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Common Volume of Two Intersecting Cylinders
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The volume common to two cylinders of radii r; <7, with axes intersecting at angle
B is found to be 73v(k)/sin g, where k=r/r, and »(k) may be evaluated (1) as the hypergeo-
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(2) as the combination of complete elliptic integrals (8/3)[(1-+k?)E(k)— (1—k2)K (k)] or

metric series

(3) as the cumulative integral
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A table of v(k) to 8 decimals over the range 0 </(0.01) <1.00, including &2, modified second

central differences, is presented.

This volume integral was useful in interpreting a gamma-

ray albedo experiment involving a collimated source and a collimated detector, and may also

be applicable to crossed-beam experiments.

Two series useful for £ close to unity are pro-

vided, one of which involves differencing against the series
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1. Introduction

In crossed-beam experiments [1]* using the high-
intensity accelerators now becoming available, the
“oeometrical target,” or volume common to the two
colliding beams, is a useful parameter for interpreting
the measured data. An evaluation of this volume in
terms of an infinite series was recently exhumed for
possible application to an x-ray free-air ionization
chamber having a cylindrical sensitive volume inter-
sected by a pencil of x rays [2]. This evaluation
had been used in the analysis of a gamma-ray beam
back-scattering experiment [3] for making a theoreti-
cal estimate of the single-scattered component of
the radiation ‘‘seen’” by a collimated detector.

Evaluations of the volume common to two circular
cylinders of unequal radii with axes intersecting
at right angles [4, 5, 6], and of equal radii with axes
intersecting at an arbitrary angle [7], have frequently
been offered as calculus textbook exercises. How-
ever, a combined treatment does not seem to appear
in the technical literature in a form convenient for
easy application to practical problems. The follow-
ing results provide formulas, a table, and a graph
for such applications.

The series used in [3] is here corrected, expressed
in terms of binomial coefficients, and identified as a
hypergeometric series. For mnearly equal cylinder
radii, convergence can be accelerated by use of the
difference-series technique [S]. An alternative series

1 Figures in brackets indicate the literature references at the end of this paper.

for this region, derived from the right-angle elliptic-
integral solution [4, 5, 6], is more complicated but
also more rapidly convergent.

2. Volume Integral

The integral for the common volume of two
cylinders of radii 7 <r, with axes intersecting at
angle B (see fig. 1) is found as follows. The cross
section parallel to the cylinder axes, at a distance
x from them, is a parallelogram of height 2(73—a?)'/2
and base 2(7i—a?)/2/sin 8. Hence the volume inte-
oral is
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3. Common Volume When r,—r,

For equal cylinder radii 7,=7,=r, the integral in
(1b) reduces to the familiar result [7]
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Ficure 1. Three-view skelch of the common volume of cylinders
wth radii v, and vy azially intersecting at angle B.

The area of the shaded parallelogram parallel to the plane of the axes in the lower
left view comprises the integrand in eq (la) and is integrated over the range
—ri1<z<r; shown in the other two views.

4. Common Volume When r <r,
4.1. Series Solution

The factor (r2—x?)% in the integral in (1b) may
be expanded as a_power series [9 p- 2, eq 5.3]
in z/ry, since x<r;<r,. The \olume integral then

becomes
SO (-

which may be mteorated term bv term.
The resulting series solution is
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This same result may be obtained by casting the
integral in (1b) in the form

Ve 7o, 8)=isin 4 ()
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where #=2?/r{, which is now recognizable as the
integral representation of the hy peloemnetno series

[10]
7,2
st
identifiable with (5).

Since (5) is somewhat slowly convergent when
r1~7r,, under some circumstances it may be advan-
tageous to difference this series :mamst a 1/m-
series (16) discussed in the appendl\, giving

s%§®gﬁ[(>}

The convergence rate of the series-term in (8) is
not improved over that of (5). However, for
=7, this sum is small compared to the constant
term 4/3, identifiable with the equal-radii solution
(3), hence resulting in higher precision of V(r,
75, B) for the same number of terms. An alterna-
tive series solution for this region is given at the
end of the following section.

V(ry, 2, B)=(ri/sin B) 21r< > oF, ——;

4773
sin 8

V(rl,v T, 6) =

4.2. Elliptic Integral Solution

An alternative solution of the integral in (1b) may
be obtained as a combination of complete elliptic
integrals [11] of the first and second kinds, K(k)
and E(k). Applying formulas (219.11) and (361.03)
from Byrd and Friedman [12] the result is found to
be?

87"2

V(rly T2, B) B

[(A+E)Ek) —1—F)K (k)] (9)

where
k=nr.[rs.

