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Some Extensions of Banach's Contraction Theorem 
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(F ebruary 2, 1965) 

The class of self·mappings of a metrizable space which are contractions under at least one comple te 
metri c is shown to include a subse t of the local contractions. The required metric is constructed in a 
sequence of s teps. 

1. Introduction 
The contraction theorem of Banac h remains the most 

fruitful means for proving and analyzing the conver
gence of iterative processes. For thi s reason, exten
sion s of the theorem are of continuing interes t. The 
present paper describes '>ome extensions to a class of 
functions called local contrac tio ns . 

For comple te ness, we include he re a r esum e of the 
relevant defi nitions. A metric space (X, p) consists 
of a none mpty set X and a nonnegative-valued fun c tion 
p defined on X X X and satisfying 

p(x, y) > 0 if x ~ y, 

p(x, x) = O, 

p(x, z) ~ p(x, y) + p(y, z), 

p(x , y) = p(y, x). 

(1) 

(2) 

(3) 

(4) 

Convergence of a sequence {Xn} of points in X to a 
point xu is defi ned by p(x", x) -7 0, and is denoted 
Xn -7 X. A sequence {xn } is called a Cauchy sequence 
if, for every fixed m, p(x", Xn+m) -7 O. If every Cauchy 
sequence is convergent, then (X, p) is calle d a com
plete me tric space . 

Consider a function f:X-7X. For any xu, there 
is defined the seque nce of iterates x, f(x) = X I , f2(x) 
= f(x l) = X2, etc . These can be interpreted as the out
puts of successive s teps in an iterative process. The 
sequence of iterates consis ts of only a single point, if 
and only if the starting point x is a fixed point of f, 
i.e. ,f(x)=x. 

A contraction on (X, p) is a map f:X -7 X for which 
ther e exists a constant A, 0 ~ A < 1, such that 

p(f(x), f(y» ~ Ap(x, y) (5) 

for e very x, YEX. Banach's contrac tion theore m, of 
whic h a proof may be found in [1] ,1 asserts that if f is 
a co ntrac tion on a co mple te me tri c s pace (X, p) , the n 
(i) f has a unique fixed point ~, (ii) for every xu the 

I Figures in brac kets indicat e t he lit e rature refere nces at the e nd or thi s pape r. 

sequence of iterates f"(x) -7 ~, and (iii) the converg
ence is geometric, in fac t 

pc/'ex), ~) :5 A"p(x, D. 

Th e assurance of a geo metri c rate of co nverge nce is 
what makes thi s theorem so valuable in di scussing 
ite rative processes. That a function has a fixed point, 
or even that th e iterates of every point co nverge to 
the fixed point, is not suffic ie nt information for so me 
applications . If, however, o ne can show th a t the 
function is a contraction, th e n th e theore m can be 
applied and geometri c converge nce can be inferred. 

In thi s paper, we show that som e fun c tion s, which 
are not co ntrac tions on (X, p ), can become contractions 
with suitable new me trics p which are topologic ally 
equivalent to p , i. e., ones for which 

P(XIl , x)-7 0 if and only if p(x ll , x)-7 0. (5 ') 

Our general aim .is to de termine classes of functions 
f for which s uc h remetrizations are possible .2 No te 
that we want (X, p) to be co mple te whenever (X, p) 
is, so that the contrac tion th eorem will be applicable 
after the r emetrization . Conclu s ion (i) of that theorem 
has the same signifi cance for (X, jj ) as for (X, p ), and 
the same is true of conclusion (ii) by virtue of (5 '), but 
geometric convergence in (X, p) need not im ply geo
metric convergence in (X, p) so that some care in 
interpretation might be re quired. However, our 
constructions do in fact preserve "ultimately geome tric 
convergence" of sequences. 

2. Results 
The following definitions are required for the state

ments and proofs of our results. A functionf:X-7X is 
a local contraction (l.c.) if there exist real·valued fun c
tions p.-(x), A(x), with p.-(x) > 0 and 0 < A(X) < 1, s uc h 
that whenever y, z are in the sphere 

sex, p.-(x» = {u:p(x, u) ~ p.-(x)} 

2 ) wish to thank A. J . Goldman (N BS Operations Research Section) fo r fi rs t sugges ting 
thi s problem a nd for hi s co ntinuing inte res t and s ugge s tions as 10 cont e nt a nd e xpositio n. 
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it follows that 

p(j(y), f(z)) ,,;;; A(X)p(y, Z). 

