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Some Extensions of Banach's Contraction Theorem

Philip R. Meyers

(February 2, 1965)

The class of self-mappings of a metrizable space which are contractions under at least one complete

metric is shown to include a subset of the local contractions.

sequence of steps.

1. Introduction

The contraction theorem of Banach remains the most
fruitful means for proving and analyzing the conver-
gence of iterative processes. For this reason, exten-
sions of the theorem are of continuing interest. The
present paper describes some extensions to a class of
functions called local contractions.

For completeness, we include here a resumé of the
relevant definitions. A metric space (X, p) consists
of a nonempty set X and a nonnegative-valued function
p defined on X X X and satisfying

plx,y)>0if x # y, (1)
plx, x)=0, 2)
plx, z) < p(x, y)+ ply, 2), (3)
plx, y)=ply, x). (4)

Convergence of a sequence {x,} of points in X to a
point xeX is defined by p(x,, x) = 0, and is denoted
xn—>x. A sequence {x,} is called a Cauchy sequence
if, for every fixed m, p(x,, xn+m) —> 0. If every Cauchy
sequence is convergent, then (X, p) is called a com-
plete metric space.

Consider a function f:X—X. For any xeX, there
is defined the sequence of iterates x, f(x)=xi, fA(x)
= f(x1)=x2, etc. These can be interpreted as the out-
puts of successive steps in an iterative process. The
sequence of iterates consists of only a single point, if
and only if the starting point x is a fixed point of f,
ie., flx)=x.

A contraction on (X, p) is a map f:X — X for which
there exists a constant A, 0 =\ <1, such that

p(f(x), f(y) < Ap(x, y) (5)

for every x, yeX. Banach’s contraction theorem, of
which a proof may be found in [1],' asserts that if fis
a contraction on a complete metric space (X, p), then
(i) / has a unique fixed point &, (ii) for every xeX the

! Figures in brackets indicate the literature references at the end of this paper.

The required metric is constructed in a

sequence of iterates f"(x)— &, and (iii) the converg-
ence is geometric, in fact

p(f"(x), &) = N'p(x, &).

The assurance of a geometric rate of convergence is
what makes this theorem so valuable in discussing
iterative processes. That a function has a fixed point,
or even that the iterates of every point converge to
the fixed point, is not sufficient information for some
applications. If, however, one can show that the
function is a contraction, then the theorem can be
applied and geometric convergence can be inferred.

In this paper, we show that some functions, which
are not contractions on 1X, p), can become contractions
with suitable new metrics p which are topologically
equivalent to p, i.e., ones for which

p(xy, x)—0 if and only if p(x,, x)—0. (5)
Our general aim is to determine classes of functions
f for which such remetrizations are possible.2 Note
that we want (X, p) to be complete whenever (X, p)
is, so that the contraction theorem will be applicable
after the remetrization. Conclusion (i) of that theorem
has the same significance for (X, p) as for (X, p), and
the same is true of conclusion (ii) by virtue of (5'), but
geometric convergence in (X, p) need not imply geo-
metric convergence in (X, p) so that some care in
interpretation might be required. However, our
constructions do in fact preserve “ultimately geometric
convergence’’ of sequences.

2. Results

The following definitions are required for the state-
ments and proofs of our results. A function f: X—X is
a local contraction (l.c.) if there exist real-valued func-
tions wm(x), A(x), with w(x) >0 and 0 < A(x) <1, such
that whenever y, z are in the sphere

S(x, w(x))={u:plx, u) < px)}

21 wish to thank A. J. Goldman (NBS Operations Research Section) for first suggesting
this problem and for his continuing interest and suggestions as to content and exposition.
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it follows that

Py, fl2) <

If w(x) (resp. A(x)) is constant, we have a u-(resp. A-)
uniform local contraction (u.l.c.). If both are constant
we have a u, A-u.l.c.

A chain oy is a finite set of points [x=2x¢, x1,. . . ,
xn=1v]; its length is

(x)ply, 2).

Liozy) = Zn p(xi, xi-1)

and its mesh is max p(x;, xi—1). The collection of all
i

chains beginning at x and ending at y is denoted 2,

while the subcollection of %, consisting of those chains

of mesh < wis denoted 3,y (X, p) is called p-chain-

able if 2.y, is nonempty for every x, yeX.

THEOREM 1. Let f be a u, A-ul.c. on the p-chain-
able metric space (X, p). There exists a metric p
topologically equwnlent to p under which f is a con-
traction. Also (X, P) is complete whenever (X, p) is.

Theorem 1 can be regarded as an ‘“‘explanation,”
from the viewpoint of remetrization, of a result in
[2]; our proof for it is largely a rephrasing from this
viewpoint of the corresponding argument in [2].

