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A h~uristic theory for VLF a nd LF fields near a nd in a rough sea surface is obt ained by 
first findin g t he electromagnetic field confi guration in a ir and t hen calculati ng t he undersea 
fields by means of t he H elmholtz-Kirchoff Integral Theorem. The fi elds a bove t he water 
a re found by a succession of quasi-stat ic app roximations whi ch depend on t he observa tion 
t hat t he scale of irregularit ies on t he sea surface is vcry small co mpa red wi t h a n 
EM wavelength. -4 

The th eory pred icts t hat t he configu rat ion of t he H-fi eld a bove t he wa ter depends on 
t he direction of EM p ropagat ion rela t ive to t he wave cres ts . It also p red icts t hat for 
underwa ter measurements ma de a few tens of feet below t he t roughs of t he waves, t he fi eld 
vanat lons cl ue to one- 0 1' t wo-foot sea waves are averaged out ; but fo r sto rm wa ves t he 
p hase a nd atte nuat ion of t he fi eld obser ved un derwater va ries wit h insta ntaneous water 
height. These t heoret ical predictions have been co nfi rmed experi mentally . 

1. Introduction 

The well-known stabili ty of LF and VLF propaga­
t ion at great distances has produced a n in creasing 
number of applications to in ternational com parison 
of fr equ ency s tandards and to naviga tional aids. 
I n this latter conn ection, i t is im po rtant to h ave 
some estimate of local per turbations in fwld caused 
by a rough or s tormy sea surface. Since at t hese 
fr equencies, t he attenu ation of radio waves is only 
of th e ord er of a few decibels pel' foot in sea, water 
it is also relevan t to t ry to es timate t he fields meas~ 
ured b y an antenna located a few feet under t he 
water surface. 

Both th e ab ove-the-sul'face and subsurface aspects 
of this problem h ave r eceived some atten tion [Rice, 
1958 ; Herman, 1958; W ait, 1959] in the las t few 
years. Only on e of the works r eferred to, that of 
W ait , treats the problem of subsurface fields. W ait 
uses th e "Leontovitch" [1948] assumptions concern­
ing t he relative m agnit udes of the r adius of curvature 
of the sea surface , the inverse of the propagation 
constant in sea water and the dista nce under the 
sea sur face at which one wishes to calculate the 
fields. 

T here are, however, naturally occurring si t uations 
in which the Leon tovitch assumptions do not hold 
and in which we still may wis4 to calcula te the fields: 
Our fLpprofLch is to find a solution to the field prob­
lem abo ve the sea surface on the assumption that 
the sea sUl'face is perfectly co nducting (to the exten t 
that the E -field is everywhere normal to the surface) 
and tbat the wa ter waves make t he sea surface a 

I Operated with support from the U.S. Air F orce. 

trochoidal cylinder ; then (dropping the ass Llmp tion 
th fLt sea water is a perfect conducto r) we use the 
in tegral t heorem of Helmh ol tz and Kirchoff to fi nd 
t he fields under t he sea surface. 

T he general beha \'ior of t he fi elds above the sea 
surf fLce can be readily fLscer'tained from th e equations 
which are developed for these fields. The E-field 
in the air is locally enha,nced over the crests of the 
waves a nd diminished over the t roughs, in accordance 
with the local cur va t ure of the surface. Whether 
this effect is passed on to t he H-field fL nd (through 
co nti nuity or H at the bo u ndfLry) to t he subsurface 
fields, depends on the angJe between the direction 
of propagation and t he direc tion of wave cres ts. 

The b ehavior of t he fields at some dis tance 
beneath t he sea su1'l: fLce is not so eviden t from t he 
eq nations deri ved for t hem . The theoretical r e­
sul ts obtained have been e\Talu atecl for typical sea 
conditions at VLF. The resul t of these calcuh,tions 
is to predict that an obser vation made at reasonable 
depths under s torm seas should show varia tions in 
ampli tude and phase propor tional to t he ins tan­
taneous h eigh t of water above the point of obser va­
tion . On the oth er hand, in calm seas (waves up 
to 1 or 2 f t) t he effect of t he wa \Tes on t he field ob­
served at dep th is averaged out . 

2. Trochoidal Coordinates 

The sh ape of a periodic gravity wave on an in­
fini tely extensive sea tends to b e a trochoid [Lamb, 
1945], a curve which is a generalization of a cycloid . 
Such curves are described by a point on th e radius 
of a circle as the circle is rolled on a str aight line; 
they tend to have steeper peaks and broader troughs 
than would b e the case lor a sine wave. 
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Actual sea waves depart from the cycloidal curves 
assumed in this paper in two ways: First, if the 
waves have sufficient amplitude so that they are 
cusped and breaking, the cycloidal-type trochoid 
assumed is only an approximation to the actual 
surface [Lamb, 1945]. Second, in actuality the 
wind excites a random spectrum of waves, so that 
each " wave" is actually a superposition of wavelets 
and no two waves are really alike. :Moreover, the sea 
is sometimes "crossed" by waves propagating in 
several directions. Further, although real sea wave 
"crests" do stretch for distances comparable to a 
wavelength, they do not stretch indefinitely to pro­
du ce a cylindric sea. 

The willingness to ignore these differences be­
tween the real sea and the model is based on the 
assumption that local sea-surface conditions affect 
the surface fields in that same local area only. 
For the fields above the water, this assumption 
can be justified on the grounds that local surface 
irregularities (the water waves) would produce 
nonlocalized effects only if they tend to scatter the 
propagating radio wave. These irregularities, how­
ever, have dimensions which are so small compared 
with a r adio wavelength in ail' 2 that little such 
scattering can occur. 

Beneath the sea, the assumption of local influence 
is justified by the high attenuation of radio waves 
propagating through the water. The field beneath 
the sea surface can be thought of as due to a con­
tinuous distribution of sources along the surface 
(the strellgth of the field to be calculated by a 
Green's Theorem approach or the Helmholtz­
Kirchoff Integral Theorem). The effect of a given 
source area diminishes exponentially with the distance 
between the surface source and a given subsurface 
observation point. Since this attenuation is of the 
order of 1 dB per foot at 15 kc/s, the subsurface 
field is for all practical purposes determined by the 
surface field in the local area above the subsurface 
point. 

Thus, if we find the infinite trochoidal cylinder 
which m atches the local sea conditions we are 
concerned with, we may trust that the failure 
of the match in other areas of the sea surface will 
not produce local fields noticeably different from 
these which we calculate . 

Since the boundary conditions we must satisfy 
are applied on the surface of a trochoidal cylinder, 
it is convenient to use trochoidal coordinates in 
solving the fi eld problem. We generate these 
coordin ates as follows: 

A 

let z= x+ jy ( 2 .1 ) 

A A 

Z and w represent points in two Cartesian planes, 
the abscissa and ordinate being giYen, respectively, 

A A 

by x and y in the z plane and U and v in the w plane. 

