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Extensions of matroids to sets containing one additional element are characterized in terms of

modular cuts of the lattice of closed subsets.

An equivalent characterization is given in terms of linear
subclasses of the set of circuits or bonds of the matroid.

A scheme for the construction of finite geo-

metric lattices is derived and the existence of at least 2" nonisomorphic matroids on an n-element set

is established.
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1. Introduction !

In order to facilitate inductive proofs of matroid?
theorems, we shall set forth a characterization of single-
element extensions of matroid structures. Our tech-
niques are those developed in our recent paper,
“Lattice Differentials and the Theory of Combinatorial
Independence’. Sufficient material is included in
the next three sections to support the proofs of the
extension theorems. The reader is referred to the
above paper for details.

A matroid, defined on a finite set, may be thought
of as a structure defined on a lattice, i.e., on the
Boolean algebra of all subsets of the set. Not all
the properties of Boolean algebras are used in the
proof of matroid theorems, however. We have
chosen modular lattices as the proper domain for
our presentation of the material needed for extension
theory.

2. Differentials

An element y is said to cover an element x in a
lattice L if x<y, and for any element z, x <z <y,
implies z=y. A lattice L is modular if, for all ele-
ments x and y in L, x covers xay if and only if xvy
covers y. A sequence p: x=p,<p; < . <pa=Yy

! The statement of the extension theorem and the classification of matroids are taken
from the author’s Ph.D. thesis, entitled “On the Theory of Combinatorial Independence”,

written under the supervision of Professor Gian-Carlo Rota, and presented to the Mass.
Inst. of Technology, May 1964. We are grateful to Jack Edmonds, National Bureau of
Standards, who pointed out the significance of these theorems and encouraged us in

their presentation.

2 H. Whitney, Amer. J., 1935.

of elements p; of a lattice L, in which p; covers p;
for i=1, ., n, is a path (of length n) from x to y.
A step is a path of length 1.

The partial order of the lattice induces an order
on the set of steps of the lattice. If [x, y] and [u, w]
are steps of a lattice L, we say [x, vl = [u, w] if and
only if x=yau and yvu=w. If, in a modular
lattice, a step [u, w] covers a step [x, y]in this ordering,
then [u, x] and [y, w] are also steps.

Definition: A function R defined for all steps
[x, y] of a finite modular lattice L, and taking values
in the two-element lattice?® {0, 1}, is a differential
if and only if it is

(a) Projective on steps: If steps [x, y] and [u, w] are
in the order [x, y] <[u, w], then R[x, y]= R[u, w].

(b) Subadditive on steps: If a step [u, w] covers a
step [x, y] then R[x, y] < R[x, u] v R[u, w].

The local character of differentials may be repre-
sented pictorially. A local graph is any assignment
of values 0 or 1 to the four steps of an interval [x Ay,
xVy] in a finite modular lattice L, where the elements
x and y cover xAy and are thus covered by xvy.

PROPOSITION: An assignment of values 0 and 1 to
the steps of a finite modular lattice L determines a
differential if and only if all local graphs are of the
Jollowing five types: zero, mixed, prime, one, or inexact.
(These types of local graph are defined as figure 1.
We indicate steps on which R=1 by double lines,
R =0 by single lines.)

4 Differentials of higher order may be obtained by allowing the range of the differential
to be a lattice more general than {0, 1}.

55



OQOE

ZERO MIXED PRIME ONE INEXACT

FIGURE 1

PRrOOF: The projective and subadditive properties of
differentials eliminate all local graphs except the five
enumerated above. Conversely, if R is a function
on steps with values in the lattice {0, 1}, and if all
local graphs of R are zero, mixed, prime, one, or in-
exact, the subadditive property follows, and the pro-
jective property is established, for steps [x, y] and
[u, w], with [x, y] <[u, w], as follows. Let x=po<p;
< .. .<pu=ubeapathfromxto u, andletg=pvy
be the projected path y=povy <pivy< ... <puVy
=w from y to w. If R[x, v] < R|u, w], then R[x, y]=0
and R[u, w]=1. Let p; be the greatest element such
that R[pi, ¢i]=0. Then R[pi:1, gis1]=1. Such a
local graph pi, qi, pi+1, gi+1 is neither zero, mixed,
prime, nor inexact.

A differential R is termed exact if and only if it has
no inexact local graph. Exact differentials are the
subject of section 4, below.

The three principal sources of differentials are
closure operators, join-homomorphisms, and finite
lattices. We describe these in turn.

If Cl is a closure operator (x < Cl(x), and x < Cl(y)
implies Cl(x) = Cl(y)) on a finite modular lattice L,

Rlx, y]=1if Clix) < Cl(y)

=0 otherwise

defines a differential R on the steps of the lattice L.

A differential is canonically related to a unique
closure on its domain lattice. We say an element x
of a finite modular lattice L is closed relative to a
differential R on L if and only if R[x, y]=1 for all
steps_of the form [x, y]. We shall prove closed ele-
ments are elements x such that Cl(x) =x, in the closure
Cl associated with R.

PROPOSITION: Existence of Closed Elements: If
R is a differential on a finite modular lattice L, and
if the differential R has value 1 on some step of L,
there exists a closed element z in L other than the ele-
ment 1.

PROOF: Assume R has value 1 on the step [u, w],
and say the lattice L has height n. Choose a path p
from 0 to 1 which is maximal with respect to the
number k of initial steps on which the differential R
has value 0. Then all steps beginning at pr must have
differential value 1, and px is closed. It remains
to prove that k< n, so that py is not the uppermost
element 1 of the lattice.