COROLLARY 1.1. If f is a local contraction on com-
pact (X, p), then fis a u.l.c. on (X, p), and so theorem 1
applies if (X, p) is p-chainable for every u > 0.3

THEOREM 2. Let f, a p-u.l.c. on the p-chainable
metric space (X, p), possess a fixed point ¢&. Then for
each xeX, the sequence of iterates {"(x)— & with ulti-
mately geometric convergence.

THEOREM 3. Under the conditions of Theorem 2,
there is a metric p topologlcally equivalent to p and
complete if p is, such that f is a contraction on (X, P).

THEOREM 4. Let f, a local contraction on a com-
plete metric space (X, p), possess a fixed point § and
suppose for each xeX, the sequence of iterates f'(x)—>¢.
Then there is a complete metric P topologically equwa—
lent to p such that f is a contraction on (X, p).

3. Proois of Theorems; Examples
3.1. Proofs of Theorem 1 and Corollary 1.1

To prove theorem 1, we introduce
p(x, y)=inf {L(0ry:0ry€2ryut, (6)
which is well-defined for all x, yeX because X, p) lS

wm-chainable, and obeys (4) because Ory's are just oy,’s
read backwards The triangle inequality (3) holds
for p because given x, vy, zeX and any 6 > 0, we can
choose a o,y and a o, for which

L(O'Iy) <plx, y)+38, L(O'yz) <ply, 2+ d;

3 A first proof of this was given by J. Levy of the Operations Research Section, NBS.

following o, with o, gives a o, for which we have

Dx, 2) < L(O'Jrz) = L(U'J‘y) + L(O'yz)

< p(x, y) +ply, 2) + 28.

The triangle inequality for p shows that p(x, ¥)
= p(x, ), and so p satisfies the “positive definiteness”
requirement (1). To complete the proof that (X, p)
is a metric space, we show that p(x, x)=0 by setting
x=1yin

plx, y)=plx,y)  if plx, y) < pu, (7)
which is true because the chain [x, yleX,,,. if p(x, y)
<. Since p(x, ¥) = p(x, y), (7) also applies when-
ever px, y) < u.

From (7) we see that p and p are ““identical in the
small” and thus surely topologically equivalent; also
that (X, p) and (X, p) have the same Cauchy sequences,
so that the first is complete if the second is.

It only remains to show that f:X — X, which by
hypothesis is a u, A-u.l.c. on (X, p), is a contraction
on (X, p). To any chain
yleZzy

O'J«yz[xZXU, Xilly o' o o9 Xy
we can associate the chain

f(O--I'U) = [f(x) :f(xo)a f(xl)’ ) f(xﬂ) :f(}’) ]ezf(-l‘)f(ll)'

Because A <1 and fis a u, \-u.l.c., we have
O ry€2ryy implies f(0ry)€2ryiyp- (8)

For any x, yeX and any >0, o,,€3,,. can be
chosen so that

L(ozy) < plx, )+ 8.
Using the hypothesis on ftogether with (8), we have
plf(x), fiy)

Since 8 is arbitrary, fis indeed a contraction on (X, p).

To prove the corollary, let f be a local contraction
on compact (X, p), with associated functions w(x) and
Ax). The collection of open spheres

= L(f(a'xy)) = }\L((Twy) < Ap(x, y)+ AS.

{S%x, wm(x)):xeX}
covers X, and so some finite subcollection

{80, p(xi)):1

also covers X. Let

<i<n}

A=max A(x;).
i
For each xeX, set

()= min {u(x) — plas, x) :xeS(xi, px)}.
l
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Then if y, zeS%x, w'(x)) it follows that y, zeS%xi, u(xi))
for some ¢ and therefore that

pf(y), f(z))

Thus fis a A-u.l.c. on (X, p) using u'(x); since u'(x)
is a continuous positive-valued function on the compact

< Mxi)p(y, 2) < Ap(y, 2).

space (X, p), it has a positive minimum wo. Then fis
a wo, A-u.l.c. on (X, p), as desired.
Note that when theorem 1 is applicable, the “geo-

metric convergence’’ conclusion of the contraction
theorem is maintained; that is, the contraction theorem
applied to (X, p) gives geometric convergence in
f™x)—x0, but by virtue of (7) this implies ‘“‘ultimately
geometric convergence’ in (X, p).

The requirement of u-chainability is unnecessarily
restrictive but we defer further elaboration until after
the proofs of the remaining theorems.

