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Minimum Partition of a Matroid Into Independent
Subsets'
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A matroid M is a finite set M of elements with a family of subsets, called independent, such that
(1) every subset of an independent set is independent, and (2) for every subset 4 of M, all maximal

independent subsets of 4 have the same cardinality, called the rank r4) of A.

It is proved that a

matroid can be partitioned into as few as £ sets, each independent, if and only if every subset A4 has

cardinality at most & - r(A).

1.0. Introduction

Matroids can be regarded as a certain abstraction
of matrices [8].2 They represent the properties of
matrices which are invariant under elementary row
operations but which are not invariant under elemen-
tary column operations —namely properties of depend-
ence among the columns. For any matrix over any
field, there is a matroid whose elements correspond
to the columns of the matrix and whose independent
sets of elements correspond to the linearly independent
sets of columns. A matroid M is completely deter-
mined by its elements and its independent sets of
elements.

The same letter will be used to denote a matroid
and its set of elements. The letter I with various sub
or superscripts will be used to denote an independent
eiis

The interest of matroids does not lie only in how they
generalize some known theorems of linear algebra.
There are examples, which I shall report elsewhere,
of matroids which do not arise from any matrix over
any field—so matroid theory does truly generalize an
aspect of matrices. However, matroid theory is jus-
tified by new problems in matrix theory itself —in fact
by problems in the special matrix theory of graphs
(networks). It happens that an axiomatic matroid set-
ting is most natural for viewing these problems and that
matrix machinery is clumsy and superfluous for view-
ing them. The situation is somewhat similar to the
superfluity of (real) matrices to the theory of linear op-
erators, though there a quite different aspect of mat-
rices is superfluous. When it comes to implementing
either theory, matrices are often the way to do it.

Matroid theory so far has been motivated mainly
by graphs, a special class of matrices. A graph G may
be regarded as a matrix N(G) of zeroes and ones, mod 2,

! Sponsored by the Army Research Office (Durham). Presented at the Seminar on
Matroids, National Bureau of Standards, Aug. 31-Sept. 11, 1964. 1 am much indebted
to Alfred Lehman for encouraging my interest in the subject.

? Figures in brackets indicate the references at the end of this paper.

which has exactly two ones in each column. The
columns are the edges of the graph and the rows are
the nodes of the graph. An edge and a node are said
to meet if there is a one located in that column and
that row. Of course a graph can also be regarded
visually as a geometric network. It is often helpful
to visualize statements on matroids for the case of
graphs, though it can be misleading. Matroids do
not contain objects corresponding to nodes or rows.

Theorem 1 on “minimum partitions,” the subject of
this paper, was discovered in the process of unifying
results described in the next paper, “On Lehman’s
Switching Game and a Theorem of Tutte and Nash-
Williams™ (denoted here as “‘Part I11”°), which is a direct
sequel. Theorem 1 is shown there to be closely re-
lated to those results. Lately, I have learned that
Theorem 1 for the case of graphs (see sec. 1.7) was
anticipated by Nash-Williams [5].

By borrowing from work of others, I intend that this
paper together with possible sequels be partly exposi-
tory and technically almost self-contained.

1.1. The Problem

Various aspects of matroids —in particular, the first
pair of axioms we cite—hold intrinsic interest which
is quite separate from linear algebra.

AXioM 1: Every subset of an independent set of
elements is independent.

Any finite collection of elements and family of so-
called independent sets of these elements which satis-
fies axiom 1 we shall call an independence system.
This also happens to be the definition of an abstract
simplicial complex, though the topology of complexes
will not concern us.

It is easy to describe implicitly large independence
systems which are apparently very unwieldy to an-
alyze. First example: given a graph G, define an
independent set of nodes in G to be such that no edge
of G meets two nodes of the set. Second example:
define an independent set of edges in G to be such that
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no node meets two edges of the set. Third example:
define an independent set of edges in G to be such that
the edges of the set, as column vectors of N(G), are
linearly independent. The third example is the pro-
totype of the systems we shall study here.

A minimum coloring of the nodes of a graph G is a
partition of the nodes into as few sets (colors) as pos-
sible so that each set is independent. A good char-
acterization of the minimum colorings of the nodes in
a graph is unknown (unless the graph is bipartite, i.e.,
the nodes can be colored with two colors). To find
one would undoubtedly settle the ‘“‘four color”
conjecture.