We prove by induction on the height n of the lattice
that a step [u, w] on which R has value 1 cannot co-
exist in L with a path p from 0 to 1 on which R has
value 0. If n=1: u=0 and w=1, and no alternate

path exists. Assume the truth of the statement for
n—1, and let L have height n. Since L is modular,
either wVp, 1=uvVp,—1 and wAp,—1 covers wAp, i,
or else wvp,_1 covers uvp, 1 and wAp,1=uAp,_;.
In the first instance, we have the ordering of steps
[wApni, wApni]<[u, w], so Rlunpn-1, wApp—1]=1
in the lattice interval [0, p,_i] of height n—1. This
step cannot coexist with the portion of the path p from
0 to pu-1. In the second instance, choose a path ¢
from u to p,—1, and let j be the greatest index for which
Rlgj, wvq;]=1. By subadditivity of R on steps,
Rlgj, gj+1]=1, where [gj, gj+1] is also a step in the
interval sublattice [0, p,—1] of height n—1.
ProproOSITION: Closures Formed from Differentials:
Given a differential R on a finite modular lattice L,

Clx)=sup {y; d path from x to y along which R =0}
=inf {z; z closed, x <z

is a closure operator on the lattice L., the differential
of which is R.

ProoOF: If an element x is connected to two elements
y1 and y» by paths along which R=0, every step in a
path from y; to y1Vy: exceeds, in the ordering on
steps, some step in the path from x to y.. Thus
R=0 on the extended path from x to y;Vy., so
yiVy: < Cl(x). If a path exists from x to y along
which R=0, then R must have value 0 on all steps of
the lattice interval [x, ¥], as was shown in the proof
of the previous proposition. Thus the closure Cl(x)
may be characterized as the maximum element y
such that R=0 everywhere on the lattice interval
[x, y]. This element Cl(x) must be closed, for other-
wise a path along which K=0 would exist from x
to an element covering Cl(x).

The set of closed elements of the lattice L is closed
with respect to the lattice operation inf. If x and y
are closed elements, and an element u covers xAvy,
then usfxorusty. Say usty. Then uvy covers y,
[xry, ul]<[y, uvy] in the ordering on steps, and
R[xAy, u]=1 because the element y is closed and
Rly, uvy]l=1. Thus, for any element x in L, Cl(x)
may be characterized as the infimum of all closed
elements z such that x <z. As is proven in the theory
of closure operators,* any inf-closed class of lattice
elements generates a closure operator by this rule.

It remains to prove that the differential of the closure
operator Cl is the original differential R, i.e., that
R[x, y]=1if and only if Cl(x) < Cl(y). If R[x, y]=1,
there is a relatively closed element z in the interval
sublattice [x, Cl(y)] other than Cl(y). If an element
u covers z in the lattice L, but u s Cl(y), then uvCl(y)
covers Cl(y), R[CU(y), uvCly)]=1, and R[z, u]=1
because R is projective on steps. Thus the element
z is closed, and Clix)<z<Cl(y). Conversely,
if Clix)<Cly), then yvCl(x) covers Cl(x) and
[x, y] =< [Cl(x), yvCl(x)] implies R[x, y]=1.

The set of closed elements of a differential R on
a finite modular lattice L, with partial ordering induced
by that on L, forms a finite lattice L/R, called the

40. Ore, Theory of Graphs.



lattice of closed elements of R on L. The meet-
irreducible elements (elements covered by exactly
one other element) and join-irreducible elements
(elements covering exactly one other element) figure
prominently in the theory of differentials. Those
meet-irreducible elements covered by 1 are called
coatoms; those join-irreducible elements covering 0
are called atoms.

As a second source for differentials, consider
join-homomorphisms  (flxvy)=fx)vf(y) from a
finite modular lattice L into a lattice . A closure

operator and a differential are induced on the domain
of a join-homomorphism in much the same way that
a partition is induced on the domain of a function.

PROPOSITION: If f is a join-homomorphism from
a finite modular lattice 1. into a lattice Q, then

Rlx, yl=1 if f(x) < f(y)

R[x, y]=0 otherwise

defines a differential R on the steps [x, y] of the lat-
tice L.

PROOF: Assume steps [x, y] and [u, w] are in the
order [x, y] < [u, w]. If R[x, y]=0, then fly)=f(x)
< f(u), because x <u and f, being a join-homomor-

phism, 1% order-preserving. Thus f(w)=/(yVvu)
—f(y)vf =f(u), so R[u, w] =0, proving R is projec-
tive on steps. If a step [u, w] covers a step [x, y],
and if R[x, u]=R[u, w]=0, then f(x)=f(y) = f(w)
=f(u) =f(x), so f(x) =f(y), and R[x, y] =0, proving
subadditivity.

Any differential may be represented as that of a
join-homomorphism, by letting the lattice Q be the
Boolean algebra of all subsets of the set M of meet-
irreducible elements of the lattice L/R, and by mapping
each element xel into the subset of M composed of
meet-irreducible elements of L/R not above Cl(x).
The proof is available in “Lattice Differentials . . .”.

A third source of differentials is the theory of finite
lattices. Let Q be an arbitrary finite lattice, let A4
be the set of join-irreducible elements of Q (those
elements covering exactly one other element), and let
L be the Boolean algebra of all subsets of the set A.
Define a closure operator Cl on the Boolean algebra
L by mapping every subset x of the set 4 into the
subset Cl(x) containing all join-irreducible elements
e of Q such that e < sup d, dex the supremum being
taken in the lattice . The differential of this closure
operator is the structure differential of the lattice Q.

These three examples indicate the scope of the
theory of differentials, a theory coextensive with
the theories of finite lattices and of closure operators
on finite modular lattices.

3. Unit Increase Functions

Before beginning a discussion of exact differentials,
let us consider systems satisfying Whitney’s first
rank function axiom for matroids. Called unit in-
crease functions, they provide a shortcut to exact
differentials, a shortcut used in the single-element
extension theorem. Differences of wunit increase
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functions, like differentials, may be characterized
by conditions on local graphs.