3.2. Examples

Our first example is a simple illustration of theorem
1. Consider the circular arc described in the complex
z-plane by

X={exp (it):0 < t < 372},

and let (X, p) consist of X with the metric induced by
that of the Euclidean plane. The map f: X—X given
by

flexp (it))=exp (it/2)
is not a contraction since
| exp (i37/2)— exp (0) | < | exp (i37/4) —exp (0/2)],

but it is easily shown to be u.l.c. Thus (X, p) admits
a remetrization which makes f a contraction; the most
obvious such metric, which is in a sense the limit as
u—0 of the one obtained from theorem 1, is

plexp (it1), exp (it2) = |t1—ta].

The second example shows that if (X, p) is connected
but not compact, and if f is only a i-u.l.c., then one
cannot guarantee a remetrization under which the
contraction theorem becomes applicable. Let
X=[1, © with the usual metric p(x, y)=|x—y|, and
let f:X —X be defined by

f)=

Then fhas no fixed point, and so cannot be made into
a contraction on a complete (X, p). To show that fis
a p-ul.c. for arbitrary w >0, we observe that if vy,
z€S(x, ) with y < z, then

If(2)

x+ax L

—fO)|=lz+z1—y—y!

=lz=yl - N=027| < lz=y|- N —+w2],

so that AM(x)=1—(x+ u)~2 works.

Analogously, a A-ul.c. on a complete connected
metric space may not admit application of the con-
traction theorem after any remetrization. Examples,
too lengthy to repeat here, are given in [3], [4].

3.3. Proof of Theorem 2

Let & be a fixed point of f, a p-u.l.c. of (X, p) with
associated function AMx). We shall show that for any
xeX, there is a positive integer k(x) such that
SE@(x)eS(€, ). For k= k(x), assuming f*(x)eS(&, ),
we will then have

p(fF1(x), &) < NEp(fF(x), &)
and so f**(x)eS(¢, w). Thus for k= k(x)
p(fF(x), &) < [MOFFDp(fF A ), &)

and the theorem follows. ‘
Given xeX, choose 0¢r€3¢r, with mesh 7<u. If
none exists then consider f(o¢,) which certainly has

mesh less than w, and proceed as below. Let the
points of this chain be &=x, x1, %2, Sy =05
Choose j so large that if A= \(¢), then
N < (u— 2.
Then since x,€S(¢, w), we have
p(f(xy), &) < (u—17)/2 (9)

and fi(x;) precedes fi(x;) in the chain fi(og¢:) which
runs from & to fi(x). Also

pfixr), filx) <7

from this and (9) it follows that fi(x2)eS(é, w). Then

p(f¥(x2), &) < Np(fi(xs), &) < (u—1)/2 (10)
and f*(x.) precedes f%(x;) in the chain/‘-’f‘((rg,r). Argu-
ing as above I(ads to fH(x3)eS(€, w), and so on; we
ubtdm J=Di(x) = f=Di(x,)eS(€, w) and so can take
k(x)=(n—1)j.

3.4. Proof of Theorem 3

This proof is based on a construction due to L. Janos
[5]. We begin by setting

pilx, Y)=inf {L(0ry): Try€Sayu};

from the proof of theorem 1 it follows that p; is a metric
topologically equivalent to p. Moreover pi(x, ¥)
=p(x, y) if p(x, ) < and in particular this holds if
x, yeS(€, u/2). Tt need not be the case that fis a con-
traction on (X, p1). However, because f is a p-u.l.c.
we have f(22y0) C Zpafn and so we can at least de-
duce that f is nonexpanding on (X, p1), i

piflo), f(y) = (11)

< pi(x, ¥).
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Again if x, yeS(€, u/2) then we even have
pi(f(x), fiy) = p(f(x), fiy)

< N&plx, =NOplx, ».  (12)
For the second step in the construction, define
Co=5S(&, pl2)
and set C,=f"YCo), Co=f"YC1)=f"3Cy), etc. Then

ACjs) C Cjfor j=1,2,. . ., and by theorem 2

X= Cj.

OCX

For all x, define
n(x)=inf {j:xeC;}.

By theorem 2 this is well defined. Next set

clx, y)=max {n(x), n(y)},
and
A=N&).
Finally, set
p2(x, y)=N"@ Ypy(x, ).

Then p» satisfies the requirements for a metric except
possibly the triangle inequality. In particular

pax, y) = pilx, ). (13)

Before proceeding to the third step we show that

pAf(x), fiy)) < Apa(x, y). (14)

In fact this follows from (11) and (12) for x, yeCy, and
otherwise from the observation that n(f(x))=n(x)—1,
if xeX—C,, so that c(f(x), fly)=clx, y)—1 if either
x or y is in X — C,.