2 At 15 kc/s the electromagnetic wavelength in air is 20 km . Ocean wave· 
lengths seldom exceed 300 m. Ocean waye hei ghts (peak to trough) seldom 
excet'cl 10 m. 
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Further, let 
A A A 

w= z+ja exp (jZ) . (2 .2) 

Equation ( 2.2) defines a transformation from the 

; plane to the ~ plane. All str aight lines parallel 
A 

to the x axis in the z plane are transformed or 

mapped by (2.2) into trochoids in the ~ plane 
(whether or not ae-v< l) . The mapping of the 

; and ~ is also co nformal for __ alues of ; such that 
ae- Y is less than unity. We now define t rochoidal 
coordinates s and n, in the w plane, as follows: 

s= x n = y. (2.3) 

The curves, n = const are trochoids and further­
more if y> ln a,3 the curves s=con~tant intersect 
the curves n = constant at right angles (because the 
transformation (2.2) is conformal). 

We may combine (2.1) and (2.2) to obtain 

u = x- ae - Y sin x 

(2.4) 

and using (2 .3) we get 

u = s-ae - n sin s 

v= n+ ae- n cos s. (2.5) 

Tbe scale factor h (the same for n as for s because of 
conformali ty) may be found from 

(2 .6) 

so that 
h= (1-2ae- ncos S+ a2e- 2n)I /2. (2 .7) 

We need only add a third coordinate axis normal 
to the u, v plane to change trochoidal coordinates 
to trochoidal cylindrical coordinates. If the third 
coordinate is denoted by z, then U v and z are 
the Cartesian coordinates of the th{.ee~dimensional 
space. The scale factor associated with the third 
coordinate is, of course, unity. W e will deno te 
the unit vectors in the s, n, and z-directions by 
--; --; --; 

eS) en, and ez• 

3. First Solution in Air 

A radio wave propagating olTer the surface of an 
unrippled sea at or below broadcast frequencies is 
for all practical purposes vertically polarized. To 
find the field outside the sea, we assume the sea to be 
a perfect con ductor with the surface havino' the form 
of a trochoidal cylinder. 0 

3 We use In to clenote Lbe n atural logariLbm. 



The cond Llcti "ity of the sea water is so hr.g~ (4 
mho-lTI eter- 1 fLt s tandard temperat ure and sahlll ty) 
compared with the s Llsceptan ce ( 10- 5 mho-met.CJ·- l 
at about 150 kc/s) of the flU Itbo\'C IL, tlHtt what l!ttle 
loss power that en ters Lhe sea p~'opa,gate~ essentIally 
stnl iuht down. If tIle sea s urface IS dIs turbed by 
wav~ Lhe EM field a bove i t will be co rrespondingly 
pertU1:bed. Since the con d uc Li \'ity of eY~n a. few 
incll es depth of water is high. compa~·ed. wIth ~I ther 
the s usceptance or the Yo ot th.e 11,11". lmm~dlately 
above it we can expect that the effect ot the dIsturbed 
sea surf~ce on the E -fields above it will be nearly the 
same as that of a perfect conductor- the external 
E-fields must remain perpendicular to the sea surface. 

In the case of a static E-field in cylindric coor­
dinates, the problem is one of finding .a scalar poten­
tial cp which satisfies Laplace 's equatIOn 

and for which cp is cons tan t on the boundary. 
In coordinates derived from a conformal trans­

formation , the two-dimensional L aplacian \72 is 
[Morse and Feshbach, 1953] 

(3. 1) 

Obyiously, then, if cp= E on, cp satisfies Laplace's equa­
tion and 

(3 .2) 

is the corresponding electric field. 
The equation we ~re really inter~sted in solving 

is the electrorn aO'netlc wave equatIOn. When the 
time vfll"iation isb separ ated out of this partial dif­
ferential equation, the result is called the Helmholtz 

~ 

equation. If]l' is a vector fun ct~on of tll e sp acial 
coordinates, the Helmholtz equatIOn h as the form 

(3 .3) 

where for good dielectrics P = W2/-1E, and for good 
I conductors P =-jwwy. Here w is the radian f~'e ­

quency of the signal; /-I , E and (]" are the (magnetIC) 
permeability, permittivit:y (electric),. and conduc­
tivity of the relevant medlllill, respectnTely. . 

It is a well-known property [Ramo and Wlunnery, 
~ 

1953] of cylindrical systems that if E(~l' b) is a 
static two-dimensional field solution (i.e., one de­
rivable as the gradient of a potential s.atisfying 
Laplace's equation) in the p~ane perpendl.cular to 
the cylinder flxis (~ l and 6 bemg the coordll1ates of 
this plane), then 

~ 

E(~l . b)e - j kZ 

satisfies the Helmholtz eq uation (3.3). One can 

now state that 

(304) 

satisfies (3 .3) from (3 .1), (3 .2) a,nd the disc ll ss ion 
between them. This field expression represents a 
TEM wave traveling along the cylinder flxis . In 
the terms of the original physical problem, it repre­
sents a TE11 wa\'e trayeling paraLLel to the sea wa\TC 
crests. If we examine the form of II, [see (2.7)], 
we note that the field becomes uniform as n beco mes 
infinite. This is what we would expect from physi­
cal reasonino' as water wave action at the s urface 
of the sea sh~uld not affect the fields at arbitrarily 
laro'e distances from it . W e also note that the rn,te of 
de;ay of this "smface effect" h as nothing to do with 
the electromagnetic wave number, k. The way 1Il 

which (3.4) has derived from a static field solution 
makes it obvious why this should be so. 

We also note that 
~ 

- jw/-III= curl E 
hence 

~
-

~ ./ -) 

11= ~ E o -jkz 
fJ, h e es• 

4. Second Solution in Air 

The r esul ts of section 3 apply only to TEM Wflves, 
those propagfl ting parallel to the wave crests. vVe 
wish now to examine cases of EM propagation at a n 
angle with respect to the sea wave crests; in par­
ticular, propagation perpendicular to the crests . 
This problem is inherently more difficult than the 
previous one, in that it requires manipulation of 
solu tions of the vector Helmholt7. equation in curvi ­
linear coordinates. Helmholtz' equation for a vector 
~ 

E and a scalar cp are symbolically the same. 

(4.1) 

(4.2) 

but the interpretations that must be given to the 
operators \7 2 are (in curvilinear coordinates) different ; 4 

for this reason (4 .2) may be solved by separation 
techniques in only six coordinate systems, whereas 
(4 .1) can be so solved in eleven. With respect to 
other coordinate systems (including those appro­
priate to the present problem), the difficulty is not 
so much in finding solutions to the equations, as in 
finding solutions that will also satisfy the boundary 
conditions . 