If f.L(X) (resp. A(X)) is constant, we have a f.L-(resp. A-) 
uniform local contraction (u.l.c .). If both are constant 
we have a f.L, A- u.l.c. 

A chain Uxy is a finite set of points [x=xo, XI, . .. , 
Xll = y]; its length is 

11 

L(uxy) = L p(Xi, Xi-I) 
i=1 

and its mesh is max ri..Xi' Xi - I). The collection of all 
L 

chains beginning at X and ending at y is denoted Lxy, 
while the sub collection of Lxy consisting of those chains 
of mesh,,;;; f.L is denoted Lxyw (X, p) is called f.L-chain
able if LxyJJ. is nonempty for every x, yEA'. 

THEOREM 1. Let f be a f.L , A-U.l.C. on the f.L-chain
able metric space (X, pl. There exists a metric p 
topologically equivalent to p under which f is a con
traction. Also (X, p) is complete whenever (X, p) is. 

Theorem 1 can be regarded as an "explanation," 
from the viewpoint of remetrization , of a result in 
[2]; our proof for it is largely a rephrasing from this 
viewpoint of the corresponding argument in [2]. 

COROLLARY 1.1. If f is a local contraction on com
pact (X, p), then f is a u.l.c. on (X, p), and so theorem 1 
applies if (X, p) is f.L-chainable for every f.L> 0.3 

THEOREM 2. Let f, a f.L-u.l.c. on the f.L- chainable 
metric space (X, p), possess a fixed point g. Then for 
each XEX, the sequence of iterates f'1(x) ~ g with ulti
mately geometric convergence. 

THEOREM 3. Under the conditions of Theorem 2, 
there is a metric Ii topologically equivalent to p and 
complete if p is, such that f is a contraction on (X, 15). 

THEOREM 4. Let f, a local contraction on a com
plete metric space (X, p), possess a fixed point g, and 
suppose for each XEX, the sequence of iterates f'1(x)~g. 
Then there is a complete metric Ii topologically equiva
lent to p such that f is a contraction on (X, pl. 

3. Proofs of Theorems; Examples 

3.1. Proofs of Theorem 1 and Corollary 1.1 

To prove theorem 1, we introduce 

following Uxy with Uyz gives a Uxz for which we have 

,,;;; p(x , y) + p(y, z) + 20. 

The triangle inequality for p shows that p(x, y) 
~ p(x, y), and so p satisfies the " positive definiteness" 
requirement (1). To complete the proof that (X, p) 
is a metric space, we show that p(x, x) = 0 by setting 
x=y in 

p(X, y) = p(x, y) if p(x , y) ,,;;; I.L, (7) 

which is true because the chain [x, Y] EL.ryJJ. if p(x, y) 
,,;;; f.L. Since j5(x, y) ~ p(x, y), (7) also applies when-
ever j5(x, y) ,,;;; f.L . I 

From (7) we see that p and j5 are "identical in the 
small" and thus surely topologically equivalent; also 
that (X, j5) and (X, p) have the same Cauchy sequences, 
so that the first is complete if the second is . 

It only remains to show that f:X ~ X, which by 
hypothesis is a f.L, A-u.l.c. on (X, p), is a contraction 
on (X, pl. To any chain 

we can associate the chain 

f(uxy) = [f(x) = f(xo) , f(xI), . .. , f(x,,) = f(y) ]ELf(x)}(y), 

Because A < 1 andfis a f.L, A-U.l.C., we have 
UxyELxYIL implies f(uxy)ELj( :r )J(y)w (8) 

For any x, yEA' and any 0 > 0, U.ryEL x·YIL can be 
chosen so that 

L(uxy) ,,;;; j5(x, y) + O. 

Using the hypothesis on f together with (8), we have 

p(j(X),j{y)) ~ L(j(ux·y)) ,,;;; AL(uxy) ~ Ap(X, y) + AO. 

Since 0 is arbitrary, f is indeed a contraction on (X, pl. 
To prove the corollary, let f be a local contraction 

on compact (X, p), with associated functions f.L(x) and 
A(X). The collection of open spheres 

{SO(X, f.L(x)) :xEA'} 

(6) covers X, and so some finite sub collection 

which is well-defin ed for all x, yEA' because (X, p) is 
f.L-chainable, and obeys (4) because UXy'S are just UYX'S 
read backwards. The triangle inequality (3) holds 
for p because given x, y, zEA' and any 0 > 0, we can 
choose a Uxy and a Uyz for which 

L(uxy) < p(x, y) + 0, L(uyz) < p(y, z) + 0; 

3 A firs t proof of thi s was given by 1. Levy of the Operations Research Section. NBS. 

{SO(Xi, f.L(Xi)) : 1 ~ i ,,;;; n} 

also covers X. Let 

A = max A(Xi). 

