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This work is based on a series of papers in the Transactions of the American Mathematical So-
- ciety: A homotopy theorem for matroids, I and 11, 88, 144-174 (1958): and Matroids and graphs, 90,

572-552 (1959).

These papers set out a theory of matroids, with special emphasis on the conditions for a matroid

to represent a graph.

The treatment is as rigorous as that in the original papers, but it is hoped that
the present work is easier to read, because less condensed.

Many theorems originally proved only

for “regular matroids” have been generalized to the less restricted class of “binary” ones, and the
last part of the work has been improved by the incorporation of a theory of “even” matroids.
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1. Matroids

1.1. Matroids

Given a graph G we denote the set of vertices by
V(G) and the set of edges by E(G).

In general G contains a number of polygons, and each
polygon can be specified by its set of edges. Suppose
a complete list is made of all the polygons of G, each
as a set of edges. Then this list can be described as
a class of non-null subsets of E(G). We denote it
by P(G), and, anticipating a later definition, we call
it the polygon-matroid of G.

The definition of P(G) immediately suggests a dif-
ficult graph-theoretical problem. Suppose we are
given a class M of non-null subsets of a fixed set E.
How can we determine whether or not M can be inter-
preted as the polygon-matroid of a graph? A partial
answer can be given at once; it is not difficult to show
that the two following conditions are necessary.

I No member of M is a proper subset of another.

IT Let a and b be two members of E. Let X and Y
be members of M such that aeX N'Y and beX—Y.
Then there exists a member Z of M such that a¢Z, beZ
and Z C X UY.



If M is indeed the polygon-matroid of a graph G,
then I is immediate from the properties of polygons.
To show that I holds in this case we first observe that
the polygon with edge-set X contains an arc L which
has b as an edge and has only its end-vertices x and y
in common with the polygon of edge-set Y. But x and
y are joined by an arc L, in the latter polygon such that
a is not an edge of L;. Combining L and L we obtain a
polygon whose edge-set Z has the required properties.
(See figure 1A.)

Conditions I and II are not sufficient for M to be of
the form P(G). Before going any further it is con-
venient to lay down the following definition: a class
M of non-null subsets of a set E is a matroid on E
if it satisfies conditions I and II. Thus these two
conditions become the axioms of matroid theory.

Our first two theorems are as follows.

1.11 Let L be a class of non-null subsets of a set E.
Suppose L satisfies Axiom II. Then if a eXeL there is
a minimal member Y of L such that a €YCX.

By a “minimal”” member of L we mean a member
which does not contain another.

We shall denote the number of elements of any
finite set K by |K]|.

To prove our theorem we define Y as a member of L
satisfying aeYCX and having the least value of |Y]
consistent with this condition. We have to show that Y
is a minimal member of L.

Suppose not. Then there exists Zel such that
ZCY—{a}. Choose beZ. Then by Axiom II,
with @ and b interchanged, we find that there is a
member Z' of L such that aeZ'CY—{b}CX. Since
this contradicts the definition of Y the theorem follows.
1.12  Let L be a class of non-null subsets of a set E.

FIGURE 1A

Suppose L satisfies Axiom Il.  Then the minimal mem-
bers of L constitute a matroid on E.

Proor: Let M be the class of minimal members of
L. By definition it satisfies Axiom I.

Let @ and b be members of £, and X and ¥ members
of M, such that aeXNY and beX—Y. By hypothesis
there is a member W of L such that ag¢lW, belV and
WCXUY. By 1.1 there exists ZeM such that beZ CW'.
Hence a¢/Z, beZ and ZCZUY. Thus M satisfies
Axiom II.

Let M be a matroid on a set £. We shall refer to
the members of £ as the cells and to the members of
M as the atoms of the matroid.

We now describe some further examples of matroids.

1.2. Chain-Groups

Let R be a commutative ring with a unit element
and no divisors of zero. We define a chain on a finite
set I over R as a mapping f of E into R. Thus each
aek is associated with a number fla) in R, and this
number may be called the coefficient of a in the chain.

The domain ||f]| of fis the set of all members of E
with nonzero coeflicients in f. If ||f]| is null then f
is the zero chain on E over R, denoted by the symbol 0.

The sum f+ g of two chains f and g on E over R is
another such chain defined as follows.

(f+8) (@)=fla)+ gla), aek. 1)

The product A\f of a number A in R and a chain fon E
over R is another chain on £ over R defined as follows

() (@) =\ (fla)),

We write A(E, R) for the class of all chains on E over
R. A chain-group on E over R is defined as any
subset N of A(E, R) which is closed under the operations
of addition and multiplication by elements of R.

Let N be such a chain-group. A chain f of N is
called elementary if it is nonzero and there is no
nonzero geN such that ||g]||C|[f]].

A primitive chain of N is an elementary chain whose
coefficients are restricted to the values 1, 0, and

We proceed to show that every chain-group has an
associated matroid.

1.21 Let N be a chain-group on E over R. Then the
class M of the domains of the elementary chains of
N is a matroid on E.

Proof: Let L be the class of domains of nonzero
chains of N. Let f and g be two such chains and let
a and b be elements of E (“cells” of N) such that
ae|[fIIN[lgl] and bellfI|—]lgll-

We multiply f by gla) and g by —fla) and add the
resulting chains. We thus obtain a chain A of \ ~u(ll
that ag[|A]|, be||h|| and |[n||C|If]|U]gll. We de-
duce that L satisfies Axiom II

But M is the class of minimal members of L. Hence
M is a matroid on E by 1.2.

aek. 2)



We call M the matroid of N and denote it by M(N).

A chain group over the ring of residues mod 2 is
called binary, and one over the ring of integers is called
integral. A regular, or completely unimodular
chain-group is an integral chain-group in which each
elementary chain is a multiple of a primitive chain.

A matroid is called binary or regular if it is the
matroid of a binary or regular chain-group respectively.
These two kinds of matroid are of special importance
in the theory.

We conclude this chapter by showing how to
associate the polygon-matroid of a graph G with a
chain-group over R.

We first assign an orientation to each edge of G by
distinguishing one end as positive and the other as
negative. For each aeE(G) and each xeV(G) we define
an integer m(a, x) as follows. If @ and x are not inci-
dent, or a is a loop, then Ma, x)=0. Otherwise
7)((1 x)=1or —1 according as x is the positive or nega-
tive end of a.

Chains on V(6G) and E(G) are called 0-chains and 1-
chains of G respectively.

Let f'be a 1-chain of G over R. We define a 0-chain
df of G over R, called the boundary of f, by the following
rule

(0f) (x) = 2 n(a fla),
aekl
We call fa I-cycle of G if 9f=0. It is clear that the
l-cycles of G over R constitute a chain-group N on E(G)
over R.

Given a polygon of G we can easily construct a 1-
cycle of G, with coefficients 1, — 1 and 0 whose domain
is the edge-set of the polygon. On the other hand let f
be any nonzero l-cycle over R, and let Gy be the sub-
graph of G made up of the edges of ||f] and their inci-
dent vertices. Then the valency of each vertex of G
exceeds 1, and therefore Gy contains a polygon. From
these obqervatlon% we have
1.22 Let N be the chain-group of l-cy(‘les over R for
an oriented graph G. Then M(N)=P(G).

In particular R may be the ring of residues mod 2.
Hence
1.23  The polygon-matroid of a graph G is binary.

We have seen that the edge-set of any polygon is the
domain of a primitive chain of N. It readily follows
that
1.24 The polygon-matroid of a graph G is regular.

xeV(G).

2. Duality

2.1. Principal Forests

A spanning tree of a graph G is a subgraph of G
which is a tree and which includes all the vertices of
G. A principal forest of G is a subgraph of G whose
intersection with each component of G is a spanning
tree of that component. For our purposes the main
theorem about principal forests is the following.

2.11 Let U be a subset of E(G). Then U is comple-
mentary to the edge-set of a principal forest of G if
and only if it has the following properties:

FIGURE 2A

(i) U meets the edge-set of each polygon of G.

(i1) No proper subset of U meets the edge-set of every
polygon of G.

PROOF: Suppose first that U has properties (i) and
(ii). Let F' be the spanning subgraph of G such that
E(F)=E(G)—U. Then F is a forest, by (i). Sup-
pose its intersection with some component C of G
is not connected. Then some edge aeE(C)NU has
its ends in different components of F'. But then there
can be no polygon of G whose edge-set does not meet
U—{a}, contrary to (ii).

Conversely suppose U is complementary to the
edge-set of a principal forest /. Then F has no poly-
gon. But if a is an edge of U with ends x and y, then
either x=1y or x and y are joined in F' by an arc L.
(See figure 2A). In the latter case L can be combined
with a to form a polygon whose edge-set does not meet

—{a}. Hence U satisfies (i) and (ii).

2.2. Dendroids

We can now make an extension to matroid theory as
follows. Let M be a matroid on a set E. Then we
define a dendroid D of M as a subset of £ which meets
every afom of M and is minimal with respect to this
property. Thus

2.21 The dendroids of P(G) are the complements in
E(G) of the edge-sets of the principal forests of G.

Let D be a dendroid of M and let a be a cell of D.
By the definition of a dendroid there is an atom X of M
such that XND={a}. Moreover X is unique. For
suppose Y is another atom of M such that YND={a}.
Then an application of Axiom II shows that there is an
atom Z of M not meeting D. We denote X by J(D, a).

We now give some general theorems about dendroids
of M.

2.22 Let D be adendroid of M. Let a and b be cells of
M such that aeD and bgD. Write D' =(D—{a})U{b}.
Then D' is a dendroid of M if and only if beJ(D, a).

PROOF: Suppose D' is a dendroid of M. Since it

meets J(D, a) we must have beJ(D, a).



Conversely suppose beJ(D, a). Then D' meets
every atom of M, since D — {a} meets every such atom
other than J(D, a).

We note that D' —{b} does not meet J(D, a). Con-
sider any cell ceD'—{b}. Then D'NJ(D, c) is either
{c} or {b, c}. Inthe second alternative an application
of Axiom II to J(D, a) and J(D, c) shows that M has an
atom Z meeting D' solely in {c}. We conclude that
no proper subset of D' meets every atom of Z. The
theorem follows.

2.23  All dendroids of M have the same number of cells.

ProoOF: Let Dy and D, be distinct dendroids of M.
Let D; be a dendroid of M such that ‘D‘}' =|D,| and
|D>N D3| has the greatest value consistent with this
condition.

If possible choose aeDs;—D.. Then J(D3, a) meets
D» in a cell b which is notin D3.  Since (D3 —{a})U{b}
is a dendroid of M, by 2.21, the definition of D3 is
contradicted.

We deduce that D3;CD,, and therefore Ds;=D,.
Hence |D;|=|D:|, and the theorem follows.

The number of cells in a dendroid of M is the rank
r(M) of M. In the trivial case in which M has no atoms
there is just one dendroid, the null subset of E, and
r(M)=0. In every other case r(M)>0.

2.24  Let X be an atom of M. Then there is a dendroid
D of M and a cell a of D such that X=J(D, a).

Proor: Let D be a dendroid of M with the least pos-
sible value of [DNX|. Suppose DN X has two distinct
cells @ and b. Then J(D, b) has a cell ¢ not in X, by
Axiom I. But (D—{b})U{c} is a dendroid of M, by
2.3, which is contrary to the definition of D. We con-
clude that DNX consists of a single cell a, so that
X=JD, a).

COROLLARY. If xeX there is a dendroid D'
such that X=J(D', x). (2.22 and 2.24).

2.25 A matroid M on a given set E is uniquely deter-
mined by its dendroids.

Proor: If D is any dendroid of M and aeD, then
J(D, a) is uniquely determined by the other dendroids,
by 2.22. Hence M is completely determined by its
dendroids, by 2.24.

of M

2.3. Dendroids of a Chain-Group

The concept of a dendroid can be applied to a chain-
group N on E over a commutative ring R of the type
described in chapter I. We define a dendroid of N
as a minimal subset D of E meeting the domain of
every nonzero chain of N. Since every such domain
contains that of an elementary chain the dendroids of
N are identical with those of the corresponding matroid
M(N).

Let D be a dendroid of N. For each aeD we can find
a chain f, of NV such that ||f,| is the atom J(D, a) of

M(N). We refer to the set of chains f,, one for each
aeD, as a dendroid-basis of N. Its weight is the product

Hﬁl(a)a

aeD

which is necessarily nonzero.

2.31 Let B={f,laeD} be a dendroid-basis of N of
weight w. Let K be any non-zero chain of N.  Then wK
can be expressed as a linear combination of members
of B, with multipliers in R.

Proor: By adding suitable multiples of members
of B to wK we can reduce the coefficient of each aeD
to zero. The resulting chain is zero, since its domain
does not meet D.

COROLLARY: [f ||K|| meets D in a single cell a, then
|K||=lfull, and therefore K is an elementary chain of N.

2.4. Dual Chain-Groups

We note that the rank of M(N) is also the rank of NV,
in the sense of the theory of linear dependence, by
2.31. Much simplification results if we can arrange
that fz(a) =1 for each ael). This can be done when
R is a field and also when N is regular. In the latier
case f, is taken to be a primitive chain of N. In these
cases the weight of the dendroid-basis takes the value
1. The dendroid-basis then becomes a true basis of
N, by 2.31.

Returning to the general case we define two chains /|
and g on E over R as orthogonal if

>fla)g(a) =

aek

Let N* be the class of all chains & on E over R such
that A is orthogonal to every member of N. It is easily
verified that NV* is a chain-group on £ over R. We
call it the dual chain-group of N. It is clear from the
definition that

241 NC N**
242 Let D be a dendroid of N and let B={f,/aeD}
be a corresponding dendroid-basis of N.

For each beE— D let a chain g on E be defined as
Jfollows: gu(b) is the weight w(B) of B, and gi(x)=0
for each xe(E—D)—{b}. On the other hand if
ael), then

gvla) :_frl(b) I1 ﬁ(C)

ceD—{a}

Then E—D is a dendroid of N*, and the set B*
={gy|beE— D} is a corresponding dendroid-basis of N*.

ProOF: For each g,eB* it is readily verified that g,
is orthogonal to each f,eB. Hence gy is orthogonal to
each chain of N, by 2.31 and the fact that R has no
divisors of zero. Hence g,e/ N*.

A chain on E over R whose domain is a non-null
subset of D cannot be orthogonal to every member of
B. Hence E—D meets the domain of every nonzero
chain of N*. Considering the chains g, we see that
no proper subset of E—D has this property. Hence
E—D is a dendroid of N*. By 2.31, Corollary, B* is
a corresponding dendroid-basis.

2.43 The dendroids of N* are the complements in E of
the dendroids of N.



PrOOF: Any dendroid of N is also a dendroid of N¥*,
by two applications of 2.42. Hence N and N** have
equal ranks.

Let E—U be any dendroid of N*. Then U is a
dendroid of N** by 2.42. It contains a dendroid U’
of N, by 2.41, and U’ =U by the result of the preceding
paragraph. Thus U is a dendroid of N. Combining
this result with 2.42 we establish the theorem.

2.44 M(N**)=MN),

by 2.25 and 2.43.

2.45 Any dendroid-basis of N is a dendroid-basis of
N** by 2.41, 2.44 and 2.31, Corollary.

246 If N has a dendroid-basis of weight 1, then
N*¥=N, by 2.31 and 2.45.

247 If N is regular, then N* is regular.

ProoF: We may suppose the chains f, of 2.42 to be
primitive. Then the chains g, have coefficients re-
stricted to the values 0, 1 and—1. Since they belong
to a dendroid-basis of N* they are elementary and
therefore primitive chains of N*. Using 2.24 we
deduce that N* is regular.

2.5. Bond-Matroid of a Graph

Suppose now that N is the group of 1-cycles on a
graph G over R. Then the dendroids of N* are the
edge-sets of the principal forests of G, by 1.22, 2.21,
and 2.43. We proceed to interpret N* in terms of the
structure of G.

Let g be any O-chain on G over R. Then the co-
boundary ég of g is a l-chain on G over R defined as
follows

(86g) (a)zz n(a, x)gx), aek(G).
LeV(G)

It is clear that the coboundaries of the O-chains on
G over R are the elements of a chain-group N, on E(G)
over R.
2.51  Every coboundary of G over R is orthogonal to
every I-cycle of G over R.

Proor: Let k be a 1-cycle and f the coboundary of
a 0-chain g.  Then

S Ka)fla=Y > nla, nkla)gh) = gxhx),

aek(G) aek(G) xeV(G) reV(G)
where h=0k. Hence
2 k(a)fla)=0.
aek(G)

As a corollary we note that N;CN*.

Now let ¥ be a dendroid of N*, the edge-set of a
principal forest of G.

Consider any aeF, belonging to a component C,
of G. The intersection of the principal forest with
C,is a tree T having a as an edge. When a is deleted
T is decomposed into two components 7T; and 7%,
which we may suppose to contain the positive and
negative ends of a respectively. (See figure 2B.)

FiGure 2B

Let g, be the 0-chain over R in which the vertices of T}
have coeflicient 1 and all other vertices coefficient 0.
Consider the coboundary f,=38g, Clearly fu(a)=1
and the other coefficients in f, are restricted to the
values 1, —1 and 0. Moreover F N||fs||={a}. The
last result implies, since N;CN*, that f, is an ele-
mentary chain of V¥, by 2.31, Corollary.

The coboundaries f,, aeF, thus constitute a den-
droid-basis of N*. Using 2.31 we obtain

2.52  N* is the chain-group of coboundaries of G over R

We refer to M(N*) as the bond-matroid B(G) of G.
We note that in the above proof || is not dependent
on the particular ring R used. Hence, by 2.24, Corol-
lary, B(G) is independent of R.

Since R may be the ring of residues mod 2 we have
2.53 B(G) is binary.

If R is the ring of integers we observe that the chains
fa are all primitive. Hence, by 2.24, Corollary, we have

2.54  B(G) is regular.

We refer to the atoms of B(G) as the bonds of G.  As
an exercise in graph theory we can show that a non-
null subset K of E(G) is a bond of G if and only if it
satisfies the following condition: the graph H obtained
from G by deleting the edges of K has two components
C; and C, such that each edge of K has one end in
each.

We have adopted a nomenclature which treats B(G)
as more fundamental then P(G). Thus principal for-
ests of G correspond directly to “dendroids’ of B(G).
We also describe a matroid as graphic if it can be rep-
resented as the bond-matroid of a graph, and as co-
graphic if it can be represented as a polygon-matroid.

There is a theory of dual graphs on the 2-sphere, but
we shall comment only briefly about it. Two graphs
G and H may be defined as dual if there is a 1 — 1 map-
ping of E(G) onto E(H) which transforms 1-cycles into
coboundaries, and coboundaries into 1-cycles. It can
be shown that a graph is planar, that is realizable in
the 2-sphere, if and only if it has a dual graph. Using
this theory we may assert that a graph G is planar if
and only if its polygon-matroid is graphic. Let us



therefore define a planar matroid as one which is
both graphic and cographic. Such a matroid corre-
sponds to a pair of dual planar graphs.

2.6. Dual Matroids

There is a theory of duality for general matroids
which is closely analogous to that given for chain-
groups in section 2.4.

Two subsets S and T of a finite set E are called
orthogonal if |SNT|# 1. Given a matroid M on E we
denote the class of all non-null subsets of £ which are
orthogonal to every atom of M, by L(M).

2.61 If (X, Y)eL(M), aeXNY and beX—Y, then there
exists Zel(M) such that beZ C(XUY)—{a}.

PROOF: Assume the theorem false for some X, Y, a, b.
We construct a sequence (ao, ai, . . ., ai) of cells of
XUY, and a sequence (T, Ts, . . ., Tx) of atoms of M
as follows. First we put ap=a. If we have deter-
mined the cells a; as far as a,, and b is not among them
we take T4 to be any atom of M such that

a9 a"}}
This is possible since (XUY)

Tp N {(XUY)_{GU, ..

has just one cell, ¢ say.

—{ao, . . ., a;} is not in L(M), by assumption. We
then write c=a,;;. The construction terminates
with ar =b.

There exists UeM such that beUN(XUY)C {ayo,
.. ., ar}. For example we may take U=T). For
each such U let p(U) be the greatest integer j less than
k such that ajeU. Such an integer exists since
[lUNX| # 1.

Suppose p(U)>0. We apply Axiom II to U and
T, thus establishing the existence of an atom U’

of M such that
beU'C (UU TW,,— {am,.,})

But then beU' N (XUY)C{ao, . .
<p(U).

We can therefore choose U so that p(U)=0.
then YNU={ao} = {a}, contrary to hypothesis.
theorem follows.

We denote the class of minimal members of L(M)
by M*. Now 2.61 asserts that L(M) satisfies Axiom
II. Hence,

2.62 M* is a matroid on E.
by 1.12. We call M the dual matroid of M. From the

definition of orthogonality we see that

- ax}, and p(U")

But
The

MC M**, (1)
If D is a dendroid of M and beE — D we define K(D, b)

as the subset of E consisting of b and each aeD such

that beJ(D, a).

2.63 KD, byeM*.

ProoF: Assume K(D, b) is not in L(M). Then there
exists an atom X of M such that [XNK(D, b)|=1.
Choose such an X so that [DNX| has the least possible
value, and denote the common cell of X and K(D, b)
by c.

Suppose DN X has a cell e not in K(D, b). Applying
Axiom II to X and J(D, e) we find that M has an atom Y
such that ceY C(XUJ(D, e)) —{e}. But then YNK(D, b)
={c}, since b¢J(D, e). Moreover |[DNY|<|DNX]|.
This is contrary to the definition of X.

We deduce that DNXCXNK(D, b)={c}. Hence,
since D is a dendroid of M, DNX={c} and therefore
X=JD, c). But ceK(D, b) and therefore be)(D, c).
Hence XNK(D, b) includes two distinct cells b and ¢,
which is contrary to the definition of X. Hence K(D, b)
is in fact in L(M).

There is an atom U of M* such that beUCK(D, b),
by 1.11.  But if xeK(D, b)— U, then U is not orthogonal
to J(D, x). Hence K(D, b)=UeM*.

COROLLARY: E—D is a dendroid of M*, and K(D, b)
is the atom J(E—D, b) of M*.

2.64 The dendroids of M* are the complements in E
of the dendroids of M.

PrOOF: The proof is analogous to that of 2.43.
We note that any dendroid of M is a dendroid of M**,
by 2.63, Corollary. Hence r(M**)=r(M).

Let E—U be any dendroid of M*.
dendroid of M**. It contains a dendroid U’ of M,
by (1). But then U'=U by the equality of rank.

Combining this result with the Corollary to 2.63
we establish the theorem.

2.65

Then U is a

M**=M,

by 2.64 and 2.25. .
2.66 Let N be a chain-group on E over a commutative
ring R with a unit element and no divisors of zero.

Then
(1M(A/))* = /WUV* )

by 2.43, 2.64 and 2.25. In particular we have
2.67 For any finite graph G,

(P(G)*= B(6),
by 2.52.

3. Structure of Matroids

3.1. Subgraphs and Contractions

Let G be a graph and let S be a subset of E(G). There
are two specially important subgraphs of G associated
with S. One is the spanning subgraph G :S, for which
V(G:S)=V(G) and E(G:S)=S. The other is the
reduction of G to S, defined by the edges of G and their
incident vertices. We denote it by G - S.

We note that G-S has no isolated vertices. For
this reason we shall usually prefer the reductions of
G to the other subgraphs. For the addition or removal
of an isolated vertex in a graph G does not affect the
1-cycles or coboundaries.

The contraction G ctr S of G to S is a graph whose
vertices are the components of G :(E(G)—S) and whose
edges are the members of S. The ends of an edge
in G ctr S are the two components, possibly coincident,
of G:(E(G)—S) which include the ends of the edge
in G.



If the identities of the vertices of G are not impor-
tant we may say, less precisely, that G ctr S is formed
from G by contracting each component of G :(E(G)—S)
to a single vertex. Alternatively we may say that G
ctr S is obtained from G by a sequence of “‘elementary
contractions” in each of which one edge of G is con-
tracted to a single vertex.

By deleting the isolated vertices, if any, of G ctr
S we obtain from it the reduced contraction G XS
=(GctrS)-Sof GtoS.

We go on to derive some corresponding operations
on chain-groups and matroids.

3.2. Minors of Chain-Groups

Let N be a chain-group on a set £ over a commuta-
tive ring R having a unit element and no divisors of
Zero.

Suppose SCE. If fis any chain of N we define its
restriction to S as the chain g on S such that g(a)
= fla) for each aeS..

The restrictions to S of the chains of N constitute a
chain-group on S over R. We call this the reduction
of N to S and denote it by N+ S. Another chain-group
on S over R is given by the restrictions to S of those
chains f of N for which ||f]|CS. This is the contrac-
tion of N to S, denoted by NXS.

3.21 NXSCN-S.

The proofs of the two following theorems are simple
exercises in graph theory.

3.22 Let N be the group of coboundaries over R of a
graph G. Then N-S is the group of coboundaries
over R of G- 8.

3.23 Let N be as in 3.22. Then N XS is the group of
coboundaries over R of G X S.

Returning to the general case we suppose TC SCE.
We can now establish the following identities

3.241 (NxS)XT=NXT,
3.242 (N-S)-T=N-T,

3.243 (N-S)XT=(NX(E—(S—T1)-T,
3.244 (NXS)-T=(N:-(E—(S—1)XT.

