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This work is based on a se ri es of papers in the Transac tions of the Ame rican Mathemati ca l So· 
cie ty: A homotopy theorem for matroids, J and lJ , 88,144--174 (1958): and Matroids and graph s, 90, 
572-552 (1959). 
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to rep resent a graph. The treat me nt is as ri gorous as t hat in the original papers , but it is hoped th at 
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for "regu lar matroids" have been generalized to the less res trict ed c lass of " binary" ones, and the 
las t part of the work has bee n improved by the incorporation of a theory of "eve n" matroids. 
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1. Matroids 

1.1. Matroids 
Given a graph G we denote the set of vertices by 

V(G) and the set of edges by E(G). 
In general G contains a number of polygons, and each 

polygon can be specified by its set of edges. Suppose 
a complete li s t is made of all the polygons of G, each 
as a set of edges . Then this list can be described as 
a class of non-null subsets of E (G). We denote it 
by P(G), and, anticipating a later definition, we call 
it the polygon-matroid of G. 

The definition of P( G) immediately sugges ts a dif
ficult grap h-theoretical problem. Suppose we are 
given a class M of non-null subse ts of a fixed se t E_ 
How can we de termine whe ther or not M can be inte r
preted as the polygon-matroid of a graph? A partial 
answer can be given at once; it is not diffi cull to s how 
that the two following conditio ns are necessary _ 

1 

I No member of M is a proper subset of another. 
n Let a and b be two members of E. Let X and Y 

be members of M such that aEX n Y and bEX - Y. 
Then there exists a member Z of M such that a4Z, bEZ 
and Z ~ XU Y. 



If M is indeed the polygon-matroid of a graph G, 
then I is immediate from the properties of polygons_ 
To show that II holds in this case we first observe that 
the polygon with edge-set X contains an arc L which 
has b as an edge and has only its end-vertices x and y 
in common with the polygon of edge-set Y_ But x and 
yare joined by an arc L, in the latter polygon such that 
a is not an edge of L 1. Combining Land L 1 we obtain a 
polygon whose edge-set Z has the required properties. 
(See figure lA.) 

Conditions I and II are not sufficient for M to be of 
the form P(G). Before going any further it is con
venient to lay down the following definition: a class 
M of non-null subsets of a set E is a matroid on E 
if it satisfies conditions I and II. Thus these two 
conditions become the axioms of matroid theory. 

Our first two theorems are as follows. 
1.11 Let L be a class of non-null subsets of a set E. 
Suppose L satisfies Axiom II. Then if a EXEL there is 
a minimal member Y of L such that a EY<:;;;X. 

By a "minimal" member of L we mean a member 
which does not contain another. 

We shall denote the number of elements of any 
finite set K by IKI. 

To prove our theorem we define Y as a member of L 
satisfying aEY<:;;;X and having the least value of IYI 
consistent with this condition. We have to show that Y 
is a minimal member of L. 

Suppose not. Then there exists ZEL such that 
Z <:;;; Y - {a}. Choose bEZ. Then by Axiom II, 
with a and b interchanged, we find that there is a 
member Z' of L such that aEZ' <:;;; Y - {b} eX. Since 
this contradicts the definition of Y the theorem follows . 
1.12 Let L be a class of non-null subsets of a set E. 
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Suppose L satisfies Axiom II. Then the minimal mem
bers of L constitute a matroid on E. 

PROOF: Let M be the class of minimal members of 
L. By definition it satisfies Axiom I. 

Let a and b be members of E, and X and Y members 
of M, such that aEX n Y and bEX - Y . By hypothesis 
there is a member W of L such that a1W, bEW and : 
W <:;;;X U Y. By 1.1 there exists ZEM such that bEZ <:;;; W. . 
Hence a1/Z, bEZ and Z<:;;;ZU Y. Thus M satisfies 
Axiom II. 

Let M be a matroid on a set E. We shall refer to 
the members of E as the cells and to the members of 
M as the atoms of the matroid. 

We now describe some further examples of matroids. 

1.2. Chain-Groups 

Let R be a commutative i!ing with a unit element 
and no divisors of zero. We define a chain on a finite 
set E over R as a mapping f of E into R. Thus each 
aEE is associated with a number fia) in R, and this 
number may be calJed the coefficient of a in the chain. 