For each xEA', set 

f.L'(X) = min {f.L(Xi) - p(Xi, x) :XESO(Xi, f.L(Xi))}. 
L 
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Then if y, ZESO(X, /-L'(x» it follows that y, ZESO(X;, /-L(Xi» 
for some i and therefore that 

p(j(y),f(Z» ,;;; A(x;)p(y, z) ,;;; 'A.p(y, z). 

Thus I is a 'A.-u.l. c. on (X, p) using /-L'(x) ; since /-L '(x) 
is a continuous positive-valued function on the compact 
space (X, p), it has a positive minimum /-Lo. Then I is 
a /-Lo, 'A.-u.l.c. on (X, p), as desired. 

Note that when theorem 1 is applicable, the "geo
metric convergence" conclusion of the contraction 
theorem is maintained; that is, the contraction theorem 
applied to (X, j5) gives geometric convergence in 
f"(X)~XO, but by virtue of (7) thi s implies "ultimately 
geometric convergence" in (X, p)_ 

The requirement of /-L-chainability is unnecessarily 
restrictive but we defer further elaboration until after 
the proofs of the remaining theore ms. 

3.2. Examples 

Our first example is a simple illustration of theorem 
1. Consider the circular arc described in the complex 
z-plane by 

X= {exp (it):O';;; t ';;; 37T/2}, 

and let (X, p) consist of X with the metric induced by 
that of the Euclidean plane. The map I:X~X given 
by 

I(exp (it»= exp (it/2) 

is not a contraction since 

I exp (i37T /2) - exp (0) I < I exp (i37T/4) - exp (0/2) I, 

but it is easily shown to be u.l. c. Thus (X, p) admits 
a remetrization which makes I a contraction; the most 
obvious such metric, which is in a sense the limit as 
/-L~O of the one obtained from theorem 1, is 

The second exam pIe shows that if (X, p) is connected 
but not compact, and if I is only a JL-u.l.c., tnenone 
cannot guarantee a remetrization under which the 
contraction theorem becomes applicable. Let 
X = [1, (0) with the usual metric p(x, y) = Ix - yl , and 
let I:X ~ X be defined by 

I(x)=x+x- I-

Then Ihas no fixed point, and so cannot be made into 
a contraction on a complete (X, Pl. To show that/is 
a /-L-u.l. c . for arbitrary /-L> 0, we observe that if y, 
ZES(X, /-L) with y < z, then 

If(z) -:-I(y) I = Iz + Z- I- y- y- II 

= Iz-yl'll-(yz)- II ,;;; Iz-yl 'll - (x + /-L)- 21, 

so that 'A.(x) = 1- (x + /-L) - 2 works . 

Analogously, a 'A.-u.l.c. on a complete connected 
me tri c s pace may not admit application of the con· 
traction theorem after any remetrization . Examples, 
too length y to repeat here, are given in [3], [4]. 

3.3. Proof of Theorem 2 
Let ~ be a fixed poi nt of /, a /-L-u.l. c. of (X, p) with 

associated function 'A.(x) . We shall show that for any 
xEX, there is a positive integer k(x) s uc h that 
fdx)(X)ES{~, /-L). For k :;;,: k(x), assuming fk(X)ES(~, /-L) , 
we will then have 

p({k+ I(X), ~) ,;;; 'A.(g)p(fk(X), g) 

and so /k+ 1 (x)ES(g ,/-L)' Thus for k :;;,: k(x) 

and the theorem follows. 
Given xEX, choose O"gxE'igx lJ- with mesh T < /-L. If 

none exis ts then consider I(O"gx) which certainly has 
mesh less th:m /-L , and proceed as below. Le t the 
points of thi s chain be g = Xo, XI, X2, . . ., Xu = x. 
Choose j so large that if 'A. = 'A.(g) , then 

Th e n si nce XIES(g , /-L) , we have 

(9) 

and jJ(XI) precedes jJ(Xl) in the c hain P(O"gx) which 
runs from ~ to jJ(x). Also 

P({J(XI) , P(X2)) < T; 

[rom this and (9) it follows that P(X2)ES(g, /-L ). Then 

p(j'2J(X2), g) < 'A.Jp(jJ(X2), g) < (JL - 7)/2 (10) 

and j2J(X2) precedes j2J(X3) in the chain j2J(O"gx). Argu
in g as above leads to j2J(Xa)ES(g, /-L), and so on; we 
obtain Jln- I)j(x) = JI"-l)i(Xn)ES(g, /-L) and so can take 
k(x) = (n - I)j. 