The first two of these follow immediately from the
definitions. To prove 3.243 we observe that each side
of the formula represents the restrictions to T of those
chains of N which have only zero coefficients in S—T.
We can obtain 3.244 by writing E— (S—T) for S in
3.243.

We refer to a chain-group of the form (N -S) X T as
a minor of N. The minors of N include N itself and all
its reductions and contractions. For N=(N-E)XE,
N-S=(N-S)XS, and NXS=(N-E)XS. From the
identities 3.241 we deduce
3.25 Every minor of a minor of N is a minor of N.
3.26 If N is regular then every minor of N is regular.

PROOF: Suppose S C E. Let f be an elementary
chain of NXS. Then fis the restriction to S of an
elementary chain fi; of N having the same domain as

/- But fi is an integral multiple of a primitive chain
of N, since N is regular. This implies that f is an
integral multiple of a primitive chain of NXS. We
deduce that N XS is regular.

Now let & be an elementary chain of N-S. There is
a chain h; of N having h as its restriction to S. Choose
h1 so that ||Ay|| has the least possible number of cells.
There is an elementary chain hs of N such that || /.||
C |lh1]l- By the choice of h; we may suppose ||h I NS
is non-null. Since hs is a multlple of a primitive chain
of N we deduce that there is a nonzero chain k of
N-S, with coefficients restricted to the values 1, —1 and
0, such that ||k C [|A]. But then ||k[|=||A| since A is
elementary, and therefore k£ is a primitive chain of
N-S. Since his elementary it must be a multiple of £.
We deduce that N - S is regular.

The theorem follows from these two results.

Minors of dual chain-groups are related by the follow-
ing identity.
3.27 (N-S)*=N*XxS8.

Proo¥F: Let fbe a chain on S. It belongs to (V-S)*
if and only if it is orthogonal to every chain of N-S,
that is if and only if the chain g on E which satisfies
llgll=|/1 and has f as its restriction to S is orthogonal
to every member of N. But this condition holds if
and only if geN*, that is feN* X S.

In the cases of chief interest to us we can supplement
this result as follows.

3.28 Suppose that R is a field or that N is regular.
Then

(NXS)*=N*-§,

for each S C E.
ProoF: Writing N* for N in 3.27, and then taking
dual chain-groups we obtain

(N X S)*= (N* - S)**.

But under the conditions of the theorem N**=N, by
2.46. Similarly (N*-S)**=N*.S, by 2.47 and 3.26.
The theorem follows

3.29 Under the conditions of 3.28 the duals of the
minors of N are the minors of N* (by 3.27 and 3.28).

3.3. Minors of Matroids

This section is closely analogous to 3.2.

Let M be a matroid on a set F, and suppose SCE.

Let L be the class of non-null intersections with S
of atoms of M, and let M-S be the class of minimal
members of L. Since M satisfies Axiom II it is clear
that L does so too. Hence M-S is a matroid on S,
by 1.12. We call it the reduction of M to S.

Let M X S be the class of all atoms X of M such that
X CS. Then M XS satisfies Axioms I and II. It is
thus a matroid on S. We call it the contraction of
M to S.

By a comparison of definitions we have the following
theorem



3.31 Let N be a chain-group on E over a ring R with
a unit element and no divisors of zero. Then

M(N XS)=M(N) XS,
M(N-S)=M(N)-S.

Now take NV to be the group of coboundaries over R
of a graph G. Then by 3.22, 3.23 and 3.31 we have

3.321 B(G-S)=B(G) - S,

B(GXS)=B(G) XS.

Here B(G) is the bond-matroid of G defined in section
2258
Returning to the general case we suppose TC S CE.
We establish the following identities

3.322

3.331 (MXS)XT=MxT,
3.332 M-S)-T=M-T,
3333 (M-S)XT=MX(E—(S—T1)-T,
3.334  (MxS)-T=M-(E—(S—T)xT.

The first of these follows at once from the definitions.

To prove 3.332 we observe that if Xe(M -S) - T then
X is a non-null intersection with 7" of an atom of M - S,
and therefore a non-null intersection with 7" of an atom
of M. Hence there exists YeM - T such that YCX.
Conversely suppose YeM -T. Then Y is a non-null
intersection with 7 of an atom Z of M. But Z con-
tains an atom Z; of M-S meeting 7, by 1.11. Simi-
larly Z; contains an atom X of (M -S) - T, and we have
XCY. Applying Axiom I to these results we have
3.332.

We prove 3.333 in a similar way. Suppose Xe
(M-S)XT. Then X is an atom of M-S contained
in 7. Accordingly M has an atom X; such that
XiNT=X and X;N(S—T) is null. But then X, is
an atom of MX (E—(S—T)) and hence there is
an atom Y of (M X (E—(S—T)) T such that Y CX.
Conversely suppose Ye(M X (E—(S—T)))-T. Then
Y is the intersection with 7 of an atom Y; of
MX(E—(S—T)), and Y; is an atom of M such that
YiN(S—T)is null. Hence there is an atom X of M - S
which is contained in Y;. We have in fact XCYCT.
Hence (M -S)XT has an atom X such that XCY.
Applying Axiom I to these results we establish 3.333.

We obtain 3.334 by writing £—(S—T) for S in 3.333.

We refer to a matroid of the form (M -S) XT as a
minor of M. The minors of M evidently include M
itself and all its reductions and contractions. From
the four identities just proved we deduce
3.34 Every minor of a minor of M is a minor of M.

Minors of dual matroids are related by the following
identities

3.351 (M- S)*=M*XS,

38352 (M xS)*=M*-S.

To prove 3.351 suppose Xe(M -S)*. Then XCS
and X is orthogonal to every atom of M -S. Now the
class of intersections with S of atoms of M satisfies
Axiom II and its minimal members constitute M - S.
If X meets one of these intersections in a single cell,
then it meets some atom of M-S in a single cell, by
1.11. Hence X is orthogonal to every atom of M.
Accordingly there exists YeM* such that Y C X. But
then YeM* X S.

Conversely suppose YeM*xS. Then YCS and
YeM*. Hence Y is orthogonal to every member of M
and therefore to every member of M - S. Accordingly
there exists Xe(M - S)* such that X CY.

Applying Axiom 1 to these results we obtain 3.351.

Writing M* for M in 3.351 and taking dual matroids
we obtain

By 2.65 this reduces to 3.352.
3.36 The minors of M* are the duals of the minors of M.

This follows from 3.351 and 3.352, with the help of
3.334.

The foregoing results can be applied to the bond-
matroid and polygon-matroid of a graph G, these being
duals by 2.67. On taking the dual forms of 3.321 and
3.322 we obtain the following identities.

3.371 P(G-S)=P(G) XS,

3.372 P(GXS)=P(G) -S.

3.4. Connection in Matroids

Consider a matroid M on a set E. We define a
separator of M as a subset S of E such that each atom
of M is contained either in S or in E—S. Evidently
any union or intersection of separators of M is a sepa-
rator of M, and the complement of a separator of M
is also a separator.

We refer to the minimal non-null separators of M
as its elementary separators. From the foregoing
observations we deduce

3.41 The elementary separators of M are disjoint non-
null subsets of E whose union is E.

3.42 Suppose SCE. Then S is a separator of M if
and only if

M-S=MXS.

PROOF: Let S be a separator of M. Then an atom
of M has a non-null intersection with S if and only if
it is itself a subset of S. It follows that M XS and
M - S are identical.

Conversely suppose M -S=M XS, and let Y be
any atom of M. If it meets S it contains an atom of
M - S, that is M X S. It is then itself an atom of M X S
and M, by Axiom I. Thus YCS. We deduce that
S is a separator of M.

3.43 Let S be a separator of M. Then, for each T CE,
SNT is a separator of both M-T and M XT.



PRrROOF: Let Y be an atom of M - T or M XT. There
is an atom Z of M such that Y=ZNT. Either ZCS
or ZCFE—S. Hence Y is contained either in SN T
orin (E—=S)NT. The theorem follows.

3.44. Let S be a separator of M, and let T be a separator
of M-S, that is M XS by 3.42. Then T is a separator
of M.

PROOF: MXT=(MXS) XT=(MXS) -T=(M - S)
-T=M-T, by 3.331, 3.332 and 3.42. Hence T is a
separator of M, by 3.42.

3.45 The separators of M* are the separators of M.

Proor: If M-S=MXS we have M*XS=M*-8S,
by 3.351 and 3.352. Similarly if M*-S=M*XS we
have M XS=M-S, by 3.351, 3.352, and 2.65. The
theorem follows, by 3.42.

If S is an elementary separator of M we refer to the
matroid M - S, that is M X S, as a component of M.

The matroid M is said to be connected if it has no
separators other than the trivial ones, £ and its null
subset. Thus M is connected if and only if either £
is null or M has just one elementary separator.

3.46 If a minor (M -S) XT of M is connected, and T
is not null, then T is a subset of an elementary sepa-
rator of M.

We obtain this result by two applications of 3.43.
3.47 Any component of M is connected (by 3.44).
3.48 Let M XS and M X T be connected reductions of
M such that SOT is non-null. Then M X (SUT) is
connected.

ProoF: There is an elementary separator Z of M
X (SUT) which meets SNT, by 3.41. It contains both
S and T, by 3.331 and 3.43. Hence Z=SUT, and
the theorem follows.

3.49 The components of M* are the duals of the com-
ponents of M.

This follows from 3.45, with the help of 3.351,
3.352 and 3.42.

Consider a graph G without isolated vertices. It
is called nonseparable or cyclically connected if it
has the following property: for any two complementary
non-null subsets S and T of E(G) there exists a polygon
of G whose edge-set meets both S and 7.

The property of cyclic connection in graphs cor-
responds to that of connection in matroids. For it is
clear that G is nonseparable if and only if P(G) is con-
nected. Hence G is nonseparable if and only if B(G)
is connected, by 2.67 and 3.45.

There is no property of matroids in general which
corresponds in this way to ordinary connection for
graphs.

3.5. Properties of Rank

Let M be a matroid on a set £. From the definition

of rank given in section 2.2 we have the following
theorem.
351 0<r(M)<|E|. Moreover r(M)=0 if and only
if M has no atom, and r(M) = |E| if and only if each
cell of E constitutes by itself an atom of M.

From 2.64 we deduce

3.52 r(M)+r(M*)=|E|.

We now supplement these results with some for-
mulae involving the ranks of minors of M.
3.53 Let S be any subset of E. Let C be a dendroid
of M XS and let D be a dendroid of M - (E—S). Then
CUD is a dendroid of M.

ProOOF: Let a be any cell of CUD.

If aeC we define F, as the atom J(C, a) of M XS.
It is of course also an atom of M, and [F,ND|=0.

If aeD we define F, as an atom of M for which
F.ND={a} and for which |F,NC| has the least
value consistent with this condition. Such a set
exists since the atom J(D, a) of M- (E—S) is the
intersection with £—S of some atom of M. We show
that in fact |F,NC|=0. For suppose beF,NC.
Applying Axiom II to F, and the atom Y=J(C, b) of
M XS we find that there is an atom F of M such that
ael C(F,UY)—{b}. But then FND={a} and
|[FNC|<|F.NC|, which is contrary to the defini-
tion of F,,.

We conclude that for each aeC U D there is an atom
F, of M such that F, N (CUD)={a}.

On the other hand any atom of M meets D if it has
a non-null intersection with £—S, and meets C if it
is contained in S. Hence C U D is a dendroid of M.

We note the following corollaries.

3.54 r(MxS)+r(M- (E—S)=r(M).

3.55 Suppose aeE. Then r(M)—r(M X (E—{a}))=1
or 0 according as a does or does not belong to some atom
of M.

The next theorem finds frequent applications in the
next chapter.

3.56 LetS and T be subsets of E.  Then

rMX (SUT)+r(MX(SNT)=r(MXS)+rMXT).

Proor: Let C be a dendroid of M X (SNT). Let
D, be a dendroid of (M XS) - (S—T) and D, a den-
droid of (MXT)-(T'—S). Write U=CUD;U D,.

Now CU D, is a dendroid of M XS, by 3.331 and
3.53. Hence if aeCUD, there is an atom F, of M
X(SUT), contained in S, which meets U only in the
cell a. An analogous result holds for aeC U D,. We
deduce that each cell of (M X (SUT)) - U constitutes
an atom of that matroid. Accordingly

r((MxX(SUT)-U)y=|CUD,UD:|,
=r(MXS)+r(MXT)—r(MXx (SNT)).

The theorem follows, by 3.54.
3.57 iM)=1 if and only if M has just one atom.

ProoF: If M has just one atom X, then any cell of
X constitutes a dendroid of M, and r(M)=1. Con-
versely if r(M) =1 then M has a dendroid D consisting
of a single cell a. But M has only one atom J(D, a)
which includes a.



4. Geometry of Matroids

4.1. Flats

Let M be a matroid on aset E.  We propose to study
the system of contractions M XS of M. We abbre-
viate the expression r(M X S) as rS. For the sake of
geometrical analogies to be explained below we define
the dimension dS of S as the number rS—1.

A subset S of E is called a flat of M if it is a union of
atoms of M. The null subset of £ is counted as a null
union of atoms, and therefore a flat. For any subset
S of E there is an associated flat (S), defined as the
union of all the atoms of M contained in S, that is the
union of the atoms of M XS. By 3.54 we have

4.11 d{Z)=dZ=rZ—1.

In what follows we are concerned with the lattice
of flats of M, as partially ordered by the inclusion
relation.

4.12 The only flat of M with negative dimension is the
null flat ¢, for which dp=—1. The flats of dimension
0 are the atoms of M.

This follows from 3.51 and 3.57. It is convenient
to take over some more geometrical terminology at
this stage. We say that the flat S is on the flat T if
either SCT or TCS. The atoms of M are called also
its points, and flats of dimensions 1 and 2 are lines
and planes of M respectively. More generally a

flat of dimension £ is called a k-flat.
4.13 If' S is a flat of M and aeS, then

d(S—{a})=dS—1,

by 3.55.

4.14 If S and T are flats of M such that SC T, then
dS < dT. Moreover there is a flat U of M such that
SCUCT and dU=dS +1.

PrOOF: The first statement follows from 3.54. To
prove the second we define U as a flat of M satisfying
SCUCT and such that |U| has the least value con-
sistent with this condition. Choose aeU—S. Then
SC(U—{a})CT, and therefore S=(U—{a}) by
the choice of U. Hence dU=dS+1, by 4.13.

4.15 Let S and T be flats of M such that S CT. Then
there exists a flat U of M such that U C T,{U N S)=¢
and dU=dT—dS—1.

PrROOF: Write So=S and Ty=T. If possible choose
(10650 and write S] = (S()_ {a0}> 5 T, :<T0'_ {(10})-
It is clear that S; C T,. If possible choose a:€S; and
write So = (S1 —{a1}), Toe=(T1—{ai}). Then S:CT>.

Continue this process until it terminates. By 4.13
this will be with Sy and T, where k=dS +1 and S, =¢.
Applying 4.13 to the sequence of the T; we find that
dTv=dT—dS—1. But (T NS)=(S—{ao, ai, . . .,
ar-1})=Sr=d¢. Hence the theorem is satisfied with
U: Tk.

4.16 Let S and T be flats of M. Then
dSUT)+d(SNT)=dS+dT,
by 3.56.
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Many ‘“‘geometrical” results can be deduced from
4.14 and 4.16. An example follows.
4.171 Let L; and L, be distinct lines of M on the same
plane P. Then L, and Ls have just one common point.

Proor: We have ngIAUngP Hence L1UL2
=P, by 4.14. Another application of 4.14 shows that
d<L1 N Lz) =0 since L] N Lz C L]. Bllt d<L1 mL2> 20
by 4.16. Hence d{(LiNL,)=0, and the theorem fol-
lows by 4.12.

The two following theorems can be proved in a sim-
ilar way.
4.172 Let Py and P, be distinct planes on the same 3-
flat F of M. Then (Py N Ps) is a line on F.
4.173 Let P be a plane and L a line on the same 3-
flat F. Suppose L is not on P. Then (PNL) is a
point on E.

We observe that if G is any graph, then the flats of
P(G) correspond to those subgraphs of G which are
unions of polygons.

4.2. Connected Flats

A flat S of M is called “connected” if M X S is a con-
nected matroid. We then refer to the separators of
M XS as the “separators of S”. The lattice of con-
nected flats of M has some very interesting properties.
We begin this section with a study of the line.

4.21 Let L be a line of M, and suppose ael. Then
(L—{a}) is the only point on L which does not
include a.

Proor: (L—{a}) is a point on L, by 4.13. But if
X is any point on L not including a we have XC
(L—{a}) and therefore X=(L—{a}) by Axiom I.
4.22 Any line L of M is on two distinct points. If X
and Y are distinct points on L then L=XUY. More-
over X N'Y is non-null if and only if L is connected.

ProOF: Choose ael and be(L—{a}). Then
(L—{a}) and (L—{b}) are distinct points of L.

Let X and Y be distinct points on L. Then XC
XUYCL. Hence XUY=L, by 4.14. If XNY is non-
null then L is connected, by 3.48. If XNY is null
then either X and Y are nontrivial separators of L, or
there is a point Z on L meeting both X and Y. In
the latter case XCXUZCXUY=L, by Axiom L
But this is impossible, by 4.14.

4.23 A disconnected line is on just two points, and a
connected line is on at least three points.

PrOOF: By 4.22 any two distinct points on a dis-
connected line L are disjoint, and have L as their
union. Hence L has at most two points, and therefore
just two, by 4.22.

By 4.22 any connected line L has two distinct points
X and Y, and we can find aeXNY. By 4.21 (L—{a})
is a point on L which is distinct from X and Y.

It should perhaps be pointed out that two distinct
points X and Y of a matroid M are not necessarily on
a common line. There is indeed a flat X U Y, but its
dimension may exceed 1. However the following
theorem is sometimes helpful.

4.24 Let T be a separator of a flat S of M. Let X and
Y be points on S such that XCT and Y CS—T. Then
X UY is a disconnected line of M.



PROOF: X and Y are separators of the flat X UY, by
3.43. Hence dXUY)=dX+dY—1=1, by 3.42
and 3.54. Thus XUY is a disconnected line.

We go on to prove two important theorems, 4.26
and 4.27, about connected flats in general. We need
the auxiliary result
4.25 Let S and T be connected flats of M such that
SCT. Then there exists a connected (dS-1)— flat
Uof M such that SCUCT.

PRrROOF: Since T is connected we can find a point
X of M such that XCT and X meets both S and T—3S.
Choose such an X so that [SUX| has the least possible
value.

SUX is a connected flat of M, by 3.48. Its dimension
exceeds dS, by 4.14.

Suppose d(SUX) > dS+ 1.

d{(SUX)—{a}) = dS+1,

Choose aeX—S. Then

by 4.13. Hence there is a point Y of M such that
YC(SUX)—{a} and Y meets X—S. But YNS=4¢
by the choice of X. Hence YCX, which is contrary
to Axiom I. We deduce that in fact d(SUX)=dS + 1.
Hence the theorem holds with U=SUX.

4.26  Let S be a connected d-flat on a connected (d—+ 2)-
fat T of M. Then there exist distinct connected (d+1)-
flats U and V of M such that S={UN V) and T=U U V.

Proor: The following argument is illustrated by
figure 4A for the case d=0, in which S is a point and
T'is a connected plane.

By 4.25 there is a connected (d+ 1)-flat U which is
on both § and 7. Choose ael/ =S and write W
=(T—{a}). By 4.13 W is another (d+ 1)-flat on both
Sand T. By 4.15 there is a line L on T having no com-
mon point with S. It meets U and W in points X and
Z, respectively, by 4.16. By 4.14 we have SUX=U
and SUZ=W. Hence Z is not on U and UUZ =T,
by further applications of 4.14.

Assume W is not connected. Then SNZ=¢, by
3.48.

Suppose UNZ=¢. By the connection of T, that
is UUZ, there is an atom Z' of M such that Z'CT
and Z' meets both U and Z. Then UCUUZ'CUUZ
=T, by Axiom I. But this is impossible by 4.14. We
deduce that UNZ is non-null. A similar argument in
which X, S, and U replace Z, U, and T respectively
shows that XNS is not null. Choose beZNU and
ceXNS.

Write V=(T—{b}). By 4.13 V is a (d+ 1)-flat.
It is on S, since beZ and SNZ=¢. By 4.16 it has a
common point Y with L. Since L and S have no com-
mon point we deduce from 4.14 that ¥=SUY. More-
over V is distinct from U and W, since beZNUCW NU.

Now ceSNXCSNL=SNYUZ), by 4.22, =SNY,
by our assumption. Hence V is connected, by 3.48.

In the remaining case, in which W is connected, we
write V=W.

In either case we have two distinct connected
(d+ 1)-flats U and V of M, each of which is on both S
and 7. Hence

ScunVycUcUUVCT,
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since neither of U or V contains the other, by 4.14.
Another application of 4.14 shows that S=(UNV)
and T=UUV.

4.27 Let S, T, and U be flats of M such that S and T
are connected, SUUCT and (SNU)=d¢. Then there
exists a connected flat R of M such that SCRCT,
(RNU)=¢, and dR=dT—dU—1.

Proor: If possible choose S, T, and U so that the
theorem fails and dU has the least value consistent
with this condition. Then dU > —1, since otherwise
the theorem holds with T=R.

Let W be a connected flat of M of greatest possible
dimension such that SCW CT and W does not contain
U. Suppose dW <dT—1. Then, by 4.26, there are
distinct connected (dW +1)flats K and L on T such
that (KNL)=W. But then K and L cannot both
contain U, and this is contrary to the choice of W.
We deduce, using 4.14, that dW =dT—1. We note
that d (UNWY) < dU, by 4.14.

By the choice of S, T, and U there is a connected

flat R of M such that SCRCWCT, (RN{UNWY))

=¢ and dR=dW—-d(UNW)—1. But  then
(RNU)=¢ and dR = dT—dU—1. However
dR<dT—dU—1, by 4.14 and 4.16. We deduce

that dR=dT—dU—1. Thus the theorem holds for
S, T, and U, which is a contradiction.

It follows that the theorem is true in general.

We shall also need the following more special
theorem.

4.28 Let L be a disconnected line on a connected d-flat
S of M, where dS > 1. Then there exists a connected
plane P of M such that LCPCS.

PRroOOF: Let the two points on L be X and Y. (See
4.23.) Let P be a connected flat of M, of least pos-
sible dimension, suchthat LC P CS. Assume dP > 2.

Suppose first that there is a second disconnected
line L' on X and P. Let its point other than X be Z.
Then X, Y, and Z are distinct points, by 4.14. By
4.27 there is a connected (dP—2)-flat U on Y and P

which has no point in common with L'. By 4.26



there are distinct connected (dP —1)-flats V" and W on
P such that (VN W )=U. These two flats meet L’
in distinct points, by 4.14. Since there are only two
points on L’ we may suppose X is on V. But then L
is on ¥ and the definition of P is contradicted.

We deduce that there is no second disconnected
line on X and P, and similarly no second disconnected
line on Y and P.

Choose aeP—L and write R=(P—{a}). Then
LCR, and dR=dP—1 by 4.13. By the definition of
P the flat R is disconnected. But the only possible
non-trivial separators of R are X and Y, by 4.24. Ac-
cordingly R=L and dP =2, contrary to assumption.
The theorem follows.

4.281 Let L be a disconnected line on a plane P of M.
Let X and Y be its two points, and let Z be any other
point on P. Then XUZ and YUZ are connected
lines, the only lines of M which are on both Z and P.

PROOF: Any line on P contains X or Y, by 4.171.
Hence, by 4.22, the only flats on Z and P which can
be lines are X UZ and YU Z. They must in fact be
connected lines, by 4.26.

4.282 Let L be a disconnected line on a connected
plane P of M. Then every line on P other than L is
connected.

ProOF: Let L' be such a line. It is on some point
Z not contained in L, by 4.22. Hence it is connected,
by 4.281.

The foregoing results can be applied to the polygon-
matroid of a graph G to obtain some rather simple
results in graph theory. A set S is a connected flat
of P(G) if and only if G -S, whose polygon matroid
is P(G) XS by 3.371, is nonseparable. The rank of
P(G) is the cyclomatic number of G, that is the least
number pi(G) of edges of G which must be deleted in
order to destroy every polygon.

Two connected flats S and T of P(G) such that
(SNT)=d¢ correspond to two nonseparable sub-
graphs of G which have no common polygon.

4.3. Linear Subclasses

Let M be a matroid on a set £, and let C be any class
of points of M. We call C a linear subclass of M if it
has the following property. If two distinct points X
and Y of C are on a common line L in M, then every
point on L belongs to C. In earlier work on matroids
a linear subclass is called a “convex subclass”.

An obvious example of a linear subclass of M is
provided by the class of all points on a given flat.

Another important example arises as follows. Let
us say that a subset S of £ cuts another subset T of £
if both S N7 and T—S are non-null. Then we have
the following theorem.

4.31 Let S be any subset of E. Let C be the class of
all atoms of M which do not cut S. Then C is a linear
subclass of M.

ProoF: Let X and Y be points of C on a common
line L. Let Z be any point on L. We have ZCXUY
=L, by 4.22.

If XNS and YNS are null we have ZNS=¢ and

therefore ZeC. If SCX and SCY we have SCZ
and therefore ZeC.

In the remaining case we may suppose XNS=¢
and SCY. Hence L is disconnected, by 4.22.
Accordingly Z=X or Y, by 4.23. Again we have ZeC.

