 22.:
ke/s on each of two underwater loops having orthog-
onal directivity patterns. 'The next two traces are
the corresponding variations in the received phase
measured with a recording phasemeter. The bottom
trace is a record of the variation in height of water
above the towed float, as measured by a pressure
transducer. Except that the pressure trace varies
in the opposite sense, there is a clear excellent
correlation between these curves, instant by instant
in time.

To properly observe the scale factor effect, con-
clusion (b), requires better control over experimental
conditions than is available in the open sea. To this
end we made use of a field site at an old quarry wharf
at Folly Cove in Rockport, Mass.

10 The effect to be measured is the difference between h and unity. From
(2.7) the ratio of the maximum to minimum value of & is (14-a)/(1—a). In a sea
driven by strong winds a can rise from its normal value of 0.05 to 0.15 to the nearly
breaking-waves value of 0.3 to 0.4.
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sea.
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Frcure 5. Folly Cove instrumentation.

Part of the test equipment is in an underwater
float in 70 ft of water 100 yards off shore. This
includes a pair of loop antennas, preamplifiers,
pressure transducers to measure depth, and telemetry
as shown in figure 5. An anchor cable passes through
a pulley to a winch on shore, so that the assembly
can be raised and lowered. Other cables and ropes
orient the loops and carry signals. On shore there
are Instruments for simultaneously receiving and
recording two stations at once; they measure signal
amplitudes in decibels and signal phase. A six-

channel chart recorder on which to record and
compare these measurements along with the cor-
responding variations in head of water above the
antenna loops is also used. The phasemeters oper-
ate by comparing the received phase of standard
transmissions such as those of NBA with that of
a local precision frequency synthesizer. Since the
transmissions of NBA and GBR are often keyed, we
key the averaging circuits of the phase meter, so as
not to measure the phase of the intervening noise.
It has been found that besides those stations set up
for standard frequency transmissions, many other
VLE stations exhibit sufficient carrier stability to
permit us to measure the phase of the received signal
with our equipment. Thus, we have had greater
flexibility in choosing signals than we might have
originally expected.

Since we measure depth with pressure transducers,
we must take into account the fact that the pressure
variation p due to the overhead passage of a given
wave diminishes exponentially with the average
depth d of the transducer. This and the hydro-
dynamic relationship between the wavelength X and
period 7 of gravity waves in open ocean are given by

p:poe—Qrd/)\
A=1.567T% meters, seconds
p=poe U1

in which d is depth of observation and p, is the
magnitude of the pressure variation as it would be
at the surface. The last formula is a combination
of the first two. The waves we see at Folly Cove
do obey these laws. Apparently the presence of
an ocean bottom at depth D (150 to 250 ft) for
many miles simply eliminates by friction at the
bottom those waves for which X\ is greater than the
depth. The waves that remain are true gravity
waves with sufficiently short wavelength as to have
little interaction with the bottom.

What the theory predicts is this: if the atmospheric
propagation is across the sea wave crests, the under-
water field will vary in attenuation according to the
flat sea model as the waves go up and down. But
if the atmospheric propagation is parallel to the
sea wave crests, in addition to the flat sea effect
there will be an enhancement of the field at the
crests and diminution at the troughs of the waves.
This effect operates in the opposite sense to the
attenuation with depth, so as to reduce the total
variation in attenuation. The phase shift, however,
is not at all affected. If the direction of atmospheric
propagation makes some general angle 6 with the
direction of the wave crests, the theory predicts
total underwater H field can be written as the sum
of two orthogonal components, H, and F; one of
which varies with surface shape and one of which
does not.