3.4. Proof of Theorem 3 

This proof is based on a cons truction due to L. Janos 
[5]. We begin by setting 

from the proof of theorem 1 it follows that PI is a metric 
topologically equivalent to p. Moreover PI(X , y) 
= p(x, y) if p(x, y) < IJ- and in particular this hold s if 
x, YES(g, IJ-/2). It need not be the case that lis a con
traction on (X, PI)' However, because I is a IJ--u .l.c. 
we have I('ixyp.) C 'if(x)f(Y)1J- and so we can at least de
duce that I is 'nonexpanding on (X, PI), i.e., 

PI(f{x),f(y» ,;;; PI(X , y). (11) 

181 



Again if X, YES(~, JJ.-/2) then we even have 

PI(f(X), iCy)) = p(f(x) , fey)) 
,;:;: A(~)p(X, y) = A(~)Pl(X, y). (12) 

For the second step in the construction, define 

Co=S(~, JJ.-/2) 

and by theorem 2 

For all x, define 

n(x) = inf {j:XECj}. 

By theorem 2 this is well defined. Next set 

c(x, y)= max {n(x), n(y)} , 

and 

Finally, set 

Then P2 satisfies the requirements for a metric except 
possibly the triangle inequality. In particular 

(13) 

Before proceeding to the third step we show that 

(14) 

In fact this follows from (11) and (12) for x, YECo, and 
otherwise from the observation that n({(x)) = n(x) -1, 
if xEX - Co, so that c(f(x), fey)) = c(x, y) -1 if either 
x or y is in X-Co. 

For the third step, associate with each chain 

CTxy=[X=XO, XI, . .. , Xn=Y] (15) 

the length 

n 

L2(CTXY) = L P2(Xi, Xi - I) 
;= 1 

and define 

We shall show that p is the metric required in theorem 
3. 

First note that p(x, y) ~ Pl(X, y) follows from (13) 
and the triangle inequality for P2. Clearly p(x, y) 
= (P(y, x), p(y, x) > 0 if x =F y, and p(x, x) = 0 because 
P2(X, x) = O. That the triangle inequality (3) holds can 
be shown as in the proof of theorem 1. Hence (X, p) 
is a metric space. For each CTxyEkxy we have f(CT:xy) 
EkJ(xlf(y) and from (14) it follows that 

Hence p(f(x),f(y)),;:;: Ap(X, y), i.e.,fis a contraction on 
(X, p) with A= A(~) < l. 

It remains to show the equivalence of p and p. Note 
first that P I Co == P I Co which already guarantees, by 
theorem 2, that convergence to the fixed point ~ is 
ultimately geometric. We already have p(x, y) 
~ PI(X, y) ~ p(x, y) so that we merely need show that 
convergence to xEX - {y: p(y, . ~) < JJ.-/2} with respect to 
P implies convergence with respect to p. We show 
this by demonstrating that for each point XEX - {y: 
p(y, D < J.L/2} there is some sphere of positive radius 
centered at x, the points y of which obey 

P2(X, y),;:;: A- (n(x)+I)PI(X, Y)=A- (n(x)+I)p(x, y). (16) 

To see this, notice that j"(x)(X)ECo and hence f"(·1")+ I(X) 
E{y:p(y, D,;:;: AJJ.-/2}. If not x= fO(x) , XI = I(x) , X2 
= !(XI) = F(x), ... , Xn(x)+1 = f"(x)+I(X), then by a simple 
continuity argument for /,'( X)+ I there exists a sphere 
S = Sex, rex)) centered at x with radius rex) and a sphere 
Sn(x)+1 = S(Xn(x)+]' r(xn(X)+I)) such that Sn(x)+ l C Co, 
and j"(.r)+I(S) C S,,(x)+1' Thus for YES, n(y) ,;:;: n(x) + l. 

If now p(X, y) < min {rex) , JJ.-} then p(x, Y)=Pl(X, y) 
and (16) holds. Finally since p(x, y) ,;:;: P2(X, y) we 
have the desired result. It follows from the above 
that completeness is also preserved. 