The theorem follows.

We have so far presented the theory of matroids as
something more general than that of graphs, having
its own theorems from which the results of graph theory |
can be derived as special cases. It is somewhat
surprising therefore to find that we must now use the
technique of graph theory in order to study linear
subclasses. However each matroid does have an
associated graph. The vertices are the points of the
matroid, and two points are said to be adjacent if
and only if they are distinct points of the same con-
nected line.

A path in M is a finite sequence

P=(X, . .., Xk

of one or more points of M, not necessarily all distinct,
such that any two consecutive terms are adjacent
(and therefore distinct) points of M. We refer to
X1 and X}, as the origin and terminus of P respectively.
If they coincide we call P re-entrant. If P has only one
term 1t is degenerate. The length s(P) of P is one less
that the number of terms of P.

If P=(X4,...,X,) and Q= (X4, ..., X) are paths of
M such that the origin of Q is the terminus of P,
then we define their product PQ as the path (X4,...,
Xy ..., Xm). Multiplication of paths is clearly as-
sociative. We may therefore write a product (PQ)R
or P(QR) simply as PQR

If P is any path of M we write P~! for the path
obtained by taking the terms of P in reverse order.
The following rules are obvious.

4.321 (P-1)-1=Pp,

4.322 (PQ)-1=Q-'P-.

If every term of a path P is on a flat S we say that P
is on S.

A path P in which the terms are all distinct is called
simple. As an example of a theorem on paths we offer
the following.

4.33 Let P be a path from X to Y ona flat S of M.  Then
there is a simple path from X to Y on S.

PRrROOF: Let P, be a shortest path from X to Y on S.
If it is not simple we can write it as a product QRT
where R is re-entrant and nondegenerate. But then
QT is a path from X to Y on S which is shorter than P,.
We conclude that in fact P, is simple.

The fundamental theorem about linear subclasses

runs as follows.
4.34 Let C be a linear subclass of M. Let S be a con-
nected flat of M, and let X and Y be points on S such
that Y is not in C. Then there is a simple path P from
X toY on S such that no term of P other than X belongs
to C.

12



ProoF: If possible choose S, X and Y so that the
theorem fails and dS has the least value consistent
with this. Clearly dS >1 and Y is distinct from X.
Figure 4B illustrates the following argument for the
case dS =3.

By 4.25 and 4.26 there is a connected (dS—2)-flat
U and two connected (dS —1)-flats V" and W such that
XCU=(VNnW) and VUW=S. Moreover Y is
not on V or W, by the choice of S, X, and Y.

By 4.27 there is a line L on S such that (LNU) = ¢.
It meets V' and W in distinct points T and Z, respec-
tively. They are not both in C, for otherwise Y would
be in C. Without loss of generality we may suppose
T not in C,

By the choice of S, X, and Y there is a simple path
Q from X to T on V' such that no term of Q other than
the first is a point on C. The product Q(T, Y) may be
taken as the required simple path P. As this result is
contrary to the choice of S, X, and T the theorem
follows.

A slight modification of the above proof shows that
we can arrange that s(P)=dS.

The following theorem is analogous to a well-known
result in graph theory.

4.35 Let S be any flat of M. Then S is connected if
and only if for any two points X and Y on S there
exists a simple path on S from X to'Y.

PROOF: Suppose S is connected. Let X and Y be
points of S. Then there is a simple path on S from
X to Y, by 4.34, with C=d¢.

Now suppose S has a nontrivial separator . There

are points X and Y on S such that XC7T and YCS—T.
If there is a path on S from X to Y there are consecutive
terms X' and Y’ of P such that X'"CT and Y'CS—T.
But this is impossible since X"UY" is not a connected
line, by 4.24.
4.36 Let C be any linear subclass of M. Let S be a
d-flat of M on a (d+1)-flat T. Suppose all the points
on S and at least one other point on T belong to C.
Then all the points on T belong to C.

PROOF: Suppose the theorem fails. Then we can
find points XeC and Y¢C, each being on T but not
on S. The flat XUY 1is connected since otherwise
SCSUXCT, contrary to 4.14.

By 4.34 there is a path from X to Y on X U Y whose

second term, X' say, is not in C. By 4.16 the con-
nected line XUX' has a point X” in common with S.
But X" is not in C, by the definition of a linear subclass.
This is contrary to hypothesis.
4.37 Let S be a connected flat of M. Let Cy and C,
be linear subclasses of M, neither of which includes all
the points on S. Then there is a point Z on S which
belongs to neither Cy nor Cs.

ProOF: Choose points X and Y on S such that
X¢Cy and Y¢C,. We may suppose X and Y distinct
since otherwise the theorem is trivially true.

By 4.34 there is a point X’ on S which is adjacent to
X and not in C,. We may suppose XeC» and X'eC,
for otherwise cne of these points could be taken as Z.
But now there is a third point Z on the connected line
XUX', and this can belong neither to C; nor to C..
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As important special cases of 4.37 we note the

following.
4.371 Let a and b be distinct cells of a connected mat-
roid M. Then there is an atom of M which includes
both a and b.
4.372 Let S and T be subsets of E, each cut by some atom
of M, M being connected. Then some atom of M cuts
both S and T.

To prove 4.371 we take C; to be the set of points on
(E—{a}), and C> to be the set on (E—{b}). 4.372
follows from 4.31.

When we apply 4.371 to the polygon-matroid of a
graph we find that if @ and b are distinct edges of a
nonseparable graph G, then there is a polygon of G
through both @ and b. This is one of the theorems of
Hassler Whitney on graphs.

4.4, Carriers

Let M be a matroid on a set £, and S be any subsetl
of E. We proceed to discuss the relations between
the flats of M-S and those of M. Dimensions refer-
ring to M-S will be distinguished in formulae by
primes.

A carrier of M-S in M is a subset Z of E such that

(MXZ)-S=M-S



and d(Z) has the least value consistent with this
property. Such a carrier exists, since (M XE)-S
=M-S.

4.41 Let Z be a carrier ofM SinM. ThendZ=4d'S.
PROOF: Assume there is an atom X of M such that
XCZ—S. Choose aeX and write

My=MXx(Z—A{a})) - S

Let Y be an atom of M;. Then there is an atom U
of M such that UCZ—{a} and Y=SNU. Hence
there is an atom Y’ of M - S such that Y’ CY.

Conversely let Y’ be an atom of M- S=(MXZ) - S.
There is an atom V of M XZ such that YY=SNV.
Suppose aeV. Then by applying Axiom II to V' and
X we find that there is an atom U of M X Z such that
SNU is a non-null subset of Y', and a¢U. If agl we
write U=V. In each case U is an atom of M X (Z
—{a}) and SN U is non-null. Hence there exists an
atom Y of M, such that YCSNUCY'.

Applying Axiom I to the foregoing results we find
that M;=M -S. But this is contrary to the definition
of Z as a carrier of M-S. We deduce that d(Z—.S)
=—1. The theorem now follows from 3.54.

4.42 Let Z be a carrier of M-S in M. Let X be an
atom of M - S. Then there is just one atom Y of M X Z
such that S N Y=2X.

PROOF: Such an atom Y exists, since M-S=(MXZ)-S.
Suppose Y' is another such atom of MXZ.
Choose aeSNY=SNY’'=X. By Axiom I we can
find beY'—Y. By Axiom II there is an atom U of
M X Z such that beUC (YUY’) —{a}.

We have SNUCSNY=X. Hence SNU is null,
since M-S satisfies Axiom I. Hence UCZ-—S.
But then d(Z—S)>—1, and dZ >d'S, by 3.54.
This is contrary to 4.41.

We can now define a mapping 6 of the set of flats
of M-S onto a class of flats of M X Z, in the following
way

(i) If T is the null flat of M-S then 67 is the null
flat of M X Z.

(i) If T is an atom of M-S, then 6T is the unique
atom U of M on Z such that SNU=T. (4.42).

(i) If T is a d'-flat of M-S, where d' =1, then 6T
is the union of all atoms 6X of M X Z such that X is an
atom of M-S on T.

4.43 If T and U are flats of M - S, then 6T C0U if and
only itf TCU

This follows at once from the definition of 6. It
implies that 07 and 6U are distinct if T and U are
distinct, and that 67COU if and only if TCU.
444 If T is a flat of M-S, then d'T=doT.

ProoF: By 4.14 we can construct a sequence

T'h T09 Tls ) T(l’)
of flats of M-S, where d’ =d'S, such that each member
of the sequence except Tq is a proper subset of its
successor, such that d'T;=1i for each T;, and such
that 7' is a member of the sequence. Then T'=T},
where k=d'T.

By 4.14 and 4.43 the dimension is strictly increasing

in the sequence

(0T71, OT(), 0T1, c e e 0T(1')

of flats of MXZ. But dT-;=—1 and d6Ty=d’,
by 4.41. Hence d0T;=i for each member of the
sequence. In particular dOT=d'T.

We have shown that 6 is a 1 —1 mapping of the set
of flats of M-S onto a class of flats of M X Z, and that 6
preserves dimension and inclusion relations. We
may say therefore that 6 transforms each geometrical
figure made up of flats of M-S into a geometrically
equivalent figure made up of flats of M X Z.

Not every flat of M XZ need be of the form 6T
however. A simple example is provided by a matroid
of three cells a, b, and ¢, and three atoms {a, b},
{b, c}, and {c,a}. WeputS={a,b} and Z={a,b, c}.
Then Z is clearly a carrier of M-S. But the set S
is a flat of dimension 2 in M-S and dimension 1 in
MXZ. Hence S cannot be of the form 07, with T
a flat of M-S.

In general we have the following theorem
445 If V is a flat of MXZ, then SOV is a flat of
M-S, and moreover VCO(SNV).

PROOF: The first assertion follows from 1.11 and the
definition of M-S.

It is evident that SNV COSNV).

Suppose belV'—S. There is an atom X, of M XZ
such that beX, and SNX,CSNV. Choose such an
X, so that |[SNX,| has the least possible value. Then
SN X, is non-null, by 4.41 and 3.54.

Assume SN X, is not an atom of M-S. There exists
YeM -S such that YCSNX,. Then b is not a cell of
0Y, by the choice of X,. Choose aeY. Applying
Axiom II to X, and 6Y we find that M X Z has an atom
Y’" such that beY'C (X,UY)—{a}. But then SNY’
CSNX,, and the definition of X, is contradicted.

We deduce that SNX, is an atom of M-S. Hence
0(SNXy) =X, by 4.42, and therefore bed(SNV).
Since this is true for all be/'—S we have V—S
coesnp).

Combining
cosnp).

the above results we find that V

5. Specializations

5.1. Matroids and Chain-Groups

As before we suppose given a commutative ring R
with a unit element and no divisors of zero.

We have to consider the following problem. Given
a matroid M we are to determine whether there exists
a chain-group N over R such that M=M(N). In
this work we solve the problem only in some special
cases, each time with the help of the following theorem.
5.11 Let M be a matroid on a set E. With each atom
X of M let there be associated a chain f{X) on E over R
such that ||fiX)||=X. Suppose further that whenever
X, Y, and Z are distinct points on the same line of M
there exist non-zero elements r, s, and t of R such that

if(X) +sf(Y) +1f(Z) =

14



Let N be the chain-group on E over R generated by the
chains f(X).

Then M= M(N).

Proo¥: Let T be any point of M(N). There is an
elementary chain f of N such that |f]=T. By the
definition of N we can find a flat S of M with the fol-
lowing properties.

(i) There is a nonzero element r of R such that
rfis a sum of chains ¢tfAX) with X CS, teR.

(i1) dS has the least value consistent with (i).

If possible choose aeS—T and write S’ =(S—{a}).
The set C of all points of M which are subsets of S’ is
a linear subclass of M. (4.3).

If g and h are chains of N we write

g&=h mod S’

to denote that g—h is a sum of chains #f(X) such that
XCS’'. In particular we may write
rf=2tf(Yi) mod S’,

tieR. 1)

where the Y; are points of M such that aeY;CS,

Let Y be any point of M such that aeYCS. For
each Y; the flat YUY, of M is connected, by 3.48.
Hence there is a path P; from Y; to Y on S such that
no term of P; is a point of C, by 4.34.

If U and V' are consecutive points in P; then the line
UUV meets S’ in a point W of C, by 4.16. Then by

hypothesis we have

xif(U) =yif(V) mod S’

where x; and y; are nonzero members of R. If Y;
# Y we state this congruence for each pair of consecu-
tive terms of P; and combine the results. In every
case we have
rif(Yi) =sif(Y) mod S’, 2)
where r; and s; are nonzero elements of R. Multi-
plying (1) by the product of the elements r; and using
(2) we find that
r'f=s'f(Y) mod S,
where r’ and s’ are elements of R, r' being nonzero.

Since a does not belong to the domain of f we deduce
that s"=0, which is contrary to the definition of S.
We conclude that in fact S=T7. Hence there is a
point 7" of M on S such that 7" CT.

Conversely let 7" be any point of M. Then f(T")
is a chain of N. Hence there is a point T of M(N)
such that TCT".

Applying Axiom I to these two results we find that
the matroids M and M(N) are identical.

5.2. Representative Matrices

It is usually convenient to specify a chain-group
over R in the following way.

757-615 O-65-2
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First we enumerate the set E, supposed non-null,
as {ei, ez, ... ,eyt. For each chain f on E over
R we define the representative vector of f as the
l-rowed matrix.

{fle1), flex), . . ., flea)}

Clearly linear relations between chains hold also for
their representative vectors, and conversely.

A matrix K, with elements in R, is called a repre-
sentative matrix of N if it satisfies the following
conditions.

(i) The rows of K are linearly independent repre-
sentative vectors of chains of V.

(i) Every nonzero chain of N has a representative
vector which is a linear combination of rows of K.
Linear dependence is of course defined in terms of the
elements of R as coefhicients.

A matrix K satisfying (i) and (ii) completely deter-
mines the chain group N. It is also evident that any
matrix K with linearly independent rows can be inter-
preted as a representative matrix of a chain-group.

Condition (i) ensures that no row of K consists solely
of zero elements. If N has only a zero chain it is
convenient to say it has a null representative matrix,
with no rows but n columns. Such a matrix is con-
sidered to satisfy (i).

Let K be a representative matrix of N and let S be
any subset of £. We define K(S) as the submatrix
of K made up of those columns which correspond to
cells of S. If S is null then K(S) is a second kind of
null matrix, being without columns but having as
many rows as K. If the number of such rows is non-
zero the matrix K(S) is not regarded as having linearly
independent rows.

As an immediate consequence of the definitions
we have
5.21 Let K be a representative matrix of N and let S
be a subset of E such that the rows of K(S) are linearly
independent. Then K(S) is a representative matrix
of N-S.

Suppose the representative matrix K of N has r
rows and n columns. It may happen that there is a
subset S of E, satisfying |S|=r such that K(S) is a
unit matrix, that is having only 1’s in the main diagonal
and only 0’s elsewhere. In this case S is evidently a
dendroid of N. We call K a standard representative
matrix of N associated with the dendroid S. If we
wish we may think of the unit matrix K(S) as occupying
the first r columns of K. For this can be arranged
by adjusting the initial enumeration of E.

5.22 Let K be a standard representative matrix
N associated with a dendroid D. Then the rows
K are representative vectors of elementary chains
N, and these chains constitute a dendroid-basis
N corresponding to D.

PRrOOF: By 2.3 there is a dendroid basis {f.|aeD}
of N. The theorem follows from the Corollary to 2.31.

A null representative matrix of a trivial chain-group
N may be regarded as standard, being associated with
a null dendroid.

Let K be a standard representative matrix of /V,



associated with a dendroid D and having r rows and n
columns.

We construct a matrix K*, having n — r rows and n
columns, in the following way. The submatrix of K*
occupying the n—r columns corresponding in position
to those of K(E—D) in K is a unit matrix. The
other columns constitute a submatrix of K* equal to
minus the transpose of K(E—D). We illustrate the
construction by an example, in which R is the ring
of integers

D 15'=1l;
I © 2Z=1 g
K=
0 1 0 5 6
-2 0 1 0 0
K*= =9 O i@
—9—-6 0 0 1

5.23 K* is a standard representative matrix of N*
associated with the dendroid E—D.

Proor: E—D is a dendroid of N¥ by 2.43. The
theorem follows from 2.42 and 5.22.

Returning to the matrix K we consider an arbitrary
submatrix 4 of K(E—D). Let A, be the submatrix
of K constituted by those rows which meet 4. Let
A, be the submatrix of 4, constituted by those of its
columns which have 1's in K(D). Thus A4 is a unit
matrix having the same number of rows as 4. We
refer to A, as the annex Ann (4) of A. The submatrix
of K made up of 4 and Ann (4) is the extension
Ext(4)of A. We give an example below

D E—D
1 0.0 0 0 1—=1 1 1-1
01 Oof 0 0 1[—1 0 O}l
Ann A 0 1 o0 O0—1_1 0 1] o074
O 0 0 1 O 1—-1—-1 0-1
o 0 0 0o 1 1 1—-—1 0 O
FIGURE 5A.

It is not of course essential that the rows and

columns of A should occur consecutively in K.
5.24 Let A be any submatrix of K(E— D). Then Ext
(A) is a standard representative matrix of a minor of N.
The corresponding dendroid D, is made up of those cells
which correspond to columns of Ann (A).

PRrOOF: Let D, and Z be subsets of E made up of the
cells which correspond to columns of Ann (4) and 4
respectively. Let B be the submatrix of K(E—D)
made up of those rows of K(E—D) which meet A.
Thus Ann (B)= Ann (4).

We note that the rows of Ext (B) and Ext (4) are
linearly independent. For each of these matrices
contains the unit matrix Ann (4) and has the same
number of rows as Ann (A4).
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It is clear that a chain f of N has a restriction in
NX ((E—D)UD,) if and only if its representative
vector is a linear combination of rows of 4, Hence
Ext (B) is a representative matrix of N X ((E—D)UD),
and therefore Ext (A4) is a representative matrix of
the minor.

Ni= (NX ((E_D) UDI)) : (ZUDI)’
by 5.21. Evidently Ext (4) satisfies the definition of

a standard representative matrix of N; associated

A minor of N having a representative matrix of the
form Ext (4), where 4 is a submatrix of K(E—D),
will be said to be visible in K.

In general we cannot assert that there is a standard
representative matrix of NV associated with each den-
droid. However we have the following theorem.
5.25 Suppose that either R is a field or that N is regu-
lar. Then if D is any dendroid of N we can find a
standard representative matrix of N associated with D.

PrROOF: There is a dendroid-basis {f,|aeD} of N.
If NV is regular we can take each chain f; to be primi-
tive. So in all cases covered by the theorem we may
suppose fq(a) to have a reciprocal in R. Multiplying
each chain f, by the reciprocal of f,(a) we obtain a
dendroid-basis {g,|aeD} of N such that g.(a)=1 for
each aeD. Clearly there is a standard representative
matrix of /N, associated with D, whose rows are the
representative vectors of the chains g,.

We may now supplement 5.24 as follows.

5.26  Suppose that either R is a field or N is regular.
Let L be any minor of N. Then we can find a standard
representative matrix K of N, associated with a den-
droid D, such that L is visible in K.

ProoF: Let D; be any dendroid of L and let Z be
the set of all cells of L not in D;. Then we may write

L=(NXxU)-(ZUDy),

by 3.243.

We recall that the dendroids of a chain-group N
Ere the dendroids of the corresponding matroid M (N),

y 2.3.

Let V be a carrier of M(L), that is (M(N) X U)
-(ZUD,) by 3.31, in M(N) XU. Then D, being a
dendroid of M(L), is also a dendroid of M(N) X V.
Hence D, is a dendroid of N X V.

We have

L=(NXV)-(ZuDy),

for the restrictions to ZUD; of the members of a den-
droid basis of N XV corresponding to D; evidently
form a dendroid-basis of L. (2.31, Corollary).

Let D, be a dendroid of N:-(E—V), and write
DiUD;=D. Then D is a dendroid of N, by 3.31 and
3.53. Let K be a standard representative matrix of
N associated with D. Such a matrix exists, by 5.25.

Let f be any chain of N X (E—D,). Its restriction
to E—V has a domain not meeting D», and is therefore

zero. Since E—D,=(E—D)UD, we deduce that



L= (NX

But by the argument of 5.24 this minor is visible in K.

((E—=D)UD,))-(ZUD,)

5.3. Characterization of Binary Matroids

A binary matroid is by definition the matroid of a
binary chain-group /, that is a chain-group over the
field GF(2) of residues mod 2.

5.31  Let M be any binary matroid. Then M* and the
minors of M are binary. (2.66 and 3.31).

A binary matroid is conveniently specified by giving
a representative matrix of the associated binary chain-
group.

5.32  Let N be a binary chain-group on a set £.  Then
every nonzero chain of N is a sum of elementary
chains of N with disjoint domains.

PROOF: If possible let f be a nonzero chain of N for
which the theorem fails, and for which ||f]| has the least
number of cells consistent with this condition.

There is an elementary chain g of N such that
lellCIlfll. But g # f, for otherwise f would satisfy the
theorem. Hence the chains g and f+g have disjoint
domains, each with fewer cells than [|f].  Accordingly
g and f+ g satisfy the theorem, and therefore f sat-
isfies it, contrary to assumption. The theorem follows.

In a binary chain-group there is little distinction
between a chain and its domain. If S;, S., . . ., Sk
are subsets of £, not necessarily all distinct, we define
their mod 2 sum as the subset S of £ such that aeS
if and only if the number of suffices i, 1 < i < k, satis-
fying aeS; is odd. This addition of subsets is evidently
commutative and associative, and we use the ordinary
additive notation for it. Chains f; on E over GF(2)
evidently satisfy

ISl =S 1Al]-

i=1 i=1

5.33

We conclude this section with two theorems char-
acterizing binary matroids.

5.34 A matroid M on E is binary if and only if any
non-null mod 2 sum of atoms of M is a union of dis-
Joint atoms of M.

PRrOOF: Suppose M =M(N), where N is a binary
chain-group. A non-null mod 2 sum of atoms of M
is the domain of a non-null chain of N, by 5.33. This
is a union of disjoint atoms of M by 5.32.

Conversely suppose M satisfies the stated condition.
Let N be the chain-group generated by those chains on
E over GF (2) whose domains are atoms of M. Clearly
each atom of M contains an atom of M(N). On the
other hand each atom of M(N) is a mod 2 sum of atoms
of M and therefore contains an atom of M. Hence
M= M(N), by Axiom I, and so M is binary.

5.35 A matroid M is binary if and only if each con-
nected line of M is on exactly three points.

PRroOF: Suppose M is binary. Let L be any con-
nected line of M. There are at least three distinct
points on L, by 4.23. Denote two of them by X
and Y, and let Z be any other.

Since XUZ=L=XUY, by 4.22, we have Y—XCZ.
Similarly X—YCZ. Hence Z contains the mod 2

sum X +Y, which is non-null by Axiom I. But X+Y
is a union of disjoint atoms of M, by 5.34. Hence
Z=X+Y, by Axiom I. Thus L is on just one point
other than X and Y.

Conversely suppose there are just three points on
each connected line of M. If X is any point (atom)
of M we write fiX) for the chain on E over GF(2)
whose domain is X. Let N be the binary chain-group
on E generated by the chains AX).

Let X, Y, and Z be the three points on any connected
line L of M. Then X4+ Y+ Z is null, by 4.21. Hence
SX)+AY)+£AZ)=0, by 5.33. Accordingly M =M(N),
by 5.11, and so M is binary.

5.4. Regular Chain-Groups and Matroids

A regular matroid is by definition the matroid of a
regular chain-group N, as defined in. section 1.2.
5.41 Let M be any regular matroid. Then M* and
the minors of M are regular. (2.47, 2.66, 3.26 and
3.31).

Let f and g be two integral chains on a set £. We
say that f conforms to g if ||f|]| C||g|| and fla)g(a) > 0
for each ael|f]|.

5.42 Let N be a regular chain-group on E, and let f
be a nonzero chain of N. Then there exists a primitive
chain of N conforming to f.

Proo¥: If possible choose f'so that the theorem fails
and || f|| has the least number of elements consistent
with this condition.

Since N is regular it has a primitive chain g such
that | g|C||f]. Choose aellg| such that f(a) has
the least possible absolute value. Replacing g by —g
if necessary we arrange that ga) - f(a) > 0. Write

h=f—fla)g(a)g

If h=0 then fis a pusitive multiple of g, and so g
conforms to f. If h# 0 it is clear that A conforms to
/- Moreover ||h]| then has fewer cells that ||f]| and so
there is a primitive chain & of N conforming to h. But
then & conforms also to f. So in each case the choice
of fis contradicted. The theorem follows:

5.43 Let N be a regular chain-group on E, and let f
be a nonzero chain of N. Then f can be represented
as a sum of primitive chains of N, each conforming to f.

ProoF: Let Z(k), where kis a chain of V, denote the
sum of the absolute values of the coefficients in £.

If possible choose f so that the theorem fails and
Z(f) has the least value consistent with this. By 5.42
there is a primitive chain g of N conforming to f.
Write h=f—g. If h=0 then f=g. If h#0 it is
clear that Z(h) < Z(f) and that A conforms tof. Hence
h is a sum of primitive chains of N, each conforming to
h and therefore to f. In either case the definition of
fis contradicted.

Let f and g be integral chains on £ and let g be an
integer not less than 2. We call g a g-representative
of fif the following conditions are satisfied for each
aek.