An integer-valued function r defined on a finite
modular lattice L is a wunit increase function if r(y)
—r(x) is either 0 or 1 whenever an element y covers
an element x in L. The function R defined for all
steps [x,y] in L by

R[x, y]=1if rx) < r(y)
=() otherwise

is the difference of the unit increase function r. Notice
that for all steps [x, y], R[x, y]=ry)—r(x). In draw-
ing comparisons with differentials, we think of the
values 0 and 1 of R as elements of the lattice {0, 1}.
The local characterization of differences of unit
increase functions is as follows.

ProproOSITION: Let L. be a finite modular lattice.
An assignment of values 0 and 1 to the steps of the
lattice L. is that of a difference of a unit increase func-
tion on L if and only if all local graphs are of the fol-
lowing five types: zero, mixed, prime, one or inverted.

(See fig. 2).

OO0

ZERO MIXED PRIME ONE INVERTED

FIGURE 2

PROOF: It is clear that the five possible local graphs
not listed above may not appear in a difference of a
unit increase function. Given an assignment R of
values 0 and 1 to the steps of L such that all local
graphs are zero, mixed, prime, one or inverted we
construct a unit increase function r by setting

n
x)= 2 R|pi-1, pi], where p is any path from 0 to x.

i=1

That r(x) is independent of path is established by an
inductive argument. Say x is of height n in the lattice
L, and all paths of length n—1 or less have the same
R-sum. Let p: 0=po<p: < .<pp=x and g¢:
O=q<qa< . < gn=x be two paths from 0 to x.
If p1=gq1, the R-sums are equal on p and q. If p1 # qi,
0=pinrg: and p1V g covers p; and ;. Form a path s
from p;Vvg: to x. The R-sum along p is equal to that
to p1 and piVqi, thence along s, by the induction
assumption. This sum is in turn equal to the sum to
¢1 and p1Vq, thence along s, because the local graph
on 0, p1, g1, p1V q1 is one of the five types listed above.
But this sum is equal to that along the path g, by the
induction assumption. The R-sum, thus well-defined,
is a unit increase function, because r(y) —r(x)=R|x, y]
=0 or 1, for all steps [x, y].



This completes the local characterization of dif-
erences of unit increase functions on finite modular
lattices. A unit increase function whose difference
has no inverted local graph is termed a Whitney rank
function.

We find the following example due to Edmonds of
some importance. Given a finite set, and a class of
distinguished subsets called independent sets, a class
closed with respect to taking of subsets, we may
define the rank of a subset to be the number of ele-
ments in its largest independent subset. This rank
is a unit increase function. The single assumption
made, that every subset of an independent set is
independent, is the assumption defining simplicial
complexes in algebraic topology.

4. Exact Differentials

An exact differential was defined as a differential,
all of whose local graphs are zero, mixed, prime, or one.

ProPOSITION: Exact Differentials: If v is a unit
increase function on a finite modular lattice and if the
difference R of r is a differential, then r is a Whitney
rank function, and R is an exact differential.

PROOF: If r is a unit increase function with dif-
ference R, then all local graphs of R are zero, mixed,
prime, one, or inverted. If R is also a differential,
all local graphs are zero, mixed, prime, one, or inexact.
Thus all local graphs are zero, mixed, prime, or one,
r is a Whitney rank function, and R is an exact dif-
ferential.

ProposITION: Matroids: Let 1. be the Boolean
algebra of all subsets of a finite set. Then an integer-
valued function r for which (®)=0 is a Whitney rank
Junction if and only if r is the rank function of a
matroid.

PrOOF: Whitney’s first axiom for matroids in terms
of rank functions was taken as the definition of a
unit increase function. If r(x)=r(xve)=r(xVvf)
for elements e and f not in a subset x, then x, xve,
xVf, xvevf form a local graph, on which R[x, xVe]

=R[x, xvf]=0. If R is exact, this local graph must
be zero, so Rlxve, xveVf]=R[xVf, xvevf]=0,
and thus r(x)=r(xvevf), which gives Whitney’s

second axiom for matroids in terms of rank functions.
Conversely, if r is the rank function of a matroid, no
local graph of its difference R may be inverted, so
r is a Whitney rank function.

Several matroid theorems apply without alteration
to exact differentials. For example, the statement
“if an element e is dependent upon a subset x but
upon no smaller subset, then x is a circuit” may be
phrased in terms of closed elements, as follows.

ProPOSITION: Characterization of Meet-Irreducible
Closed Elements: Given a step [x,y] in a modular
lattice L. and an exact differential R defined on L,
the element x is meet-irreducible in the lattice LIR
of closed elements if and only if the step [x,7y] is
maximal, in the ordering on steps, among steps on
which the differential R has value 1. (The proof may
be found in “Lattice Differentials . . .”.)

The concept of matroid duality is available for exact
differentials. An element x in the domain lattice

L of a differential R is dual-closed if R[y, x]=0 for
all steps of the form [y, x]. The class of dual-closed
elements is closed under the lattice operation sup;
the image of this class in the inverted lattice L is
closed under the lattice operation inf, and gives rise
to a closure operator and a differential R* on the
inverted lattice L. It may be shown that R**=R if
R is an exact differential.

Several conditions on differentials, equivalent to the
exactness condition, will support the proof of the ex-
tension theorem. These conditions are given below;
their equivalence is proven in “Lattice Differen-
tials . . .7,

PROPOSITION: Equivalent Exactness Conditions:
If R is a differential on a finite modular lattice L.,
then the following statements are equivalent.

(1) R is exact.