The domain Il/!I of f is the set of all members of E 
with nonzero coefficients in f If 1lf11 is null then f 
is the zero chain on E over R, denoted by the symbol 0. 

The sum f + g of two chains f and g on E over R is 
another such chain defined as follows. 

(j+ g) (a) = fia) + g(a), 0) 

The product Af of a number A in R and a chain f on E 
over R is another chain on E over R defined as follows 

(Af) (a) = A(j(a)), (2) 

We write A(E, R) for the class of all chains on E over 
R. A chain-group on E over R is defined as any 
subset N of A(E, R) which is closed under the operations 
of addition and multiplication by element s of R. 

Let N be such a chain-group_ A chain f of N is 
called elementary if it is nonzero and there is no 
nonzero gEN such that Ilgll e 1lf11. 

A primitive chain of N is an elementary chain whose 
coefficients are restricted to the values 1, 0, and 
-1 in R. 

We proceed to show that every chain-group has an 
associated matroid. 
1.21 Let N be a chain-group on E over R . Then the 
class M of the domains of the elementary chains of 
N is a matroid all E. 

Proof: Let L be the class of domains of nonzero 
chains of N. Let f and !{ be two such chains and let 
a and b be elements of E ("cells" of N) such that 
aEIl/llnllgll and bEIl/II-llgll · 

We multiply f by g(a) and g by -fia) and add the 
resulting chains . We thus obtain a chain h of N such 
that Ml lhll , bEllhl1 and Ilhllellfllullgll. We de
duce that L satisfies Axiom II. 

But M is the class of minimal members of L. Hence 
M is a matroid on E by 1.2. 



We call M the matroid of N and denote it by M(N). 
A c hain group over the ring of residues mod 2 is 

called binary, and one over the ring of integers is called 
integral. A regular, or completely unimodular 
c hain-group is an integral chain-group in which each 
eleme ntary chain is a multiple of a primitive chain. 

A matroid is called binary or regular if it is the 
matroid of a binary or regular chain-group respec tively. 
These two kinds of matroid are of special importance 
in the theory. 

We conclude this chapter by showing how to 
associate the polygon-matroid of a graph G with a 
chain-group over R. 

We first assign an orientation to each edge of G by 
distinguishing one end as positive and the other as 
negative . For each aEE(G) and each XEV(G) we define 
an integer 'Y}(a, x) as follows . If a and x are not inci
dent, or a is a loop , then 'Y} (a, x) = O. Otherwise 
'Y}(a , x) = 1 or - 1 according as x is the positive or nega
tive e nd of a. 

C hains on V(C) and E(G) are called O-chain s a nd 1-
c hain s of G respec tively . 

Let f be a I-c hai n of Gover R. We define a O-chain 
af of Gover R, called the boundary off, by the following 
rule 

(aj) (x) = L T/(a,x)j(a), 
([<E(G) 

XEV(G). 

We callfa i-cycle of G if af= o- It is clear that the 
I-cycles of Gover R constitute a c hain-group Non E(G) 
over R. 

Given a polygon of G we can easily co nstruct a 1-
cycle of G, with coefficients 1, -1 and 0 whose domain 
is the edge-set of the polygon. On the other hand let f 
be any nonzero I-cycle over R, and let GJ be the sub
graph of G made up of the edges of 11111 and their inci
de nt vertices. Then the valency of each vertex of GJ 
exceeds 1, and therefore GJ contains a polygon. From 
these observations we h ave 
1.22 Let N be the chain-group of i-cycles over R for 
an oriented graph G. Then M(N) = P(G)_ 

In particular R may be the ring of residues mod 2. 
Hence 
1.23 The polygon-matroid of a graph G is binary. 

We have seen that the edge-set of any polygon is the 
domain of a primitive c hain of N. It readily follows 
that 
1.24 The polygon-matroid of a graph G is regular. 