A problem closely related to minimum coloring is
the “‘packing problem.” That is to find a good char-
acterization (and an algorithm) for maximum cardinal-
ity independent sets. More generally the “weighted
packing problem” is, where each element of the system
carries a real numerical weight, to characterize the
independent sets whose weight-sums are maximum.
The packing problem for the systems of the first
example is also very much unsolved (unless the graph
is bipartite).

The minimum coloring problem for the systems of
the second example is unsolved (unless the graph is
bipartite). Its solution would also undoubtedly set-
tle the four-color conjecture. However the packing
problem, and more generally the weighted packing
problem, is solved for the second example by the ex-
tensive theory of “matchings in graphs.”

For the third example the packing problem is in a
sense trivial. It is well known that the system of
linearly independent sets of edges in a graph, and
more generally the system of linearly independent
sets of columns in a matrix, satisfies the following:

AXIOM 2: For any subset A of the elements, all maxi-
mal independent sets contained in A contain the same
number of elements.

A matroid is a (finite) system of elements and sets
of elements which satisfies axioms 1 and 2.

For any independence system, any subsystem con-
sisting of a subset A of the elements and all of the
independent sets contained in A is an independence
system. Thus, a matroid is an independence system
where the packing problem is postulated to be trivial
for the system and all of its subsystems. For me, hav-
ing spent much labor on packing problems, it is
pleasant to study such systems. Matroids have a
surprising richness of structure, as even the special
case of graphic matroids shows.

Clearly, a subsystem of a matroid M is a matroid.
We call it a submatroid and we use the same symbol
to denote it and its set of elements. The rank, r(A),
of a set A of elements in M or the rank, r(A), of the
submatroid 4 of M is the number of elements in each
maximal independent set contained in A4, i.e., the num-
ber of elements in a base of 4.

The main result of this paper is a solution of the
minimum coloring problem for the independent sets
of a matroid. Another paper will treat the weighted
packing problem for matroids.
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1.2. Ground Rules

One is tempted to surmise that a minimum coloring
can be effected for a system by some simple process
like extracting a maximal independent set to take on
the first color, then extracting a maximal independent
set of what is left to take on the second color, and so
on till all elements are colored. This is usually far
from being successful even for matroids, though it
is precisely matroids for which a similar sort of mono-
tonic procedure always yields a maximum cardinality
independent set and, as we shall see, in another paper,
also always yields a maximum weight-sum independent
set when the elements carry arbitrary real weights.

Consider the class of matroids implicit in the class
Mp of all matrices over fields of integers modulo primes.
(For large enough prime, this class includes the
matroid of any matrix over the rational field.) We
seek a good algorithm for partitioning the columns
(elements of the matroid) of any one of the matrices
(matroids) into as few sets as possible so that each set
is independent. Of course, by carrying out the mono-
tonic coloring procedure described above in all possible
ways for a given matrix, one can be assured of encoun-
tering such a partition for the matrix, but this would
entail a horrendous amount of work. We seek an al-
gorithm for which the work involved increases only
algebraically with the size of the matrix to which it is
applied, where we regard the size of a matrix as in-
creasing only linearly with the number of columns,
the number of rows, and the characteristic of the field.
As in most combinatorial problems, finding a finite
algorithm is trivial but finding an algorithm which
meets this condition for practical feasibility is not
trivial.

We seek a good characterization of the minimum
number of independent sets into which the columns
of a matrix of My can be partitioned. As the criterion
of “good” for the characterization we apply the “prin-
ciple of the absolute supervisor.” The good charac-
terization will describe certain information about the
matrix which the supervisor can require his assistant
to search out along with a minimum partition and
which the supervisor can then use with ease to verify
with mathematical certainty that the partition is in-
deed minimum. Having a good characterization does
not mean necessarily that there is a good algorithm.
The assistant might have to kill himself with work to
find the information and the partition.