(ii) Closed Element Covering Property: If an ele-
ment y covers an element x in the domain lattice L.,
then the image of Cl(y) is equal to or covers the image of
Cl(x) in the closed element lattice 1./R.

for

(iii) Duality: R*y, x]=1—R]x, y]
[x, yl.

(iv) Existence of Dual-Closed Elements: In every
interval [x, z] of the domain lattice on which R does
not everywhere have the value 1, there exists a relatively
dual-closed element other than the element x.

(v) Izlldependencp of Path: Differential sums of the

form Z Rlpi-1, pil along paths p: po<p:<. ..

< pn are dependent only upon the end points po, pa.

The closed element covering property of exact dif-
ferentials, together with the construction of the closure
operator Cl of a differential R, imply that, for any
step [x, y] of the domain lattice L, Cl(y) covers Cl(x)
in L/R if and only if R[x, y]=1, while Cl(y)=Cl(x)
if and only if R[x, y]=0. Conversely, if p: x=p,
<pi1<...<pp=z is any path from x to z in the
domain lattice L of an exact differential R, and if
Cl(z) covers Cl(x) in the closed element lattice L/R,
then R[po, p1]=1 because po=x is a closed element,
and R[pi-1, pi]=0 for i=2, . . ., n, because Cl(p;)
and Cl(py) both cover Cl(x) in L/R, and must be equal.

Exactness of differentials is related to exactness
of differential forms, in the theory of functions of
several real variables. Given a differential R on
the Boolean algebra of a set {e;, . . ., ey}, and given a
subset x of this set, let

all  steps

Mi(x)=R[x, xVe;i]
be the coefficient of de; in the first order differential

olx)= Z Mi(x)de;.

Partial differentiation is defined by

M ()= Mxve)— M)
a(’,i

for any function M from subsets to numbers. Then
the usual exactness condition may be expressed in
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terms of the differential R:
oM;_ oM,
dej  de;

if and only if
R[xvej, xveive;] —R[x, xVe;]
=R[xvei, xvejvei] —R[x, xVe;]

if and only if
R[x, xve;] + R[xVej, xVeiVe;]
=R|[x, xvei] +R[xVei xveive;],

a statement which excludes inexact local graphs, yet

is true on local graphs which are zero, mixed, prime, or

one.

5. Single-Element Extensions

An understanding of the structure of the closed
element lattice L/R is important for the extension
theorem. A lattice Q is semimodular if, for any
elements x, y in Q for which x covers xay, it follows
that xvy covers y. A lattice Q is geometric if it is
semimodular and complemented, i.e., if all join-ir-
reducible elements are atoms. In a geometric lattice,
every element is expressible as a join of atoms and as
a meet of coatoms.

ProproOSITION: The Closed FElement Lattice: If R
is an exact differential on a finite modular lattice 1.,
the lattice 1/R is semimodular. If the domain lattice
L is complemented, the lattice 1.JR is geometric. (The
proof may be found in “Lattice Differentials . . .”.)

Definition: A subset J of the elements of a lattice is
convex if xeJzeJ, and x <y <z imply yeJ. A cut of
a lattice Q is a convex subset of Q which, if it is non-
empty, contains the lattice element 1. A cut J of a
lattice Q is modular if xeJ, yeJ, and x covers x A y imply
xAhy€f.

The concept of modular cut combines the properties
of a Dedekind cut with a covering condition. A
modular cut is not necessarily a lattice ideal: it is
closed with respect to arbitrary multiplication (V)
by any lattice element, but must be closed with respect
to sums (A) of elements in the cut only when one of
the elements covers the sum. The simplest modular
cuts in a lattice are the empty cut, the cut containing
only the element 1, and the cut containing the entire
lattice. Any ideal (xe/, yeJ, zeQ imply xvz €/ and
x Ay €)) is also a modular cut.

THEOREM: Extensions Produce Modular Cuts:
Let R be the differential of a matroid on the Boolean
algebra L. of all subsets of an n-element set X: let e
be any element of the set X, and let Ry be the restriction
of the matroid R to the Boolean algebra 1., of all subsets
of the set Xo=X—1{e}. Let J be the set of all closed

elements x of the matroid Ry such that R[x, xve]=0.
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Then ] is a modular cut of the lattice Lo/Ry of closed
elements of the restricted matroid.

Proor: If the set J is nonempty, and contains
some element x in the closed element lattice Lo/Ro,
we have the ordering on steps [x, x ve] <[lo, 1], so
the unit element 1, of the lattice Ly/R, is also in the
set J. J is convex, and therefore a cut, by the same
argument: xeJ, x <y imply [x, xve] <[y, yve], so
R(x, xve]=0 implies R[y, yve|=0 and yeJ.

It remains to show that the cut J of the lattice Ly/R,
is modular. Assume closed subsets x and y in L,
have an intersection z. Assume that, as elements
of the closed element lattice Lo/Ry, x and y are in
the cut J, and x covers z, yet z is not in the cut J.
Choose a path p: z=po<p,<...<p,=x from :
to x in the Boolean algebra L. R[pi 1, pi|=1 only
for =1, because the image of x covers the image of z
in the closed element lattice Lo/R,. Since x is in the
cut J, R[x, xve]=0, and the sum of the values of the
differential R from z to xve is 1. Lift the path p to
a path pve: zve=poyve<pve< .. .<p,Ve
=axVe. Since z is not in the cut J, R[z, zve]=1,
and R has value 0 along the entire path pve, because
the R-sum is independent of path.

The subset p;vy covers y, and Rly, pivy|=1,
because y is closed relative to the restricted differential
Ro. Rly, yve]=0, because y is in the cut J. Thus
the local graph on y, pivy, yve, pivyve is mixed,
and R[yve, pivyve]|=1. This contradicts the pro-
jective property of the differential R, because [zVe,
pivel=<|[yve, pivyvel], yet R has value 0 along the
path pve.