(i) g(a) =f(a) mod g,
(i) |gla)| <q.
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5.44  Let f be a chain of a regular chain-group N on E.
Then for each integer q=2 some chain of N is a
g-representative of f.

PRrROOF: There is at least one chain g of N which
satisfies condition (i), namely f. For each such g
we define Y(g) as the number of cells aeE satisfying
lg(@)] =gq. We choose a particular g satisfying (i)
so that Y(g) has the least possible value.

If Y(g)> 0 choose beE so that |g(b)| =¢q. By 5.43
there is a primitive chain & of N conforming to g and
satisfying h(b) ==1. Write

g =g—qh.

Clearly g satisfies (i). Moreover we have

lg1(b)| < |g(b)],
(lga)] < @)= (lg1(a)] < g).

Hence Y(gi)< Y(g), with equality only if |gi(b)| = q.

If |g1(b)] = g we repeat the process with g; replacing
g, and with the same choice of b. Proceeding in this
way we eventually obtain a chain g’ of N such that
g' satisfies (i) and Y(g') <Y(g). But this is contrary
to the choice of g We deduce that in fact Y(g)=0.
The theorem is thus true.

We use 5.44 to prove the following important
theorem about regular matroids.
5.45 Every regular matroid is binary.

PrROO¥: Let M be a regular matroid. Then
M=M(N), where N is a regular chain-group. For
each chain fof N let ' be the chain over GF(2) derived
from it by replacing each coefficient in f by its residue
mod 2. Then the chains f” constitute a binary chain-
group Q.

Let X be any atom of M. It is the domain of a primi-
tive chain of N, and therefore of a nonzero chain of
Q. There is an atom Y of M(Q) such that YCX.

Conversely let Y be an atom of M((Q). There is a
chain fof N such that Y is the domain of /. But there
is a chain g of N which is a 2-representative of f, by
5.44, and we have |g||=|f'||=Y. Hence there is
an atom X of M=M(N) such that XCY.

Applying Axiom I we find that M = M(Q).
binary.

There are some important properties of regular

chain-groups which are expressible in terms of their
standard representative matrices.
5.46 Let N be a regular chain-group on E. Let D
be any dendroid of N. Let K be a standard represen-
tative matrix of N associated with D, and let S be any
subset of E such that |S|=|D|. Then the determinant
of the square submatrix K(S) is =1 if S is a dendroid of
N, and zero otherwise.

PRrOOF: It is clear that S meets the domain of every
nonzero chain of N if and only if K(S) is nonsingular.
So, by 2.23 det K(S) is nonzero if and only if S is a
dendroid of N.

Suppose K(S) is nonsingular. Let K; be the
standard representative matrix of N associated with S
(5.25). Since the rows of K, are linear combinations

Thus M is
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of those of K there is a square matrix 4 of integers
such that AK=K, But then AK(S)=K,S). On

taking determinants we have
det A4 - det K(S) =1,

since K(S) is a unit matrix. Since 4 and K(S) are
matrices of integers it follows that det K(S)==1.

Using the formula for the determinant of a product
of two rectangular matrices we can deduce from 5.46
that the number of distinct dendroids of N is

det (KK"),

where K7 is the transpose of K. This generalizes a
well-known formula for the number of spanning trees
in a graph G.

There is a converse of 5.46 to the effect that if K
is an r-rowed matrix of integers whose rows are linearly
independent, and in which the determinants of the
rXr submatrices are restricted to the values 1, —1,
and 0, then K is a representative matrix of a regular
chain group. We do not use this theorem in what
follows, and we leave its proof as an exercise to the
reader.

The following consequence of 5.46 is of interest.
5.47 Let N be a regular chain-group on E. Let K be a
standard representative matrix of N associated with a
dendroitl D. Then the determinants of the square
submatrices of K(E— D) are restricted to the values 1,
—1 and 0.

PROOF: Let 4 be such a square submatrix. Let T
be the subset of E corresponding to the columns of
K(E—D) meeting A and those of K(D) not meeting
Ann (A).

Now K(T) is square, and det K(T) =1, —1 or 0 by
5.46. But expansion of det K(T), using the columns
in K(D), shows that det K(T)==det 4. The theorem
follows.

We can express this result by saying that K(E —D)
is  completely unimodular. Evidently K is itself
completely unimodular.

5.5. Some Binary Matroids Which Are Not Regular

In this section we show that the converse of 5.45 is
not true.  We do so by using the following observation.
5.51 Let K be a standard representative matrix, associ-
ated with a dendroid D, of a binary chain-group N on E.
Then if M(N) is regular we can replace each zero
element of K by the integer 0, and each nonzero element
by an integer +1 or —1 in such a way as to transform
K(E—D) into a completely unimodular matrix.

ProoF: If M is regular we can write M=M(N)
=M(N,), where N, is a regular chain-group.

Each row of K is the representative vector of an
elementary chain of N. We replace it by the repre-
sentative vector of a primitive chain of N; with the
same domain. Performing this operation for each
row, and then making appropriate multiplications of
rows by —1 we evidently transform K into a standard
representative matroid K; of N, associated with D.



We observe that K is transformed into K; by an
operation of the kind specified, and that K(E—D) is
transformed into the completely unimodular matrix
Ki(E—D), by 5.47.

We now investigate a binary chain-group N with the
standard representative matrix shown below

10 01 011
01 01101
00 1 0111

We shall describe a binary matroid corresponding to
such a chain-group as being “of type BI”.
5.52  No matroid of Type BI is regular.

PROOF: Suppose the theorem false. Then by 5.51
there is a completely unimodular matrix 4 of the fol-
lowing form.

X11 0 X13 X14
X21 X22 0 X24
0 X32 X33 X34

Here each xjis +1 or — 1.
The determinant of the square submatrix

It is therefore zero since A is com-
We deduce that xjixss=x14x21,

is clearly even.
pletely unimodular.

that is
X11%021%14%24 = 1. (1)
Similarly we have
Xo9X39X24X34 = 1, (2)
X13X33%14%34 = 1. 3)

We have also

x1 0 X13
x21 %22 0 = X11X22%33 T X13X21X32.
0 X32 X33

But this number is even, and therefore zero by the
complete unimodularity of 4. Hence

X11%21X22X32X13%33 = — 1

(4)
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But equations (1), (2), (3), and (4) are inconsistent,
for they imply

I 2 2
1= (xl 1x21x22x:zzx13x33)x14x§4x§4

= (X11%21X14X24) (xzzx:;2x24x34) (x13%33%14%34)

1.

The theorem follows.

The dual of a matroid of Type BI will be said to be
“of Type BII”. Such a matroid is binary but not
regular, by 5.31, 5.41, and 2.65.

By another application of 5.31 and 5.41 we have
5.53 Let M be a binary matroid having a minor of
Type BI or BII. Then M is not regular.

Our next main task is the proof of the converse of
this theorem, that if a binary matroid is not regular
it must have a minor of Type BI or BIl. Our proof
will be based on 5.11. But the question whether it is
possible to assign suitable integral chains f(X) to the
atoms X of a given binary matroid raises grave dif-
ficulties. Apparently these can only be resolved by
the use of the homotopy theory developed in the next
Chapter.

5.6. Graphic and Cographic Matroids

We have discussed specializations from general
matroids to binary matroids, and from binary matroids
to regular ones. The next step in this progression
brings us to the graphic and cographic matroids.

We have defined a graphic matroid as one which
can be interpreted as the bond-matroid of a graph
(sec. 2.5). A cographic matroid is one which can be
interpreted as the polygon-matroid of a graph.

5.61 The cographic matroids are the duals of the
graphic matroids. (2.67).

5.62 Let M be any graphic (cographic) matroid.
Then the minors of M are graphic (cographic). (3.321,
393 22N TN SIS T2,

5.63 Every graphic or cographic matroid is regular.
(1.24, 5.41 and 5.61).

The last of these theorems shows that the graphic
and cographic matroids can be regarded as specializa-
tions of the regular ones. We shall therefore have to
discuss the question: when is a regular matroid
graphic? Here we shall only state the result, leaving
the proof for a later chapter.

A complete 5-graph, or 5-clique is a graph having
just five vertices ai, . . ., as and just ten edges Lij,
the ends of L;; being a; and ¢; (1 <i<j=<05). A Thom-
sen graph, or 4-cage is a graph having just six vertices
ai, az, as, by, by, bz and just nine edges L;j, the ends of
Li; being a; and ;. (1 <(i,j) <3). These two graphs
are illustrated in figure 5B.

These two graphs are often spoken of as the Kura-
towski graphs, in view of Kuratowski’s Theorem that
every nonplanar graph contains a subdivision of one
of them.

We shall prove in a later chapter that a regular
matroid M is nongraphic if and only if one of its minors
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FIGURE 5B

is the polygon-matroid of a Kuratowski graph. Dually
M is noncographic if and only if one of its minors is
the bond-matroid of a Kuratowski graph.

6. Homotopy

6.1. Elementary Re-entrant Paths

Throughout this chapter we suppose given a matroid
M and a linear subclass C of M. We describe a path
in M as being off C if it has no term which is a vertex
of C, and we study the properties of those re-entrant
paths in M which are off C. As a special case of
course we can put C=¢ and study the set of all re-
entrant paths of M.

We specify four kinds of re-entrant path off C as
fundamental, or elementary, and we show that every
re-entrant path off C can, in a sense to be explained,
be expressed as a combination of elementary ones.

The first kind of elementary re-entrant path consists
of all paths off C of the form (X, Y, X). The second
consists of all paths off C of the form (X, Y, Z, X
where dXUYUZ) < 2.

Suppose P is a plane of M on which there are two
distinct points A4 and B of C such that each connnected
line on P is on either 4 or B. Then any path, on P
and off C, of the form (X, Y, Z, T, X) where X, Y, Z,
and T are distinct, XUY and ZUT are lines on 4, and
YUZ and TUX are lines on B, is an elementary re-
entrant path of the third kind.

Such a path is shown in figure 6A. In this and
other diagrams we adopt the convention that points
of C are to be represented by 4-pointed stars.

Now let J be a 3-flat of M on which there are three
points Z;, Z», and Zz such that Z,UZ,, Z,UZ3 and
Z3UZ,; are disconnected lines. Let there be just six
connected planes on J, two on each of these lines.
We enumerate the planes as Py, P>, . . ., Pgin such
a way that

(PiNPir3) =Z;UZ,

where (i, j, k) is any permutation of (1, 2, 3).
If 1 <:<j=<6 the flat (PiNP;) is a line, by 4.172.
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FIGURE 6A

We denote it by L;;.
nected line

If j=i+3 then L;; is the discon-

(Z UZ,UZ5)—Z;.

If j #i+3 let k£ be that integer 1, 2, or 3 which is not
congruent to ¢ or j mod 3. Then L;; is on Zj, and it
meets P and Pi4s in two distinct points. Hence Lj; is
connected by 4.23. Clearly it is on no connected
plane on J other than P; and P;.

We observe that J=P;UP,, by 4.14, and is thus
connected, by 3.48. It follows that each connected
line on J is on two connected planes of /. Hence the
12 lines L;j, j # i + 3, are the only connected lines on J.

We write

X,'jk: (P,ﬂP,-ﬂPk)

for 1<i<j<k=<6. Then X is a point on J, by
4.173, being identical with (L;jNPr). If two of the
suffices i, j, and k are congruent mod 3, then Xjjx is one
of the points Z,, Z,, and Z3. The remaining eight
points Xj; are all distinct, for on any one of them there
can be only three planes such that each is on L4, Los,
or L. These eight points, together with Z,, Z,, and
Z3 are the only points on J. For each point on J is on
three distinct connected planes of J, by two applica-
tions of 4.26.

The geometrical figure just described is shown in
figure 6B. Three lines are broken to indicate dis-
connection.

We-refer to this structure as a box, saying that the
planes P; are its sides, the 12 connected lines are its
edges, the points Z; are its rediants and the other eight
points are 1ts corners.



\//
7
7 \\I
~
= \
-
- \
// \
ad Xis6 \
_ X L\
_Z 135 \
g \
25 v +
R Y23 g\
b S
~_ \
\\\ \
X545 ~ \
X238 ~ \
NG \
S~
Sl \
= \
—
\ZZ
X246
X456

FIGURE 6B

It may happen that the points of C on J are four
corners of the box. These corners must then occur
alternately and we may suppose them to be X235, Xosg,
X35, and Xi56, as shown in the diagram. These are
the four points Xjj, such that no two suffices are con-
gruent mod 3 and the number of suffices less than 4 is
odd.

Under these circumstances any path of the form
(4, X, B, Y, A), where A and B are radiants of the box,
and X and Y are corners not in C, is called an elemen-
tary re-entrant path of the fourth kind.

6.2. Homotopy

Suppose we have two paths PR and PQR off C,
where () is an elementary re-entrant path of the Ath
kind. Then we call the process of deriving one of
these paths from the other an elementary deformation
of the kth kind. We say that two given paths P and
Q off C are homotopic if one can be derived from the
other by a finite sequence of elementary deformations.
We write this relation as P ~ Q, or if it is necessary to
specify C as P~ (Q mod C. If a path P, necessarily
re-entrant, is homotopic to a degenerate path we say
that P is null-homotopic. We write this relation as
P~ 0, or as P~ 0 mod C.

Homotopy is clearly an equivalence relation.

We note some simple rules of computation.

6.21 If two path-products PQR and PQ:R off C are
such that Q ~ Qi, then PQR ~ PQ:R.

PROOF: Any sequence of elementary deformations
transforming Q into (J; must also transform PQR into
PO:R.

6.22 If P is any path off C then PP~ ~ ().

ProoOF: If possible choose P so that the theorem
fails and s(P) has the least value consistent with this
condition.
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If s(P)=0 the theorem is trivially true. If s(P)=1
it is true because PP~! is an elementary re-entrant
path of the first kind. We deduce that s(P)= 2.

We can now write P=QR, where s(Q) and s(R) are
both less than s(P). We have QQ~' ~ 0 and RR-' ~ 0,
by the choice of P.  But now

PP~ QRR1Q~' ~ QQ~' ~ 0,

by 6.21. The theorem follows.
6.23 If PUR and PVR are paths off C such that UV~
~ 0, then PUR ~ PVR.

Proor: PUR ~ PUV-'(V-')"'R, by 6.2]1 and 6.22,

~ PUV-'VR, by 4.321,
~ PVR, by 6.21.

In what follows we prove that every re-entrant path
on M and off C is null-homotopic,

It will be convenient to denote by H(n) the proposi-
tion that every re-entrant path off C which is on a flat
of M of dimension < n is null-homotopic.

Any path P=(X,, X2, . . ., Xi) of M determines a
flat F'(P) satisfying

FP)=X,UX.U . .. UX..
6.24 If P is any path of M then the flat F(P) is con-
nected.

ProoF: X;UX;;; is a connected line whenever
1 <i</k Hence the theorem follows by repeated
application of 3.48.

We refer to the dimension of F(P) also as the di-
mension of P.

6.3. A Lemma
We devote this section to a proof of the following
proposition.
6.31 Suppose n=2 and H(n) is true. Let Q=(W,X,

Y, Z, W) be a path off C of dimension n+ 1 such that
WUXUY and YUZUW are connected planes and
WUY is a disconnected line. Then Q ~ (0.

We write Fi=WUXUY and Fo.=YUZUW.

We arrive at a proof of 6.31 by way of a chain of
minor propositions.
6.311 Let Q'=(W,X', Y, Z', W) be a path off C such
X'isonFiandZ' onF.. Then Q' ~ Q.

PROOF: This situation is illustrated in figure 6C.
The proof runs as follows:

Q' ~W. X', NY. X, "W, X, NY,Z,W)W,Z,Y)

Y,Z', W),
by 6.21 and 6.22,

=W, X" Y. X. "W X.Y.ZW\W,Z,Y,Z', W)
N(W’X7 Y:vZ’ W):Q’

by H(n), since (W, X', Y, X, W) and (W,Z,Y,Z', W)

are on planes.



FIGURE 6C

A transversal of dimension n is a connected n-flat
of M which is on F(Q) but not on both W and Y. Such
a transversal meets each of F'; and F in a connected
line, by 4.14, 4.16, and 4.281.

A transversal of dimension n—1 is a connected
(n—1)-flat of M which is on F(Q) but not on W or
Y. By 4.14 and 4.16 the transversal has just one com-
mon point with each of F; and F.. We call these
two points the poles of the transversal.

Let B be a transversal of dimension n—1 with poles
X" on Fy and Z" on Fy. Using 4.26 we find that B is
on two distinct connected n-flats on F(Q). By 4.14
and 4.16 these are BUW and BUY, and each of them
is a transversal of dimension n. Their connected
lines of intersection with F; and Fy are X' UW, X' UY,
Z'UW and Z'UY.

6.312 Let B be a transversal of dimension n.
either  ~ 0 or B has a pole in C.

ProOF: Let the poles of B be X’ on F; and Z’ on
F>. Suppose neither of them is in C.

By 4.34 there is a path R from X' to Z’ on B which
is off C. Hence there are paths (W, X') R(Z', W) and
X', Y, Z)R~' on the transversals BUW and BUY

respectively of dimension n. We now have

Then

O~W,X", Y, X', W), by 6.311
=W, X"X',Y,Z2)(Z', W)
~W,Z)R'R(Z', W), by 6.23 and H(n),
~W,Z', W) by 6.22
=0

by an elementary deformation of the first kind. This
proves the proposition.

Let us make the assumption that Q is not null-
homotopic.

By 4.27 there is a transversal 4 of dimension n
which is not on Y. Let its lines of intersection with
Fi and F, be L, and L, respectively. By the defini-
tion of a linear subclass there is a point X', other than
W, on L; and not in C. By 4.27 there is a connected
(n—1) flat B on M which is on 4 and X’ but not on .

FIGURE 6D

Now B is a transversal of dimension n—1. Let its
pole on L, be Us. Then UseC, by 6.312.

Similarly there is a transversal B’ of dimension
n—1 on A having a point Z’ not in C as its pole on
L, and a point U; of C as its pole on L;. We write
T'=(BNB'). By 4.14 and 4.16 T is an (n—2)-flat on
A. (See fig. 6D.)

LCeI 2 be the class of all points on 7 which are not
in C.

6.313 X is non-null.

PROOF: Since T'is an (n—2) flat on an (n— 1)-flat B,
and since B has a point U, in C and a point X’ not in C,
this follows from 4.36.

6.314  Let T; be any point of 3. Then TiUW and
1; U Y are disconnected lines.

PROOF: Suppose the flat T;UY is connected (fig. 6E).
There is a path Ry from Y to T;on T;UY, by 4.34, which
is off C.  Similarly there is a path R; from X’ to T; on
Bffagd a path R, from Z' to T; on B’, both paths being
(0] .

Now (X', Y)RoR;! is a re-entrant path on the trans-
versal BUY of dimension n, and (Y, Z)R:R;! is a
re-entrant path on the transversal B’UY of dimension
n. Both these paths are null-homotopic, by H(n). We
thus have

Q~W,X',Y,Z' W), by 6.311,
=W, XX, NY,Z'\Z', W)
~ W, X')RiR;'RoR;\(Z', W), by 6.23,
~ (W, X RiR;\(Z', W), by 6.22.

But the last path is on the n-flat 4. Hence Q ~ 0 by
H(n), contrary to assumption.

We deduce that YUT; has nontrivial separators Y
and 7i. Hence Y and T; are the only points on it and
the flat must be a disconnected line. (3.42 and 3.54.)

The transversal BUY of dimension n is not on W.
We can therefore repeat the construction for B’, using
BUY instead of 4 and interchanging the roles of Y and
W. There results a transversal B” of dimension n— 1
on BUY. lts pole on the line U,UY is not in C and
its pole on the line X’UY is in C. It meets B in an
(n—2)-flat T" analogous with 7.
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In view: of the foregoing argument we may assert
that any point 77 on 7" which is not in C has the prop-
erty that W”UT] is a disconnected line. In particular
B" has a point in common with the disconnected line
YUT;, and this point can only be T;. Hence T} is on
T'" and therefore WUT] is a disconnected line.

Let K be a connected flat of M which is on F; and
F(Q), and also on some point of %, and which has the
least dimension consistent with these properties.

Clearly either F(Q) or one of its subsets satisfies this
definition.

6.315 dK=3.
Proor: We have

n+1=dF(Q) = dK > dF =2,

and so dK=3. But dT=n—2. Hence, by 4.16,

d(KNT)=dK—3.

Choose a point N on (KNT), taking N in C if this
is possible. By 4.27 there is a connected (dK — 1)-flat
K' on Fyand K, but not on N. By 4.14 and 4.16 (K'N\T)
is a flat on (KNT') of dimension d(KNT)—1.

All the points of M on (K'NT) belong to C, by the
definition of K. By the choice of N this implies that
either d(K'NT)=—1 or N is in C. But in the latter
case all the points of (KNT) are in C, by 4.36, which
is contrary to the definition of K.

We deduce that d(K'NT)=—1 and therefore
d(KNT)=0. But we have seen that d(KNT) = dK
—3. The proposition follows.

6.316. n=2.

PROOF: Suppose n=3. Then F, is not on K, since
dF(Q)=d(F1UF,) =4, by 6.315. By 4.27 there is a
connected n-flat K" on F, and F(Q) but not on T;.
Write F3=(K"NK). Then F; is a plane on K and
WUY, by 4.14 and 4.16.

By 4.27 there is a connected line L on K and 7; which
has no common point with the disconnected line " UY.
It meets F; and F; in distinct points X; and X, respec-
tively, neither of which is T;. (Fig. 6F.)

FiGcure 6F
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We note that F3=WUYUX;, by 4.14. Moreover
XiUW and X,UY are connected lines, by 4.281.
Hence X;NW and X;NY are both non-null, by 4.22.
On the other hand T;U W and T;UY are disconnected
lines, by 6.314. Hence T;NW and T;NY are null, by
4.22. But L=X,UTi=X3UT;, by 4.22. Hence
XsNW and X;NY are both non-null and therefore F;
is connected by 3.48.

By 4.35 there is a path R from Y to W gn F; which
is off C. The re-entrant paths (W, X, Y) R and (Y,
Z, W) R~! are on K and K" respectively. They are
thus null-homotopic, by H(n). Hence

=W, X, (Y, Z, W) ~R'R~0,

by 6.22 and 6.23.

Since n =2 by the hypothesis of 6.31 we deduce,
from this contradiction to our main assumption that
0 is not null-homotopic, that n=2.

It follows from this result that dT'=0. Hence the
flat 7' is a point of M, identical with 7;. The three
flats WUY, YUT and TUW are disconnected lines,
by 6.314. Hence WUYUT is not a connected plane,
by 4.282.

Any plane on the 3-flat F(Q) has a common point

with each of the disconnected lines WUY, YUT and
TUW. It is therefore on one of these lines, by 4.23.
Each line of F(Q) is on a plane of F(Q), by 4.14. Hence
each such line is on W, Y, or T, by 4.171.
6.317 There are just four connected lines on each of
the planes F, and F., two being on W and two on'Y.
Moreover each such line is on just three points, of which
Just one is in C.

PROOF: Suppose one such line L; is on k distinct
points Xi, Xs, . . ., Xx other than Y or W. Then
k>2, by 4.23. Of course L; is on Y or .

Suppose L; is on Fi. By 4.27 there is a transversal
F of dimension 2 on L, and a transversal B; of dimen-
sion 1 on F and X; for eachi. (i=1, 2, 3). Then F
meets F in a connected line L,. The line B;is on T,
since it is not on W or Y. Hence Bi=X;UT, and B;
is uniquely determined for each i. Let X; be the
common point of B; and L. Since Bi=X/'UT the
k points Xi', X»', . . ., Xi are all distinct. But at
most one point on each of the lines L; and L is in C,
and each B; has at least one polein C. Similar reason-
ing applies if L, is on F,.

We deduce that each connected line on F; or F»
is on just three points, and that just one of these points
is in C.

There are two connected lines on Y and two on W
in the plane F;, by 4.26. Since the lines through W
(or Y) must meet those through Y (or W) in distinct
points it follows from the preceding result that there
are just two such lines on Y and just two on . The
same result holds for Fs.

6.318 FEach of the disconnected lines WUY, YUT
and TNW is on just two connected planes of F(Q).

PrROOF: Let L' and L” be the two connected lines
on W and F;. (6.317). Each is on a transversal of
dimension 2, by 4.27, and both these transversals are
connected planes on TUW. There is no other con-
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nected plane on TUW since each such plane would
meet F; in a connected line through #. (We have
shown that 77U W UY is not a connected plane.)
A similar argument applies for TUY.

Now suppose there is a connected plane F'3, distinct
from F; and F», on WUY. We note that F'5 is not on
T, since WUYUT is not a connected plane.

Let Uy be a point of C on F,. By 4.27 it is on a
transversal B of dimension 1. This must be on 7.
Let it meet F'y, Fy, and F3 in Uy, Us, and U; respectively.
Similarly let V', be a point of C on F». 1t is on a trans-
versal B’ of dimension 1. B’ is on T and meets
Fi, F,, and F3 in distinct points V4, V», and V3 respec-
tively. Since T is not in C we deduce that the points
Us, Uz, V1, and V3 are not in C. (Fig. 6G.)