2. Duality 

2.1. Principal Forests 
A spanning tree of a graph G is a subgraph of G 

which is a tree and which includes all the vertices of 
G. A principal forest of G is a subgraph of G whose 
inte rsection with each component of G is a spanning 
tree of that component. For our purposes the main 
theorem about principal forests is the following. 
2. 11 Let U be a subset of E(G). Then U is comple
mentary to the edge-set of a principal forest of G if 
and only if it has the following properties: 
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(i) U meets the edge-set of each polygon of G. 
(ii) No proper subset of U meets the edge-set of every 

polygon of G. 
PROOF: S uppose first th at U has prope rti es (i) and 

(ii). Let F be the spanning subgraph of G such that 
E(F) =E(G) - U. Then F is a fores t, by (i). S up
pose its intersec tion with some co mpone nt C of G 
is not co nnec ted. Then some edge aEE(C) n U has 
its ends in different components of F. But then there 
can be no polygon of G whose edge-se t does not mee t 
U - {a}, co ntrary to (ii ). 

Conversely suppose U is co mple mentary to the 
edge-set of a principal forest F. Then F has no poly
gon. But if a is an edge of U with e nd s x and y, the n 
either x = y or x and yare joi ned in F by an arc L. 
(See figure 2A). In the la tter case L can be co mbined 
with a to form a polygon whose edge-se t does not meet 
U - {a}. Hence U satisfies (i) a nd (ii). 

2.2 . Dendroids 
We can now make an exte nsion to matroid theory as 

follows. Let M be a matroid on a set E. The n we 
define a dendroid D of M as a subse t of E whi c h meets 
every atom of M and is minimal with respec t to thi s 
property. Thus 

2.21 The dendroids of P(G) are th e complements in 
E(G) of the edge-sets of the principal forests of G. 

Let D be a dendroid of M and le t a be a cell of D. 
By the definition of a dendroid there is an atom X of M 
such that XnD= {a}. Moreover X is unique. For 
suppose Y is another a tom of M such that YnD = {a} . 
Then an application of Axiom II shows that there is an 
atom Z of M not meeting D. We denote X by }(D, a). 

We now give some general theore ms about dendroid s 
ofM. 
2.22 Let D be a dendroid of M . Let a and b be ce LLs of 
M such that aED and b¢D. Write D' =(D - {a})U {b}. 
Then D' is a dendroid of M if and only if bEJ(D, a). 

PROOF: Suppose D' is a dendroid of M. Since it 
meets J(D, a) we must have bE}(D, a). 



Conversely suppose bEj(D, a). Then D' meets 
every atom of M, since D - {a} meets every such atom 
other than j(D, a). 

We note that D' - {b} does not meet ](D, a). Con· 
sider any cell cED'-{b}. Then D'n](D, c) is eithe r 
{c} or {b, c}. In the second alternative an application 
of Axiom II to j(D, a) and j(D, c) shows that M has an 
atom Z meeting D' solely in {c}. We conclude that 
no proper subset of D' meets every atom of Z. The 
theorem follows. 
2.23 All dendroids of M have the same number of cells. 

PROOF: Let Dl and D2 be distinct dendroids of M. 
Let D3 be a dendroid of M such that I D31 = I Dl I and 
I D2 n D31 has the greatest value consistent with this 
condition. 

If possible choose aED3 - D2. Then j(D3, a) meets 
D2 in a cell b which is not in D3 . Since m:l- {Ii}) U {b} 
is a dendroid of M, by 2.21, the definition of D3 is 
contradicted. 

We deduce that D3 ~ D2, and therefore D3 = D2. 
Hence I Dl I = I D21, and the theorem follows. 

The number of cells in a dendroid of M is the rank 
r(M) of M. In the trivial case in which M has no atoms 
there is just one dendroid, the null subset of E, and 
r(M) = O. In every other case r(M»O. 
2.24 Let X be an atom of M. Then there is a dendroid 
D of M and a cell a of D such that X = }(D, a). 

PROOF: Let D be a dendroid of M with the least pos· 
sible value of IDnxl. Suppose DnX has two distinct 
cells a and b. Then j(D, b) has a cell c not in X, by 
Axiom I. But (D- {b}) U {c} is a dendroid of M, by 
2.3, which is contrary to the definition of D. We con· 
clude that DnX consists of a single cell a , so that 
X=](D, a). 

COROLLARY. If xEX there is a dendroid D' of M 
such thatX = }(D', x). (2.22 and 2.24). 
2.25 A matroid M on a given set E is uniquely deter· 
mined by its dendroids. 