It is much easier to find solutions to (4 .1) tha n to 
(4.2), whether or not the equations separate. If cp 
is a solution to the scalar wave equation (4.1) 111 a 
cylindrical coordinate system, then a set of orthog-

~ --> ~ ~ 
4 \72cp is div grad cp for cp a scaLlr; v 'J. E is grad cl iv E-curl curl E for E a vector 

[Moon find Spencer, 1961]. 
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--> --> --> 
onal solutions to (4.2), L, 1\1[, and N, may be 
constructed from rp as follows: 

(4.3) 

--> --> 
1V!= curl (rpe z) (4.4) 

--> --> 
N =curl curl (rpeJ (4.5) 

--> 
in which ez, the axial unit vector, is parallel to the 

--> 
surface of the water, L is a "longitudinal" wave, 

--> --> 
and J1;1 and N are called "transverse" waves. In 

--> 
particular, the tangential component of M can be 

--> 
made to vanish along a boundary parallel to ez ; it is 
therefore the appropriate wave by which to describe 

--> 
the E-field outside the water. Thus, the problem 

--> 
of finding the vec tor field Ereduces to that of finding 
an appropriate scalar rp in the trochoidal curvi­
linear coordinate system. 

In trochoidal cylinder coordinates, the scalar 
Helmholtz equation is 

(4.6) 

If the propagation is parallel to the wave crests, 
then for plane waves 

and (4.6) reduces to 

(4.7) 

which is precisely the problem treated in section 3. 
Let the propagation be at some angle f) with respect 
to the z-direction ; because the boundary has cylin­
dric symmetry, because the electrical wavelengths 
are very long, and because we would like a solution 
closely related to the plane wave solution of section 3, 
we assum e that the variations of rp with z are ex­
ponential only: 

rp(x, y, z)=(x, y)e-jl" coso. (4.8) 

In this manner (4.6) becomes the two-dimensional 
scalar waye equation : 

1 (02rp+02rp)+k2 . 2 f) - O hY 082 on2 rp Sill -. (4.9) 

In discussing the solution of this equation, nothing 
is lost by setting sin f) = 1, i.e. , considering propaga­
tion perpendicular to the wave crests. 

Unfortunately (4.9) does not separate in the tro­
choidal coordinate system.5 Even though a suitable 
exact solution cannot be found for (4.9) in closed 
form, it may be possible to build up a series solution 
in ascending powers of k, if k is small ; we can termi­
nate the series at whatever term yields a satisfactory 
approximation to the desired solution. The method 
of obtaining the series solution is described in 
appendix A, together with the details of the calcula­
tion for the case of interest here. The result is 

(4.10) 

The principal part of if; in (4.10) is the quasi-static 
term (Eol.ik ) e- iks . All the other terms are smaller 
by at least a factor of k and die out with increasing 
curvilinear height, n, above the water surface. 'Ve 
have assumed a wavelength of 271' for the water 
wavelengths, whose actual wavelengths L range 
between 40 and 300 m. The actual wavelengths A 
of EM waves in air at VLF and LF range from 3000 
to 30,000 m ; the corresponding value of k to be used 
in these equations is found by expressing A in units 
of L/271' : 

(4. 11 ) 

thus k ranges from less than 0.001 for short L at 
10 kc/s to 0.05 for long L at 100 kc/s. 

--) 

The E-field follows directly from (4. 10) . 

The main features of this expression are first, t hat 
the E-field is essen tially a propagating static field; 

--> 
second, that the tangential component of E , the 

--> 
terms in es , does in fact yanish at the water's 
surface, n= O; third , that the cOl'l'ection terms are 
~~. --> 

The expression for the magnetic intensity H is 
somewhat simpler in that we ha, 'e from ?daxwell's 
equations 

(4.13) 

S '],he condition for se panttion is that h2 be the sum or a fun ction of s only and a 
function of n only [see J\ lorse and F eshbach, op. cit . PJ). 498-500]. 
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-) 

Bu t since div (if;e,) is zero, we have from :Maxwell's 
equa,tions 6 

-) 

V' X E = V' Xv X (if; e.) = 1c2 (if;e,) . 

Hence 

in which Y o, the characteris tic admittance of free 
space has been written for k/wJ.I .i What is note-

-) 

worthy a,bout this expression for H is that it does 
-) 

not contain the scale factor h. Thus, the E fields 
are essentially the same and essentially given by the 
s tatic field configuration for propagation both 
parallel and perpendicular to the wave crests, pro-

vided k is small . The H :fields, however, are not 
-) 

the same; in the former case, the magnitude of H 
varies with the scale factor h from point to point 
near t he wa\'es; in the latter case, the m agni tude of 
-) 

H is s ubs tantially un varying with respect to position 
above the waves . 

Finally, we return to the qu estion of propagation 
at an arbi trary angle, 0, with respect to the wave 
crests . With respect to the enLire argum ent in 
appendix: A, we ca,n repla,ce k by k sin 0 without 
changing either the cLrgum ent or the result . In 
accordance with (4.8), we can multiply if;(lc sin 0) 
by exp (-jkz cos 0) to obta,in a fun ction rp which 
satisfies the three-dimensional scalar Helmholtz 
equation 

rp= if; (k sin O) e- jk, cos 0. (4.14) 
..... 

The E-field is then given by 
-) 

E = V' X [if;(k sin O)e- jkZ cos 0e ,], (4.15) 

bu t the term exp (-.ikz cos 0) is constant with 
respect to the curl operation on a vector in the 
z-direction ; hence 

-) 

E =e- jk, cos 0V' X [if; (k sin O) ezl. (4. 16) 
-) 

Thus the E-field is exactly the same as that obtain ed 
with sin 0= 1, except that k is replaced by k sin 0 
and the whole field is multiplied by exp (-jkz cos 0). 

-) -) 

W e find Ii by ta,king the curl of E to obtain 

=~ V' X { e- jkz cos °V' X [if;(k sin O) ezl }. (4.17) 
WJ1. 

• Morse and Feshbach , 01'. cit ., p . 1766, eq 13. 1.6. 
7 While k or A is measured in units of L/2". as in (3.41) , Yo is invariant to a change 

of scale in length and is measured in whatever units are ronsistent with those 
assigned to E and H , e.~., 1/377 mho for E in volts per meier and H in amperes 
per meter. The units of " are then dependent on those chosen for E, H , and 
length. 

By directly performing the curl operations [Morse 
and Feshbach, 1953, p. 115)J and by noting (4.9), 
we obtain after some manipulations 

II _ _ Y cos 0 - jkz cos 0 [ Oif; (k sin 0) -) + oif;(k sin 0) -) ] 
Eo - 0 h e 08 es On en 

111 which we have once more written Yo for lc/ wJ1. . 
If we discard all terms having higher order in k, 

-) -) 

the expressions for if;, E , and H r educe, respectively, to 

Eoe-jk(s s in o+z cos 0) 

jk sin 0 

-> E -) 
E = .....!!. e - jk(s s in 0+ , cos 0) e 

h n 

-> ( COS 0 -) . ) . H = YoEo - h- es + SJll Oez e- Jk (s Sln O+Z cosO) . 