In order to make any observation of this effect, it
must be of the order of 4 to 6 dB, which in turn
requires almost-breaking waves (wave height to
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wavelength ratios of the order of 0.1 or greater)
of a kind that exist only in a heavy storm.
There was one storm at Folly Cove that produced
almost ideal conditions for observing the effect, on
a dayonwhich a NW gale blew for 18 hours. The results
are illustrated in figure 6. 'This is a strip chart
recording in which the upper pair of traces are the
received amplitudes (decibel scale) of signals trans-
mitted from distant stations operating at 18.6 ke/s
and 22.3 ke/s. The third and fourth traces are the
corresponding received phases. The bottom trace
is pressure (this time recorded in the same sense as
the signal variations). By good luck, the 22.3 ke/s
signal was propagating at about 45° with respect to
the waves; moreover, the antenna loop directivity
patterns were such that loop No. 1 saw mainly
the component of H that is unaffected by surface
shape and loop No. 2 saw mainly that component
of H which is affected by surface shape. One would
expect that the variation of amplitude introduced
in the 22.3 ke/s signal in loop No. 2 by the surface
shape would almost completely cancel out the 6-9
dB variation of amplitude due to the varying height
of water above the antenna (4 to 6 ft waves). One
would also expect the 22.3 ke/s signal into loop
No. 1 to show the full range of amplitude variation.

- SIGNAL AT 18.6 kHz
A M WA Ay A AN AAAAA AN AR AN AAL AV AL LA A«

iR L R

SIGNAL AT 22.3kHz
W WA AW AN Vd AMAMASAA Aaapana~
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~«—— FROM SAME ———-»14——-

LOOP (No.2)
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el A AN A rwr’awm ol oA AN AN A A A e
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Ficure 6. Magnetic field and pressure measurements—IFolly

Cove.

In the left hand part of the records in figure 6,
both receivers were operating from loop No. 2
in accordance with theoretical expectation, the
amplitude of the 22.3 ke/s signal shows little or no
variation.  Midway through the record, the 22.3
ke/s receiver was switched to loop No. 1; as pre-
dicted, the full 6 to 9 dB range of signal variation
is apparent. Note that the phase variations are
the same in both cases.

As a matter of fact, the influence of the scale
factor effect on the field observed in a directive
underwater antenna (e.g., a loop) varies in a compli-
cated way with the angle between the direction of
atmospheric propagation and the wave crests, the
orientation of the antenna, and its pattern. It is
significant that by taking these factors into account
it was possible to calculate the approximate direction
of the two stations being received in figure 6 from
the known orientation of the loops and the changes
in average signal strength and phase as the receivers

were switched between loops. These calculated
directions agreed within +5° of the directions
derived from the known locations of the trans-

mitters. It is even more significant that taking
account, in addition, the observed changes in the
range of amplitude variations as the signals are
switched between loops, it is possible to calculate
the direction of the running of the sea. This calcu-
lation agrees (within 30°) with what was observed
as closely as it was possible to estimate that direction
by eye and hand compass.

10. Appendix A

We wish, here, to find a solution of the scalar
Helmholtz equation in two dimensions

20(s, n) +k*p(s, n) =0 (A1)

in order to obtain a scalar function ¢ from which to

o
derive an F-field

- -

E=curl ¢e. (A2)
N

where F is the electric field stso(‘i(Lted with an

electromagnetic wave which propagates in a direc-

tion normal to the sea wave cresis. The tangential

component of 12 must vanish at the surface n=0.
Since, in the limit £=0, the fields must approach
the static field pattern, we begin by taking

gL

eIk,

(A3)

If we place this ¢, in the Helmholtz equation (4.1)
or (4.9), we obtain

% 1 -
Vet 71/«; # <1 _lﬂ> S (A4)
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where since we consider propagation perpendicular
to the wave crests, sin #=1. Thus in the limit £—0,

V=0

satisfying Laplace’s equation, and

3} E—cml \,lxoe, Eop,, (A5)

This is precisely the static field that results from
conformal transformation of the field between
5

parallel plates. It is unusual only in expressing /£
(in a charge-free region) as the curl of a vector
potential rather than as the gradient of a scalar
potential. When k30, ¢, satisfies the scalar wave
equation only if A*=1; in this case, the coordinate
system would be rectangular and ¥, would represent
a plane wave traveling in the a-direction between
parallel-plate bounding surfaces.

In the present problem, A*#1, the right-hand side
of (A4) is not identically zero, so that ¢, is not an
exact solution to the wave equation in trochoidal
coordinates. Suppose, now, that we can write a
second approximation to the solution of the wave
equation as

E, _,
‘Pl—%‘*‘Ql 0 ¢ ks (A6)
in which @, is a function of n and s for which
V2Q,=—k*(1—1/h?) (A7)

and in which @, is a function whose maximum mag-
nitude is of the order of magnitude k2. Substituting
¢, in the Helmholtz equation, we obtain a result
which has the form

v2¢1+k2¢,:f—,§ Py(n, s)e (AS)
where
Piln, ~>{2jk % -1y 01]. (A9)

P, is a function of the order of magnitude £* in-
stead of one of the order of magnitude k? as in the
case of ¥, and (A4). Once more, we can take a new
trial solution ..