The converse of this theorem is also true, as we
now prove.

THEOREM: Modular Cuts Produce Extensions: Let
L. be the Boolean algebra of all subsets of an n-element
set X, and let e be any element of the set X. Let Ry
be any matroid on the Boolean algebra 1.y of all subsets
of the set Xo=X—{e}, and let ) be any modular cut
of the closed element lattice 1.o/Ry. There is a unique
matroid R on the Boolean algebra 1., extending R,
and with the property, for all closed elements xel.g,
Rlx, xve]|=0 if any only if xel.

Proor: Let ry be the Whitney rank function of the

matroid Ry. ro(x):E Ro|pi-1, pi| for any path p from
7

0 to x in the Boolean algebra L,. Define a function

r on subsets in the Boolean algebra L by: for every
subset x in L,

(1) r(x)= ro(x)
(i1) r(xve)= rox)+ 1if Clx)¢J
=ro(x) if Clix)eJ.

We prove that the function r is a unit increase
function. Steps in the Boolean algebra L are of three
types: [x, y], [x, xve], and [xVe, yve], where [x, y]
is a step in the Boolean algebra Ly. On steps of the first
type, r agrees with ro, a unit increase function. On
steps of the second type, we have defined r(xve) to be



either equal to or one greater than rx). On steps
of the third type, r(yve)—r(xve)=ro(y)—ro(x) unless
Cl(x)¢J and Cl(y)eJ. But if Clix)¢J and Cliy)e, we
know Cl(x) < Cl(y), so Ro[x, y]=1, and r(xve)=
1 +ro(x) =ro(y)=r(yve). Thus r is a unit increase
function.

If R is a matroid on the Boolean algebra L, and if
x is any subset of Xy, then R[x, xve] =R[Cl(x), Cl(x)
ve], because R is subadditive on steps, and has value
0 on all steps of the interval [x, Cl(x)]. Thus, if R is
a matroid on the Boolean algebra L, extending the
matroid Ry on the Boolean algebra Ly, and having the
property, for all closed elements x in Lo, that R|x,
xVe] =0 if and only if the image of x in Ly/R, is in the
modular cut J, then the Whitney rank function of the
matroid R must be the unit increase function r de-
fined above. Thus there exists at most one matroid
R with the required properties. If the unit increase
function r can be shown to be a Whitney rank function,
the existence of such a matroid R extending R, is
established.

Define the function R on all steps of the Boolean
algebra L to be the difference of the unit increase
function r. We must show that no local graph of
R on L is inverted. The local graphs in L are of three
types:

(i) Local graphs on subsets xAy, x, y, xVy, where
neither x nor y contain the element e, but both cover
XAY.

(i1) Local graphs on subsets x, y, xve, yve, where
y covers x and does not contain e.

(iii) Local graphs on subsets z, xvz, yvz, xvyvz,
where z=(xAry)ve and the local graph on xaAy, x, y,
xvyis of type (i). No local graph of type (i) is inverted
because R, is exact. No local graph of type (i) is
inverted, because R[x, xve] =0 implies Cl(x)eJ, and
x < y implies Cl(y)eJ and R[y, yve] =0.

If a local graph of type (iii) is inverted, the values of
the difference R are uniquely determined on the in-
terval [xAry, xvyvz] of length 3. The local graph
on xAy, x, ¥, xVy is one, by the projective property
of R across two local graphs of types (ii) and one of type
(i), which are known to be either zero, mixed, prime,
or one. The local graphs of type (ii) on xAvy, vy, z,
yvz and on xAy, x, z, xVz are then prime, and that
on x, xVy, xVz, xVyVvz is mixed. The resulting con-
figuration is drawn in figure 3. This configuration is
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excluded by the modularity of the cut J, because the
closures of x and of y cover the closure of xAy and are
covered by the closure of xvy in the closed element
lattice Lo/R,, while R[x, xvz]=R[y, yvz]=0 im-
plies Clix) and Cl(y) are in the modular cut J, and
R[xry, z] =1 implies Cl(xAy) is not in J.

6. Linear Subclasses

A preponderance of matroid theory is phrased in
terms of circuits or bonds. Systematically, circuits
and bonds are classes of distinguished subsets of a set,
satisfying two axioms. In terms of closures, circuits
are minimal nonempty dual-closed subsets. The cir-
cuits of the dual matroid (the bonds of the matroid)
appear naturally as the set-complements of those
closed subsets which are coatoms of the closed-set
lattice.

Single-element extensions of matroids are readily
characterized in terms of coatoms of the closed-set
lattice. We show in this section how modular cuts are
generated by linear subclasses ® of the set of coatomic
closed subsets.

The passage from modular cuts to linear subclasses
may be accomplished within the closed-set lattice.
No reference is made to the manner in which this
lattice is embedded in the domain of the matroid.
Closed-set lattices of matroids are geometric; the
structure differential of a finite geometric lattice is a
matroid. The following theorems may thus be re-
garded as theorems about finite geometric lattices,
and will be so written.

A linear subclass of the set C of coatoms of a geo-
metric lattice Q is any subset % of the set C which, if
it contains two coatoms which cover their infimum,
contains all other coatoms covering that same infimum.

The convex closure of a set % of coatoms of a geo-
metric lattice () is the set of all lattice elements x such
that they and all lattice elements y > x are expressible
as an infimum of coatoms in the set %.

THEOREM: Generation of Modular Cuts: The con-
vex closure of any subset ¥ of the set of coatomic ele-
ments of a finite geometric lattice Q is a modular cut
of the lattice Q if and only if the set ¥ is a linear sub-
class. Every modular cut is the convex closure of the
set of coatomic elements it contains.