PROOF: If D is any dendroid of M and aED, then 
](D, a) is uniquely determined by the other dendroids, 
by 2.22. Hence M is completely determined by its 
dendroids, by 2.24. 

2.3. Dendroids of a Chain-Group 

The concept of a dendroid can be applied to a chain· 
group N on E over a commutative ring R of the type 
described in chapter I. We define a dendroid of N 
as a minimal subset D of E meeting the domain of 
every nonzero chain of N. Since every such domain 
contains that of an elementary chain the dendroids of 
N are identical with those of the corresponding matroid 
M(N). 

Let D be a dendroid of N. For each aED we can find 
a chain fa of N such that Ilfall is the atom j(D, a) of 
M(N). We refe r to the set of c hains fa, one for each 
aED, as a dendroid-basis of N. Its weight is the product 

which is necessarily nonzero . 

L ____ _________ _ 
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2.31 Let B={falaED} be a dendroid-basis of N of 
weight w. Let K be any non-zero chain of N. Then wK 
can be expressed as a linear combination of members 
ofB, with multipliers in R. 

PROOF: By adding suitable multiples of me mbers 
of B to wK we can reduce the coefficient of each aED 
to zero. The resulting chain is zero, since its domain 
does not meet D. 

COROLLARY: If II K II meets D in a single cell a, then 
II K II = I If a II, and therefore K is an elementary chain of N. 

2 .4 . Dual Chain-Groups 

We note that the rank of M(N) is also the rank of N, 
in the sense of the theory of linear dependence, by 
2.31. Much simplification results if we can arrange 
that fa(a) = 1 for each aED. This can be done when 
R is a field and also when N is regular. In the latter 
case fa is taken to b e a primitive chain of N. In these 
cases the weight of the dendroid·basis takes the value 
1. The dendroid-basis then becomes a true basis of 
N, by 2.31. 

Returning to the general case we define two chains f 
and g on E over R as orthogonal if 

2)(a)g(a) = O. 
(tEE 

Let N* be the class of all chains h on E over R such 
that h is orthogonal to every member of N. It is easily I 

verified that N* is a chain-group on E over R. We 
call it the dual chain-group of N. It is clear from th e 
definition that 

2.41 N~N** 

2.42 Let D be a dendroid of N and let B = U;,/aED} 
be a corresponding dendroid·basis of N. 

For each bEE - D let a chain glJ on E be defined as 
follows: gdb) is the weight w(B) ofB, and gt/x) = 0 
for each x E(E-D)-{b}. On the other hand if 
aED, then 

go(a) =-!c,(b) n !c.(c). 
cfD - {a} 

Then E - D is a dendroid of N*, and the set B* 
= {gol bEE - D} is a corresponding dendroid-basis ofN*. 

PROOF: For each gbEB* it is readily verified that gil 
is orthogonal to each faEB. He nce glJ is orthogonal to 
each chain of N, by 2.31 and the fact that R has no 
divi sors of zero. Hence goEN*. 

A chain on E over R whose domain is a non-null 
subset of D cannot be orthogonal to every member of 
B. Hence E - D m eets the domain of every nonzero 
chain of N*. Considering the chains go we see that 
no proper subse t of E - D has thi s property. He nce 
E-D is a dendroid of N*. By 2.31, Corollary, B * is 
a corresponding de ndroid-basis. 
2.43 The dendroids ofN* are the complements in E of 
the dendroids of N . 



PHOOF: Any dendroid of N is also a dendroid of N**, 
by two appl ications of 2.42. Hence Nand N** have 
equal ranks. 

Let E - V be any dendroid of N*. Then V is a 
dendroid of N**, by 2.42. It contains a dendroid V' 
of N, by 2.41, and V' = V by the result of the preceding 
paragraph. Thus V is a dendroid of N. Combining 
this result with 2.42 we establish the theorem. 

I 2.44 M(N**) = M(N), 

by 2.25 and 2.43. . 
2.45 Any dendroid·basis of N is a dendroid-basis of 
N**, by 2.41, 2.44 and 2.31, Corollary. 
2.46 if N has a dendroid-basis of weight 1, then 
N** = N, by 2.31 and 2.45. . 
2.47 if N is regular, then N* is regular. 