For the third step, associate with each chain

Try=[x=2%0, X1, . . -, Xa=1Y] (15)

the length

Lo(0zy)= 2 Pa(Xi, Xi-1)
i=1
and define
p(x, Y =inf {Lx(0zy):0y€2ry}-

We shall show that p is the metric required in theorem
3.

First note that p(x, y) = pi(x, y) follows from (13)
and the triangle inequality for p.. Clearly p(x, y)
=(p(y, x), p(y, x) >0 if x # y, and p(x, x) =0 because
pa2(x, x)=0. That the triangle inequality (3) holds can
be shown as in the proof of theorem 1. Hence (X, p)
is a metric space. For each o,,€2,, we have f(oy)
€3y and from (14) it follows that

Lz(f(o'l'y)) = }\LZ(O'I!J)-

Hence p(f(x), f(y)) < Ap(x, ¥), i.e., f is a contraction on
(X, p) with A= \{&) < 1.

It remains to show the equivalence of p and p. Note
first that p|Cy= p|Co which already guarantees, by
theorem 2, that convergence to the fixed point £ is
ultimately geometric. We already have p(x, )
= pilx, y) = p(x, v) so that we merely need show that
convergence to xeX — {y: p(y,-€) < u/2} with respect to
p implies convergence with respect to p. We show
this by demonstrating that for each point xeX — {y:
ply, €) < u/2} there is some sphere of positive radius
centered at x, the points y of which obey

pz(x, y) = )\—(n(x)ﬂ)pl(x’ y):}\-(n(.r)+1)p(x’ y)‘ (16)
To see this, notice that f"@)(x)eCy and hence f"*)*(x)
ely:p(y, & <iu/2}. If not x=f'0), x1=f(), x
=fx) =f2(x), . - -, Xn@+1=/"""1(x), then by a simple
continuity argument for f"(**1 there exists a sphere
S = S(x, r(x)) centered at x with radius r(x) and a sphere
Suy+1=SXn@)+1, r(Xn(x)+1)) such that Suu+1 C Co,
and f"@+Y(S) C Sy)+1- Thus for yeS, n(y) < n(x)+ 1.

If now p(x, y) < min {r(x), u} then p(x, y)=pilx, y)
and (16) holds. Finally since p(x, y) < pa(x, y) we
have the desired result. It follows from the above
that completeness is also preserved.

3.5. Proof of Theorem 4

As before let Co={y:p(y, §) < w&)2}, C;=f(Co),
j>0. Also define n(x) and c(x, y) as in theorem 3
The first step in the construction of p is to define a
metric p such that fis nonexpanding on (X, p) that is

pif(x), fiy) < plx, y)-
To this end let

(17)

plx, y)=max {p(f"(x), f"(¥)), 0 < n}.
Note that this is well defined since c(x, y) is finite.
Also p satisfies (17). To show it is a metric notice
that p(x, y)=px, y) and px, x)=0. For the tri-

angle inequality observe that for any x, ¥, and z and
foralln=0,

p(f(x), f(y)) < p(fix), z))+ p(f"(2), ()
< p(x, 2)+ p(z, ¥)

from which the result follows.
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It remains to demonstrate the equivalence of p and
p. We have p(x, ¥) = p(x, y) and from the definition

ﬁ]Cu:p|Co. (18)

Let xeX — {y:p(y, &) < w(&/2}. (The continuity of the
iterates f guarantees that for any n < pu— p(/""*!(x), &)
there is a >0 such that p(x, y) <& implies p(fi(x),
fi(y)) < m for all j < n(x) and hence for all subsequent j
as well). This then implies the equivalence of p and p
everywhere.

To complete the theorem define

plx, )= X&) Vp(x, y),
and if Z(U,,-y) is defined analogously to L(o ) set
ﬁ(x. )"): inf {i«((f.ry)lﬂ';'yfz.l'y}-

The proof is now a repetition of part of that of theorem

3.

4. Extensions

We can now elaborate on the remark made after
theorem 1. We need not restrict ourselves to pu-
chainable spaces. It is sufficient to examine the
w-chainable components, i.e., the maximal p-chain-
able subsets of any space and to treat several cases.

Formally let {C.: aeA} be the collection of u-chain-
able components of X. A p-u.l.c. f:X— X induces a
map f:4A— A as follows:

ﬁ(l,):a ltf(Cu) C (“a'

Notice that fis well defined since f preserves u-chains.

Let

B, = {bed:fib)=b},

Bi={bed:f*(b)=b.fi(b) # b: 1 < j < k}k=2,3,. . ),
Ak = {aeA:fi(a)= beBy for some j =0,

and f"(a)¢By for v <j},

X= U {Cu:aedf},

C = {aed:fi(a)ed — CJ By for allj = 0}.