Theorem 1 on partitioning matroids provides the
good characterization in the case of matrices of Mp.
The proof of the theorem yields a good algorithm in
the case of matrices of Mr. (We will not elaborate on
how.) The theorem and the proof apply as well to
all matroids via the matroid axioms. However, the
“goodness” for matrices depends on being able to
carry out constructively with ease those matrix opera-
tions which correspond to the existential assertions
of the theory. A fundamental problem of matroid
theory is to find a good representation for general
matroids —good perhaps relative to the rank and the
number of elements in the matroids. There is a very



elegant lattice representation (geometric lattices, [1,
2]), but it is not something you would want to record
except for the very simplest matroids.

1.3. The Theorem

The cardinality of a set 4 is denoted by |A].
rank of a set 4 is denoted by 7(A4).

The

THEOREM 1: The elements of a matroid M can be
partitioned into as few as k sets, each of which is inde-
pendent, if and only if there is no subset A of elements
of M for which

|[A] >k - 1(A).

The theorem makes sense for any independence
system M if we define the rank r(A) of any subset 4
to be the maximum cardinality of an independent set
in A. In fact, the “only if”” part of the theorem is
true for any independence system M. Let [Ii(i=1,

. ., k) be k independent sets in M for which

C==

liZM.

1

For any subset A of M, |I;NA| < r(4) and

.
4] <Y |[LiNA| < k- rA).
=il

Thus the “only if”” part is proved.

In general for the coloring problem in nonmatroidal
systems, the other half of the theorem is not true.
However, the Konig theorem on matchings in bi-
partite graphs can be regarded as a valid instance of
theorem 1 for certain nonmatroidal systems. A bi-
partite graph is a graph whose nodes can be parti-
tioned into two sets each independent (by coincidence,
an instance of the coloring problem in our first ex-
ample). The Konig theorem says that for a bipartite
graph G the minimum number of nodes which meet
all the edges equals the maximum number of edges
such that no node meets more than one of them.
(This theorem solves the packing problem for a special
case of our second example of independence system.)

Fourth example: For a graph G, let the elements of
the system M be the edges of G. For each node of
G, let the set of edges which meet the node be an in-
dependent set in M. Let the subsets of these sets
be the rest of the independent sets in M. The Konig
relation for a graph G implies theorem 1 for system M.

Theorem 1 for the system M arising from G does
not imply the Konig theorem for G. For independence
systems in general the relation represented by theorem
1 is weaker than the relation represented by the Konig
theorem —the latter being that the minimum number
of independent sets which together contain all the
elements equals the maximum number of elements
in a set of rank one. It’s nice to have the weaker
relation of theorem 1 because it might apply to other
systems where the well known Konig relation does not.
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1.4. Terminology

There are various families, (1) through (6), of subsets
of the elements in a matroid M which are used in de-
scribing the structure of M.

(I) The family of independent sets of M.

(2) The family of minimal dependent sets of ele-
ments in M (where dependent means not independent).
These are called the circuits in M. The letter C with
various sub or superscripts will be used to denote a
circuit.

(3) The family of spans or closed sets in M. A span
S in M is a set of elements such that no circuit of M
contains exactly one element not in S. That is,
[SNC| =+ 1 for every circuit C in M.

The span or closure of a subset A of M is the minimal
span in M which contains 4. Clearly, the span of A4,
which we always denote by S(4), is unique. Where 4
is a subset of column vectors in a matrix M of column
vectors, S(A) is all the columns in M which are linear
combinations of A.

The terms above are used extensively in section 1.5
and section 1.6 to prove theorem 1. The terms below,
through (4) and (5), are used extensively in Part II.

A subset A4 of M is said to span a subset K of M when
KCS(A). It follows from proposition 4, to come, that
A spans K in M if and only if for each element eeK
either ee4 or their is a circuit C of M such that eeC
and C—eCA.

(4) The family of spanning sets of M. A spanning
subset of M is a subset of M which spans M —in other
words, a subset of M whose span is M.

(5) The family of bases of M. A base of M is a
maximal independent set of M. A base can also be
defined as a minimal spanning set of M.

The terms in (1), (2), and (5) are taken from Whitney
[8]. The terms “closed set” and ‘“‘span of A" are
taken from Lehman [3]. There is an alternative
terminology due to Tutte [7]. Since these are major
sources on matroids, it is worthwhile to set down the
relationship. To do so it is necessary to invoke the
much used notion of “dual matroid,” though it is not
used here or in Part Il. Papers [3], [7], and [8]
show that the set-complements of the bases in a
matroid M are the bases of a so-called dual matroid M*.