We have

(Wy VI’ Y) -~ (W5 V], V3’ W)(W5 V3’ Vl, Y)
~W, Vi, Vs, W))W, V3, ) (Y, V3, V1, Y)
- (Wy V3, Y)a

by 6.21 and 6.22, with the help. of H(n)=H(2).
Similarly

(W9 U2’ Y) -~ (Wa U35 Y)

Hence
Q~W.V,Y, Uy, W), by 6311, ~ (W, V,, Y, Us, W), by
the preceding results,
~ 0, by H(2).

But this is contrary to assumption.
follows.

We observe that our figure on F(Q) is a box with
radiants Y, W, and 7. We therefore revert to the
notation of section 6.1. We put Y=2,, =2, and
T=Z,. We also identify P; with F; and P with

The proposition

FIGURE 6G



F,. Each connected line is on Y, W, or T, and is
thus on at most one point of C. But each connected
line on P3 or Pg is on one point of C, by 6.317. We
may therefore suppose the points of C to be as shown
in figure 6B.

This implies that Q) is an elementary re-entrant path
of the fourth kind. Thus Q ~ 0, contrary to assump-
tion. This contradiction establishes the lemma 6.31.

6.4. Homotopy Theorem

We now turn to the proof of the main theorem of the
chapter.

6.41 Every re-entrant path of M which is off C is null-
homotopic ‘

ProoF: We proceed by induction. We observe
first that H(0) is trivially true. We assume as an
inductive hypothesis that H(n) is true for some non-
negative integer n, and we try to deduce the truth of
H(n+1).

Let P be any path of M off C which is re-entrant and
has dimension n+1. Choose a connected n-flat J
of M which is on F(P) and the origin X, of P, as is
possible by 4.25 and 6.24.

Let R be any re-entrant path on F(P) with origin
X(). Write

Rz(Xl)’ Xl’ X'ls ) Xlll’ X())-
We write u(R) for the number of terms of R, counting
repetitions, which are not on J. If u(R) > 0 we denote
by X; the first term of R which is not on J. We then
write v(R) for the dimension of the connected flat
Xi-1UX;UXi41, taking Xy =Xo if i=m. If w(R)=0
we write v(R)=0.

We may suppose R chosen so as to satisfy the follow-
ing conditions

i) R~P

(i1) w(R) has the least value consistent with (i),

(iii) »(R) has the least value consistent with (i) and
(i1).

We write F=X; ;UX;UXis1.
in the form

We also write R

Rl(Xifh Xi’ Xi+l)R2

so that R, is a path on J.

We assume w(R) > 0. This implies v(R)>0. We
consider separately the cases v(R) =1, v(R) =2 and
v(R) = 3.

Case I v(R)=1.

In this case F' is a connected line. If X;1, =X, we
have P ~ R ~ RiR:, by an elementary deformation of
the first kind. Since u(RR») < u(R) this is contrary
to the choice of R.

If X,‘H 7> X,'fl, then

(Xi-1, Xiy Xiv1, Xi-1)

is an elementary re-entrant path of the second kind.
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Hence
P ~R ~Ri(Xi-1, Xi+1)R>)
by 6.23. But this is impossible since
w(Ri(Xi—1, Xiz1)R2) <u(R).
Case II: v(R)=2.

F is now a connected plane on F(P). It meets J
in a line L, by 4.14 and 4.16. Let Z be the point of
intersection of the lines L and X;UX;,; on F. (Figs.
6H and 61.)

Suppose Z is not in C, as in figure 6H. We define
Q as the degenerate path (Z) if Z=X;,,, and as the
path (Z, Xi;1) otherwise. Then

Xi, Xit1) Q7' (Z, X))



is an elementary re-entrant path of the first or second
kind. Hence

R ~ Ri(Xi-1, Xi, Z)QR.>,

by 6.23. If L is connected we have

(XI'*1> Xi7 Z, Xl'*l) -~ 09

by an elementary deformation of the second kind,
and so

R~ Ri(Xi-1, Z) QR.,

by 6.23.

If L is not connected it is on a connected plane F’
contained in J, by 4.28. We can find a connected
line L' on Xi_; and F’ by 4.26, and a point T on L’
distinct from Xi-; and not in C, by 4.23. The flats
TUX;.; and TUZ are connected lines, by 4.282.
Hence

(Xi—l, Xi7 Za T7 Xi—l) ~ 0’

by 6.31. So by 6.23 we have

R~Ri\(Xi1, T, Z) OR..
Thus, whether or not L is connected, we have
R -~ R:30R29

where R; is on J. But this is contrary to the choice
of R, since u(R30R:) < u(R).

We may now suppose ZeC, as shown in figure 6l.
In this case there is a connected line L’ other than
XiUXis1 on Xiy1 and F, by 4.26. If L’ is on X;_; then
(Xi-1, Xi, Xit1, Xi_1) is an elementary re-entrant path
of the second kind. We therefore have

R~ R](Xi_l, Xi+1)R2, :RI say,

by 6.23. This is contrary to the choice of R, since
wR') < u(R). We deduce that in fact L' is not on
Xi_1. It therefore meets the lines X;-;UX; and L in
distinct points U and ¥ respectively. Since Z is in
C and X;_, is not, the point ¥ is not in C.

Suppose U is not in C, contrary to the indication
given in figure 6l. Using 6.23 with elementary
re-entrant paths of the second kind we have

R -~ Rl(Xi—l, U, Xi, Xi+1)R2
~RiXi_1, V, U, Xis1)R>

~RiXi-1, V, Xi+1)Ro, =R’ say.
But then u(R') < w(R), contrary to the choice of R.
We deduce that U is in C, as indicated in figure 6I.

In this case it may happen that each connected line
on F is on either U or Z. Then (Xi_1, Xi, Xi+1, V, Xi-1)

is an elementary re-entrant path of the third kind.
Using 6.23 we deduce that

R~RXi-1,V, Xi:1)Ro,

which is impossible, as before.

It follows that there is a connected line L” on F
which is not on U or Z. Letit cut the lines L, X;_;UX;
and X;UX;,; in the points W, W», and W3 respec-
tively. These points are distinct from U and Z and
are therefore not in C.

If L" is on X;;1 we can substitute it for L’ in the
preceding argument. This reduces the problem to the
case in which U is not in C, and so yields a contradic-
tion. We may accordingly suppose that L" is not on
Xi+1-

If L” is on X; it meets L in a point W, distinct from
Xi-1 and Z.

Writing

R'=R1(Xi—1, Wl, Xi, Xi+1)R2,

we then have R ~ R’, by an elementary deformation
of the second kind. If L" is not on X; then the points
Ws, Wi, Xi, Xi11, and Z are all distinct. If L” is then

on X;_; we write
R'=R:Xi-1, W3, Xi+1)R>,

and have R ~R’, by elementary deformations.
If however L" is not on X;_; the points X;_; and V>
are distinct. We then write

R’ =R1(X,-,1, Wl, W3, Xi+1)R2

and have

R~RiXi-1, W2, Xi, Xi+1)R:
~RiXi1, Wi, Wa, W3, Xi, Xit1) R
~R',

by 6.23. For each of these three possibilities we have
R ~R’', u(R")=u(R), v(R")=v(R)=2.

Hence we may replace R by R’ in the preceding argu-
ment. This reduces the problem to the case in which
U is not in C, and so yields a contradiction.

This completes the analysis of Case 11.

Case III. o(R)=3.

There is a connected plane K on F and the line
Xi-1UX,. This plane meets J in a line L. Choose
a point N, distinct from X;_;, on L and if possible in
C. By 4.27 there is a connected (v(R)—1)-flat F' on
X;UXiy; and F, but not on N. Now F"’ is not on X;_;,
for otherwise we would have F=X; ;UX;UX;,CF'.
Hence F' meets L in a point N’ distinct from N and X;_;.
It follows that L is connected, by 4.23, and that N’ is
not in C. (See fig. 6].)
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The flats F' and K intersect in a line L' on X; and N'.

If L' is connected we write
R':Rl(Xinl, N',Xi, Xi+1)R27

and have R’ ~ R by 6.23. If L’ is not connected it is
on a connected plane K' on F’, by 4.28. This meets /
in a connected line L” on N', by 4.282. We can find
a point U on L" distinct from N’ and not in C. The
flat UUX; is a connected line, by 4.282. We now have

(NI, U’ Xi7 Xi"v N,) NO’

by 6.31. In this case we write

R'=R(Xi_1, N', U, Xi, Xis1)Rs.
We then have
R' ~Ri(Xi-1, N', U, Xi, Xi-1, N', Xi—1, Xi, Xiz1)R2
~Ri(Xi—1, N', Xi1, Xi, Xis1)R:
~ Ri(Xi-1, Xi, Xis1)R2 ~ R,

by 6.23 and an elementary deformation.
So, whether L’ is connected or not, we have
R’ ~R, u(R)=u(R), v(R')<v(R).
But this is contrary to the definition of R.

From the above analysis of the hypothesis u(R) >0
we deduce that in fact u(R)=0. Hence R is on J and
has dimension <n, and therefore R ~0, by H(n).
Hence P ~ 0.

We have now shown that H(n+1) is deducible from
H(n). Hence the proposition H(n) is true for every
non-negative integer n (since H(0) is true), by induction.
Thus our theorem holds.

6.5. Special Cases

When C is null there are only two kinds of elemen-
tary re-entrant path to consider, the first and the
second. The homotopy theorem then tells us that
every re-entrant path in a matroid can be deformed
into a degenerate one by a sequence of operations each
of which is confined to a single line or plane.

The homotopy theorem can of course be applied to
the polygon-matroid of a graph G. But care must
be taken to distinguish between the paths of P(G)
and those of G itself. A path in P(G) corresponds to
a sequence of polygons in G such that the union of two
consecutive polygons is a nonseparable subgraph
H such that P(H) has rank 2. It can be shown that
these conditions on H imply that H is a “6-graph”,
made up of three arcs such that any two have both ends
but no other edge or vertex in common.

The homotopy theorem with C null asserts that a
re-entrant sequence of polygons of the above kind can
be reduced to a degenerate sequence by operations
each of which is confined to a single polygon or
0-graph of G.

7. Characterization of Regular Matroids

7.1. Some Preliminary Observations

In this chapter we resume the discussion of regular
chain-groups and matrioids which was broken off at
the end of section 5.5. Our task is to show that a
binary matroid is regular if it has no minor of Type
BI or BII.

We first note some simple theorems which will
be helpful in the discussion.

7.11 Let S be an (n—1)-flat on an n-flat T of a matroid
M. Let a be any cell of T—S. Then (T—{a})=S.

This follows from 4.13 and 4.14.

712 Let X, Y and Z be distinct collinear points of a
binary matroid M. Then X +Y+Z is null.

A proof of this theorem is contained in the proof of

5.35.
7.13 Let S be an n-flat on an (n+2)-flat T of a binary
matroid M, where n= 0. Then there are at most three
(n—+1)-flats of M which are on both S and T.

PROOF: Suppose there are k£ such (n+ 1)-flats.

By 4.27 there is a line L on T which has no common
point with S. The k(n+1)-flats meet L in k distinct
points. Hence k < 3, by 5.35 and 4.23.

7.2. Fano Configuration

We can define a Fano configuration in a binary
matroid M as a figure made up of a plane P of M, seven
distinct lines on P, and the points of intersection of
these seven lines.

Suppose F is such a configuration. Any line L of
F'is on at most three points, by 5.35, and each of these
is on at most two other lines on P. But each line on P
must have a common point with L. We deduce that
each line of F is on three distinct points of F, each of
which is on exactly two other lines of F. Hence F
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has just seven points. Moreover there can be no
eighth line on P, and therefore there is no eighth point
on P, by 4.25 and 5.35.

We enumerate the seven lines as Ly, L, . . ., Lz,
We denote the point of intersection, if any, of three
lines L;, Lj, and Li by Xjjk.

We may assume a point X35 on Ly, L3, and L;. The
line L;, which is not on X35, meets Ly, L3, and L; in
points we may label X147, X367, and X537 respectively.
The lines L, and Ly each meet L in its point other
than X35 and Xjs7, which point is therefore Xass.
Similarly the remaining points of the figure are Xis¢
and X126-

A Fano configuration is shown in figure 7A, in which
one of the seven “lines” is indicated by a curve.

The seven lines are connected, by 4.23, and so P
is connected, by 3.48.

7.21 If a binary matroid M includes a Fano configu-
ration, then it has a minor of Type BI.

PRrRoOOF: Let P be the plane of the Fano configuration.
There is a binary chain-group N such that M(N)
=M X P, by 5.31.

Consider the chains f, g, and h on P over GF(2)
whose domains are Xz, X34, and X456 respectively.
They are linearly independent chains of N since
X126 is not on Ly, that is not contained in X3 UX 56
Moreover they generate the chains corresponding to
all the atoms of M X P, by 7.12. Hence their represen-
tative vectors can be taken as the three rows of a repre-
sentative matrix K of NV, by 5.32.

Since P is a union of atoms of M the matrix K has
no zero column. If it has two equal columns corre-
sponding to cells a and & it is clear that an atom of
M X P contains a if and only if it contains 4. But
then (P—{a})=(P—{b}).

Xase
X367
X135
X126
7)(234 X257 i :
FiGure 7A

Since there are seven distinct lines on P it follows
from 7.11 that all the seven distinct nonzero 3-vectors
over GF(2) occur as columns of K. Hence, there exists
SCP such that K(S) is the first matrix of section 5.5,
apart from a permutation of columns. But then
(MXP)-S is a matroid of Type BI, by 5.21. Since
(MXP)-S is a minor of M the theorem follows.

7.3. Heptahedron

We use the term “‘heptahedron’ to denote a figure
on a 3-space F of a binary matroid M, defined by seven
distinct planes such that no three are on a common line.
We include in the figure the 21 lines of intersection of
the seven planes, and those points of F which are
common to three or more of the seven planes.

We enumerate the seven planes as Py, P, . . ., P,
and write L; for the line of intersection of P; and
Pj, taking 0<i<j=<T7.

A point on L;j is on at most three lines of P;, by 7.13.
On the other hand there are exactly six lines of the
heptahedron on P;. It follows that each of the lines
L;j is on exactly three points of the figure, that one of
these points is on exactly three of the seven planes,
and that each of the two other points is on exactly
four of them (5.35). Hence each of the lines Lj; is
connected. It follows that the planes P; and the flat
F are connected.

We write Xj. for a point which is on just three planes
P;, Pj, and Py of the heptahedron, and Xjjx for a point
on just four such planes Pi, Pj, Py, and P,. Each
point of the first kind is on exactly three lines of the
heptahedron, and each point of the second kind on
exactly six. It follows that the figure has just seven
points of each kind.

(=
7 Ly
Ls7
Xis67
Z =X3457 Laz
Xia7 Y=X2467
L3z
La7
FIGURE 7B
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We may assume L17 to b(:‘ on X147, X]g;;7, and X|54;7.
The line Ly; is on two points Y and Z distinct from
Xis7. On P; each of these is on three lines of the
heptahedron meeting L; in three distinct points. We
may therefore suppose Y to be on L,; and Lg while
Z iS on L37 and L',7 Then Y:X24(;7 and Z:X;;457,
(Fig. 7B.)

The remaining points of the heptahedron on P;
are Xse7=(L37MLe7) and Xos7= (L27M Ls7).

The lines L3 and Lis on P; meet in a point X34z,
since Lis is on Xis. Since no three planes of the
heptahedron are on a common line this point cannot
have three suffices in common with any of the points
on P;. It is therefore Xiss5. But Xi346 is on the lines
Lis, Lia, Li6, Lss, Ly, and Liys. These meet P7 in X237,
Xisz, Xiser, Xsas7, Xsez, and Xossr respectively. The
third points on these lines are therefore Xis5, Xi245,
X126, Xoza, Xogse, and Xise.

We have now accounted for all the points of the
figure. Those of the first kind are

X]ZG, Xl.';.'i, X1~17’ 1X2:H, XZ.’..')7’ X.'m'ia X~l.')6’
and those of the second kind are

X1237, X1245, XliH(iy Xl.’)(i'/, X23.’)1ia X‘.l-l(i7, X.‘H.’ﬂ~

A heptahedron can be constructed from the box of
figure 6B. To do this we replace the three discon-
nected lines by connected ones, and we imagine a
seventh plane to pass through the points of C and to
cut the lines Z;Z; in their third points. Since any two
points of C determine a unique plane of the box it
is clear that no line of the resulting figure is on three
of the seven planes. The notation of figure 6B is
not that used above.

7.31 If a binary matroid M includes a heptahedron,
then it has a minor of Type BII.

PrROOF: We use for the heptahedron the notation
set out above. There is a binary chain-group NV such
that M(N)=M X F, by 5.31: The rank of M(N) is 4.

Let f, g, h, and j be the chains on F' over GF(2)
whose domains are Xasa, X346, X 1245, and X237 respec-
tively. Any three of these atoms define a plane which
is not on the fourth, so the four chains are linearly
independent. Using 7.12 we can verify that they
generate the chains corresponding to the atoms of
M(N), and therefore all the chains of N by 5.32.  Hence
their representative vectors can be taken as the four
rows of a representative matrix K of N.

For each P; we select a cell aieF—P; We then
have Pi=(F—{a;}), by 7.11. We write S={ai,
as,. . ., az}. We further suppose that the enumera-
tion of the cells of F, used in defining K, is such that
the columns representing the cells a; occur in the order
of their suffices.

Now a plane P; passes through a point X of the
heptahedron if and only if i is one of the suffices of
X. Moreover this happens if and only if a; is not a
cell of X. We can therefore evaluate the matrix

K(S) as

ay ax az a4 as Qs az
I 0 0 0 1 1 1
o 1 o0 o0 1 0 1
o 0 1 o0 o0 1 1
o 0 o0 1 1 1 0

This is a representative matrix of the minor M, =
(M XF)-Sof M,by5.21. But then M,* is a matroid of
Type BI, by 5.23. Thus M, is of Type BII, and the
theorem follows.

Theorems 7.21 and 7.31 have simple converses.
It is easily verified that a matroid of Type BI or BII
has a Fano configuration or heptahedron on its plane
or 3-space. If the matroid is a minor (M XS)-T
of a larger matroid M, a corresponding configuration
must occur on any carrier Z of (M XS)-T in M XS.
(See section 4.4). The configuration then occurs on

the flat (Z) of M.

7.4. Condition for a Regular Matroid

We devote this section to a proof of the following
theorem.
741 A binary matroid M on a set E is regular if it
includes no Fano configuration and no heptahedron.

PROOF: Assume the theorem false. Then there
exists a matroid M, on a set £, which is binary and
includes no Fano configuration or heptahedron, but
which is not regular. Choose such a matroid M so

that |E| has the least possible value.
Clearly |E|=1. Choose aeE and write M'=
M-(E—{a}). Then M' has a carrier Z in M, and Z is

either £ or E—{a}. By section 4.4 there is a 1—1
mapping 6 of the set of flats of M’ onto a subset
of the set of flats of M which preserves dimension
and geometrical incidence.

As in the case of 6.31 we arrive at a proof of 7.41
through a sequence of subsidiary theorems.
7411 M' is regular.

PrROOFy M’ is binary, by 5.31. It includes no Fano
configuration or heptahedron, for otherwise 6 would
induce another such figure in M. Hence M’ is regular,
by the choice of M.

By 7.411 there is a regular chain-group N’ on E —{a}
such that M'=M(N'). For each atom X of M’ we
select a primitive chain g(X) of N’ such that ||g(X)|| =X.
For each beE—{a} we denote the coefficient of b in
g(X) by s(X, b). Thus s(X, b)is 1 or — 1 if beX, and is
zero otherwise.

Let C denote the class of all points 7 of M’ such that
a¢0T.

7412 C is a linear subclass of M'.

PRrROOF: Suppose X, Y, and Z are distinct points of

M’ on a line L of M’, and that X and Y belong to C.
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Then 6X, 0Y, and 6Z are distinct points of M on 6L,
and 0L is a line of M. But now a¢fXUY =0L, by
4.22, and therefore a¢0Z. Hence ZeC. The propo-
sition follows.

Let X and Y be any two distinct points of M’, not
in C, which are on the same connected line L of M'.
By 4.22 there exists a cell deXNY. We now write

tX, V)=sX, d)s(¥, d).

7413 If X and Y satisfy the conditions just stated,
then t(X, Y) is uniquely determined.

PROOF: Suppose this proposition is false for some
X and Y. Then there are distinct cells d and e of
XNY such that

sX, d)s(Y, d)=

Without loss of generality we may assume that

—s(X, e)s(Y, e)

sX,d)+s(Y,d)=0,
s(X,e)+s(Y,e)==*2.

The third point Z on L is the mod 2 sum of X and Y,
by Hence we have

ZC||gX) +eMlICL,

since e is in ||g(X)+g(Y)||but not Z, and d is in L but
not ||g X)+g@)|. But ||g(X)+g(Y)| is a flat of
M', by 5.43. Hence this result implies that dL = 2,
by 4 14, which is contrary to the definition of a line.
The proposition follows.

If R=(Xy, . . ., Xx) is any nondegenerate path off
Cin M' we write

k-1

w(R) =T tXs, Xis1)

i=1

7.414 If R is any nondegenerate re-entrant path off C
onM', then u(R)=1.

PRroOF: We first note that by 6.41, there is a positive
integer m(R) which is the least number of elementary
deformations, with respect to C, required to convert
R into a degenerate path.

Assume the proposition false. Then we can find
a nondegenerate re-entrant path Q off C on M’ such
that u(Q)=—1. and m(Q) has the least value consist-
ent with this condition.

If m(Q)>1 we can write either Q=Q:UQ: and
Q' =002 or Q' =Q:UQ: and Q= Q:Q:, where U is an
elementary re-entrant path with respect to C and
m(Q)=m(Q)—1>0. In either case we have

w(Q)=u(Q) - u(Q").

30

But this is impossible, since u(Q)=u(Q')=1 by the
choice of Q. We deduce that in fact m(Q)=1. In
other words Q is an elementary re-entrant path witi.
respect to C.

We must now consider four cases, one for each
kind of elementary re-entrant path.
Case 1. Q is of the first kind.

We have Q=X, Y, X) for some points X and Y.

Hence
wQ ={tX,V}2=1.

Case II. Q is of the second kind.

In this case we have Q=(X, Y, Z, X), where X, Y,
and Z are distinct points on the same line or plane of
M'.

If they are on the same line L of M’, then 60X, Y
and 0Z are distinct points on the line 8L of M. But
ae0XUOYUOZ and therefore L has a fourth point
(6L—{a}). This is impossible since M is binary.
(5.35).

We may now suppose that X, Y, and Z are on the
same plane P of M’, but not on a common line. P
is connected, by 6.24 Let X, Yy, and Z; be the third
points on the connected lines YUZ, ZUX and XUY of
M' respectively

Suppose first that two of the points X, Yy, and Z,
are on a common line L of M'. There is a cell d of
P such that L=(P—{d}), by 7.11. It is clear that
L is not on X, Y, or Z. Hence deXNYNZ. We
thus have

w(Q)=sX, d)s(Y, d)s(Y, d)s(Z, d)s(Z, d)s(X, d)=1,

which is contrary to the choice of Q.

We conclude that no two of X;, Y;, and Z; are on a
common line of M'. Any line through one of them is
therefore on X, Y, or Z, by 5.35. Hence, by 4.26,
there are six distinct lines on P, each on one of the
points X, Y, and Z.

These six lines are mapped by 6 onto six distinct
lines of M on the plane 0P, each being on one of the
points 0X, 0Y, and 6Z and therefore having a as a cell.
But then there is a seventh line (§P —{a}) on P, by
7.11. Accordingly M includes a Fano configuration.
Case III. Q is of the third kind.

We now have Q=(X, Y, Z, T, X), where X, Y, Z, and
T are distinct points on a plane P of M’ such that no
three are on a common line. We can therefore find
cells beP—X UY), ceP—YUZ), deP—(Z UT),
and eeP— (TUX). Then b belongs to Z and T but
not to X or Y, ¢ belongs to T and X but not to Y or Z,
and so on.

If the chains g(X), g(Y), g(Z), and g(T) are linearly
independent we can construct a nonzero linear com-
bination of them, h say, such that A(b) =h(c) =h(d)
=0. Then there is a point U of M’ contained in ||A],
by 5.43. This point is common to the lines (P —{b})
=XUY, (P—{c})=YUZ and (P—{d})=ZUT.
Hence U=Y=Z. But this is impossible since Y
and Z are distinct. We deduce that g(X), g(Y), g(2),
and g(7) are in fact linearly dependent. We thus have



0 0 s(T,e) s(T,b)

s(Z, e) 0 0 s(Z, b)

s(Y,e) s(Y,d) 0 0 =0,
0 sX,d) (X, c) 0

that is

s(Z, b)s(T, c)s(X, d)s(Y, e)

—s(T, b)s(X, c)s(Y, d)s(Z, e)=0

It follows from this result that
wQ)=tX, Y)e(Y, Z)t(Z, T)t(T, X)=1.
Case IV. Q is of the fourth kind.

In this case there is a box on some 3-flat J of M’
such that the six sides Pi, Ps, . . ., P of the box have
the following properties, Each is on just two points
of C and no two of the P; have more than one point of
C in common. By the definition of a box no three of
the planes P; are on a common line.

It follows that no three of the six planes 6P; of M
on 6 have a common line, and that each of them has a
as a cell. Moreover each line of intersection of two
planes 6P; is of the form 6L, where L is the line of
intersection of the corresponding planes P; in M'.
L is on some point of M' not in C and therefore 6L
has a as a cell.