_ Q-’@ — jks
Yo=Y+ T e (A10)
in which @, 1is a function of n and s for which
V2Q:=—P:(n, s) (A11)

and in which @, is a function whose maximum
magnitude is of the order of magnitude £*! This in
turn leads to an equation which has the form

Vi + kY, ‘* Py (n, s)e=*s

(A12)
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in which P, is a function of the order of magnitude
k* instead of k* as for the case of ¢,. Thus, we are
led to a sequence of functions

‘pﬁy ‘l/ly ‘P2a LIRS 1//71

which satisfy the Helmholtz equation in the limit as
n is taken sufficiently large,

lim V2, k%, =0

n—wo

k<1

provided that k is less than one. At the same time,
we have found a solution to the scalar Helmholtz
equation

y=lim ¢, = e

n— o

Yot (@it .. .)

in which the maximum mnplitudes of the ), is of
the order of magnitude £™~! times that of @,.
The original tlml solution y, satisfied the boundary

R -
condition that M=F be normal to the water surface,
but did not satisfy the Helmholtz equation. At
each step of the approximation, it is necessary to
pick the s so that ¢, ¥s, continue to satisfy
the boundary condition. It is beyond the scope of
this paper to show that in the differential equations
for the @’s there is sufficient flexibility to carry
through the program just outlined.!!

Now, let us carry out the program for the case at
hand. Our ¢, is given by (A3). When substituted

=
in (A2), ¢, leads to an F-field normal to the surface
n=0, but does not satisfy the Helmholtz equation
(A1). Using the expression for v*in (3.1) and that
for h in (2.7), we find that in trochoidal coordinates
(A7) for @, becomes

5y, 5y,

5 T on ae~" cos st (A13)
A particular solution of (A13) is

A 2a2

Q= —k*ane™™ cos S—%~ e, (A14)

To this solution, we can add any number of terms
which are solutions of the homogeneous equation
associated with (A13)

—
Qi=A,e77" cos rs

(A15)

in which 7 is any real number and A, any complex

number. In general, terms from the set {;} can

1l Indeed, in order to satisfy the boundary conditions exactly at each step, one
must generally add to Qm a term which is an approximate solution of the Helm-
holtz equation rather than being a solution to a differential equation like (A7).
Such terms have sufficiently small coefficients so that they do not upset the
convergence of the sequence of functions, ¥i, ¥, . . . . I‘hw amount to slight
modifications of Yo, having relative mdgmtud(s loss than k"l based on the re-
quirements of the mth step.



be added to @, for the purpose of satisfying the

=
boundary that £ be normal to the surface n=0.
We remark that both terms of ¢, lead to tangential

=
components of £ at n=0. In order to eliminate

o
the tangential £ at n=0 due to the first term on the
richt of (A14), we add to (A14) a term from the

set {Q,} to obtain for @,

22
Q=—Fka(n+1)e " cos s ko e 2"

i (A16)

o
The tangential components of £ due to the second
term of (Al14) cannot be counteracted by terms
from the set (A15) with »=0, because such terms
do not meet the reasonable requirement that their
effect tend to zero as n gets very large. To com-
plete the satisfaction of the boundary condition,
we add to ¢; a further term ¢,.

b

= ¢ " — Jks,
L Ik

(A17)

&

Thus, the modified second trial solution to the

Helmholtz equation (A1) becomes

\b:Kbo(] +Ql) +¢’1,

2,2
——‘I:l—kQ(z(n%—l)e—" cOs 6_k4(iﬂ—zn

k(L2 —kn EO — jks )
5 ¢ ];.ke (A18)

This is the function ¢ given in the text in (4.11).
If we use the Helmholtz operator on ¢, we obtain

——~V2¢1_k2¢ :k3|:2ja (n+1)e ™ sin s-{—%z e""‘:l

+terms of higher order in k. (A19)

Thus, ¢ is a solution of the Helmholtz equation to
the third order in small quantities, k.