(4.19) 

(4.20) 

(4.21) 

5. Modified Helmholtz-Kirchoff Integral 
Theorem 

The Helmholtz-Kirchoff In tegral Theorem [Born 
and Wolf, 1959] provid es It m ethod of calculating 
the fields inside a, SO Lll'ce free volum e when the fields 
n,nd their normal derivatives are kn own on the sur­
faces bounding i t. If a scalar fi eld, U, satisfies the 
Helmholtz equation 

(5. 1) 

everywhere within a, volum e V whose bounding sur­
face is S, and U is con tinuous and has continu ous 
first and second derivatives in V and on S, then the 
field at a poin t P within the volume is given by 
[Born and W olf, 1959] 

U(p) =~ff[U ~ (e jk~)_ e jk~ OU] dS (5 .2) 
47r On ~ ~ on 

where ~ is the distance from th e poin t P within the 
volume to the element of area clS on the surface. ° (eJk~) oU The normal derivatives On T and on are taken 

a,long the inward normal at the location of the sur­
face element clS. Although (5.2) is usually derived 
for a scalar field , in Oartesian coordinates, U, v, z, the 

-) 

H elmholtz equation for a vector field H in a source 
free isotropic medium is simply 

(5 .3) 

Hence, (5.1) holds individually for each of the 
-) 

Oartesian compon ents of Hand (5.2) m ay be applied 
to each of these in turn. 
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N ow, the geo metry of our problem is cylindric so 
we may adapt (5.2) to simplify computation in this 
case. We let S be a cylindric surface with the 
cylin der axis in the z-direction. The Cartesian 
coordinates of the plane perpendicular to the cylinder 
axis nt z= O will be denoted by 1L (abscissa) and v 
(ordinate). Furthermore, let us suppose that U(11, 
v, z) can be expressed as follows: 

U(u, v, z)= U(u, v)e - i bZ (5.4) 

where b is a cons tant. 
integral (5 .2) as 

Then we may rewrite the 

U(P)= fi[U(U' V) e-jbZ~n(e~k') 

(5 .5) 

Now, a plane, z= constant, intersects S in a curve 
0, which is the same for all such constants because 
of the cylindric geometry. In appendix B this sur­
face integral is reduced to a line integral along G by 
!n tegration with respect to z. The result obtained 
IS 

-; -; 

U( p )= i r [ lcU H (l ) (kr) r ·n_H.(1)(kr) OUJ dS 
4 Jc 1 T 0 On 

(5.6) 

in which -:;. is the vector distance from a point }J on 
o to P , G bein g taken so as to lie in the same plane 

-; 

as P. The vector n in (5.6) is a unit inward normal 
from G at point P ; the function s Hd1) and HP ) are 
Hankel function s of the first kind, zero and first 
order. This result is the Modified Helmholtz­
Kirchoff Integral Theorem (MHKIT) for cylindric 
geometry. 

Both (5. 6) and the usual form of the Theorem (5.5) 
determine the field U at any point P inside the curve 
o from the yalue of U and its normal derivative on 
the curve, gi lren k for the material within this 
bo undary. While this is indeed a correct result, it 
seems to require too much information in that either 
the field 01' its normal derivative at the surface 
should suffice to specify the function inside the sea 
[Stratton, 1941]. It is beyond the scope of this 
paper to enter an extended discussion of the mathe­
matical subtleties of this apparent overspecification 
of the boundary conditions. The following obser­
vations are nevertheless helpful : 

use of the Green's function for a spherical boundary; 
the modified theorem uses the Green 's function for a 
circular cylinder. The price that one pays for 
using the simple Green's function is that one must 
know both the field and its normal derivative at the 
boundary. So, if we are able to provide extra infor­
mation, we can use the MHKIT to avoid mathe­
matical difficulties. 

(b) Once the field U is specified at the boundary, 
the 0 U/on required in the equation is also deter­
mined. It must be calculated or estimated by other 
means before the Integral Theorems can be used . 

The required ~U generally cannot be found from the 
un 

theorem itself, even by successive approximations 
[Franz, 1949; Shelkunoff, 1951]. 

We have already calculated the electromagnetic 
field propagating above a trochoidal sea. 

What remains is the question of determining the 
-; 

normal derivative of the tangential H on the sea 
surface. The tangential component of the magnetic 
field is always continuous across a boundary between 
two media, but its normal deriYatil-e is not. For 
this normal derivative to be continuous across a 
boundary, it is necessary that both the conductivity 
and permittivity of the two media be the same. 
This condition is not satisfied here. Our method of 
attack is outlined in the next section. 

6 . Estimating the Normal Derivative 

Suppose we have a circular cylindrical (ail' filled) 
cavity in an infinite conducting medium. The con-

ducting medium has wave number k = (-l + j) 
, /7f-j}J-u. N ow suppose there is a cylindrical scalar 
wave propagating outward from t he cylinder axis 
which is giyen in the concl'llcting meclinm only by 

(6. 1) 

where rand e are the usual cylindrical coordinates. 
N ow, if the radius of the circular cross section of 
the cavity is P, the field on the surface of the con­
ducting medium may be denoted by Us and we 
have 

UCr) (6.2) 

which reduces to U(l') = Us at the cylinder surface 
T = p. For the normal derivative we then ha,·e 

(6.3) 

(a) The Helmholtz-Kirchoff Theorem is essentially 
an application of Green 's function s. If we could 
find the Green's function for the bounded region, 
V, we could calculate the field s in the interior from 
their values on the surface alone [Morse and Fesh­
bach , 1953, pp . 803- 807]. In our problem , we know 
of no way of determining the requisite Green's 'What we shall attempt to do is to estimate the 
function . The Helmholtz-Kirchoff Integral Theorem value of the normal derivative on the sea surface 
is a means of using the Green's function appropriate by representing the tangential component of the 
to a known solvable problem in a problem which has field at each point on the surface (or just beneath 
an arbitrary boundary. The usual HIeTT makes it) by a cylindrical wave of the form gilcen in (6.2) , 
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where p will be chosen to b e the radius o[ CUlTature CUI'vatlll'e 
of the Cl'OSS section o[ t he sea surface normal to t he (1- 2a cos x+ a2)3 /Z 
W,Lve crests, at the point in qu estion . H ence, (5 .6) 
becomes 

A ---? ---? A 

U( P ) = le4
j Ju [I-~li J) (lc ,.) 1~+ JlJ' ) ( lcr) JI [! )(l:p)] ds . 
. } IlJJ ) (kp) 

(6 .4) 

This procedure suggests th at the sea surface is made 
to conform locally, with the bound ary of the cylin­
drical ca\Tity referred to aboye. N ow, the center of 
the circle (of radius equal to t he radius of curvature 
of the curve at point p) that best conforms to t he 
f;urve at p is on the concave side of the cun·e. 
Throughout most of its length, the cross section of 
t he sea surface is concave upward , so the idea of a 
f;ylindrical waye propagating into the sea from an 
axis a bove it m akes some sort of physical sense. 
On the port ions of seft sur[ftce cross section wlliclt 
are con cave downward, we expect the cylinder axis 
in question to b e beneath the sea surface. The 
wave appropriate to the physical condi tions of the 
problem is then an H J2) wa ITe. H J2) is a H ankel [unc­
t ion of zero order and second kind, and r epresents a 
wave propagating inward toward the cylinder axis. 