Note that

A=CU U {A}:beBy}.
=1

We shall consider 3 cases. For a subset of the f(.)rm
X}, we shall demonstrate a metric p* such that fis a

contraction on (X}, p*), where here f is either a u, A\
ulec. or a p-ule. For a subset of the form Xj with
k> 1, we shall show for a u, A-u.lLc., that f¥is a con-

traction on a suitable subset and that f has certain
periodic properties. Finally we show that for all
other subsets of X no such results are possible.

We begin with subsets of the form X}. Notice that
by construction X} and X}, are disjoint unless b=15".
For definiteness we shall restrict attention to an f
which is a w, A-u.l.c. on (X, p) with the understanding
that similar results hold for a w-u.l.c. We have then
a collection of u-chainable components {C.: aed}}
such that f(C;) C C, and fi(C?% C C,, for each aed} and
some j=j(a) = 0. By theorem 1, f|C} is a contraction
for the metric p:Cy X C, = R (reals) defined by

Dp(x, y)=inf {L(0xy), Oury€2ryu)-

Thus there is some point £eCy, such that f(§)=¢. Let
S={xeCy:p(x, & < w2} and define as before n(x)
=inf {j = 0:f(x)eS}. Notice that fi(C,) C C, for each
C, and for some j so that n(x) is well defined. Also
let c(x, y)=min {n(x), n(y)}.

As a second step extend the definition of p as widely
as possible. That is, define p(x, y) as above wherever
2.y is not empty. This of course is true for x, y if
x and y are in the same u-component C,. Let now

p'(x, y)=min {u, p(x, y)}

with the understanding that p'(x, y)=pu if plx, y) is
undefined, and

p'(x, y)= A= Vp'(x, y).

We remark that p” again has the metric properties
except possibly (3). Moreover exactly as in theorem 3

p'(f(x), fly) < \p(x, ¥).

Finally if we define L"(o,,) in analogy to L(o.,) used
earlier and set

p*(x, y)=inf {L"(0zy): Ory€Zry}

then p* has the desired properties. A proof of this
would merely repeat arguments used in theorem 3.
This construction is also applicable to a p-u.l.c. be-
cause the only things required are that there exist a
fixed point and that the iterates of all points of C,
converge to the fixed point. This last follows since f,
being a w-u.l.c. preserves u-chains and a proof like
that of theorem 2 can be carried through.

To treat subsets of the form X% with k> 1, notice
first that By and By are disjoint unless k=£'. If we
consider a single By we can further partition as fol-
lows: for beBi let b=05b(0), f(b)=f(b(0))=0b(1), . . .,
SfEUb0))=b(k—1), f%b(0))=>5(0). This partitions
By into a class of disjoint subsets of indices each of
cardinality k. We now further restrict our attention
to one such subset Bx. In this case it is already true
that f cannot satisfy the conditions of theorem 2;
namely, there is no fixed point. We thus restrict
ourselves to f being a w, A-u.l.c. on (X, p). It follows
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that f* is a w, A-u.l.c. on (Cui), p); and by theorem 1
there is a metric p; on Cyi such that f*is a contrac-
tion on (C,,(,), ﬁl) and hence f*|Cy; has a unique fixed
point &, i=0, 1, 2, k—1. On the other hand
we also have that f"(fi(f )=fI(f¥(&))=fI(&) and so
f(&) is a fixed point of f*|Cypy, [ =1+] (mod k). It
follows that the fixed points of f* are a unique set of
periodic points of f. Further for any other points y
in the components Cyi), {f*"(y)} — & as n— = and so
frrri(y) =&, I=i+j (mod k). Finally for the com-
ponents {C,:aedr, beBi}, f™Cq) C Cyi for some m
and some i, and hence for xeCyg, f’”*"”“(x)—> &,
[=i+j (mod k).

The third case involves those components C, such that

fiCoed— U By, j=0. 1. 2. .
1

that neither / nor any power of f has any fixed points
so that there is no possibility for a contraction map.
Also, since the C, are w-components, limit points of
U{C,,.aeC} are limit points of individual components
and so the components do not converge to any limit.
The following is an example of this last case:

It is immediate

Let X be the subset of euclidean 2-space which
consists of the closed disks C, centered at (27, 0) and
with radii 27", n=1, 2, Let f:Cp— Cuiy
be defined by

) gp =2
= == n+1 Y.
fxa,y) ( 5 F 2 2)
. 1
Then fis a (Z l) —u.l.c.
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