The bases of matroid M are called by Tutte the
dendroids of M. The elements of M are called by Tutte
the cells of M. The independent sets of M are called

by Lehman the trees of M. .
he circuits of a matroid M are what Tutte calls the

atoms of dual matroid M*. The circuits of M* are the
atoms of M. Thus here is another special family of
subsets of a matroid M.

(6) The family of atoms (dual circuits) in M.

The rows of a matrix Ny, under addition and sub-
traction, generate a group of row vectors which Tutte
calls a chain-group, say the chain-group N of matrix
No. The matroid M of matrix Ny is of course an in-
varient of chain-group N, and it is what Tutte calls the
matroid of chain-group N. An atom of M of N is de-
fined as a set of elements in M which corresponds to
a minimal nonempty set of row-vector components



such that there is some member of chain-group N
which has its nonzero values in precisely these com-
ponents. The row-vectors orthogonal to each row of
matrix N, form another chain-group, say N*. Iis
matroid is M*, the dual of M. Atoms of M* by defini-
tion correspond to minimal dependent sets of columns
in matrix No,. That is, they are the circuits of the
matroid M of N,.

Tutte defines a flat of matroid M to be a union of
atoms of M, or the empty set. It can be shown that a
flat of M is the set-complement of a span (closed set)
in M, and conversely.

Where A4 is a subset of elements in M, Tutte denotes
by M- A what here is called the submatroid 4 of M
(following Whitney). The meanings of the rank (M)
of matroid M coincide, and Tutte denotes by M - A)
what here is called the rank r(4) of set A in M (follow-
ing Whitney). However, for a set 4, what Tutte de-
notes by r A is not HA)=r(M - A) but “r(M X A)”” which
is used in Part II.

1.5. The Lemmas

In the proof of theorem 1 we will use axiom 1 and
the following axiom 2’ for matroids instead of axioms
1 and 2.

AxXioM 2': The union of any independent set and
any element contains at most one circuit (minimal
dependent set).

ProrosITION 1:
axioms 1 and 2.

PROOF: Assuming 1 and 2, suppose independent set
I together with element e contains two distinct circuits
C; and C,;. Assume [ is minimal for this possibility.
eeCiNCs. There is an element e;eC; —C> and an ele-
ment ex€C>—C;. Set IUe—e;—e is independent
since otherwise (I —e;) is a smaller independent set
than [ for which (/—e;)Ue contains more than one

Axioms 1 and 2" are equivalent to

circuit. Set I and set /[Ue—e;— e, are maximal in-
dependent subsets of set [Ue. This contradicts
axiom 2.

Assuming 1 and 2’, suppose I, and I, are both maxi-
mal independent subsets of a set 4 such that || < |I|.
Assume I;UI, is minimal for this possibility. There
is ane;in [;— 1> and I,Ue, is dependent. By 2' I,Ue,
contains a unique circuit C which must contain some
element e; not in I;. Since I, is larger than I, it must
contain another element besides e, not in /; and hence
I,UI,—e; is dependent. Therefore, since I,Ue;—e»
is independent, there is some I; such that e;el;CI,— I,
and such that I,=1,UI,—e, is maximal independent
in A. Because I; contains an element not in Iy,
|I4 = |I.| > |I,|. However, since I;UI}is a proper sub-
set of I; U, this contradicts the minimality assumption
for [;UIl,. The proposition is proved.

PROPOSITION 2: Axioms I and 2’ are equivalent to
the following axioms, 1. and 2., for a matroid in terms
of its circuits (where starting with circuits, independent
sets are defined as sets containing no circuits).

Ax10M 1.: No circuit contains another circuit.

AXx10M 2.: If distinct circuits C, and C, both contain
an element e then C;UC,—e contains a circuit.
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A proof of proposition 2 is obvious.

The next very useful proposition is taken in [7] and
[8] to be an axiom instead of 2.. Alfred Lehman dis-
covered that 1, and 2. suffice.

ProPOSITION 3: If C; and C: are circuits of a matroid
M with an element eeC;NC: and an element aeC,—
C, then there is a circuit C such that

GGCCC1UC2—€.