Now, if 

A --) 

U (I') = A IlJ2 ) (le I') ez (6 .5) 

(6.6) 

Th e expression has a posit i ve sign because the inward 
normal makes an angle of 7r radians with t he direc­
t ion of increasing r. If again we are gil'en that the 
s urface value of U is Us, 

(6.7) 

and 

(6.8) 

If the rectangular coordina tes (u, v) of a curve are 
gi ven parametrically in terms of an auxiliary variable 
x, then the radius of curvature, p , is given by 

p (6.9) 

where the sign is chosen to achieve a positive res ult. 
In par ticlllar , for a trochoid, we can place n = O in 
(2.3) and (2.5) to obtain from (6.9) the radius of 

p=± . 
a (a-cos x) 

(6.10) 

Any poin t p on th e CUrI'e, at which the cun-e is 
co,; c,we away from t he sea, corresponds to a va lli e 
of x for which (a - cos x) > 0. F or such values of p , 
we use (6.3) to estimate the normal derivatil~e 
a U/on. Infinite radius of curv ature occurs when 
(a-cos x) = O; and any point p ft t which the CLlrI'e 
is concave into the sea corresponds to a yalue of x 
for which (a - cos x) < O, for which (6.8) is used to 
es timate 0 U/on . 

7. Calculating the Subsurface Fields 

Vve must now assemble the res llits deriyed in 
previoLis sections to ob tain an expression for t he 
subsurface magnetic field. 

At VLF and LF frequ encies, i t s uffices to use the 
--) 

qu asi-static approxim ation to H above the water , 
as given by (4.21) 

H= YoEJ (CO/~ 8 t+sin 81z)e-j k CS sin O+ z cos 0). (4.21) 

--) 

In order to use t he 1/LHKIT on this vector H , we 
need to express it in rectangular coordin ates. For 
a trochoid expressed par ametrically as in (2 .5) with 

--) 

n = O, the uni t tn,ngent es to the water surface is 
given by 

--'> I -a cos x --'> a sin x --'> 
e,= h e"- - h- ee· (7.1) 

Thus, th e magnetic field becomes in rectangular 
coordinates 

I--'>I - 1T E (o-a cos x) cos 8 --'> _ a sin x cos 8-7 
- . 0 "0 h 2 ell hZ Cv 

MoreOlTer, s can be expressed parametrically in terms 
of x, so that 

ds= hdx . (7.3) 

Since the MHKIT applies individually to each of 
--) 

the rectangular components of H , it applies to the 
--) 

vector H when it is expressed in rectangular co­
ordinates as in (7.2) . By placing (7.2) and (7.3), 
(6.10), and either (6.3) or (6.8) , as required, in (5.6), 
we could write down a general integral for the sub­
surface field in which all variables are expressed in 
terms of the parameter x. Such a gener al expression 
is complicated. Either it must simplify by way of 
approxim ations, or the entire process must be re­
duced to a computer calculation. Unfortunately, 
a t VLF and LF frequencies, skin depths in sea 
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water are of the order of a few meters (1 to 3 dB of 
atten uation per foot in the 10 to 100 kc/s region) . 
wave heights are of the order of a few meters, and 
t he depth at which one can make observations is 
limited by attenuation from a few meters to a few 
tens of meters. Thus, many of the variables that 
appear in the MHKIT must be integrated over 
ranges in which the Hankel functions do not have 
the sort of simple asymptotic form which would 
permit analytic simplification of our expressions. 

In such a case, the recourse is computation . The 
--> 

expressions for Ef were programmed onto a 7090 
computer. Typical results are shown for 2-ft waves 
at 20 kc/s in a "normal" sea 8 in figure 2 and for 25-
ft waves in figure 3. The values of a were taken 
to be 7r/20, values typical of actual sea conditions. 
The figures give the attenuation (solid lines) and 
phase shift (dashed lines) of the magnetic field at a 
receiver located in a fixed horizontal plane, which 
plane is located 25 ft below the troughs of the waves. 
The data are plotted as functions of the height of 
the water directly above the position of the receiver 
in the horizontal plane. The portions of the curves 
drawn with thin solid lines represent points inter­
polated from computed (solid and dashed) data. 

The reason for the existence of the vertical com-
--> 

ponent of Ef, for propagation parallel to the wave 
crests , can be surmised by substitu ting Efr from (7.2) 
for U in (6.4) . This component is zero at any 
point directly under the crest or trough of a wave 
because of symmetry. It has a maximum value 
(for a fi xed vertical coordinate) somewhere between 
the wave crest and the wave trough. 

8 Conducti vity assumed 4 mho meter -I , 
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8. Discussion of Results 

There are three points worth noting about the 
foregoing results: 

(a) With respect to the theory, we have assumed 
a simple trochoidal cylinder as the curve for the 
surface of the sea, However, the methods developed 
can be applied directly to any cylindric surface 
whose generating curve can be put in the form 

.{ u = s-al sin bjs-az sin bZs-a3 sin b3s- , , , 

\.. v= a j cos bjs+ a2 cos bzs+ ' , , , (8 ,1) 

In particular, a wave which is the slim of individual 
trochoidal wavelets has this form (provided the sea 
is not crossed) . The static fields above sllch a sur­
face can be obtained by a conformal transformation 
which is an extension of (2,2) : 

" "+ ' 'b "+ ' 'b "+ W= 2 Ja j e:xp J j 2 .Jaz eAT.J z2 (8,2) 

and so on, through all the formulas of section 2 , In 
particular, the scale factor h is given by 
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1t =-b - 2"L,ake °kn COS bks+ "L,a",ake (okH",)n COS (bk- b", )s. 

If all the quantities ak are 111 uch less than one (as is 
usually the case for wayes in the ocean) , then this 
scale factor is approximately 

h= l-2:,ake- bkn cos bks 

" 
(8.3) 

so that, roughly speaking, the superposition of waves 
results in a superposition of effects on the fields out­
side the water. With respect to fields inside the 
water, the effects of superposing several waves are 
not clear a priori, since the boundary surface itself 
is altered. 