The plane (6J—{a}) of M on 6/ is thus distinct

from each of the six planes #P; and is not on any of

their lines of intersection.
hedron.

In each of the four cases we have deduced a contra-
diction, either of the hypothesis of 7.41 or of our
assumption that 7.414 is false. We deduce that 7.414
is in fact valid.

We can partition the set of points of M' not in C
into disjoint non-null classes K, K., . . . , K, such
that for any two points X and Y of M’ off C there is
a path from X to Y off C in M" if and only if X and
Y belong to the same class Kj. For each class K;
we select an arbitrary representative 7; and write

Hence M includes a hepta-

uT})
For any other point X in K; we write

v(X) = w(Q)u(T,

where Q is any path from 7' to X off C in M'.

This definition determines the integer v(X) uniquely.
For suppose Q' is another path from 7 to X off C
in M'. Then

uw(Q)=uwQ ) =uQ Hul(Q"u(Q")

=u(Q'Q"uQ")
=u(Q),
by 7.414 since Q-'Q’

i1s re-entrant.

757-615 O-65-3
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fu to E—

For each UeM we define a chain fi; over the ring of
integers as follows.

Suppose first that aeU. If U={a} we write fr(a)
=1, and fy(b)=0 whenever b# a. If U# {a}, then
U—{a} is a non-null flat of M’, by 4.45. The flat
OU—{a}) of M is U—{a} or U, and the former
alternative is ruled out by Axiom I. Hence U—{a} is
a point X of M’ not in C. We choose fir to agree
with g(X) in E—{a}, and to satisfy

Juld) = v(X).

Suppose next that a¢U. Then U is a flat of M’,
by 4.45, and 6U is U or UU{a}.

It 6U=U, then U is a point of M'. We then choose
fu to agree with g(U) in E—{a} and to satisfy

Jula)=

If instead OU=UU{a} then UU{a} is a line of M,
by 4.13, and U is a line of M’, by 4.44. Now each point
on U in M'" is mapped by 0 onto a point of M on UU{a}.
But there are at most three points of M on UU{a},
by 5.35, and one of these is U. Hence U must be a
disconnected line of M', having only two points X
and Y. Write V=0X and W =0Y. Then V=XU{a}
and W=YU{a}, by Axiom I. Thus f; and fy are
already defined. We take either fir or —f; to be

frla)fw— fuwla)fr.

We note that for each atom U of M we have ||fi| =U
and that the coefficients in each f; are restricted to
the values 1,—1 and 0. Moreover the restriction of
{a} is a chain of N'.

7415 Let U, V, and W be the three points on a con-
nected line L of M. Then fu, fv and fw are linearly

dependent.

Proor: We discuss first the case ael..

We may suppose ael/UW and agU, by 7.12.  Then
there are points X=V—{a} and Y=W — {a} of M’
such that X =V and Y=W. WriteL'=LN(E—{a})
=L—{a}. Then L’is aflat of M’, by 4.45. It clearly

satisfies L' =L and is therefore a line of M'. The set
U is also a flat of M', by 4.45. It is either the line L’
or a point of M’ on it.

If U is a point of M’" on L', then QU="U, and U is
distinct from X and Y. The line L’ is thus connected,
by 4.23. We can define v(X) by a path Q off C from a
representative point T to X, and then define v(Y) by
the path Q(X, Y). We then have

vX)v(Y)=

Hence for each beXNY we have v(X)v(Y)=s(X, b)s(Y, b).
By 7.12 this implies

w(Qu(Ty) - wQ)t(X, VYu(T))=tX, Y).

[[(X)g(Y) — v(VgX)|| CU.

since M' is binary. But the expression on the left is
non-null by Axiom I, and since g(U) is an elementary



chain of N’ it follows that

g(U) == (w(X)g(Y) — v(Y)g(X)).
Hence, by the definitions of fy, fv, and fi, we have

Sv==x(fv(a) fw—fwla)fv).

If instead U is the line L' of M' we have 6U=UU {a}
=L. Then the preceding equation follows at once
from the definition of fy. The required linear depend-
ence is thus established for the case aeL.

Now suppose a¢l. It may happen that L is a line
of M' so that L=L. Then U, V, and W are flats of
M', and therefore points of M’ on L, by 4.14. There
is a linear relation between g(U), g(V), and g(W), as
we may see by applying 2.31 to the regular chain-
group N'XL. A corresponding relation holds be-
tween fy, fv, and fi.

In the remaining case L is a flat, but not a line, of
M’', by 4.45. Then 0L=LU{a}, and 0L is a plane of
M. 1Tt is a connected plane since some point X of
M’ on L must satisfy aefX. (See sec 4.4.) By 4.26
there are connected lines Ly, Ly and Ly on 6L, dis-
tinct from L, which are on U, V, and W respectively.

We can choose these lines to have no common point.
For suppose T is such a common point. There is a
point 7", distinct from 7 and U, on Ly. By 4.26 there
is a connected line L', distinct from Ly, on L and
T'. Without loss of generality we may suppose L'
to meet L in V, by 5.35. Replacing Ly by L’ we obtain
three lines of the kind required.

Write X=(LyNLw), Y=(LwNLy) and Z
=(LyNLy). We note that (§L—{a})=L, by 7.11.
Hence aeXNYNZ. We may therefore apply the result
already proved to Ly, Ly, and Ly, and obtain

fo=x(fHa) fz—fAa)fy),
fr==x=(fda)fx —fa)fz),
Sw==x(fxla)fy —Ha)fy).

Thus fv, fv, and fi are linearly dependent in this case
also. This completes the proof of 7.415.

The preceding result shows that the chains fy cor-

responding to the atoms of M satisfy the conditions of
5.11. They therefore generate an integral chain-
group N such that M=M(N). But the coefficients in
each fy are restricted to the values 1, —1 and 0.
Hence the fy are primitive chains of N. It follows
that N is a regular chain-group and M is a regular
matroid. We have thus completed the proof of 7.41.

7.5. Characterization of Regular Matroids

Combining the results 5.53, 7.21, 7.31, and 7.41 we
have the theorem.
7.51 A binary matroid M is regular if and only if it
has no minor of Type BI or BII.

An equivalent condition is that M shall include
no Fano configuration or heptahedron.
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We may also apply 5.26 and 5.23 to obtain the fol-
lowing rule.
7.52 A binary matroid M is non-regular if and only
if some standard representative matrix K of M has a
submatrix J such that either J or its transpose is of the
following form, to within a permutation of columns.

1 01 1
1 1 0 1
01 1 1

In one respect the preceding theory is incomplete:
we still need a convenient algorithm for determining
whether a given binary matroid is regular.

8. The Matroid and the Atom
8.1. General Matroid

In this chapter we suppose given a matroid M on a
set £, and we fix some atom Y of M. We discuss
theorems concerned with the relationship of Y to the
rest of the matroid.

We refer to the elementary separators of M - (E—Y)
as the bridges of Y in M. Such a bridge is trivial
if it contains no atom of M - (E—Y), and monatomic
if it contains just one. A trivial bridge of Y consists
of a single cell of £—Y contained in no atom of
M -(E—Y), and every such cell of E—Y defines a
trivial bridge of Y. A nontrivial bridge of Y in M is
thus a flat of M - (E—Y).

8.11 dM-(E—Y)=dM—1.

PROOF: Since dM XY)=dY=0 this follows from
3.54
8.12 Suppose SCE—Y and let d be an integer
=—1]. Then S is a d-flat of M - (E—Y) if and only if
SUY is a (d+ 1)-flat of M.

PROOF: Suppose S is a flat of M -(E—Y). Then
each atom of M- (E—Y) on S is the intersection with
E—Y of an atom of M contained in SUY. Hence
SUY is a union of atoms of M, that is a flat of M.

Conversely suppose SUY is a flat of M. Each cell
of S belongs to an atom of M on SUY and therefore
to an atom of M -(E—Y) on S, by 1.11 and the defini-
tion of a reduction. Hence S is a flat of M - (E—Y).

To complete the proof we observe that

d(M-(E—=Y)XS)=d(MX(SUY) -S)
=dMXx(SUY)—1,

by 3.333 and 8.11.

8.13 Let S be a connected flat of M- (E—Y). Then
the only possible non-trivial separators of M X (S U Y)
are S and Y. Moreover S and Y are separators of

MXS UY) if and only if
M-(E=Y)XS=MXS.



PrOOF: Let Z be a separator of M X (SUY). Then
either YCZ or YNZ=¢. Moreover ZNS is a sepa-
rator of (M X(SUY))-S, by 3.43, and this matroid is
(M -(E—Y)) XS, by 3.334. Hence SCZ or SNZ=¢,
by hypothesis. Accordingly Y and S are the only
possible nontrivial separators of M X (SUY).

The necessary and sufficient condition for S and
Y to be separators of M X (SUY) is

(MX(SUY)) -S=Mx(SUY) XS,

by 3.42. This is equivalent to the condition stated
in the enunciation, by 3.331 and 3.333.

In what follows we shall be concerned only with
binary matroids, and we do not pursue the general
theory any further.

8.2. Binary Matroid

From now on we suppose M binary. If ZeM - (E—Y)
then YUZ is a line of M, by 8.12. If it is connected
it has just two points other than Z, by 5.35. Their
intersections with Y are complementary non-null sub-
sets T and U of Y, by 7.12. We call these subsets
the primary segments of Y determined by Z. The
unordered pair {T, U} is the partition of Y deter-
mined by Z. If YUZ is not connected it has only two
points Y and Z. In this case it is convenient to say
that the partition of Y determined by Z is {Y, ¢}, and
that the corresponding primary segments are Y and ¢.

Let B be any bridge of Y in M. If there is an atom
of M- (E—Y) on B we make the following definition.
A segment of Y determined by B, briefly a “B-segment”
of Y is a minimal non-null intersection of primary seg-
ments of Y determined by atoms of M- (E—Y) on B.
If B is trivial we say that the only B-segment of Y is
Y itself. Evidently we have
8.21 The B-segments of Y are disjoint non-null subsets
of Y whose unionis Y.

The class of B-segments of Y is the partition of Y
determined by B. We denote it by w(M, B, Y).

Two bridges By and Bs of Y in M will be said to avoid
one another if there exists Siem(M, B;, Y) and
Soem(M, Bs, Y) such that S;US:=Y, and to overlap one
another in the contrary case.

The atom Y is bridge-separable in M if its bridges can
be classified in two disjoint classes P and Q so that
no two bridges belonging to the same class overlap.
In an extreme case Y may have no two bridges which
overlap. We then say Y is totally bridge-separable
in M.

We call a binary matroid M an even matroid if every
atom is bridge-separable.

The following examples may clarify our terminology.

Consider a binary matroid of Type BI. This is the
matroid of a binary chain-group N which, with an ap-
propriate enumeration of cells, has the following stand-
ard representative matrix.
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1 001 01 1
K=40 1 0 1 1 0 1
001 01 11

b Let us denote the cell corresponding to the j™ column
Yy q;.

We take Y to be the atom {as, as, as, a;} correspond-
ing to the third row of K. Then E—Y={a,, a., a4}.
(See 5.22.)

It is clear that the only nonzero chains of N - (E —Y)
are those with representative vectors (1, 0, 1), (0, 1, 1)
and their sum (1, 1, 0). Moreover these three chains
are elementary. Accordingly the matroid M - (E—Y)
=M(N - (E—Y)) has just three atoms {a:, a2}, {as, as}
and {a1, as}. (See 3.31.)

We observe that M - (E—Y) is connected. Hence
{ai, az, a4} is the only bridge of Yin M. Accordingly
Y must be classed as bridge-separable.

It can be verified that all seven atoms of M are
bridge-separable. Indeed they are all equivalent
under the symmetry of the Fano configuration. Hence
the matroids of Type BI are even.

In our example the sets {ai, a4} UY and {a2, as} UY
are lines of M, by 8.12. They are on points correspond-
ing to the first and second rows of K respectively. We
deduce that they determine the partitions {{as, as},
{as, az}} and {{as, as}, {as, a:}} of Y respectively.

Considering the intersections of these four primary
segments we see that

7T(M’ B’ Y) = {{03}, {05}, {aﬁ}’ {07}}-

Next we discuss binary matroids of Type BII. Such
a matroid M corresponds to a binary chain-group N
with the following representative matrix K, by 5.23.

1 000110

01 00 0 1 1
K:

00101 01

0001 111

Again we enumerate the cells as a;, a2, . . ., a7, in
the order of the columns of K.

We take Y to be the atom {a4, as, as, a;} correspond-
ing to the last row of K. Now each of the sets {a:},
{a:} and {as} are domains of chains of N-(E—Y).
Hence these three sets are the only atoms of M - (E—Y),
by Axiom I. Accordingly they are also the elementary
separators of M - (E—Y), that is they are the three
bridges of Yin M.

The line YU{a:} of M is on a point corresponding
to the first row of M. We deduce that the atom {a,}
of M-(E—Y) determines the partition {{as, a:},
{as, as}} of Y. Since {a;} is a monatomic bridge of



Y in M we thus have
7M, {a:}, Y) = {{as, az}, {as, as}}.
Similarly
7(M, {a:}, Y) = {{as, as}, {as, as}},
7(M, {as}, Y) = {{a4, as}, {as, as}}.

Inspection of these formulae shows that the three
bridges of Y in M are mutually overlapping. Hence
Y is not bridge-separable and the binary matroid M is
odd, that is not even.

8.22 Every binary matroid of Type BII is odd.

8.3. Kuratowski Graphs

We now show the application of our terminology to
certain matroids associated with graphs.

Suppose first that G is the complete 5-graph shown
in figure 5B. We use the notation for it given at the
end of chapter 5.

Let M be the polygon-matroid of G, so that atoms of
M correspond to polygons of G. In particular there
is an atom

Y= {le, Lz:s, L34, L45, Ll;')}

of M corresponding to the outer polygon in figure 5B.

Now M - (E —Y)is the polygon matroid of G X (E—Y),
by 3.372. In this graph the polygon G -Y has been
replaced by a single vertex v, and each cell of £ —Y has
become a loop whose ends coincide in v. Accordingly
each cell of E—Y constitutes by itself an atom of
M- (E—Y). It also constitutes an elementary sepa-
rator of M-(E—Y), by Axiom I. We deduce that
there are just five bridges of Y in M, namely the sets

{Lis}, {Las}, {Lss}, {L1s}, {L2s}

Considering the triangle defined by Li,, L»;, and
L3 we see that {L;;} determines the partition {{L.,
Lss}, {Lss, Lss, L15} } of Y. Hence, using the symmetry
of G, we have

7T(M, {Ll:z}, Y): {{le, Lz:;}, {L:M, L45, Lls}},
m(M, {L24}, Y)={{Ls, L34}, {Lss, Lss, Li:}},

and so on.

Inspection of these formulae shows that {Ls}
overlaps {L2s}, {L24} overlaps {Lss}, {Lss} overlaps
{L1s}, {L1a} overlaps {Lss} and {Lss} overlaps {Lis}.
It is thus impossible to arrange these five bridges in
two classes so that no two members of the same class
overlap. Thus Y is not bridge-separable.

Next let G be a Thomsen graph as shown in the
second diagram of figure 5B. A similar analysis
applies.

We write M=P(G) and take Y:{Lu, Lg], ng, L:;g,
Lss, Lis}, corresponding to the outer polygon of the
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diagram. Then we find that {Li»}, {L:3}, and {Ls}
are the three atoms of M - (E—Y) and the three bridges
of Y in M. Considering the quadrilaterals such as
ai by a» bs we arrive at the following partition formulae.

7(M, {L2}, Y)={{Lw, La1, Las}, {Lss, Lss, L1s}},
7T(M, {Lz:;}, Y) :{{Lzz, L:rz, L:;:;}, {Ll:;, Ln, Lzl}},
(M, {L:n}, Y)= {{L:;:;, Ly, Ln}, {L‘.!], L, L:;z}}-

We see from these formulae that the three bridges
are mutually overlapping. Hence Y is not bridge-
separable.

We say that a matroid is of Type KI or KII if it can
be interpreted as the polygon-matroid of a complete
5-graph or a Thomsen graph respectively. We sum
up the results of the present section in the following
theorem

8.31 Every matroid of Type KI or KII is odd.

8.4. Skewness

In this section M denotes an arbitrary binary
matroid and Y denotes an atom of M.

We say that an atom Z of M - (E—Y) cuts a subset
S of Y if it determines a partition {T, U} of Y such that
SNT and SNU are both non-null.

8.41 The points of M- (E—Y) which do not cut a
given subset S of Y constitute a linear subclass of
M-(E-Y).

ProoF: Let Z,, Z,, and Z3 be the three points on
some connected line L of M- (E—Y). Suppose Z,
and Z, do not cut S. Then each point on the lines
YU Z, and Y U Z, of M either contains S or does not
meet S. That is it does not ‘“‘cut” S in the sense of
section 4.3.

Let X; be any point of M, other than Y, on the line
YUZ;. There is a line L' of M on X3 and the plane
YUL which is not on Y, by 4.15. This line meets
YUZ, and YUZ, in two distinct points of M, by 4.171.
Hence X; either contains S or does not meet S, by
4.31. It follows that the point Zs of M - (E—Y) does
not cut S.

We say that two points Z and Z’ of M - (E—Y) are
skew with respect to Y if they determine partitions
{T, U} and {T’, U'} of Y such that the intersections
I'nT', TNU', UNT’ and UNU’ are all non-null.

We extend this definition by saying that two bridges

B and B’ of Y in M are skew if there are points Z and Z’
of M- (E—Y), skew with respect to Y, which are on
B and B’ respectively. We also say that a point Z of
M -(E—Y) is skew to a bridge B of Y in M if there is a
point Z' of M - (E—Y) on B which is skew to Z.
8.42 Let By, B> and Bj be distinct bridges of Y in M
such that B, is skew both to B, and to Bs. Then either
there is a point Z> of M - (E—Y) on B which is skew to
both By and B3 or there are points Z, and Z3 of M - (E—Y)
on By and Bj respectively such that Z,, Bs, and Z3 are
mutually skew.

ProoF: There are points Z,, Z., Z", and Z; of
M- (E=Y), on By, B, Bs, and Bj respectively, such
that Z, is skew to Z, and Z} is skew to Z;. 1f Z, and



Z3 are skew the second alternative of the theorem
holds.

In the remaining case Z; and Z; determine parti-
tions {Si, T} and {S;, Ts} of Y such that T\NT5=¢,
that is T1 QS;; and T;;QSI.

Now Z, cuts Ty, Z; cuts T3, and B: is a connected
flat of M - (E—Y). Hence, by 4.37 and 8.41 there is a
point Z> of M -(E—Y) on B, cutting both Ty and Ts.
But then Z, is skew to both Z; and Z;, that is to both
B] and B;;.

Let B be any bridge of Yin M. We call it an n-bridge

of Y, where n is an integer, if

|m(M, B, Y)| = n.

Two n-bridges B; and B, of Y in M are equipartite if
7T(M’ Bla Y)=1T(M, Bz, Y)

8.43 Let B be a 2-bridge or 3-bridge of Y in M, and
suppose Wem(M, B, Y). Then there is a point Z of
M-(E—=Y) on B which determines the partition
{W,Y—W} ofY.

ProoOF: If B is a 2-bridge this result follows at once
from the definitions. We may therefore write w(M,
B, Y)={U, V, W}. There is a point of M- (E—Y)
on B which cuts UUW and another which cuts VUW.
Hence, by 4.37 and 8.41 there is such a point Z which
cuts both. This can only determine the partition
{W,UUV}of Y.

The next theorem shows the relation between skew-
ness and overlapping for bridges.

8.44 Let B, and B; be overlapping bridges of Y in M.
Then either By and B are skew or they are equipartite
3-bridges.

PROOF: Assume B, and B. are not skew.

Let Z, be a point of M -(E—Y) on B; determining
a partition {S, T} of Y. Suppose S and T each meet
more than one member of w(M, B, Y). Then S and
T are each cut by some point of M - (E—Y) on Bs, and
therefore there is one such point which cuts both of
them, by 4.37 and 8.41. But then B, and B; are skew,
contrary to assumption. We deduce that one of S
and T must be contained in a member of w(M, B., Y).

Suppose B; is a 2-bridge or 3-bridge. Then if
Wem(M, By, Y) we can apply the preceding result with
W=S and Y—W=T, by 8.43. We find that there exists
Uemw(M, Bs, Y) such that either WCU or Y—WCU.
The second alternative must be ruled out since it
implies WUU=Y, contrary to the hypothesis that
By and B, overlap. We deduce further that B, is not
a 2-bridge since then Y—Wem(M, By, Y) and both
alternatives are ruled out.

Suppose By is a 3-bridge. Write @w(M, B, Y)
={U, V, W}. Then by the above reasoning there are
members U', V', and W' of @(M, B, Y) such that
UCU',VCV',and WCW'. These three B;-segments
are distinct. If for example we had U'=V" it would
follow that U'UW =Y, contrary to hypothesis. It
follows that B, and B. are equipartite 3-bridges.

We have still to consider the case in which B; is an
n-bridge, with n = 4.
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Let W, W,, W3, and W4 be distinct members of
w(M, By, Y). Using 4.37 and 8.41 we find that there is
a point Z of M - (E—Y) on B; which cuts both W, U W>
and W3;UW,. It determines a partition {S, T} of ¥
such that W, and W, are in different sets S and 7, as
are also W3 and W ,.

By the first part of the proof we can find U'ew (M,
B, Y) such that U’ contains two of the given four B;-
segments. Let W' be a member of w(M, B,, Y) con-
taining the greatest possible number k of B;-segments.
(k= 2).

Suppose there are at least two Bj-segments not in
W'. Then by the result just proved for four B;-seg-
ments Wy, W., W3, W, it follows that some point of
M- (E—Y) on B; determines a partition {S, T} of Y
such that S and T each meet both W’ and Y—W'.
Since some member of 7w(M, B, Y) must contain S
or T we have a contradiction. We are forced to con-
clude that there is at most one B;-segment which is
not contained in W’'. But then B; and B, avoid one
another, contrary to hypothesis.

This completes the proof of the theorem.

8.5. Segments Determined by Bridges

This section deals with some auxiliary results to be
used in later proofs. They enable us to go from Y to
another atom of the binary matroid M, or to replace
M by one of its minors.

8.51 Let S be a subset of E, and let X be an atom of M
such that XNS is non-null. Then XNS is a union of
disjoint atoms of M - S.

PROOF: Let N be the binary chain-group such that
M=M(N). Then M-S=M(N-S), by 3.31. But
XNS is the domain of a chain of N-S. The theorem
now follows from 5.32.

8.52 Let B be a bridge of Y in M. Then the B-seg-
ments of Y in M are the minimal non-null intersections
of atoms of (M X (BUY)) - Y.

PRroOOF. Let the class of minimal non-null inter-
sections of atoms of (M X(BUY))-Y be denoted by J.
The members of J are disjoint and their union is Y, by
1.11.

Let a be any cell of Y. It is contained in a unique
B-segment U of Y and a unique member W of J.

Consider an atom Z of M - (E—Y) on B determining
a partition {S, T} of Y, where aeS. Since SUZ is an
atom of M X(BUY), by 8.12, unless S=Y, it follows
that W CS. Since this result must hold for all choices
of Z we have WCU.

Suppose W is not the whole of U. Then there is
an atom X of M X (BUY) which cuts U, in the sense
of section 4.3. Choose such an X so that [BNX| has
the least possible value.

Assume BNX is not an atom of (M X (BUY)) - B.
Then there is an atom Z of this matroid such that
ZCBUX, and there is an atom X’ of M X (BUY) such
that X’NB=Z. By the choice of X the set X’ does
not cut U.

Consider the mod 2 sum X+X’. Clearly it cuts U.
But it is a union of disjoint atoms of M X (BUY), by



5.34, and one of these must cut U. This is contrary
to the choice of X.

We deduce that BNX is in fact an atom of
(M xX(BUY)) B, that is (M-(E—Y))XB, by 3.334.
Hence BNX is an atom of M - (E—Y) on B. But then
X does not cut U, by the definition of a B-segment.

From this contradiction it follows that in fact W' ="U.
Since this result holds for all choices of a the theorem
follows.

8.53 Let B be a bridge of Y in M, and S a subset of E
such that BUYCS. Then B is a bridge of Y in M XS,

and
a(MXS,B,Y)=m(M,B,Y).
Proor: We have
(MXS)-(S=Y)=WM-(E=Y) X($S-Y),

by 3.334. Hence B is a separator of (M XS)-(S—
by 3.43. Moreover

(M- (E=Y)) X

1)

S=Y)XB=WM:-(E—Y) XB,

by 3.331, and this matroid is connected. Hence B is a
bridge of Yin M X S. Since

MXS)XBUY)=M X (BUY),

by 3.331, the theorem now follows from 8.52.

8.531 Let B be a bridge of Y in M. Let S be a subset
of E such that BUYCS and no ZeM - (E—Y) is a subset
of E—S. Then YeM - S, Bis abridgeofYinM-S, and

aM-S,B,Y)=mx(M,B,Y).
Proor: We have

M-S)-S—V=M-(E=Y)-(S—Y),

by 3.332. Hence B is a separator of (M -S)-(S—Y),
by 3.43. Moreover
(M-S)-(S=Y)-B=M-(E—-Y))-

by 3.332, and this matroid is connected. Hence B is
a bridge of Y in M-S, provided that Y is an atom of
M-S.