ProoF (Lehman): Assuming 1. and 2., suppose
Ci, C:, a, and e are such that the theorem is false and
C:UC; is minimal. There is a circuit C3CC;UC,—e,
but a¢Cs;. There is an element beC;N(C.—C;). By
minimality of C;UC; for falsity of the theorem and
since a¢C>UC;, there is a circuit Cy such that
eeC;CC,UC;—b. Again by the minimality and since
b¢C,1UCy, there is a circuit C such that

(1€CCC]UC4_6CC|UC2_€,

contradicting the falsity of the theorem.

PROPOSITION 4: An element e of a matroid M is in
the span S(A) of a set A in M if and only if e is in A or
there is a circuit C of M for which C— A =e.

PrROOF: The “if”” part of the theorem is asserted
in the definition of span. Assuming the ‘“only if”
part false, by the definition of span there must be an
A and eeS(A) — A for which there is no C with C—A4 =e¢
but for which there is a C and nonempty E with
C—(AUE)=e where for each e’eE there is a C’ with
C'—A=e'. Assume E to be minimal so that ECC.
By prop. 3, for any e’ and C’ there is a C, for which
eeC,CCUC’'—e'. Hence, C;—(AUE;)=e where E;
is %proper subset of E, contradicting the minimality
of E.

Besides axioms 1 and 2’ and the definitions of circuit
and span, the only other fact on matroids used to prove
theorem 1 is

PROPOSITION 5: The span of a set A in a matroid
M is the (unique) maximal set S in M which contains
A and which has the same rank as A.

In particular the additional fact used in proving
theorem 1 is that the span of an independent set I has
rank equal to the cardinality of /.

PRrROOF OF PROP 5: If, for S(4) the span of 4, {S(A))
> r{A), then by axiom 2 a base I of A is not a base of
S(A), i.e., there is an element eeS(4)—I such that
IUe is independent. By prop. 4, e is not in the span
S(I) of I but A is in S(/). Since the span of a set is
the minimal span containing the set, S(4)CS(/). Thus,
by contradiction, r(S(4)) = r(4).

Let eeS'(A) where ACS'(A4) and (4)=r(S'(4)). Then,
where [ is a base of A, either eel or eU/ is dependent.
Thus eeS(A). Therefore, S(A) is the unique maximal
set where 4 CS(A) and r(S(A4)) = A).

1.6. The Main Proof

PROOF of theorem 1 (the “if”” part): Assume that for
every subset A of matroid M, |A|<k-r(A). Actually,
it is sufficient that for every span S in M, |S|< k- r(S).



The goal is to get all the elements of M into just k in-
dependent sets of M. Let F be a family of £ mutually
disjoint independent sets of M. Any number of these
sets may be empty. These sets are to be regarded as
labeled so that each may be altered in the course of
the proof while still maintaining its label-identity.
Suppose there is an element x of M such that U{/:]eF'}
CM—x. We shall see how to rearrange elements
among the members of F to make room for x in one of
them while preserving the independence (and mutual
disjointness) of them all. The process can be re-
peated until each element of M is in a member of F.
Thus the theorem will be proved.

Implementing this proof to an algorithm for par-
titioning (if possible) a matroid M into k£ independent
sets is quite straight-forward as long as an algorithm
is known for the following: for any ACM and eeM,
find a circuit C such that eeCCAUe or else determine
that there is none. In the algorithm for partitioning
M, one of course would not first verify |4| < k - r(A4) for
all ACM, but would simply proceed on the assumption
that it is true and then stop if a contradiction arises.

If every member of F contained as many as (M)
elements, then since they are disjoint and do not
contain x, the union of all £ of them together with x,
which is a subset of M, would have cardinality
greater than k - r(M). However, |M|< k- r(M). Hence
there is an I,eF for which [/;| <r(M). Similarly,
x€S;=S(I;) implies that there is an [,eF for which
|1,NS; | <r(S)), since if each member of F had r(S:)
elements in S;, then their union together with x
would be more than k£-r(S)) elements in Sy, but |S;| =
k-r(Sl).

Denoting M by Sy, then likewise in general

x€Si=S(iNS;_)

implies that there is an [;.€F for which [[;;,NSi|<
r(S;), since |Si|<4k-rSi). These I’s are not neces-
sarily distinct members of F.

Where
Si+1=Si+1NS)),
we have
n(Siz1) < r(Si).