-
To derive the E-field from (A18), it is convenient
to use the vector identity which states that if w

=
is a scalar function and F is a vector function,
respectively, of coordinates, then

VX (ul—*)“) = (V) X I_;—i- uV X ?f’ (A20)

Thus, for (A2) we have

- = -
E=curl ye,=V X (ye.)

:WXZZ
al%

“h\on
Ot//*

h bn

II+

>>< e

-
We can thus use (A21) to compute the fi-field due
to the scalar solution determined in (A18). The
operations are straightforward and lead to the result

(A21)

s m

+ 1‘” ”"“”[jlc—k?(a,[n-H] ~" gin s)—/k3(4e_“

k*a?
""*’[ e "—e ") - kPane™" cos s es

2
_%’ e "+aln+1le " cos «):I e (A22)

This is the same expression as that given in (4.13)
of the text, except for the cancellation of the factor

=
jk. The tangential component of F vanishes at
n=0; the tangential terms in ¢~ and ¢~*" come from
corresponding terms in ; while the term in ¢~ *"
comes from ¢.

11. Appendix B. Reduction of the H-K
Integral

We wish to reduce the Helmholtz-Kirchoff integral
which appears in (5.5) by integrating with respect
to z.

cor- [ [owor ()

e U (u, v) jbz]

; Sn ¢ dsS. (5.5)
We let a plane z=z, intersect the cylindric surface in
a curve (C, which has the same shape regardless of
the value of the constant z,. ILet us denote the
differential element of arc length on C by ds; then
dS=dsdz and we can rewrite (5.5) as

U(P)=p f U(u, v) [bn f
b bU(u v) l:f

Further, if the point P lies in the plane z=z,, we
can set £=-+/(z—z,)2+ 7%, where r is the length of the
projection on the plane z=0 of the line from P to a
point on the curve C.

e ””a’z] ds

e "’z(a:lds. (B1)
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So we have

hy (a—zg) 2412

) ejk ) =2
J —e_]bzdzif —————————C
— o E — o (2_20)2+r2

If we make a change of variables w=z—z,, we get

—gz.

(B2)

o Gzt ‘ © gikyartrt
¢z =¢ % e~ edw.
—w vy (2—20)2 72 —w wwz-}—r?
(B3)
We note that
ejk\/w2+72
\/w2—|-7'2
is an even function. Hence
® ejk\/w2+r“’ ) ® eJA\’w2+r2
f — e””‘“def ———— ¢0s bwdw. (B4)
—o ot —o Nt
From well-known tables,'> we have
® 6jww2+r2
f ———— ¢08 bwdw=jrH"[r(k?—02)"?]. (B5)
- wl-{—l'z

Therefore, setting (k*—

b=

- bzof [U (u, v)

ki, becomes

() ) 2 HP (k)

—H® (kyr) Q%Q] ds.

We will note also that if we choose /> and ' in the
same plane perpendicular to the cylinder axis, the
factor e’ disappears and we have

U(P)— f [U(u D) 2 HP (k)
— HP (kr) Q—U—a(z—”)] ds. (B6)

=
Now if r is the radius vector from a point p on
-

12 “Tables of Integral Transforms,” Bateman Manuscript Project (McGraw-
Hill Book Co., Inc., New York, N.Y., 1954), Formulas 1.7 (34) and 1.7 (30) on p. 26

and 1.5 (27) on p. 17. We need also FID (z) =Jo(2)+jYo(z) and Ko(z) =%r Hy»

(:e ZZI) which may be found in ‘“‘Higher Transcendental Functions,” Bateman

Manuscript Project (McGraw-Hill Book Co., Inc., New York, N.Y., 1953), Vol-
ume II, as Formulas 7.2.1 (5) and 7.2.2 (15) respectively (pp. 4 and 5).

(" to P and n is the inward unit normal to (' at p,
then

> -

O (try et (r) "

(B7)

UP)= f [lcUH‘” (kr ) r — HP (kr) —:l ds. (BS)

This result is the Modified Helmholtz-Kirchoff
Integral Theorem (MHKIT) for cylindric geometry.
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