Suppose some atom X of M X ((E—S)UBUY) meets
E—S. Then some ZeM-(E—Y) meets E—S and

satisfies
ZCXNE-Y)C(E—-S)UB,
by 1.11. But then ZCE —S, since B is a separator of
M - (E—Y), and this is contrary to the definition of S.
We deduce that
(M -S)x (BUY)

=M X(E—S)UBUY)) - (BUY),

by 3.333,

=M x(BUY)) - (BUY)

=M X (BUY).

We note that this implies YeM -S. An application of
8.52 completes the proof.

8.54 Let B be any bridge of Y in M. Let S be a subset
of E such that E—YCS. Then SNYeM-S, B is a
bridge of SNY in M-S, and

@(M-S, B,SNY)

ts the class of all non-null intersections with S of
members of w(M, B, Y).

ProoF: There exists Y'eM - S such that YYCSNY.
Moreover there exists Y’eM such that Y'NS=Y'.
But then Y"CY. Hence Y=Y and SNY=Y'eM - S,

by Axiom I.
We have

M-S)-S—=ESNY)=M-S—ESNY)=M-(E-Y),

by 3.332. Hence B is a bridge of SNY in M-S.
Moreover
(M -S) xX(BUSNY)) -(SNY)
=(MXx(E—(S— (BUY))-SNY)
=((MX(BUY))-Y)-(SNY),

by 3.332 and 3.333. The theorem now follows from
8.51 and 8.52.
8.55 Let By and B be distinct bridges of Y in M.
Let Z be a point of M- (E—Y) on By determining a
partition {S, T} of Y where S and T are non-null. Let
Y’ be the point SUZ of M' Then the following prop-
ositions hold.
(1) T is an atom of M - (E—Y').
(i1) There is a bridge B' of Y' in M such that B, CB'.
(iti) If T is contained in some Wem(M, B,, Y), then
B:=B'. Moreover w(M, B', Y') differs from w(M,
B>, Y) only in the replacement of W by (W —T)U Z.
(iv) If T is contained in no member of w(M, Bs, Y),
then TCB'. Moreover each member of w(M, B', Y')

is then contained either in Z or in a member of (M, B.,

Y).

PRooOF: Since ZUT is an atom of M there is an atom
T" of M-(E—Y') such that T"CT. There is an atom
X of M such that XN(E—Y')=T'. But then X is a
point of M on the line YYUT=YUZ. Since the only
points on this line are Y, SUZ and TUZ we have
X=TUZ and T'=T. This establishes (i).

We have

M-(E=Y"))B:=WM-(E—=Y))- B,

by 3.332. As the expression on the right represents
a connected matroid we deduce that B, is contained
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in some elementary separator B’ of M- (E—Y’), by
3.46. Then B’ is a bridge of Y’ in M such that B,CB'.
This establishes (ii).

To prove (iii) assume that T is conteined in some
Wem(M, B,, Y). Let Z, be any atom of M - (E—Y") on
B’ which meets Bs.

There is an atom X of M X (B'UY) such that XN B’
=/y. Thus X is an atom of M meeting B,. It follows
that there is an atom Z, of M - (E —Y) such that Z,N B,
is non-null and Z,CXN(E—Y), by 1.11. Clearly Z»

is on B,.  We thus have
Z_ggZ_gﬂB’ngBlzzl

Z, determines a partition {S., 7%} of Y, and by our
assumption we may suppose T'CT,. The set S,UZ,
is an atom of M which meets B, and therefore B’.
Hence there is an atom Z3 of M - (E—Y’) on B’ such
that Z;C(Z.USs)N(E —Y'). But S, does not meet
E—Y sinceTCT,. HenceZ;CZ,CZ,.

Applying  Axiom [ to M-(E—Y') we find that
Z1=2,=7Z3 We deduce that B, is a separator of
M- (E=Y")XB'. Hence B.=B’', by 3.44. We note
further that

(M- (E—Y')) X B>
=M-(E=Y") B,
=M -(E-Y)) -B.
=(M - (E—Y)) X B.,
by 3.332 and 3.42. Hence M -(E—Y)and M - (E—Y")

have the same atoms on B..

If one such atom Z, determines a partition {S,, Ty}
of Y, with TCT,, then it determines the partition
{So, (To—T)UZ} of Y'. For the point SyUZ, is on
both YUZ, and Y'UZ,. These results establish (iii).

Now let us assume that 7"is contained in no member
of m(M, B, Y), and discuss proposition (iv).

There is an atom of M X (B,UY) which cuts 7" in the
sense of section 4.3. Hence there is an atom Z; of
M - (E—Y") which cuts T in this sense and satisfies
Z,C(BUY)N(E—=Y')CB'UT. Since TeM -(E—-Y"),
by (i), it follows that Z; meets both B’ and T. Hence
TCBHB’', by 3.48.

Now Z is the intersection of Y’ with an atom ZUT
of M X (B'UY’). Hence it is a union of members of
w(M,B',Y") by 8.51 and 8.52.

Again, let Z, be any atom of M -(E—Y) on B, de-
termining a partition {So, To} of Y. Then SNS, is
the intersection with Y’ of the atom S,UZ, of
M X (B'UY'"), since TCB’. Hence SNS, and similarly
S N T, are unions of members of 7w(M, B', Y), by 8.51
and 8.52. Since this is true for each choice of Z,
proposition (iv) follows.

8.6. Regular Matroid

We conclude this chapter with some theorems about
binary matroids with no minors of one of the types Bl

and BII.
7.51.
8.61 Suppose M has no minor of Type Bl. Let Z,
and Z, be points on a connected line L of M - (E—Y).
Then Zy and Z, are not skew with respect to Y.

ProOOF: LUY is a plane P of M, by 8.12. It includes
three distinct lines YUZ,, YUZ,, and YUZ3 of M,
where Z; is the third point of M - (E—Y) on L, by 8.12.

Assume Z; and Z» skew. They determine parti-
tions {Si, T\} and {S., T} of Y respectively. There
are cells aeS;NSs, beS1NTs, ceT'NS,, and deTy N Ts.
The flats (P—{a}), (P—{b}), (P—{c}), and
(P—{d}) are lines on P which are not on Y, by 4.13.
It is easily seen that they are distinct. For example
(P—{a}) is the only one which is on the two points
Z]UT] and Z,zUT_z ()f M

We see that there are seven distinct lines on P.

Thus M includes a Fano configuration, which is con-
trary to hypothesis, by 7.21.
8.62 Suppose M has no minor of Type BI. Let B be
any non-trivial bridge of Y in M, and let W be any
member of w(M, B, Y). Then there exists ZeM - (E—Y)
on B determining the partition {W, Y—W} of Y.
(Compare 8.43).

PROOF: Let a be any cell of Y. Let U be a subset
of Y such that aeU, some ZeM - (E—Y) on B deter-
mines the partition {U, Y—U} of Y, and |U| has the
least value consistent with these conditions.

Assume there is a Wem(M, B, Y) such that WNU
is a non-null proper subset of U. Then there exists
XeM X (BUY) such that XNU is a non-null proper
subset of U. Clearly XUY is a connected flat of
M X (BUY). By 4.31 and 4.34 we can find a point
X" of MX(BUY) on XUY which cuts U in the sense
of section 4.3 and has the property that X'UY is a
connected line of M X(BUY). Then X' —Y is a point
of M-(E—Y) on B, by 8.12. It determines the parti-
tion {X'NY, Y—X'} of Y, and so cuts U in the sense
of section 8.4.

By 4.34 and 8.41 we can find Z'eM - (E—Y) on B
which cuts U and is such that ZUZ' is a connected line
of M-(E—Y). By 861 Z' determines a partition
{S, Y—S} of Y such that SCU. By the definition of
U we have aeU —S.

Choose beS. By 8.12 the set YUZUZ' is a plane
P of M. The line (P—{b}) of M is on the points
ZUY—U) and Z'UY —S) of M. Since these are
distinct and not disjoint their mod 2 sum, Q say, is
also a point of M on (P—{b}), by 5.34 and 5.35. But
the mod 2 sum of Z and Z' is the third point of M - (E=Y)
on the connected line ZUZ'. It determines the
partition

These are all true for regular matroids, by

{0NY,Y—=0Q}={U—-S,Y—(U—S)}

of Y. But this contradicts the definition of U.

We deduce from this contradiction that U is itself
a member of w(M, B, Y). Since a may be any cell of
Y the theorem follows.
8.63 Suppose M has no minor of Type BI, and that
dM = 2. Then there is an atom Y of M which has two
distinct bridges in M.
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Choose XeM.

It is nontrivial

PROOF: Assume the theorem false.
Then E—X is a bridge of X in M.
since dM = 2.

Choose Wen(M,E—X, X). There exists ZeM - (E—X)
determining the partition (W, X—W) of X, by 8.62.
Then XUZ is a line of M, possibly disconnected, and
ZUX—W),=Y say, is a point of M. Since dM =2
the set E—(XUZ) is non-null.

W is a point of M-(E—Y), by 8.55. Suppose
Z'eM - (E—Y) and Z'NW is non-null. Then there
exists VeM such that Z'=VNE—Y). Then VNW
=Z7Z'NW. Hence WCZ' since Wen(M, E—X, X), and
therefore W=Z2'by Axiom I.

It follows that W is a separator of M - (E—Y). But

E-Y)—W=FE—(YUZ)# ¢. Hence there are at
least two bridges of X in M, one being W.
8.64 Suppose M has no minor of Type BIl. Let Z1, Z»
and Z; be points of M - (E—Y) on distinct bridges B;,
B> and Bs respectively of Y in M. Let Z; determine the
partition {S;, Ti} of Y. (i=1, 2, 3). Then if Ss meets
both Si NS, and Ty N T: it contains one of the sets
S1 ﬂ Tz and Sz ﬂ Tl-

PROOF: Suppose the theorem false. Then we can
choose K={a, b, ¢, d, e, f, g} CE such that aeZ,, beZ.,,
C€Z3, dES] ﬂSzﬂS;;, eeT1 N T;z mS:;, fé(S] N T::)_S:}, and
gE(SzﬂTl)“S:;-

In the matroid M- (E—Y) the sets Z,UZ,, Z,UZs,
and Z;UZ,; are disconnected lines, by 4.24. Moreover
Z1UZ>UZj; is aplane since there are only three disjoint
points on it. ({a, b, ¢} is a dendroid of M X (Z,;UZ,
UZs3). Hence YU((Z,UZ>UZ3) is a 3-flat J of M,
by 8.12.

There are points of M on J whose intersections
with K are {a, d, f},{a, g, e}, {b, d, g}, {b, e, f}, {c, /. g},
{c, d, e}, and {a, b, c}. For example (Z,US;)NK
={a, d, f}, and similar verifications may be made for
the next five intersections. As for {a, b, c} we observe
that

Z Ul CZ,UTiUZy UT,
CZ,UT,UZ,UT,UZ;UT,C J.

Hence Z,UTUZ,UT: is a line of M, by 4.14. Its
points are Z,;UT, Z:UT, and their mod 2 sum, Q
say. We have QNK={a, b, f, g}. Moreover
Z,UT\UZ,UT.UZ3UTs5 is a plane P of M on E, by
4.14. The line (P—{e}) of M is on the points Z3;UT;
and Q. As these two distinct points have a common
cell f'their mod 2 sum, R say, is the third point of M on
(P—{e}). But RNK={a, b, c}.

Considering the seven intersections with K set out
above we see that each cell of K occurs in just three
of them and that no two have two cells in common.
Hence given any three cells x, v, and z of K we can find
a point of M on J which includes x but not y or z. It
follows that no three of the planes (J—{x}), xeK,
have a common line; we can find a point on any two
of them which is not on the third.

Hence these seven planes on J are distinct and
define a heptahedron. This is contrary to hypothesis,
by 7.31.

9. Graphic Matroids
9.1. Bonds

We consider the group N of coboundaries of a graph
G over a commutative ring R, with a unit element and
no divisors of zero. As explained in section 2.5
/l?(;{\’) is the bond-matroid B(G) of G, and is independent
of R.
9.11 Let f be any 0-chain on G over R. Let H be any
component of the spanning subgraph G: (E(G)—|5f]
of G. (See sec. 3.1.) Then the vertices of H have
equal coefficients in f.

PROOF: Suppose the contrary. Then some edge

A of H has ends with different coefficients in f. But
then Ae|df]|, by the definition of a coboundary, which
is contrary to the definition of H.
9.12 Let g be an elementary chain of N. Then there
are distinct components H and K of G: (E(G)— | gll)
such that each edge of |g|| has one end in V(H) and
one in V(K).

ProoF: Write g=8f. Let A be any edge of |g.
Its ends x and y have unequal coefficients i and &
respectively in f. Let H and K be the components of
G:(E(G)—||g]]) containing x and y respectively. They
are distinct, by 9.11.

Let fu be the 0-chain in which the members of V(H)

have coefficient 1 and all other vertices of G have
coeflicient 0. Then |6f4|C|8/]l=|g| and therefore
|81l =gl since g is elementary. We deduce that
each edge of ||g|| has one end in V(H) and similarly
one end in V(K).
9.13 4 set YCE(G) is an atom of M(N) if and only if
there are components H and K of G: (E(G)—Y) such
that each edge of Y has one end in V(H) and one in
V(K).

PrROOF: If YeM(N) the above condition is satisfied,
by 9.12.

Conversely suppose G: (E(G)—Y) has components H
and K with the stated property. Clearly Y is the
domain of a coboundary 8f such that the vertices of
H have coefficient 1 in f, and those of V(G)—V(H)
coefhicient 0.

Suppose however that there is a coboundary &f;
of G such that ||8fi]| is a proper subset of Y. Then
there is a component J of G: (E(G)—|8f| which con-
tains both H and K. Hence §f;=0, by 9.11 and the
definition of a coboundary.

Theorem 9.13 provides another proof that M(N) is
independent of R. Its atoms are the bonds of G.

If Y is any bond of G then the graphs H and K
of 9.13 are the end-graphs of Y in G.

If SCE(G) the common vertices of G+S and G -
(E(G)—S) are the vertices of attachment of S (and of
E(G)—S) in 6. We denote their number by w(S).
They may also be defined as those vertices of G
which are incident with edges of both S and E(G)—S.
If w(S)=1 then the single vertex of attachment of
S is called a cut-vertex of G.

Let x be any vertex of G. The star St(x) of x in G
is the set of all edges having one end at x and one in
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V(G)—x. We also write L(x) for the set of all edges
(loops) of G whose ends coincide at x.

The remaining theorems of this section relate the
structure of G to that of B(G).
9.14 Let S be a subset of E(G) such that w(S) < 1.
S is a separator of B(G).

ProoF: Let Y be any bond of G, with end graphs H
and K. We may suppose K to include no common
vertex of G-S and G:(E(G)—S). Then the inter-
sections of K with G+S and G- (E(G)—S) have no
common edge or vertex, and since K is connected
one of them is null. Hence either V(K)CV(G-S) or
V(K)CV(G - (E(G)—S)), whence it follows that either
YCS or YCE(G)—S. The theorem follows.

As a corollary we have

Then

9.141 If ais a loop of G then {a} is a separator of B(G).

Such a separator may be called trivial since it meets
no atom of B(G).

9.15 Let x be any vertex of G such that St(x) is non-null,
and let G, be the graph derived from it by deleting the
loops of L(x). Then Si(x) is a bond of G if and only

if x is not a cut-vertex of G.

ProoF: Let G, be the graph obtained from G by
deleting the vertex x and its incident edges. Let
those components of G. which include vertices inci-
dent with members of St(x) in G be enumerated as
Hi, H,, . . ., H.. Such components exist since St(x)
is non-null.  (See fig. 9A.)

Clearly x is a cut-vertex of Gy if and only if &= 2.

But the set of edges of St(x) incident in G with
members of V(H;) is a bond of G for each i, by 9.13,
one of its end-graphs being H;. Hence St(x) is a bond
of G if k=1. But if k#= 2 then St(x) has a bond of G
as a proper subset, and is not itself an atom of B(G),
by Axiom I.

9.16 B(G) is a connected matroid if and only if G -+ E(G)

is connected and G has no cut-vertex.

ProOF: If G-E(G) is not connected or if G has a
cut-vertex it is clear that some non-null proper subset
S of E(G) satisfies w(S)<1. Then S is a separator of
B(G), by 9.14.

Conversely suppose B(G) is not a connected matroid.
Then there is a proper non-null subset S of E(G)
which is a separator of B(G).

Suppose G has a loop A4 incident with a vertex x.
Then either x is a cut-vertex of G, or G- {4} is a com-
ponent of G-E(G). In either case the theorem is
satisfied.

We may now assume that G as no loop or cut-vertex.
Let x be any vertex of attachment of S. Then St(x) is
an atom of B(G) meeting both S and E(G)—S, by 9.15,
which contradicts the definition of S as a separator.
We conclude that w(S) =0. Hence G-S is a union of
components of G-E(G). This completes the proof
of the theorem.

9.17 Let S be a non-null subset of E(G). Then S is

an elementary separator of B(G) if and only if the
following conditions hold.

H2

Hi
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(i) G-S is connected and has no cut-vertex.

(ii) Each component of G: (E(G)—S) has at most one
vertex in common with G-S.

PROOF: Suppose first that S is an elementary sepa-
rator of B(G). Then B(G)-S is a connected matroid,
by 3.47. But B(G):-S=B(G-S), by 3.321. Hence
G-S is connected and has no cut-vertex, by 9.16.

It may happen that S consists of a single loop of G.
In that case proposition (ii) is trivially true. We may
therefore assume that no edge of S is a loop.

Let x be any vertex of G-S, and let T be its star in
G-S. Then T is an atom of B(G-S), of B(G)-S, of
B(G) X S and B(G), by 3.321 and 3.42. Let C(x) be its
end-graph in G which includes x. Clearly C(x) is a
component of G: (E(G)—S), and x is its only common
vertex with G - S.

Conversely suppose S to satisfy (i) and (ii). If C
is any component of G: (E(G)—S) then w(E(C)) =<1,
by (ii), and therefore E(C) is a separator of B(G),
by 9.14. The union of all such sets E(C), namely
E(G)—S, is thus also a separator of B(G). Hence S
is a separator of B(G).

If S is not an elementary separator of B(G) there is
another non-null separator S’ of B(G) such that
S'CS. But then S' is a separator of B(G - S), by 3.321
and 3.43. Hence (i) is contradicted, by 9.16.

This completes the proof.

Suppose we are given an elementary separator S of
B(G). For each vertex x of G-S we define C(G, S, x)
as that component of G: (E(G)—S) which has x as a
vertex. If x and y are distinct vertices of G - S then
C(G, S, x) and C(G, S, y) have no common vertex,
by 9.17.

9.18 Let G be.a connected graph, and let S and T be
distinct elementary separators of B(G). Then there are
vertices s and t, of G-S and G-T, respectively, such
that G-S is a subgraph of C(G, T, t), and G-T is a
subgraph of C(G, S, s). Moreover each vertex of G
belongs to one or both of C(G, T, s) and C(G, T, t).

ProoF: The first part of the theorem follows from
the fact that G-S is a connected subgraph of G:
(E(G)—T), by 9.17, and from the analogous result for
G-T.

To prove the second part suppose v is a vertex of
G not belonging to C(G, S, s). Then, by the connection
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of G, v belongs to some C(G, S, u) such that u # s and
C(G, S, u) has no common vertex with G-T. But
then ¢(G, S, u), with G- S, is a subgraph of C(G, T, ¢t).
(See fig. 9B.)

9.2. Bridges in a Bond-Matroid

Let Y be a bond in a graph G, with end-graphs H
and K. Write G,=G-(E(G)—Y).

If S is an elementary separator of B(Gy), that is
B(G) - (E(G)—Y), then the connected graph G;-S is
a subgraph of some component of G;. We refer to
G1+S, which is identical with G-S, as a bridge-graph
of Yin G.

We note that any component of G; either consists
solely of an isolated vertex, or it is a union of bridge-
graphs of Yin G. In particular this observation applies
to H and K. It leads immediately to the following
important theorem.

921 If B(G)-(E(G)—Y) is a connected matroid,
then either H or K consists of a single vertex.

This result is often helpful in determining whether
a given binary matroid is graphic.

Suppose G-S is a bridge-graph of Y in G. Let v be

one of its vertices. We write Y(S, v) for the set of
all edges of Y having one end in C(Gi, S, v). The set
Y(S, v) can thus be non-null only if G- S is contained
in an end-graph of Y in G. (See fig. 9C.)
9.22 Let S be a bridge of Y in B(G), so that G-S is a
bridge-graph of Y in G. Then either w(B(G), S, Y) is
{Y, ¢} or it is the class of all non-null subsets Y(S, v)
of Y such that veV(G - S).

PRrOOF: Let Z be any atom of B(G):(E(G)—Y)
on S. Then Z is a bond of G-S. Let its end-graphs
in G-S be H and K. These two subgraphs of G,
together with the edges of Z constitute the whole of
G-S, by 9.17.

Let H; be the union of H with all the graphs C(G,,
S, v) such that velV(H), and let K; be defined similarly.

It may happen that one of H; and K; has no vertex
incident in G with a member of Y. In that case Z is
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a bond of G with either H; or K, as one end-graph. It
then determines the trivial partition {Y, ¢} of Y.

In the remaining case each of H; and K; has a vertex
incident with a member of Y. Then G-S is contained
in an end-graph J of Y in G. Let the other end-graph
of YinGbe L. (See fig.9D.) Then H, is an end-graph

of a bond Y; of G, whose other end-graph is made up of

L, K, and the edges of Y joining L to K;. We have
Y1 :ZU I: U Y(S, U)J
veV(H)

Since this argument applies for each choice of Z we
deduce that each member of w(B(G), S, Y) is a union
of sets of the form Y(S, v). The argument assumes
S to be a nontrivial bridge, but the result is still trivially
true in the remaining case.

Consider any vertex v of G-S.
single loop of G we have Y=Y(S, v). In the remaining
case S includes no loop of G, by 9.17. Let Z be the
starof vinG-S. Then Zis a bond of G-S one of whose
end-graphs consists solely of the vertex v, by 9.15

If S consists of a



and 9.17. It therefore determines a partition of Y
having Y(S, v) as one of its primary segments, by the
preceding result.

Combining the above results we find that Y(S, v) is
either null or a member of w(B(G), S, Y), for each
veV(G - S), and hence that the theorem is true.

This theorem may be regarded as verifying 8.62 for
graphic matroids.

9.23 Every graphic matroid is even.

PROOF: Let M be a graphic matroid. Then
M = B(G) for some graph G. Let Y be any atom of
M, that is any bond of G, and let the end-graphs of Y
in G be H and K.

Let S; and S, be overlapping bridges of Y in B(G).
The bridge graphs G:S; and G-S; are each contained
in an end-graph of G.

Suppose they are subgraphs of the same end-graph
H. There are vertices v; of G-S; and v2 of G-S.
such that G-S, is a subgraph of C(G,, Si, v) and
G- S, is a subgraph of C(G», S., v), by 9.18, applied
to H. Moreover

Y: Y(Sl, U])U Y(Sg, l)g)

by the same theorem. This contradicts the hypo-
thesis that S; and S, overlap, by 9.22.

We deduce that if S; and S overlap then G-S; and
G -S, are subgraphs of distinct end-graphs of G.

Let P be the class of all bridges S of Y in M such
that G-S is a subgraph of H, and let Q be the class
of all other bridges of Y in M. Then, by the result
just proved no members of the same class P or Q
overlap. Thus Y is bridge-separable.

It follows that M is an even matroid.

Our next theorem shows that two distinct graphs,
even though without cut-vertices, can have identical
bond-matroids.

Let G be a graph and let S be a subset of E(G) such
that w(S)=2. Let the vertices of attachment of S
be x and y. We construct a graph G' such that E(G)
=FE(G'"), V(G)=V(G"), and the same incidence rela-
tions hold in G’ as in G, with the following exception.
If AeS, then A is incident with x or y in &' if and only
if it is incident with y or x respectively in G. We say
G' is obtained from G by reversing S. We can recover
G from G’ by reversing S again. We illustrate the
operation in figure 9E.

9.24 B(G) is invariant under the operation of reversing
a subset S of G such that w(S)=2.

ProoF: Let g be the 0-chain of G over GF(2) such
that g(z) =1 when z is a vertex of G- S other than x or y,
and g(z) =0 in the remaining cases.

If fis any O-chain on G over GF(2) it is readily

verified that the coboundary of f1n G is the coboundary
of f+ginG'. Hence G and G’ have the same ccbound-
ary group over GF(2). The theorem follows, by the
definition of a bond-matroid.
9.25 Let Y be a totally bridge-separable atom of a
connected graphic matrotd M. Then there is a con-
nected graph G, having no cut-vertex, such that M
=B(G) and some end-graph of Y in G consists of a
single vertex.
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PrOOF: There exists G such that M=B(G). We
may suppose G to be without isolated vertices, since
M=B(G)-E(G)=B(G-E(G)). Then G is connected
and has no cut-vertex, by 9.17. We write G =
G- (E(G)—Y) as before.

Let the end-graphs of Y in G be H, and H.. By
the connection of G these are the only components
of Gi. We suppose G, H,, and H, chosen so that
|E(H-) | has the least possible value.

Assume |E(H,)| > 0. Then also
the above choice.