PRrROOF: Let / be a nonempty modular cut of a finite
geometric lattice (). Every element of J is expressible
as an infimum of coatomic elements of (), because Q
is geometric. All coatomic elements in such an ex-
pression are in the modular cut J, because J is convex
and contains the element 1. Thus J is contained in
the convex closure of the set of coatomic elements in /.
If an element x of the lattice Q is in the convex closure
of the set of coatomic elements in J, choose a path
prx=po<pi<...<p,=1fromxtol. Since p,_
is expressible as an infimum of coatomic elements in J,
yet is a coatomic element, p,_; is an element of J. Let
J be the largest index such that p;¢/, then find a
coatomic element z in J such that pjs1Az=pj. Since

> W. T. Tutte, Trans. A.M.S., 1958.
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the cut J is modular, p;is also in /. Thus the element
x is in the modular cut J, and every modular cut is the
convex closure of the set of coatomic elements it
contains.

Assume again that J is a modular cut of a finite geo-
metric lattice ), and let L be the set of coatomic ele-
ments in /. If x, y, and z are coatomic elements of Q
such that x and y cover xAy and such that x and y are
in the set L, then x4y is in the modular cut J. Since
J is convex, z is also in J. Being coatomic, z is in %,
and ¢ is a linear subclass.

It remains to prove that the convex closure of any
linear subclass is a modular cut. One step in this
proof is of independent interest, and is set apart as a
lemma.

LLEMMA: Covering Properties of Linear Subclasses:
If 4 is a linear subclass of the coatomic elements of a
Jfinite geometric lattice Q, and if C(¥) is the convex
closure of &, then every lattice element w¢C(Z) is cov-
ered by at most one element of C(%).

ProoOF: Let w be a lattice element not in C(.¥), yet
covered by two distinct elements u; and wuy of C(.%).
Assume w is maximal with respect to these properties.
Since every element x above w is an infimum of
coatomic elements above w, yet some element above w
is not an infimum of coatomic elements in the linear
subclass 7, we may choose a coatomic element
z, w= z, z¢[.. The rank r(w) of the element w in the
lattice Q is equal to neither r(1) nor r(1)—1, because
w is covered by two distinct lattice elements. If
riw)=r1)—2, w is covered by two coatoms in the
linear subclass ¢, and thus must be in C(¥). Thus
rw) < r(1)—3.

Choose a pathp: w=po<p:1. . . <pr=2zfrom wto
z, and let ¢ be any complement (p;vV¢=p: and p1 A g=w)
of p; in the lattice interval [w, p2] of height 2. Note
that no elements p; of the path p are in C(%), nor is ¢
in C(¢). We shall prove that either p; or ¢ is also
covered by distinct elements of the convex closure
C(¥), in contradiction to the maximality of w.

The elements pVui, piVus, and uiVvu, are either
all distinct or all equal; they are all in C(¢) because
they lie above either u; or us; none of them is equal
to ps. If they are distinct, p; is covered by pivu,
and piVus, both in C(¥). If they are all equal, they
are not equal to p», so the elements gVvpi, qVu,
gVus are all distinct. But gvu; and ¢vu. are in
C(¥), and cover q.

The remainder of the proof of the theorem on gen-
eration of modular cuts now follows. Let ¢ be a linear
subclass of the set of coatoms of a finite geometric
lattice (), and let C(%¢) be the convex closure of <.
The element 1 is in C(¥), because 1 is the infimum of
the empty subset of ¥. Convexity of C(¥) follows
directly from the definition of convex closure, so C(%)
is a cut of the lattice . Assume x and y are in C(.%),
and that x covers xAy. Choose a path p: x A y=po<p:
< ... <pr=y from xAy to y. Since x covers
xAy, and xAy=xAap; =0, 1, . . ., k), xvpi covers
pii=0,1,. . ., k). The elements xvp; are in C(¥),
because x <xvp;. Letj be the least index such that
pieC(¢). If j# 0, pj_1 is covered by both xvp;_; and

pj, both of which are in C(¢). Applying the lemma on
covering properties of linear subclasses, we see py=
xAy is in C(¥), verifying the modular property of the
cut C(¥).

The characterization of modular cuts as convex
closures of linear subclasses provides us with a descrip-
tion of single element extensions of matroids. If R
is a matroid defined on subsets of a set X=X,U{e},
extending a matroid R, defined on subsets of the set
Xo, then the element e is dependent upon a subset x,
i.e., R[x, xve] =0, if and only if Cl(x) is in the convex
closure of some linear subclass of the coatoms of
Lo/R,.

Let us now characterize the coatomic closed sub-
sets of the extended matroid. We aim for a simple
construction of the coatoms of an extended matroid,
applicable to matrix-theoretic investigations.

THEOREM: Closed Subsets of Single-Element Exten-
stons: Let R be a matroid on the Boolean algebra L.
of all subsets of a finite set X=XoU{e}, which ex-
tends a matroid Ry on the Boolean algebra L, of all
subsets of the set X,, and which is produced by the
modular cut J of the lattice Lo/Ry. Then the closed
subsets of the matroid R are

(i) Closed subsets relative to Ry which are not in
the modular cut J,

(i) Subsets of the form x Ve where x is a closed subset
relative to Ry in the modular cut J,

(i) Subsets of the form xve where x is a closed
subset relative to Ry not in the modular cut J, and
covered in the lattice Lo/Ry only by elements not in
the modular cut J.