Except for the angle factor 1/sin 8 this result is
the standard textbook solution [5, 6] for cylinders
intersecting at right angles. Also, the formulation
in (9) is related to the indefinite integral [12, eq
(611.01)]

[ k@@= [+HHED - 1P E®). (10)

2 This mtegral is part of the ““G factor” used for interpreting gas scattering ex-
periments in which a circular-aperture detector views a gas target transversed
by a cylindrical beam. In this context this elliptic integral solution has been
given by E. A. Silverstein, Nucl. Instr. and Meth. 4, 53 (1959) and by D. F.
Herring and K. W. Jones, Nuc] Instr. and Meth. 30, 88 (1964).
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A partial check on (9) is obtained by expanding
E(F) and K(k) as power series in k according to
reference [9], eqs (773.1) and (774.1). Combining
like powers of & and substituting back r/r, for k the
resulting series is identical with (5). An additional
check is provided by the identity of eqs (9) and (3)
in the limit as k—1. Also, eq (9) can be obtained
from (7) by use of the tenth Gauss recursion formula
on page 9 of reference [10].

For k close to unity, a series which converges more
rapidly than (S) may now be derived by substituting
in (9) the series in equations (773.3) and (774.3) in
reference [9] for K(k) and £(k). The first few terms
of this series are

Vi(ry, 12, 8) = (r3sin B) 1_36 { 1_2 2

1 4 1 4 %8 4 11 ,6
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4 967\, ,10
_4'2——2-42-62-82-—10(1111?'_@6)]6 } (11)

where k’*=1—k*=1—(r/ry)? Using only the terms
given in (11) the sum for r/r,=0.90, without the
factor (#2/sinB), gives 4.49991482 as compared
with the exact value of 4.49991288 . . ., and the
convergence improves as 7,/r, goes toward unity.
The series in (11) may be obtained in general form,
if desired, by use of the appropriate transformation
[13] on the hypergeometric series given in (7).

=3

5. Numerical Results

In table 1, the dimensionless factor

o®)="2L (e, 1, B), (122)
—r 3 (Z) (njl> n, (12b)
=2mk? 2F1(_%7 l; 2; k2)y (120)
3 f *RE(F)dk, (12d)
=§[QA+P)E(k) —(1—k)K(k)], (12e)

where k=r/r, is tabulated to 8 decimal places for
0<k(0.01)<1.00, computed using (12e) and K(k)
and (k) from [11]. Hence, for many practical
applications, the common volume of two cylinders
with radii » <7 and axes intersecting at angle g
may be computed as

i

sin B

V(rl: T2, ﬁ): D<k) (13)

in which values of »(k) are interpolated from table 1.

Tasre 1. Values of v(k), defined in eq (12a—e¢), over the range
0 <k(0.01) <1.00, valid to the 8D given

Modified second central differences o2 are provided for interpolation using
auxiliary tables.