It is also worthwhile to rernark thflt the MHKIT 
for the underwater fields was obtained under the 
assumption that the external fields do no t vflry 
with the z-coordinate; clem'ly, except for 0= 90 0 

-4 

(propagation perpendicular to the wave crests), H 
does hflve fl z-variation. However, the underwater 
propagation constant k is so large as compared with 
fc sin 0 aboye the water that we are justified in ignor­
ing the effects of fl z-variation in the integrflnd in 
arriving at (5.6) from (5.5) .9 

(b) With respect to the calculations, figures 2 
and 3 represent two extreme situfltions . In th e 
former , the skin depth is large compared to the 
wave height and the depths of observation flre 
compamble with the radius of curvature o[ the 
waves. Accordingly, the fields at depth show sub­
stantifll averaging-out of the variations. In the 
case of the 25-ft waves, the skin depth is less thfln 
the Wflve height and the depths of observation are 
small as compared with the radius of curvature of 
the waves. The field s in this case seem to beha\re 
substantially as if a flat sea were moving up and 
down over the point of observation. 

(c) With respect to possible experimental con­
firm ation of the theory, there are three possibilities. 
One can attempt to verify the predicted difference 

-> 

in the dependence of H on the configuration of the 
waves, either above or below the wateI' surface. In 
figure 2, the phases of vertical and horizontal com-

-4 

ponents of H depend differently on the amount of 
water above the observation point, and therefore 
vary differently with time; one could attempt to 
verify the elliptization thus introduced by the bound­
ary. Finally, there is the difference in the phase 
behflvior of the fields predicted at modest depths 
under relflti vely calm and strong sea conditions, as 
in figures 2 and 3. All three experiments are made 
ul1cert,lin by the fact that the real sea is not a simple 
trochoidal cylinder. The last two are also difficult 

9 'rhe e ffect of assumin g an ej k: dependence of tho fie ld s amoun ts to re placing .Ii: 

by 4(.)'+(")' in (5.6) . Since k« ., tilisehange is small indeed . 

"" k 

in that the effect to be meas ured is small ... only 
a few degrees of elliptization or of phase change or 
a decibel or two difference in field strength. 

Experimental obsenrations of VLF fields do, llOw­
ever, confirm both the gross dependence of attenU,t­
tion and phase on instantaneous wa\'e hei o· lt t ,lS 
predicted by the theory and also confirm the depend ­
ence of the local scale factor effect on the direction 
of atmospheric propagation with respect to the 
running of the sea.1O The details of these expel'l­
ments are described in the next section. 

9. Experimental Results 

The two conclusions of the theory that we put to 
experimen tal test are as follows: 

(a) For sea w~wes running from 5 ft swell to 
~O to 30 ft storm waves, the subsurface field is the 
same as if the sea were flat and the antenna were 
moving up and down, to within a few degrees in 
phase and a dec ibel or two in attenuation. 

(b) The E-field in the air is locally enhanced oveJ' 
the crests of the waves and diminished over tlte 
t roughs, in accordance with the local curvature of 
t he surface. Whether this effect is passed on to the 
H-field and (through continuity of H at the bound­
ary) to the subsurface fields depends on the angle 
between the direction of propagation and the direc­
tion of the wave crests. 

To test the validity of conclusion (a) we made 
arrangements to tow a submerged float about 30 ft 
below the troughs of 20 to 30 ft storm seas in the 
North Atlantic, and to record the instantaneous 
variations in the magnitude (in decibels) and phase 
of VLF transmissions received on antennas in the 
float. 

Some of the results are shown in the strip chart 
recording of figure 4. The upper two traces are the 
received field strengths of VLF station NSS at 22.3 
kc/s on each of two underwater loops ha\-ing orthog­
onal directivity patterns. The next two traces are 
the correspondmg variations in the recei \red phase 
measured with a recordmg phasemetel'. The bottom 
trace is a record of the variation in height of water 
above the towed float, as measured by a pressure 
t ransducer. Except that the pressure trace varies 
in the opposite sense, there is a clear excellent 
correlation between these curves, instant by instant 
in time. 

T o properly observe the scale factor effect, con­
clusion (b), requires better control over experimental 
conditions than is available in the open sea. To this 
end we made use of a field site at an old quarry wharf 
at Folly Oove in Rockport , Mass. 

10 The e ffect to be measured is the difference between h and w1ity. From 
(2.7) the ra tio of tile maxim um to minimum value of his (l+a)!( l-a) . In a sea 
ciriven bY'strOllg winds a can rise from it.s normal value of 0.05 to 0.15 to the nearly 
breaking-waves value of 0.3 to 0.4. 
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FIG URE 4. Magnetic field and p1'eSSU1'e m eaS1!rements-open 
sea. 
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FIG U RE 5. Folly Cove instrumentation. 

Part of the test equipment is in an underwater 
float in 70 ft of water 100 yards off shore. This 
includes a pair of loop antennas, preamplifiers, 
pressure transducers to measure depth, and telemetry 
as shown in figure 5. An anchor cable passes through 
a pulley to a winch on shore, so that the assembly 
can be raised and lowered. Other cables and ropes 
orient the loops and carry signals. On shore there 
are instruments for simultaneously receiving and 
recording two stations at once; they measure signal 
amplitudes in decibels and signal phase. A six-

channel chart recordm' on which to record and 
compare these measurements along with the cor­
responding variat ions in head of water above the 
antenna loops is also used. The phasemeters oper­
ate by comparing the received phase of standard 
transmissions such as those of NBA with that of 
a local precision frequency synthesizer. Since the 
transmissions of NBA and GBR are often keyed, we 
key the averaging circuits of the phase meter, so as 
not to measure the phase of the intelTening noise. 
rt has been found that besides those stations set up 
for standard frequency transmissions, many other 
VLF stations exhibit sufficient carrier stability to 
permit us to measure the phase of the recei,-ed signal 
with 0UI' equipment. Thus, we have had greater 
flexibility in choosing signals than we might have 
originally expected. 

Since we measure depth with pressure transducers , 
we must take into account the fact that the pressure 
variation p due to the overhead passage of a given 
waITe diminishes exponentially with the average 
depth d of the transducer. This and the hydro­
dynamic relationship between the wavelength A and 
period T of gravity wayes in open ocean are gi yen by 

p = p oe- Z,,(l /"A 

A= 1.56Tz meters, seconds 

p = p oe-4d/T2 

in which d is depth of observation and Po is the 
magnitude of the pressure variation as it would be 
at the surface. The last formula is a combination 
of the first two. The waves we see at Folly Cove 
do obey these laws. Apparently the presence of 
an ocean bottom at depth D (150 to 250 ft) for 
many miles simply eliminates by friction at the 
bottom those waves for which A is greater than the 
depth. The waves that remain are true gravity 
waves with sufficiently short wavelength as to have 
little interaction with the bottom. 