PROOF: We may suppose the chains fa of 2.42 to be 
pnmltlve. Then the chains gb have coefficients re
s tricted to the values 0, 1 and -1. S ince they belong 
to a dendroid-basis of N* they are elementary and 
therefore primitive c hains of N*. Using 2.24 we 
deduce that N* is regular. 

2.5 . Bond-Matroid of a Graph 

Suppose now that N is the group of I-cycles on a 
graph Gover R. The n the de ndroids of N* are the 
edge-sets of the prin cipal forests of G, by 1.22, 2.21, 
and 2.43. We proceed to interpret N* in terms of the 
structure of G. 

Let g be any O-chain on Gover R. Then the co
boundary og of g is a I-chain on Gover R defined as 
follows 

(og) (a) = L T/(a , x)g(x), aEE(G). 
. r.I'(G) 

It is clear that the coboundaries of the O-chains on 
Cover R are the elements of a chain-group N, on E(G) 
over R. 
2.51 Every coboundary of Gover R is orthogonal to 
every i-cycle of Gover R. 

PROOF: Let k be a I-cycle and f the coboundary of 
a O-chain g. The n 

L k(a)fia) = L L T/(a, x)k(a)g(x) = L g(x)h(x) , 
a.E(G) a.E(G) IE V(G) orE V(G) 

where h = ak. Hence 

L k(a)j{a) = O. 
a.E(G) 

As a corollary we note that Nl r:;;,N*. 
Now let F be a dendroid of N*, the edge-set of a 

principal forest of G. 
Consider any aEF, belonging to a component Ca 

of G. The intersection of the principal forest with 
Ca is a tree T having a as an edge. When a is deleted 
T is decomposed into two components T, and T2 , 

which we may suppose to contain the positive and 
negative ends of a respectively. (See figure 2B.) 
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Let ga be the O-chain over R in which the vertices of T, 
have coefficient 1 and all other vertices coefficient O. 
Consider the coboundary fa = oga. Clearly !r,(a) = 1 
and the other coefficients in fa are res tri c ted to the 
values 1, -1 and O. Moreover Fnll!r,II={a}. The 
last result implies, since N, r:;;,N*, that !r, is an ele
mentary c hain of N*, by 2.31, Corollary. 

The coboundaries !c" aEF, thus cons titute a de n
droid-basis of N*. Using 2.31 we obtai n 

2.52 N* is the chain-group of coboundaries ofC over R 

We refer to M(N*) as the bond-matroid B(C) of G. 
We note that in the above proof Iltall is not de pe nd e nt 
on the particular ring R used . H ence, by 2.24, Corol
lary, B(G) is independent of R. 

Since R may be the ring of res idues mod 2 we have 
2.53 B(G) is binary . 

If R is the ring of intege rs we observe that the chains 
fa are all primitive. He nce, by 2.24, Corollary, we have 
2.54 B(G) is regular. 

We refer to the atoms of B(C) as the bonds of C. As 
an exercise in graph theory we can s how that a non
null subse t K of E(C) is a bond of C if and only if it 
sati sfies the following condition: the graph H obtained 
from G by deleting the edges of K has two co mpon ents 
C and C2 such that each edge of K has one end in 
each. 

We have adopted a nomenclature which trea ts B(G) 
as more fundamental then P(G). Thus principal for
ests of C correspond direc tly to "dendroids" of B(C). 
We also describe a matroid as graphic if it can be rep
resented as the bond-matroid of a graph, and as co
graphic if it can be represented as a polygon-matroid. 

There is a theory of dual graphs on the 2-sphere, but 
we shall comment only briefly about it. Two graphs 
G and H may be defin ed as dual if there js a 1 - 1 map
ping of E(G) onto E(H) which transforms I-cycles into 
coboundaries, and coboundaries into I-cycles . It can 
be shown that a graph is planar, that is realizable in 
the .2-sphere, if and only if it has a dual graph. Using 
this theory we may assert that a graph G is planar if 
and only jf its polygon-matroid is graphic. Let us 



therefore define a planar matroid as one which is 
both grap hic and cograph ic. Such a matroid corre
sponds to a pair of dual planar graphs. 

2.6. Dual Matroids 
There is a theory of duality for general matroids 

which is closely analogous to that given for chain
groups in section 2.4. 