PROOF: Subsets of X not containing the element e
are closed relative to R only if they are closed relative
to Ry, and are not in the modular cut /. Subsets con-
taining the element e and closed relative to R must,
on deletion of e, become closed elements relative to
Ry, because R is projective on steps. To ascertain
which subsets of the form xve, for subsets x closed
relative to Ry, are closed relative to R, we observe
that the R value 1 on a step [x, y] for yeL, decreases
to 0 on the step [xVve, yve] if and only if the local
graph on x, y, xve, yve is prime. But this is true if
and only if Cl(y), an element in the modular cut J,
covers (in Ly/Ry) Cl(x), an element not in.J. The subset
xve is closed relative to R if and only if this occurs for
no subset y covering x.

The coatomic closed subsets of the extended matroid
are easily picked out as those closed subsets x such
that paths p from x to 1 have R value 1 only on the
first step. They are those coatomic closed subsets
of Xy which are not in the linear subclass, together
with subsets of the form x Ve, x being either a coatomic
closed subset in the linear subclass, or a subset of
rank r(1)—2 and covered in L¢/R, only by coatomic
closed subsets not in the linear subclass.

Taking set-complements of coatomic closed sub-
sets, we obtain a statement of the single-element
extension theorem in terms of the bonds or circuits
of a matroid. A linear subclass of a set of bonds is
a set of bonds which contains, along with any pair
x, ¥ of bonds whose union xU y has rank 2 in the lattice
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of unions of bonds, any other bonds coniained in the
union xUy. The word “circuit” may be substituted
everywhere for “bond” in the previous sentence.

THEOREM: Bonds of Single-Element FExtensions:
Given a matroid with differential Ry on the Boolean
algebra of subsets of a finite set X,, and given a linear
subclass 4 of the set By of bonds of R, let X be the
set XoU{e}. Then the following are the bonds of the
matroid R produced by the linear subclass 4':

(i) Bonds of Ry in the linear subclass ¥';

(i) Sets of the form xU{e}, where x is a bond of
Ry outside the linear subclass ¥ ;

(i) Unions of bonds of Re, of rank 2 in the lattice
of unions of bonds, and covering no bond in the linear
subclass < .

As a simple example, consider the bond matroid
of a triangle with sides a, b, ¢, and an isthmus d at-
tached at one of the vertices. The bonds are ab, ac,
be, and d. The single element extension correspond-
ing to the linear subclass {ab} has bonds (i) ab, (ii)
ace, bce, de, (iii) acd, bed. These are the bonds of
the square with edges a, b, e, d and a diagonal ¢ mak-
ing a triangle with a and b. The original graph is
obtained by deleting the edge e.

In the above theorem and example, a matroid Ry is
extended to a matroid R in such a way that R, is the
restriction of R to the Boolean algebra interval [0, 1—e].
This restriction is Tutte’s® R;=R - X,, and is accom-
plished by “elimination” of the element e. Applying
the above theorem to the dual matroid R* and inter-
preting the results in terms of the matroid R, we obtain
a characterization of matroids R such that R, is the
restriction of R to the Boolean algebra interval [e, 1].
This restriction is Tutte’s Ro=R X X,, and is accom-
plished by ‘“contraction” of the element e. Such
extensions are produced by linear subclasses of the
set Cy of circuits of the matroid Ry: the circuits of
the extended matroid are described in the above
theorem, if “circuit” is substituted for “bond” through-
out.

A class of unsolved problems suggested by Rota and
Tutte is the characterization of those linear subclasses
or modular cuts on matroids with property P, for which
the associated single-element extension also has prop-
erty P. This property P may be binary, regular, even,
graphic, or any property of the lattice of closed subsets.
Characterizations of linear subclasses or modular cuts
which preserve these properties may simplify induc-
tive proofs of otherwise difficult theorems.

7. Geometric Lattices

The analysis of closed subsets of single-element
extensions completed in the previous section, provides
a method for the construction of all finite geometric
lattices. Since every finite geometric lattice is the
closed element of its structure differential, and
since all matroids may be constructed inductively by
modular cuts, all finite geometric lattices are con-

6 W. T. Tutte, Trans. A.M.S., 1958.

structed by a sequence of modular cuts beginning
with the simplest geometric lattice: that containing
only the elements 0 and 1.

Referring to the theorem on closed subsets of single-
element extensions, we see that the subsets of the
first two types (those closed subsets x¢/ and those
closed subsets x v e with xe/) form a subsystem iso-
morphic to the closed-set lattice of the matroid R,.
Subsets of the third type must be added to the closed-
set lattice, and the appropriate covering lines must be
added to the lattice diagram, as follows.

Given a finite geometric lattice () and any modular
cut J of Q, let Ext J be composed of those elements
not in J, and covered by no elements of J. A new
lattice Q" may be defined, extending (), by adding to
the lattice Q an element x' corresponding to each ele-
ment x in Ext J, and by extending the covering relation
“y covers x” to include elements x and y of Q' such
that

(i) x,yarein (), and y covers x in Q

(i) y=x'

(iii) x=2z', yeJ, and [z, y] is an interval of length 2
in the lattice Q.

This inductive procedure is carried out for four steps
in figure 4.

Although any modular cut yields an extension of
the structure differential of a geometric lattice Q,
only those modular cuts J for which Ext J is non-
empty change the lattice (). The set Ext J is non-
empty, and thus the extension is nontrivial on Q, if
and only if no atom of the lattice Q is in the modular
cut J.

8. Numerical Classification of Matroids

We have seen the application of the single-element
extension theorem to the construction of finite geo-
metric lattices. Let us now turn our attention to a
numerical classification of matroids. We prove the
existence, on any n-element set, of at least one matroid
in each of 2" classes, and thereby obtain a lower bound
on the number of different matroids on a given set.

The sequence of values of the differential of a mat-
roid on the steps of a path from 0 to 1 in the domain
lattice may be thought of as forming a word in a lan-
guage employing two letters, the letter 0 coming before
the letter 1 in the alphabet. Of the words thus asso-
ciated with a given matroid the word coming first in
alphabetical order is an isomorphy invariant of the
matroid, and serves as an index for a classification
system.