What the theory predicts is this: if the atmospheric 
propagation is across the sea wave crests, the under­
water field will vary in attenuation according to the 
flat sea model as the waves go up and down. But 
if the atmospheric propagation is parallel to the 
sea wave crests, in addition to the flat sea effect 
there will be an enhancement of the field at the 
crests and diminution at the troughs of the waves. 
This effect operates in the opposite sense to the 
attenuation with depth, so as to reduce the total 
variation in attenuation. The phase shift, however, 
is not at all affected. If the direction of atmospheric 
propagation makes some general angle 8 with the 
direction of the wave crests. the theory predicts 
total underwater H field can be written as the sum 
of two orthogonal components, H.J. and Hn one of 
which varies with surface shape and one of which 
does not. 

In order to make any observation of this effect, it 
must be of the order of 4 to 6 dB , which in turn 
reqUlres almost-breaking waves (wave height to 
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wavelength ratios of the order of 0.1 or greater) 
of a kind that exist only in a Leavy storm. 

There was one storm at Folly Cove that produced 
almost ideal conditions for observing the effect, on 
a dayon which a NW gale blew for 18 hours. The results 
are illustrated in figure 6. This is It strip chart 
recording in which the upper pair of traces are the 
received amplitudes (decibel scale) of signals trans­
mitted from distant stations operating at 18.6 kc/s 
and 22.3 kc/s. The third and fourth traces are the 
corresponding received phases. The bottom trace 
is pressure (this time recorded in the same sense as 
the signal variations). By good luck, the 22.3 kc/s 
signal was propagating at about 45 ° with respect to 
the waves; moreover, the antenna loop directivity 
patterns were such that loop No. 1 saw mainly 
the component of H that is unaffected by surhce 
s]utpe and loop No. 2 saw mainly that component 
of H which is affected by surface shape. One would 
expect that the variation of amplitude introduced 
in tbe 22.3 kc/s signal in loop No.2 by the surface 
shape would almost completely cancel out the 6- 9 
dB variation of amplitude due to the varying height 
of water above the antenna (4 to 6 ft waves) . One 
would also expect the 22 .3 kc/s signal into loop 
No.1 to show the full range of amplitude variation . 

SIGNAL AT 18.6 kHz 
.-.Mo''N\'I\v'i:""VV1/VVb''VI v-.-"""{\~""" "M\ 0'#1 M'W'iVVY'IMt-Wl-'li-W- """·""", 

SIGNAL AT 22.3 kHz 

PHASE AT 18,6 kHz 

PHASE AT 22.3 kHz 

BOTH SIGNALS I 22.3 kHz SIGNAL NOW_ 
-FROM SAME-1- FROM LOOP No.1 

LOOP (No.2) I 

.j"""f.r{I'NN{~I#/~#N'H"",~-'I,\N{W(iN/'NN'1W1"'~v:"""N'NV 

\ 

I- - I 

PRESSURE UNDER WAVES 

FIG U RE 6. Nlagnetic fi eld and pl'eSSW'f, measltTements- Folly 
Cove . 

In the left hand part of the records in figure 6, 
both receivers were operating from loop No . 2; 
in accordance with theoretical expectation, the 
amplitude of the 22.3 kc/s signal shows little 01' no 
variation. Midway through the record, t he 22.3 
kc/s receiver was switched to loop No.1; as pre­
dicted, the full 6 to 9 dB range of signal variation 
is apparent. Note that the phase variations are 
the same in both cases. 

As a matter of fact, the influence of the scale 
factor effect on the field observed in a directive 
underwater antenna (e.g., a loop) varies in a co mpli­
cated way with the angle between the direction of 
atmospheric propagation and the wave crests, the 
orientation of the antenna, and its pattern, It is 
significant that by taking these factors into account 
it was possible to calculate the approximate direction 
of the two stations being received in figure 6 from 
the known orientation of the loops and the changes 
in average signal strength and phase as the receivers 
were swi tclled between loops. These calculated 
directions agreed within ± 5 ° of the directions 
derived from the known locations of the trans­
mitters. It is even more significa,nt that tCLking 
account, in addition, the observed changes in the 
range of amplitude variations as the ignals are 
switched between loops, it is pos ible to calculate 
the direction of the running of the sea. This calcu­
lation agrees (within 30°) with what was observed 
as closely as it was possible to estimate that direction 
by eye and hand compass. 

10. Appendix A 

vVe wish , here, to find a solution of the scalar 
Helmholtz equation in two dimensions 

(Al) 

in order to obtain a scalar function <p from which to 
-) 

derive an E-field 

-) 

-) -) 

E = curl <pe z (A2) 

where E is the electric field associated with an 
electromagnetic wave which propagates in a dir~c­
tion normal to the sea wave crests. The tangentIal 

-) 

component of E must vanish at the surface n = O. 
Since, in the limit k = O, the fields must approach 

the static field pattern, we begin by taking 

(A3) 

If we place this -./;0 in the Helmholtz equation (4,1) 
01' (4.9), we obtain 

02./, + k2.f, _ Eo k2 (1-~) e- j kS 
y '1'0 '1' 0 - jk h2 (A4) 
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where since we consider propagation perpendicular 
to the wave crests, sin 8= 1. Thus in the limit k-'>O. 

satisfying Laplace's equation , and 

in which P 2 is a function of the order of magnitude 
k4 instead of P as for the case of -.J;2. Thus, we are 
led to a sequence of functions 

~ ~ ~ 1 ~ 

M = E = curl-.J;oez= li E Den' 
which satisfy the Helmholtz equation in the limit as 

(A5) n is taken sufficiently large, 

This is precisely the static field that results from 
conformal t ransformation of the field between 

~ 

parallel plates. It is unusual only in expressing E 
(in a charge-free region) as the curl of a yector 
potential rather than as the gradient of a scalar 
potential. When k ~O, -.J;o satisfies the scalar wave 
equation only if 11,2 == 1; in this case, the coordinate 
system would be rectangular and -.J;o would represent 
a plane wave traveling in the x-direction between 
parallel-plate bounding surfaces. 