Two subsets 5 and T of a finite set E are called 
orthogonal if 15n TI~ 1. Given a matroid M on E we 
denote the class of all non-null subsets of E which a re 
orthogonal to every atom of M, by L(M). 
2.61 If (X, Y)EL(M), aEX n Y and bEX - Y, then there 
exists ZEL(M) such that bEZ~(XUY)-{a}. 

PROOF: Assume the theorem false for some X, Y, a, b. 
We construct a sequence (ao, at, . . ., ak) of cells of 
XUY, and a sequence (Tt, Tt , . .. , Tic) of atoms of M 
as follows. First we put ao = a. If we have deter
mined the cells ai as far as a,., and b is not among them 
we take Tnt to be any atom of M suc h that 

T,.+t n {(XUY)-{ao, . .. , a,.}} 

has just one cell, c say. This is possible since (XU y) 
- {ao, ... , a,.} is not in L(M), by assumption. We 
then write c = a,.+t. The construc tion terminates 
with a,,=b. 

There exists VEM such that bEVn(XU Y)~ {ao, 
. . . , ad. For example we may take V=T". For 
each such V let p(U) be the greatest integer j less than 
k such that ajEV. Such an integer exists since 
Ivnxi ~ 1. 

Suppose p(U) > O. We apply Axiom II to V and 
Tp( U)' thus establishing the existence of an atom V f 

of M such that 

bEVf ~ (VU Tp(U) - {ap(U)}) 

But then bEVfn(XUY)~{ao, ... , ad, and p(Vf) 
< p(V). 

We can therefore choose V so that p(U)=O. But 
then ynv= {ao} = {a}, contrary to hypothesis. The 
theorem follows. 

We denote the class of minimal members of L(M) 
by M*. Now 2.61 asserts that L(M) satisfies Axiom 
II. Hence, 
2.62 M* is a matroid on E. 
by 1.12. We call M the dual matroid of M. From the 
definition of orthogonality we see that 

(1) 

If D is a dendroid of M and bEE - D we define K(D, b) 
as the subset of E consisting of b and eac h aED such 
that bE./(D, a). 
2.63 K(D, b)EM*. 

PROOF: Assume K(D, b) is not in L(M). Then there 
exists an atom X of M such that IXnK(D, b)1 = 1. 
Choose such an X so that ID nXI has the least possible 
value, and denote the common cell of X and K(D, b) 
by c. 
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Suppose DnX has a cell e not in K(D, b). Applying 
Axiom II to X and ./(D, e) we find that M has an atom Y 
s uch that CEY~(XU'/(D, e))- {e}. But then YnK(D, b) 
={C}, since b~J(D, e). Moreover IDnYI < IDnxl. 
This is contrary to the definition of X. 

We deduce that DnXCXnK(D, b)={c}. Hence, 
since D is a dendroid of M, D nx = {c} and therefore 
X = '/(D , c) . But cEK(D, b) and therefore bE.J(D, c). 
Hence XnK(D, b) includes two distinct cells band c, 
which is contra ry to the definition of X. He nce K(D, b) 
is in fact in L(M). 

There is an atom V of M * such that bEV~K(D, b), 
by 1.11. But if xEK(D , b)- V, then V is not orthogonal 
to ./(D, x) . Hence K(D, b) = VEM*. 

CORO LLARY: E - D is a dendroid of M* , and K(D, b) 
is the atom./(E - D, b) of M* . 
2.64 The dendroids of M* are the complements in E 
of the dendroids of M. 

PROOF: The proof is analogous to that of 2.43. 
We note that any dendroid of M is a dendroid of M** , 
by 2.63, Corollary. He nce r(M**) = r(M). 

Let E - V be any dendroid of M*. Then V is a 
dendroid of M**. It contains a dendroid Vf of M, 
by (1). But then V f = V by the equalit y of rank. 

Combining this result with the Corollary to 2.63 
we establish the theorem. 
2.65 

M**=M, 

by 2.64 and 2.25 . 
2.66 Let N be a chain-group on E over a commutative 
ring R with a unit element and no divisors of zero . 
Then 

(M(N))* = M(N*), 

by 2.43, 2.64 and 2.25. In particular we have 
2.67 For any finite graph C, 

(P(C))* = B(C), 

by 2.52. 