3.5. Proof of Theorem 4 

As before let Co= {y:p(y, ~),;:;: JJ.-(~)/2}, Cj =f-j(Co), 
j > O. Also define n(x) and c(x, y) as in theorem 3. 
The first step in the construction of p is to define a 
metric p such that f is non expanding on (X, p) that is 

p(f(x), iCy)) ,;:;: f)(x, y). (17) 

To this end let 

jJ(x, y) = max {p(f"(X), f"(Y)), 0,;:;: n}. 

Note that this is well defined since c(x, y) is finite. 
Also p satisfies (17). To show it is a metric notice 
that ]lex, y) ~ p(x, y) and p(x , x) = O. For the trio 
angle inequality observe that for any x, y, and z and 
for all n ~ 0, 

p(f"(x),f"(y)),;:;: p(f"(x), fll(z))+ p(f"(z),!"(y)) 

,;:;: p(x, z) + p(z, y) 

from which the result follows. 
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It remains to demonstrate the equivale nce of p and 
p. We have p(x, y) ~ p(x, y) and from the definition 

p lCo= plCo. (18) 

Let xEX - {y:p(y, t) ....::: j..t(t}/2}. (The continuity of the 
iteratesp guarantees that for any YJ < j..t - p(j)'(.L')+I(X), t) 
there is a 8 > 0 such that p(x, y) < 8 implies p(jJ(x), 
jJ(y)) < YJ for all j :S; n(x) and hence for all subsequent j 
as well). This then implies the equivalence of p and p 
everywhere. 

To complete the theorem define 

p(x, y) = A(t}-c(x, Y)p(x, y), 

and if i(uxy) is defined a nalogously to L(u:l'Y) se t 

j5(x, y)= inf {i(uXy):UX yE2- XY }' 

The proof is now a repetition of part of that of theorem 
3. 

4. Extensions 
We can now e laborate on the remark made after 

theorem 1. We need not res tri c t ourselves to j..t. 
c hainable spaces. It is suffi c ien t to examin e th e 
j..t-chainable compone nts, i.e., the maximal j..t·chain· 
able subsets of any space and to treat several cases. 

Formallv le t {Co: aEA} be the collec tion or j..t·chain. 
able <;.omponents of X. A j..t-u.l.c. I: X ~ X II1duces a 
map I:A ~ A as follows: 

j(a) = a if I(C,,) C (" 

Notice that 1 is well de fined since I preserves j..t·chains. 
Le t 

BI ={bEA:j(b) = b}, 

B,, = {bEA:P(b) = b,ft(b) # b; l :S; j < k}(k = 2,3 , . .. ), 

Ai= {aEA]j(a) = bEB" for some j ~ 0, 

and/v(a)¢B h· for v < j}, 

X~= U {C,,:aEAtL 

C = {aEA:ft(a)EA - U B,,; for allj ~ OJ. 
I 

Note that 

'" A = CU U {AIi:bEBd · 
k = 1 

We shall consider 3 cases. For a subse t of th e form 
XI we shall demonstrate a metric p* such that I is a 

I) ' hi ' . h \ contraction on (X~, p*) , where ere ' IS elt er a j..t , IV 

u.l. c. or a j..t-u.l. c. For a subset of the form Xt with 
k > 1 we shall show for a j..t, A-U.l.C. , that/k is a con· , 

traction on a suitable subset and that 1 has certain 
periodic properties. Finally we show that for all 
other subse ts of X no s uc h results are possible. 

We begin with s ubse ts of the form X),. Notice that 
by construction X), and X)" are disjoint unless b = b'. 
For definiteness we s hall restrict attention to an I 
which is a j..t , A-U.l. C. on (X, p) with the understanding 
that s imilar results hold for a fL-U.l.C. We have then 
a collection of j..t-chainable co mpon ents {Co; aEAU 
s uch that f(C,)) C C" and P(C") C C" for each aEA;) and 
some j= j(a) ~ O. By theore m 1,fICb is a contraction 
for the metric p: C" X C" ~ R (reals) defined by 

p(x, y)=inf {L(uxy), u xyd"'YIL}' 

Thus there is some point tEen suc h that I(t) = r Let 
S = {XEC,,: p(x, t):S; j..t/2} and define as before n(x) 
= inf {j ~ 0 :P(X)ES}. Notice that P(Ca) C Cb for each 
Ca and for some j so that n(x) is well defi ned. Also 
le t c(x, y)= min {n(x), n(y)}. 