We use the term least path to indicate a path, from
0 to 1 in the domain lattice of a matroid, if the word
formed of the differential values along this path is
alphabetically the first among all such words associated
with the same matroid. The word associated with a
least path of a matroid we shall call the first word of
the matroid.

Given any n-letter word formed of the letters 0 and
1, we shall prove the existence of a matroid having
that word as first word. This establishes the exist-
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FIGURE 4. Geometric lattices with n atoms, n—1, 2, 3, 4, 5.
extension are indi necti

Modular cuts generating each ext cting lines.  The set ¢/ is marked with a solid line; the set Ext J with a dotted line.
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ence of at least 2" isomorphically inequivalent matroids
defined on the Boolean algebra of subsets of an n-
element set. The existence proof proceeds by induc-
tion, and utilizes our knowledge of single-element
extensions.

THEOREM: Existence of Matroids With A Given First
Word: Let W be any n-letter word, i.e., any sequence
of length n consisting of zeros and ones. There exists

a matroid R on a Boolean algebra L of all subsets of

an n-element set, such that the word W is the first
word of the matroid R on L.

PrROOF: The theorem is obvious for n=1. Assume
we are given a word W =w,, . . ., w, of length n, and
that for any word of length n— 1 there exists a matroid
defined on a Boolean algebra of all subsets of an (n — 1)-
element set, such that the word of length n—1 is the
first word. If w,=1, find a matroid R, on the interval
[0, 1 —e], for which wy, . . ., w,—is first word. Choose
the empty modular cut, and let R be the matroid pro-
duced by that cut. Then R[x, xve] =1 for all subsets
x in the lattice interval [0, 1 —e], and R[xVe, yve] =
R[x, y] for all pairs x, y of elements in the lattice
interval [0, 1—e]. That W is the first word for R
follows from the fact that the word for a path employ-
ing a step greater than [0, e] in any position but the
last may be obtained from the corresponding word
for the projection of this path into the sublattice
[0, 1—e] by insertion of the letter 1 at some point,
moving all later letters back one space. This results
in a word at least as late as W in the alphabetical
ordering.

If the final letter w, in the word W is 0, the proof is a
bit more intricate. Form a matroid R, on the Boolean
algebra interval [0, 1—e], having w1, . . ., wy,— as
first word. On the lattice of closed subsets [0, 1 —e]/
Ry, let a modular cut J contain only the closed subset
1—e of Ry. Construct an extended matroid R on the
Boolean algebra L of all subsets of the n-element set in
accordance with the extension theorem. The co-
atomic closed subsets of the resulting differential R
are the coatomic closed subsets of Ry on the interval
[0, 1—e], together with those subsets of the form x Ve,
where x is a closed element of Lo/Ry of rank r(1)— 2,
because no coatoms of L¢/R, are in the modular cut /.

If a subset x in the interval [0, 1—e] is not con-
nected to 1 —e by a path along which Ry=0, it is con-
tained in some coatomic closed subset of Ry not in the
modular cut J, so R[x, xve]=1. In any path from
0 to xVe for any such set x, the projection of this path
into the lattice interval [0, 1—e], then via the step
[x, xve], is a lesser path. Let p be a least path for
the extended matroid R, and one which passes through
a minimum number of subsets containing the element
e. By the argument just given, if the subset py is the
first subset containing the element e occurring in the
path p, the subset p;_; either must be a coatomic closed
subset relative to the matroid Ry, or must be con-
nected to 1—e by a path along which Ry=0. If the
subset px_; is connected to 1 —e by a path along which
Ro=0, all steps above ps_; in the path p have R value
zero, so the path following p to px—1, then vial—eto 1
gives rise to the same word, and involves the element
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e in fewer subsets. On the other hand, if pi_; is a
coatomic closed subset of Ry, the step [px_1, px] is the
final step of p for which R has value one. Any path
along p to pi_1, then via 1 —e to 1 gives rise to the same
word, and involves the element e in fewer subsets.
Thus the path p passes through 1—e, and is a least
path. The restriction of p to the interval [0, 1 —e¢] is
a least path for Ry, so must give rise to the word
Wi, . . ., Wy—1. Since wy is 0, the word for the least
path p of the matroid R is the word W.

COROLLARY: A Lower Bound for the Number of
Matroids: There are at least 2" nonisomorphic matroids
on a Boolean algebra of all subsets of an n-element set.

PRrOOF: There are 2" different words of length n, and
each is the first word for some matroid.

The construction of a matroid with a given first
word may be carried out methodically. On a diagram
of the Boolean algebra of all subsets of an n-element
set, choose any path to be the least path, and indicate
on it the letters of the given first word. Then mark all
steps according to the projective and subadditive
properties of differentials, the requirement that every
local graph be zero, mixed, prime or one, and the re-
quirement that the given path be least.

When all the implications of the first word are ex-
hausted, a matroid may not be fully determined. A
matroid can then be defined in more than one way with
the given first word; the number of such ways we shall
term the multiplicity of the word.

DEFINITION: The multiplicity 6(W) of a word W of
length n is the number of isomorphically inequivalent
matroids with first word W, definable on the Boolean
algebra of all subsets of an n-element set.

We have proven that all words have multiplicity
0 at least equal to one. All words of one, two, or three
letters have multiplicity equal to one. A single four
letter word, 1010, has multiplicity two.

It is interesting to speculate about what additional
isomorphy invariants may serve to classify matroids.
The set of matroids with a given first word may be
arranged in a partially ordered system, along paths
of which the complexity 7 (the number of bases in the
matroid) increases. This investigation, which is
involved with the dichromate (see footnote 7) of a
matroid, is the subject of a future paper.
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