Choose bridge-graphs G-S; and G-S, of Y in G
contained in H; and H, respectively. Since the
bridges S; and S» do not overlap there are, by 9.22,
vertices vy and vy of G+S; and G-S., respectively such
that

(1) Y(S1, v) UY(Ss, 02) =Y -

Keeping S» and v, fixed we consider all possible choices
of S; and v, for which (i) is true, and we select one for
which C(Gi, Si, v1) has the least number of edges.

Consider the set of all bridges S of Y in M such that
G-S has v, as a vertex. (See fig. 9F.) Let them be
enumerated as Py, P, . . ., Py, taking P, =S,.

E(H,)| >0, by

F1GURe 9E

Ficure 9F



For each P; let Fj be the subgraph of H, which is
the union of G- P; and those subgraphs C(Gy, Pj, x)
of G, for which xeV(G-Pj)—{vi}. The graphs
F; have the common vertex vy, and each of them is
connected. By 9.17 no two of them have any common
vertex other than v;. Since H; is connected it is
the union of the graphs F.

For each Pj there is a vertex pj of G - Pj and a vertex
gj of G - S, such that

Y.

(ii) Y(Pj, p)UY(Ss, g))
This follows from the hypothesis that Y is totally
bridge-separable, and from 9.22. In accordance with
(i) we take pi=wv; and g1 =v>. '

Since G has no cut-vertex it follows that for each
P; there is an edge 4; in Y(S,, ¢j) but not in Y(P}, pj),
and an edge D; in Y(Pj, pj) but not in ¥(Ss, ¢)).

Suppose p;# v;. Considering the edge A4, of
which one end is a vertex of F; other than v, we
find that ¢gj=qi=w», by (ii). But in this case C(Gi,
Pj, pj) is a subgraph of C(G, Si, v1), and has fewer
edges than C(Gi, Si, vi). This however contradicts
the definition of S; and vi. We deduce that in fact

(iii) pi=v1
for each j.

Considering the edge 4; we see that g; is uniquely
determined for each p;. Let Z; be the set of all edges
of Y having one end a vertex of Fjother than v;. Then
Z; is non-null since it includes 4;. By (ii) each edge
of Z; has one end a vertex of C(Gy, S2, g)).

For each vertex x of G-S, we define R(x) as the
subgraph of G formed by taking the union of C(Gi,
S., x) and those graphs F; for which ¢j=x, and then
adjoining the members of the corresponding sets
Z; as new edges.

For a given x the graph R(x) may have only the one
vertex x. If this is not so the set E(R(x)) is non-null
and its vertices of attachment in G are x and v,
since x is not a cut-vertex of G.

Let us reverse all the non-null sets R(x) (which are
disjoint). By 9.24 G is then transformed into another
graph G’ with the same bond-matroid M. We note
that G’ has no isolated vertex. But the transformation
replaces H; by an end-graph K of Y in G’ such that
E(K)=E(H»)—S,. But this is contrary to the choice
of G, Hy, and H..

We deduce that in fact |E(H)|=0. The theorem

follows.

9.3. Property of Odd Matroids

In this section we prove the following theorem.
9.31 Every odd binary matroid has a minor of Type
BII, KI or KII.

PROOF: Assume that the theorem fails. Then there
exists an odd binary matroid M, on a set E, which
has no minor of Type BII, KI, or KII. Choose such

a matroid so that |E| has the least possible value.

42

By definition there is at least one atom Y of M
which is not bridge-separable.

There must be a cyclic sequence

P:(Bla BZ, . . . ’BZII+1’ Bl)
of an odd number 2n-+1, where n=1, of distinct
bridges B; of Y in M such that each overlaps its two
neighbors in the sequence. We refer to P as an
odd overlap-circuit of Y.

We observe here another intrusion of graph theory
into the general theory of matroids. The bridges
B; can be regarded as the vertices of a graph whose
edges are the overlapping pairs. We have used the
well-known theorem that a graph is bipartite if and only
if it has no polygon with an odd number of edges.

We proceed by a sequence of subsidiary theorems.
9.311 Let Y be any atom of M which is not bridge-
separable. Then the bridges of Y in M can be arranged
in a single odd overlap-circuit P so that two bridges
overlap only if they are consecutive in P.

ProoF: Choose an odd overlap-circuit P of Y having
as few terms as possible. This clearly implies that
nonconsecutive members of P do not overlap.

Let S be the union of the members of P. Then
P is an odd overlap-circuit of M X (SUY), by 8.53.
But every minor of M X (SUY) is a minor of M. Hence
E=SUY, by the choice of M. The theorem follows.

In the next few propositions we suppose given an
atom Y of M, with a corresponding odd overlap-circuit

P:(Bl, Bz, . e ey Bzm—l, Bl) *
9.312 Suppose there is an atom Z of M-(E—Y) on B;
which is skew to both Bi_y and Bi+i. Then B; consists
of a single cell.

ProoF: With regard to the suffices we adopt the
convention that Bo=Bs,+1, B_1=B:,, and in general
Br:B2n+1+r-

Write S=E—(B;—Z). The bridges B; of Y other
than B, are also bridges of Y in M X S, determining the
same partitions of Y as in M, by 8.53.

On the other hand Z is an atom of (M -(E—Y))
X Bj) X Z, that is of (M - B;) X Z by 3.332 and 3.42. But
this matroid is (MXS)-Z=(MXS)-(S—=Y))-Z.
Hence Z is the only remaining bridge of Y in M X S.

Since YUZ is a line of M on M XS the atom Z
determines the same partition {U, V} of Y in M X S
as in M. Each of the sets U and V' meets at least two
r;l)embers of w(M, Bi-1, Y) and at least two of w(M, B4,
From the above results we deduce that the replace-
ment of B; by Z in P yields an odd overlap-circuit of
M XS. Hence B; is monatomic, with the single
atom Z, by the choice of M.

Now let a be any cell of Z. Write T=FE —(Z—{a}).
We have YeM - T, by 8.531. The bridges of Y in M,
other than Z, are also bridges of Y in M - T, deter-
mining the same partitions of Y as in M, by 8.531.
The only other bridge of Y in M - T is the atom {a}.

Z determines the partition {U, V} of Yin M. There
exists X'eM-T such that {a}CX'CZUUeM. There



exists XeM such that XNT=X'. But this implies
XCZUU, and therefore X=ZUU, by Axiom I.
Hence X'=UU{a}. Accordingly a determines the
same partition of Y in M-T as does Z in M.

We deduce that the replacement of B;=Z by {a}
in P yields an odd overlap-circuit of M-T. Hence
Bi={a}, by the choice of M.

We refer to a bridge consisting of a single cell as
unicellular.

9.313 If n = 2, then every bridge of Y in M is unicellular

Proor: Consider any bridge B; in P. Now B;
and Bi;; are not equipartite 3-bridges, for otherwise
Bi 1 and B4+ would overlap, contrary to 9.311. Hence
B; is skew to Bi:i, and similarly to Bi-i, by 8.44.
But B;; and Bj;; are not skew, by 9.311. Hence
there is an atom Z of M-(E —Y) on B; which is skew to
both B; yand Bj;1, by 8.42. Accordingly B; is unicellu-
lar, by 9.312.

Let 3 be the class of all non-null subsets of Y of
the form

2n=1

[)1 Wi,

where Wiew(M, B;, Y). Clearly the members of X
are disjoint and their union is Y.

9.314 If Q €, then |Q|=1. Moreover there is an
integer i such that Y—Q=W; U Wi, where Wiemw (M,
B,‘, Y) (tlld W,'HGTI'(M, B,‘H, Y)

Proo¥: Choose aeQ. Now Y—{a}leM-(E—{a}),
by 8.54. But P is not an odd overlap-circuit of ¥ —{a}
in M-(E—{a}), by the choice of M. It follows from
8.54 that Q — {a} must be null. Moreover there is an
integer i such that B; and B, do not overlap as bridges
of Y—{a} in M - (E—{a}). The proposition follows.

Suppose n=2. Then each bridge of Y in M is
unicellular, by 9.313. Write B;={bi}. For each i
the atom {b;} of M-(E—Y) determines a partition

(M, Bi, Y)={Si, T}

of Y. Since consecutive members of P overlap neither
Si nor T; is null.

Consider a particular bridge B;. By 9.311 we can
adjust the notation so that S;CS; or S;C7T; whenever
B; is distinct from and not consecutive with B; in P.
We choose one B; of this kind and arrange, by inter-
changing S; and T if necessary, that S; C T;.

Let By be the first member of the sequence

(Bj, Bj+1, . . ., Bi»)
such that Si;1NS; is non-null. Then Si;1 meets both
Si and T, since By is skew to Bx. Hence By is
consecutive with B; in P, that is By =B;_».

Similarly if B; is the last member of the sequence

(Biyo, Bivs, . . ., Bj)

such that S, 1NS; is non-null we find that /=i+ 2.
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It follows that S, CT; for each Bj, not consecutive with
Biin P. (h+#1.)

By the result just proved we can adjust the notation
so that S; contains neither S; nor 7} as a subset when-
ever B; and B; are distinct. Then by 9.311 we find
that S;NS; is non-null if and only if B; and B; are
consecutive in P,

It follows that the 2n+1 sets SiNS;y, (1 <i<2n+1)
are distinct members of 2. We must now show that
they are the only members of 3.

Choose any We2. By 9.314 we can write W=S;
NSiv1, SiNTivy, TiNSisy or TiNTiyq, for some i. In
the first case there is nothing to prove. In the second
case we observe that S;_; meets S; and is a subset of
Ti.i. Hence W is the member S, ;NS; of 3. We
deal with the third case similarly, using S;.» instead
of Si_i. Inthe fourth case we have S; s CTiNT; ., =W,
whence Sii3=W. But then Bi.3 overlaps no other
bridge of Y, since Ti,3sUW =Y, and this is a contra-
diction.

We are now in a position to prove
9.315 The assumption that n=2 leads to the contra-
diction that M is a matroid of Type KI.

ProOF: The above diagram represents M, on
the as yet unproved assumption that it is cographic.
We write a; for the single cell of the member S;N S,
of W. (See 9.314.)

If n>2 we write Y=Y —S)UB:. By 8.55 Y'eM
and Bs, By, . . ., Boy are bridges of Y” in M.  Moreover
there is another bridge B’ which contains Sy, B, and
Bonii. It also follows from 8.55 that (B', Bs, By, . . .,
Bsn, B') is an odd overlap-circuit of Y" in M. This
contradicts 9.312 since B’ is not unicellular.
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In the remaining case n=2. (Fig. 9H.)

Let us write ai=0L; i+1 if 1<i<4, and as=L,,s.
We put also bi=Li 2 if 1<i:<3, bs=L; 4, and
bs=L, 5. We construct a graph G such that E(G)=E.
We take it to have just five vertices vi, v2, vs, v4, and
vs, the ends of L; j in G being v; and vj. Then G is
a complete 5-graph.

We find that M=P(G). To prove this we observe
that Y and the five sets {b;} US; are atoms of both M
and P(G). Any atom X of M is a linear combination
of these six. For otherwise some combination of
atoms of M would be a non-null proper subset of Y,
which, by 5.34, is contrary to Axiom I. Hence X is
a mod 2 sum of atoms of P(G) and so has an atom X’
of P(G) as a subset, by 5.34. Similarly any atom of
P(G) contains an atom of M.

We deduce that M =P(G), by Axiom 1.
of Type KI.

We may now assume that no atom of M has an odd
overlap-circuit constituted by more than three bridges.

We select a particular atom Y which is not bridge-
separable, and we denote its three mutually over-
laping bridges by Bi, B», and Bs.

In our analysis we make use of the following propo-

sition.
9.316 Suppose W1 is a member of w(M, B1,Y) with the
property that some atom Z of M - (E—Y) on B, deter-
mines the partition {W., Y—W.:} of Y. Then either
w(M, Bs, Y) or m(M, Bs, Y) has a member which cuts
Wi.
PROOF: Assume the contrary. Then there exist
Waem(M, B,, Y) and Wasem(M, Bs, Y) such that W, C W,
n W:;.

Thus M is
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Let Y’ denote the atom (Y—W,)UZ of M. It follows
from 8.55 that B, and Bj; are overlapping bridges of
Y in M.

Now W is an atomof M-(E—Y'), by 8.55. Suppose
it meets another atom X of M-(E—Y'). Since X—W,
is non-null, and X cannot be an atom of the bridge
B, or Bs of Y we have XCB,UY'CB;UY. There is
thus an atom of M X (B;UY) which cuts W;. This is
impossible, by 8.51 and 8.52. We deduce that W is
another bridge of Y’ in M. Determining the partition
{Y—W,, Z} of Y' it overlaps neither B» nor Bj.

Let H be the class of all remaining bridges of Y’
in M. The union of the members of H is B;—Z.
This set is non-null since Z determines the partition
{Y=W,, Wi} of Y, while B, overlaps B> and Bj;.

Applying 8.55 with ¥ and Y’ interchanged we see
that if BeH, then no member of w(M, B, Y') can con-
tain Z.

Since B; and B» overlap with respect to Y there is
an atom X of M on BiUY—W,=B,UY’ which cuts
Y—W,. Then XN(E—Y’) is a union of disjoint atoms

of M-(E—Y"), all contained in B;UY’, by 8.51. Let
us enumerate them as X, X», . .., Xi. Let X;
determine the partition {S;, T} of Y. The mod 2

sum of X and the atoms X;US; of M is contained in
Y’, and is either Y’ or ¢. by 5.32 and Axiom I. Hence
some X; cuts Y—W,. This X; must be on some
member of H.

We deduce that there exists CieH such that no mem-
ber of w(M, C,, Y’) contains either Z or Y—W,. Then
C, overlaps both W, and B, as bridges of Y’'.  Similarly
there exists CxeH overlapping both W, and B;.

We may have C;=C,. In that case (B, Bs, C)) is
an odd overlap-circuit of Y' which does not include
W, and this contradicts 9.311.

In the remaining case Y’ has an odd overlap-circuit
(B2, B3, Cs, Wi, C;, B») having five members. But
such odd overlap-circuits are ruled out by 9.315.

The proposition follows.

By 8.43 and 9.316 B;, B,, and Bj; are not equip-
artite 3-bridges.

Suppose w(M, By, Y)=a(M, Bz, Y)={W 1, W1, W3}.
Then Bj is skew to B; and B., by 8.44. But B; and
B> are clearly not skew to each other. Hence Bj;
is unicellular, by 9.312. It determines a partition
{S, T} of Y.

We may suppose without loss of generality that
WiNS is non-null. Then W,NSeX. Moreover
W NS is a proper subset of W, by 8.43 and 9.316.
In view of 9.314 we may write, without loss of gen-
erality,

Y—(W.NS)=TUW,

where i=1 or 2. In the apparent alternative
Y=—W.NS)=SUW; we have Y=SUW,;, which is
impossible since B; and B3 overlap. But then W3 C T,
Ws€3., and we have a contradiction of 8.43 and 9.316.
We may now suppose that B, B, and B; are
mutually skew, by 8.44. Applying 8.42 and 9.312
we find that two of them, say B, and B, are unicellular.



them determine partitions {S;, 7} and {S,,
of Y respectively. We write

Le
T,

t
}

7T(M7 BB’ Y): {Wh W27 o e ey W’\}

The number £k is at least 2, since the three bridges
overlap.
9.317 The assumption that k= 2 leads to the contra-
diction that M has a minor of Type BII or KII.

PROOF: On this assumption B3 must be unicellular,
by 9.312.

Suppose W, does not meet both S;NS, and Ty NT>.
Then it meets both S;N T, and SoN T}, for it is not con-
tained in any of the sets S;, S», Ty, T, by the over-
lapping of the bridges. We may therefore adjust the
notation so that W, meets both S;NS, and TyNTo..

Assume that W, contains neither S;N T, not S, NT}.
Then M has a minor of Type BII, by 8.64, which is
contrary to the choice of M. We may therefore make
a further adjustment of notation so that SiNT.CW,.

We now observe that W, cuts both S;NS, and T, N 7.
For otherwise W, would be a subset of T} or S, and
B3 would not overlap both By and B..  Another appli-
cation of 8.64 shows that SsNT, CW..

We can now list the members of 2, each unicellular
by 9.314, as follows.

S]ﬂSgﬂW}z{Ll.l},
S]ﬂSzﬁW’:Z {L.’ I}

ngTlﬂW’.’ {Ll.’}

T\NT.NW,={Ls, .}
T\NT.NW,={Ly, 3}
SiNT-NW,={Li, s}.

We also write By ={Ls, 3}, Bo={Ly, 2} and B3={Ls 1}.

This situation is represented in figure 91, on the as-
sumption that M is cographic.

We now construct a graph G with six vertices ay,
as, as, by, bs, by, taking the cells L; j as edges. The
ends of L; j are a; and b;. Thus G is a Thomsen graph.
By an argument like the one which concludes the
proof of 9.315 we find that M = P(G).

Thus M is a matroid of Type KII, contrary to the
choice of M.

We may now suppose k= 3.

One of SiNS, and T1'NT> must be contained in a
member of 7w(M, Bz, Y). For otherwise we could find
an atom Z of M-(E—Y) on Bj cutting both SiNS,
and T'NT,, by 4.37 and 8.41. Then Z would be skew
to both B; and B, and B3 would be unicellular, by
9.312. This is impossible since k=3. Similarly
one of S{NT, and S:NT; is contained in a member
of m(M, B3, Y).

We may thus adjust the notation so that

S]ﬂSggW“ S]ﬁT_)gW_)
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SinSznW,

S|nSznW,

TnT2nW2

FiGUure 91

FIGURE 9]

For SiNS, and SiNT> are not both in W,: otherwise
By and B3 would not overlap.

We note that W, does not meet TN 7T..  For other-
wise W would contain SN 7T, or SoNT,, by 8.64, since
M has no minor of Type BIl. But then W, would
contain S; or T2, and B3 would not overlap both B,
and Bs. Similarly W does not meet S, N 7.

Suppose W meets SsNT,. This case is represented
schematically in figure 9)J.



By 9.314 we have
Y—-(WlﬂSzﬂT1)=51UT2,81UW10r TzUWI,

for a suitable suffix x. The first alternative implies
that SeNT,CW,. But then S:CW,; which is impos-
sible since B, and Bj; overlap. ’

The second possibility requires T1NT>.CW, and
WiUW.UW,=Y. Thus x=k=3. But now W, is a
subset of S; and of T5. Hence this case is ruled out
by 8.43 and 9.316.

In the third case SiNS2C W, so that W,.=W,. But
it is then necessary that SsNT,CW,. This is impos-
sible since it requires So C V5.

We deduce that W, =S8;NS,. Similarly W.=S,NT.

Let W3 be a member of w(M, Bs, Y) which meets
S:NT;. Thenby9.314 we have

Y_(W:;HS2HT1)=81UTz,S]UWx or TzUWI.

The first alternative implies SaNTC W3, the sec-
ond that k=3 or 4 and T'NT>CW,. The third im-
pliesSlﬂsngI=W1. ThenSzﬂTlgWs.

Similar results are obtained when we consider a
member of (M, Bs, Y) meeting T1NT>. Since S2NT}
and T1NT, are not contained in the same member of
w(M, Bs, Y), by the overlapping of B; and Bs, it follows
that we can adjust the notation so that

(M, Bs,Y) ={W1, Wo, W3, Wi},
Wi=58:NS;,
W,=5NT,,
WsCS:NTs,

I''NT,CW,..

Now there is an atom Z of M - (E—Y) on B3 which
cuts both W UW, and W,UW;, by 4.37 and 8.41.
This atom must determine one of the partitions
{WI, Y_ W1} and {W1UW4, WzUW';} Of Y The
latter requires M to have a minor of Type BII, by 8.64,
and can be ruled out. But now we have a contradic-
tion of 9.316, since W;CS; and W;CS..

The analysis is now complete. No matroid satsifies

the conditions imposed on M, and theorem 9.31 is
established.

9.4. Characterization of Graphic Matroids

One more major result is required to complete our
theory.

941 If a matroid M is regular and has no minor of
Type KI or KII, then M is graphic.

PROOF: Assume the contrary. Then there is a reg-
ular matroid M on a set £ which has no minor of Type
KI or KII but which is not graphic. Choose M so the
dM has the least possible value.

Suppose first that M is not connected. We can
find complementary non-null separators S; and S,
of M. There exist graphs G; and G» such that

B(G1)=M X Si, B(G2)=M XS,

by 5.62. We may take V(G1) and V(G2) to be disjoint
subsets of some larger set V. Then G, and G- together
constitute a graph G. We note that S; and S, are
separators of B(G), by 9.14.

If XeB(G) we have

XeB(G) X Si=B(G) - Si=B(G - Si))=B(Gy)) =M X S;,

where t=1 or 2. Hence XeM. We find similarly
that if XeM then XeB(G). We deduce that M =B(G), a
contradiction.

We may now suppose M connected.

Suppose dM=—1. Then |E|=0 or 1 since M is
connected. We thus have M=B(G) for some graph
G with just one vertex. If |E|=0, G is edgeless. If
|E|=1 G has a single loop.

If dM =0 we have M={E}, by 3.57 and the connec-
tion of M. Then M=B(G), where G has just two
vertices and each cell of M is an edge incident with
each of them.

Next suppose dM=1. Then E is a connected line
of M. Let its three points be X;, X», and X3. Each
is the mod 2 sum of the others, by 7.12. Hence they
have no common cell. The sets X;NX,, XaNX3, and
X3NX; are non-null, by Axiom I, and their union is
E. Let G be a graph with just three vertices vy, v»,
and v3, and such that E(G)=E. We take each member
of XiNXj to have ends v; and vj, 1 <i<j=<3). Itis
readily verified that M = B(G).

We deduce that dM = 2.

Now M has no minor of Type BI, BII, KI, or KII,
by 7.51. Hence there is an atom Y of M having two
distinct bridges, by 8.63. Moreover M is even, by
9.31, and therefore Y is bridge-separable. We can
arrange the bridges of Y in M in two disjoint classes
P and Q so that no two members of the same class
overlap, and we can clearly arrange that P and Q are
non-null.

Let S and T be the unions of the members of P and Q
respectively. The matroids M X (SUY) and M X(TUY)
are connected, by 3.48 and 8.13. For if the S of 8.13
is a bridge of Y the condition (M - (E—Y))XS=MXS
is equivalent to M -S=M X S. (See 3.42.)

There exist graphs H and K such that

B(H)=M X(SUY),

B(K)=M X(TUY),
by the choice of M.

Hence we may choose H to have a vertex h which is
incident with the members of Y and no other edges, by
9.25 and 8.53. Similarly K may be supposed to have a
vertex k incident only with the members of Y.
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We may take V(H) and V(K) to be disjoint subsets

of some larger set. We construct a graph G as follows

EG)=E
VG)=V(H) = {h}) UV(K)—{k}).

If AeE —Y the ends of 4 in G are its ends in H or K.
But if A€Y then its ends in G are its end other than A
in H and its end other than & in K. We illustrate this
construction in figure 9K.

There is a binary chain-group N such that M=M(N).

Let f be any chain of N. lts restriction to E—Y is
a sum of elementary chains fi, >, . . ., fiof N-(E=Y),
by 5.32. Each f; has a domain restricted to one of the
bridges in Y in M. Hence f; is the restriction to E—Y
of a chain g; of N such that ||g]| is contained in SUY
or TUY. The sum of f and the chains g; has a domain
contained in Y. Itis thus either zero or the elementary
chain of N with domain Y.

We conclude that f is the sum of two chains p and
q of N with domains contained in SUY and TUY re-
spectively.

The restriction of p to SUY is a coboundary of a
0-chain [ of H over GF(2). We may change each co-
efficient in [ by 1 without altering &/, by the definition
of a coboundary. We may therefore suppose [(h)=0.
But then p is the coboundary of a corresponding 0-chain
in G. Similarly ¢ is a coboundary in G. Hence fis
such a coboundary.

Conversely suppose fis a coboundary of a 0-chain
[ in G. Let [; and [» be formed from [ by replacing
the coefficients of the vertices in V(H)—{h} and
V(K)— {k} respectively by zeroes. Then 8= 6/, + 8l,.
Moreover |8L|CSUY and |[l|CTUY. The restric-
tions to SUY and TUY of 8/; and 8/, are chains of
NX(SUY) and NX(TUY) respectively. Hence 8/,
and 8/, are chains of N, and therefore &/ is a chain
of N.

We deduce that N is the coboundary group of G.
Hence M =M(N)=B(G), contrary to the choice of M.
The theorem follows.

We may now combine some of the preceding re-
sults into the following theorem.

757-615 O-65—-4
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9.42 A binary matroid is graphic if and only if it is
regular and has no minor of Type KI or KII.

ProoF: If M satisfies this condition it is graphic,
by 9.41. Conversely if M is graphic it is regular, by
2.54. No minor of M is of Type KI or KII, by 5.62,
for matroids of these two types are odd, by 8.31, and
therefore not graphic, by 9.23.

Cographic matroids can be characterized by a dual
form of 9.42. They are those regular matroids for
which no minor is the bond-matroid of a Kuratowski
graph.

A matroid is planar if it is both graphic and co-
graphic. It is possible to derive Kuratowski’s The-
orem on planar graphs by applying 9.42 to the polygon-
matroid of a planar graph.

An algorithm for determining whether a given binary
matroid, given by a representative matrix, is graphic
has recently been presented in the Canadian Journal

of Mathematics 16, 108-127 (1964).
(Paper 69B1-131)
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