As a seco nd step exte nd th e definition of p as widely 
as possible. That is, define p(x, y) as above wherever 
2- XYIL is not empty. This of course is true for x, y if 
x and yare in the same j..t·component Ca. Let now 

p'(x, y) = min {j..t, p(x, y)} 

with the und ers tanding that p'(x, y) = j..t if j5(x, y) is 
undefi ned,and 

p"(x, Y)=Ac(x, y)p'(x, y). 

We remark that p" again has the metric properties 
except possibly (3) . Moreover exac tly as in theorem 3 

p"(f(x), I(y)) :S; Ap"(X, y) . 

Finally if we defin e L"(uxy) in analogy to L(uxy) used 
earlier and se t 

p*(x, y) = inf {L"((T". y): UxyE2-xy} 

then p* has the desired properties. A proof of this 
would merely repeat arguments used in th eorem 3. 
This construction is also applicable to a j..t-u.l.c. be· 
cause the only things required are that there exist a 
fixed point and that the iterates of all points of C" 
converge to the fixed point. This last follows since I, 
being a j..t-u.l.c. preserves j..t-chains and a proof like 
that of theorem 2 can be carried through. 

To treat subsets of the form X; with k> 1, notice 
first that Bk and Bkl are disjoint unless k = k'. If we 
consider a single Bk we can jurthte.r partition as fol· 
lows: for bEBA' let b=b(O), l(b)=/(b(O))=b(I) , . .. , 
jk- l(b(O))=b(k-l), /k(b(O))=b(O). This partItIOns 
Bk into a class of disjoint subsets of indices each of 
cardinality k. We now further restrict our attention 
to one such subset {3h" In this case it is already true 
that I cannot satisfy the conditions of theore m 2; 
namely , there is no fixed point. W e thus restrict 
ourselves to 1 being a j..t, A-U.I.C. on (X, pl. It follows 
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that p' is a {J-, t.,k-u_l.c_ on (CD(O, p); and by theorem 1 
there is a metric Pi on Cb(O such that IA' is a contrac
tion on (C'J(i), p;) and hence P I c,)(i) has a unique fixed 
point ti , i= O, 1, 2, _ _ _ , k-l. On the other hand 
we also have that Ik(P(ti))=P(lk(t;))=P(t;) and so 
P(t;) is a fixed point of PICD(l), l == i + j (mod k)_ It 
follows that the fixed points of Ik are a unique set of 
periodic points of f Further for any other points y 
in the components CD(i)' {f"Ii(y)} ~ t; as n ~ 00 and so 
p,"+j(y)~tl, l = i + j (mod k) _ Finally for the com
ponents {Ca:aEA~, bEf3d, Im(Cu) cC'J(i) for s ome m 
and some i, and hence for XEC a , /'1i+kll +J(X) ~ tl, 
l == i+ j (mod k). 

The third case involves those compon ents C" suC'h that 
_ x 

P(Cl/)EA - U EA', j = 0, 1, 2, . . .. It is immediate 
J 

tha t neither I nor any power of I has any fixed points 
so that there is no possibility for a con traction map. 
Also, since the Crt are fL- component s, limit points of 
U {Crt:aEC} are limit points of individual co mpon ents 
and so the components do not converge to any limit. 
The following is an example of thi s las t case: 

Let X be the subset of euclidean 2-space wh ich 
consists of the closed disks CII centered at (2", 0) and 
with radii 2-", n = l , 2, .. .. Let I:Cn~CIi+ J 
be defined by 

I(x, y) = (X ~ 2" + 211+1, ~). 

Then I is a (~ , 1) - u.l. c. 

5 . References 
[1] Kolmogorov and romin , Elemen ts of the T heory of Functions 

and F unct ional Analy,is 1,43-45 (Rochest., r, Graylock, 1957). 
[2] Edelstein , M., An extension of Banach's Contraction principle, 

AMS Proc. 12, No. 1, 7- 10 (1961). 
[3]. Rakotc h, E., A note on 2- locally co ntractive mappings, Bull Res. 

Co un c. of Israel to, F4. 188- 191 (1962). 
[4] Naimpall y. S .. A nute on contraction maJlPings. Nederl. Akad. 

Wetensc h. Proc. Ser. A6 7, 275- 279 (1964). 
l5] Janos. L .. Two operations un di s tancl' functions. No tices AMS 

11 , Nu . 5.614-7 (Aug. 1964). 

(Paper 69B3- 151) 

184 


	jresv69Bn3p_179
	jresv69Bn3p_180
	jresv69Bn3p_181
	jresv69Bn3p_182
	jresv69Bn3p_183
	jresv69Bn3p_184