Since rank is a nonnegative integer, we must eventually
reach an integer h for which

x¢S;, =SUnNSh-1)
and

-5 =1l

xeS; for 1=1, . .

. DSh.

If 1,Ux is independent then replacing I, by I,Ux
disposes of x. Otherwise there is a unique circuit
CCl,Ux. Since C—xCS;-1 would imply xeS,
=S(UInNSy-1), there is an x,€C—x such that x,¢S,-..

By construction, ${28:D . .

We replace I in F by independent set [,Ux—x;.
The new family is still called F and the new set
carries the label-identity in F which I, had. This
and the following informal conventions are used simply
to avoid introducing a lot more indices. Any other
I; which was the same member of F as I, is now
IhnUx—x;. We will distinguish between the current
I; and the original /;. The Si’s do not change.

We have disposed of x and now we must find a
place for x; in some member of F. Since x1¢S;
and x;€Sy, and since the S;’s are monotonically nested,
there is some index i(1) < A— 1 for which

x14Si1) and x;€Si1) 1.

Denote A by i(0) and denote x by xo. Assume induc-
tively that xo¢Sio), %0€Si0)-1, x1¢Si), X1€Si)-1, - . -,
x;4Sij), xj€Sij—1, where #(0)>i(1)>. . .>i(j). As-
sume further that I was replaced in F by IioUx

—x1, then I;q) was replaced in F by Iii)Uxi—x2, . . .,
and then [;;_) was replaced in F by lij-\Uxj—1—x;:
where x,€CoCli)Uxy, x26CiCliyUxy, . . ., and

xj'EquC],'(;q)Ux_,' 1-

Suppose there is a circuit C;Cl;;Ux;. Set [
might have the same label-identity in F as [, for
several values of ¢ <j, and so the contents of [j; may
have changed several times since the original I;j, which
gave rise to Sij=S(li;jNSij)—1). In particular, x,
for some ¢ <j may have been adjoined to l;j. How-
ever, by the induction hypothesis any such x, is
contained in S -1 and thus in Sjj).

Therefore all elements of C;— x; which are not in
the original Iij) are in S;ij. By definition of Sy, all
elements of the original /;j) which are in Sij) - are also
in Si). Thus if all elements of C;— x;j are in Sij)— then
they are all in Sij), but since Sjj is a span then x; also
would be in Sj), contradicting the inductive hypothesis.
Hence, there exists some element x; 4 of C;j such that
Xj+14SiG) 1. Since xj 1 1€Sy, there is some i(j+ 1) < i())
such that x;j, 1¢Si;+ 1) and xj  1€SiG+ 1) 1.

Therefore when there exists a Cj, we repeat the in-
ductive step by replacing Ii by i) U xj —xj 4 1.

Since 1(0) > i(1) > . . ., eventually we must reach an
i(j) for which there is no C;Cl;;Ux;. Then we can
replace /i, in F' by independent set [;; U x; without
having to displace another element xj,;. End of
proof.

1.7. Corollary

For the special case where M is the matroid of a
graph G, theorem 1 can be simplified somewhat:

CoROLLARY (Nash-Williams [5]): The edges of a
graph G can be colored with as few as k colors so that
no circuit of G is all one color, if and only if there is no
subset U of nodes in G such that, where Ky is the set of
edges in G which have both ends in U,

|Ey| > k(JU|—1).

Symbols |U| and |Ey| denote, respectively, the
cardinalities of U and Ey.
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Not every subset 4 of elements in the matroid
M(G) of G, nor even every closed set 4 of elements in
M(G), corresponds to a set of edges of type E;.  How-
ever, the relation |4 |= k- r(A) for every set A corre-
sponding to a set Ey of edges which form a connected
subgraph of G implies the relation for every subset 4
of elements in M(G).

The corollary follows (we omit the proof) from
theorem 1 by using the following characterization of
the rank function of a graph due to Whitney:

The rank r(E) of any subset E of edges in G, i.e., the
rank of the matroid subset corresponding to E, equals
the number of nodes minus the number of connected
components in the subgraph, G - E, consisting of the
edges E and the nodes they meet, or equivalently in the
subgraph, G : E, consisting of the edges E and all the
nodes of G. The notation G+-E and G:E is due to
Tutte, chapter III of [7].
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