2
k o(k) o, k o(k) o
0.00 | 0.0000 0000 | 412 5665
.01 [ 0.0006 2831 12 5656 0.51 | 1. 3625 +9 8789
.02 6.0025 1315 12 5627 .52 | 1.6 2033 9 7607
.03 | 0.0056 5423 12 5580 || 53 | 1 8043 9 6391
.04 1 0.0100 5109 12 5514 || 54 | 1. 0439 9 5142
L05 | 0.0157 0305 12 5429 || .55 | 1.8t 7969 9 3854
L06 | 0.0226 0928 12 5325 .56 | 1.8897 9346 9 2530
.07 [ 0.0307 6874 12 5203 .57 | 1.9547 3247 9 1167
L08 | 0.0401 8019 12 5061 58 | 2.0205 8308 8 9766
L09 | 0.0508 4222 12 4900 .59 | 2.0873 3128 8 8323
.10 | 0.0627 5321 12 4720 L60 | 2.1549 6262 8 6837
L1 0.0759 1138 12 4520 .61 | 2 6226 8 5308
.12 1 0.0903 1471 12 4302 ; 1490 8 3734
L1311 0.1059 6104 12 4065 0478 8 2112
.14 [ 0.1228 4797 12 3807 .64 | 2.4340 1570 8 0441
.15 \ 0.1409 7204 12 3530 .65 | 2.5058 3093 7 8719
.16 | 0.1603 3316 12 .66 | 2.5784 3325 7 6943
17 2569 12 L67 | 2.6518 0490 7 5113
18 4735 12 68 | 2.7259 2757 7 3222
.19 9478 12 .69 | 2.8007 8235 7 1272
.20 6441 12 .70 | 2.8763 4974 6 9258
5248 12 L71 | 2.9526 0957 6 7174
5502 12 72 | 3.0295 4102 6 5020
6786 12 .73 | 3.1071 2253 6 2791
8660 12 0136 .74 | 3.1853 3179 6 0481
25 0667 11 9656 .75 | 3.2641 4571 5 8086
26 11 9154 .76 | 3.3435 4031 5 5600
.27 11 8632 77 | 3.4234 9073 5 3016
28 11 8087 78 | 3.5039 7111 5 0328
.29 | 0. 11 7520 .79 | 3.5849 5457 4 7527
.30 | 0. 5590 11 6932 .80 | 3.6664 1308 4 4605
.31 | 0.5964 11 6320 .81 | 3.7483 1740 4 1550
.32 | 0. 6350 11 5686 .82 | 3.8306 3696 3 8350
.33 | 0.6747 11 5029 .83 | 3.9133 3972 3 4992
.34 | 0.7156 11 4348 L84 | 3.9963 9206 3 1456
.35 | 0.7577 11 3644 .85 | 4.0797 5861 2 772
.36 | 0.8008 8626 11 2915 .86 | 4.1634 0199 2 3774
.37 1 0.8451 8508 11 2163 .87 | 4.2472 8265 1 9574
.38 1 0.8906 0549 11 1385 88 | 4.3313 5853 1 5089
.39 | 0.9371 3970 11 0582 89 | 4.4155 8469 1 0276
.40 | 0.9847 7969 10 9753 .90 | 4.4999 1288 + 5075
.41 [ 1.0335 1716 10 8899 91 | 4.5842 9096 - 586
.42 | 1.0833 4356 10 8017 L92 | 4.6686 6213 6811
.43 | 1.1342 5009 10 7108 .93 | 4.7529 6390 1 3730
.44 | 1.1862 2764 10 6171 .94 | 4.8371 2665 2 1554
.45 | 1.2392 6686 10 5207 .95 | 4.9210 7158 3 0581
.46 | 1.2933 5809 10 4213 .96 | 5.0047 0740 4 1308
.47 | 1.3484 9141 10 3191 .97 | 5.0879 2495 5 4606
.48 | 1.4046 5657 10 2137 .98 | 5.1705 8678 -7 1824
.49 | 1.4618 4304 10 1053 .99 | 5.2525 0293 i
.50 | 1.5200 3999 +9 9937 1.00 | 5.3333 3333 maga

Modified second central differences 82 are included
for interpolation by Everett’s formula

v(k;+-pAk) = (L—p)o(k;)+po(kiy1) +Eo(p) oy, o

+]172<1))6i1. i+1+ SGoap (14)
where p is the interpolation fraction of the interval of
tabulation Ak, and 62 ;, 6% ;.1 are the modified second
differences at the tabular points 7 and 741 and were
evaluated from the second and fourth differences
according to

62, =06"—0.1844*,
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Everett’s coeflicients £,(p) and Fy(p) are available
in standard tables [14, 15] and are identical with
Lagrangian interpolation coefficients A%, and A%
[16, table 25.1].

The general behavior of »(%) is shown by the curve
in figure 2. Values of »(k) can be taken directly
from this curve for use in rough calculations where
only two- or three-figure accuracy is required.

0.4 0.6 0.8 1.0
k=r /r,

Ficure 2. Graph of v(k) showing the general behavior of the
function and suitable for rough calculations.

6. Appendix. Two Series for 1/x
The series evaluation (5) for V(ry,r,,B8) contains a
factor of = and the formula (3) for V(r,8) does not.
Thus, for 7 =r=r, the right-hand side of (5) can
be equated to the right-hand side of (3) to form

16/ 4m® & %)( 1 )
3sin B sin ﬁn;l(n —1 (15)
from which
4_ (3 < 3 _l_l<l>2_§<L>2
37r—7,,2=1<n> n—1) 2 4\2 6\2-4
5/ 1:3 \?
~2(5a5) = ©

This series can now be used to form the difference-
series in eq (8).

An additional 1 /z-series, which also does not appear
in standard compilations of series [17], can be ob-
tained by combining (16) with a series discussed by
Bromwich [18], [17, eq 274]

ok 2
i)
=1+(-;—)2+<ﬁ)2+(§%>2+ L

=3

(17)
to form
e o) [GHGE)) o
3r 7w i=i\n—1 n n—1/
Using the addition theorem
m m \_ (m-1
<n)+<n—l>’_( n ) (19)
the result is
w2 () G)
3w_7§<n—1 n
3,1 3: 1 3:-1-1
~ate e utea e
1-3 3-1-1-3
4 .
7246 2468
1-3-5 3-1-1-3-5
34682468100 @0
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