In the present problem, h2 ,/=1, the right-hand side 
of (A4) is not identically zero, so that -.J;o is not an 
exact solution to the wave equation in trochoidal 
coordinates. Suppose, now, that we can write a 
second approximation to the solution of the wave 
equation as 

./, _ ./, +QIEo e- jks 
'1"1 - '1"0 jk (A6) 

in which QI is a function of nand s for which 

(A7) 

and in which QI is a function whose maximum mag­
nitude is of the order of magnitude P. Substituting 
-.J;l in the Helmholtz equation, we obtain a result 
which has the form 

\12-.J;1 + k2-.J;1 = ~ P1(n, s)e- Jks (AS) 

where 

(A9) 

PI is a function of the order of magnitude k3 in­
stead of one of the order of magnitude P as in the 
case of -.J;o and (A4) . Once more, we can take a new 
trial solution h 

./, - .1, +Q2Eo -jks 
'1"2- '1" 1 jk e (AlO) 

in which Q2 is a function of nand s for which 

(All ) 

and in which Q2 is a function whose maximum 
magnitude is of the order of magnitude k3 ! This in 
turn leads to an equation which has the form 

(A12) 
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lim \12if;n +k2-.J;n= 0 
'n-700 

provided that k is less than one. At the same time, 
we have found a solution to the scalar Helmholtz 
equation 

in which the maximum amplitudes of the Q", is of 
the order of magnitude km - I times that of QI' 

The original trial solution -.J;o satisfied the boundary 
~ ~ 

condition that M = Ebe normal to the water surface, 
but did not satisfy the Helmholtz equation. At 
each step of the approximation, it is necessary to 
pick the Q's so that -.J;b -.J;2 , ... continue to satisfy 
the boundary condition. It is beyond the scope of 
this paper to show that in the differential equations 
for the Q's there is sufficient flexibility to carry 
through the program just outlined. I! 

Now, let us carry out the program for the case at 
hand. Our -.J;o is given by (A3). When substituted 

~ 

in (A2) , -.J;o leads to an E-field normal to the surface 
n = O, but does not satisfy the Helmholtz equation 
(AI). Using the expression for \12 in (3.1 ) and that 
for h in (2.7), we find that in trochoidal coordinates 
(A7) for Ql becomes 

(A13) 

A particular solution of (A13) is 

(A14) 

To this solution, we can add any number of terms 
which are solutions of the homogeneous equation 
associated with (A13) 

(A15) 

in which r is any real number and A , any complex 

number. In general, terms from the set {Ql } can 

11 Ifldeed, in order to satisfy the boundary conditions exactl y at each step , one 
must gen~rally add to Qm a term which is an approximate solution of the Helm­
holtz cquation rather than being a solution to a differential equation like (A7). 
Such terms have sufficiently small coefficients so that they do not upset the 
con vergence of the sequence offwlCtions, ';'1, .;", . . . . They amonnt to sligh t 
modifications of ';'0, havin g relative magnitudes lcss tha n k m , based on t be re­
quirements of the mtb step. 



be added to QI for the purpose of satisfying the 
-4 

boundary that E be normal to the surface n = O. 
We remark that both terms of QI lead to tangential 

-4 

components of E at n = O. In order to eliminate 
-4 

the t}1ngential Eat n = O due to the first term on the 
right of (A14) , we add to (A14) a term from the 

set {QI} to obtain for Ql 

-4 

The tangential components of E due to the second 
term of (A14) cannot be counteracted by tenns 
from the set (A15) with r = O, because such terms 
do not meet the reasonable requirement that their 
effect tend to zero as n gets very large. To com­
plete the satisfaction of the boundary condition, 
we add to lh a further term 'PI. 

Thus, for (A2) we have 

--- --- ---I 
-4 -4 -4 

E = curl .pez= V' X (.peJ 

(A2l) 

-4 

We can thus use (A2l) to compute the E -field due 
to the scalar solution determined in (A18). The 
operations are straightforward and lead to the result. 

(A22) 

_ ka2 -kn Eo -jks. 
'Pl - 2 e jk e (A17) This is the same expression as that given in (4.13) 

of the text, except for the cancellation of the factor 

Thus, the modified second trial solution to the 
Helmholtz equation (AI) becomes 

This is the function .p given in the text in (4.11). 
If we use the Helmholtz operator on .p, we obtain 

k3 [2 j a (n+ 1) e-n sin s+~ e- kn] 

+terms of higher order in k. (A19) 

Thus, .p is a solution of the Helmholtz equation to 
the third order in small quantities, k. 

-4 

To derive the E-field from (A18), it is convenient 
to use the vector identity which states that if u 

-4 

is a scalar function and F is a vector function, 
respectively, of coordinates, then 

-4 -4 -4 

V' X (uF) = (V'u) X F+uV' X F. (A20) 

-4 

jk. The tangential component of E vanishes at 
n = 0; the tangential terms in e - ,. and e - 2,. come from 
corresponding terms in Ql; while t.he term in e-k,. 
comes from 'P. 

11. Appendix B. Reduction of the H - K 
Integral 

We wish to reduce the Helmholtz-Kirchoff integral 
which appears in (5.5) by integrating with respect 
to z. 

U(P) = Ii [ U(u,v)e - jbZ ! (e~kt) 

_ eikt oU(u, v) jbZ] dS 
~ on e . (5.5) 

We let a plane z=zo intersect the cylindric surface in 
a curve 0, which has the same shape regardless of 
the value of the constant zo0 Let us denote the 
differential element of arc length on 0 by ds; then 
dS=dsdz and we can rewrite (5.5) as 

1 i [0 f 00 ejkt 
] U(P)=- U(u, v) - - e-jb'dz ds 

411' c On _ a> ~ 

_~ i oU(u, v) [f a> ejkt -jb'd ] d 
4 A _ t e z s. 

7r C un -co l:; 

(Bl) 

Further, if the point P lies in the plane z=zo, we 
can set ~=.J(z-zo)2+r2, where r is the length of the 
projection on the plane z= o of the line from P to a 
point on the curve O. 
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So we have 

(B2) 

If we make a change of variables W=Z-Zo, we get 

W e note that 

is an even function. Hence 

(B4) 

From well-known tables, 12 we have 

(B5) 

Therefore, setting (P- b2)1/2= k 1' becomes 

We will note also that if we choose P and 0 in the 
same plane perpendicular to the cylinder axis, the 
factor e- jOZo disappears and we have 

U(p) = i L [ U(U, v) aOn HJI)(kr) 

-HJI)(kr)OU~~,v)] ds. (B6) 

~ 

N ow if r IS the radius vector from a point p on 
--) 

12 "Tables of Integral T ransforms," Bateman Manuscript Project (l\'I cGraw­
lIill Book Co., Inc., New York, N.Y., 1954), Formul as l.7 (34) and 1.7 (30) on p. 26 

and l.5 (27) on p. 17. We need also IIom (z) =Jo(z)+j Yo(z) and J(o(z) =~ H om 

(ze ~) which may be found in "Higher Transcendental Functions," Bateman 

Manuscript P roject (McGraw·Hill Book Co., In c., New York, N.Y., 1953), Vol· 
ume II, as Form ulas 7.2.1 (5) and 7.2.2 (15) respectively (pp. 4 and. 5). 

o to P and n IS the inward unit normal to 0 at p, 
then 

--) --) 

oHJI) (k'r) = kH(l) (kr) r . n on 1 r (B7) 

--) --) 

u(p) = i r [kUH(l ) (kr) :...:..!!:._FL(l) (kr) aU ] ds (B8) 
4 Jc 1 rO an' 

This result is the Modified Helmholtz-Kirchoff 
Integral Theorem (MHKIT) for cylindric geometry. 
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