3. Structure of Matroids 

3.1. Subgraphs and Contractions 

Let C be a graph and let 5 be a subse t of E(C). There 
are two specially important s ubgraphs of C associated 
with 5. One is the spanning subgraph C: 5, for whic h 
V(C:5)=V(C) and E(C:5)=5 . The other is the 
reduction of C to 5, defined by the edges of C and their 
in cident vert ices. We de note it by C ·5. 

We note that C' 5 has no isolated vertices. For 
this reason we shall usually prefer the reductions of 
C to the other subgraph s. For the addition or removal 
of an isolated vertex in a graph C does not affect the 
I-cycles or coboundaries. 

The contraction C ctr 5 of C to S is a graph whose 
vertices are th e components ofC:(E(C)-5) and whose 
edges are the me mbers of 5. The ends of an edge 
in C ctr S are the two components, possibly co in c ide nt, 
of C: (E(C) - 5) which include th e ends of th e edge 
in C. 

l 
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If the identities of the vertices of G are notimpor
tan t we may say, less precisely, that G ctr 5 is formed 
from G by contracting each component of G : (E(G)-S) 
to a single vertex_ Alternatively we may say that G 
ctr 5 is obtained from G by a sequence of "elementary 
co ntractions" in each of which one edge of G is con
tracted to a single vertex_ 

By deleting the isolated vertices, if any, of G ctr 
5 we obtain from it the reduced contraction G X 5 
= (G ctr 5) - 5 of G to 5 _ 

We go on to derive some corresponding operations 
on chain-groups and matroids_ 

3_2_ Minors of Chain-Groups 
Let N be a chain-group on a se t E over a commuta

tive ring R having a unit element and no divisors of 
zero_ 

Suppose 5 CE- If f is any chain of N we define its 
restriction to 5 as the chain g on 5 such that g(a) 
= j{a) for each aES_ , 

The res trictions to 5 of the chains of N consti tute a 
chain-group on 5 over R_ We call thi s the reduction 
of N to 5 and denote it by N· S. Another c hain-group 
on 5 over R is given by the restri c tions to 5 of those 
chains f of N for which 11111 ~ 5 _ This is the contrac
tion of N to 5, denoted by NXS_ 
3. 21 NxS~N' 5 _ 

The proofs of the two followi ng theorems are simple 
exercises in graph theory_ 
3_22 Let N be the group of coboundaries over R of a 
graph G. Then N· 5 is the group of coboundaries 
over R of G . S . 
3_23 Let N be as in 3 .22. Then N X 5 is the group of 
coboundaries over R of G X 5 _ 

Returning to the general case we s uppose T ~ 5 ~ E . 
We can now establis h th e followi ng identities 

3_241 

3.242 

3.243 

3.244 

(NxS) xT=Nx T , 

(N'S) . T= N '.T, 

(N' 5) X T = (N X (E - (5 - T)))' T, 

(NXS) · T =(N· (E-(S-T))) X T. 

The first two of these follow immediately from the 
definitions_ To prove 3_243 we observe that each side 
of the formula represents the restrictions to T of those 
chains of N which have only zero coeffi cients in 5 - T. 
We can obtain 3.244 by writing E - (5 - T) for 5 in 
3.243. 

We refer to a c hain-group of the form (N . 5) X T as 
a minor of N. The minors of N include N itself and all 
its reductions and contractions. For N=(N · E) x E, 
N·S=(N ·S) xS, and NxS=(N·E)xS. From the 
identiti es 3.241 we deduce 
3.25 Every minor of a minor of N is a minor of N. 
3_26 If N is regular then every minor of N is regular. 

PROOF: Suppose 5 ~ E. Let f be an elementary 
chain of N X S. Then f is the restriction to 5 of an 
elementary chain fl of N having the same domain as 
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f But /1 is an integral multiple of a primitive c hain 
of N, s ince N is regular. This implies that f is an 
integral multiple of a primitive chain of NXS. We 
deduce that N X 5 is regular. 

Now le t h be a n elementary chain of N ·S . There is 
a chain hi of N hav ing h as its restric tion to 5_ Choose 
hI so that IIhdl has the leas t possible number of cells. 
There is an elementary chain h2 of N suc h th at II h211 
~ IIhlli. By the choice of hi we may s uppose IIh211 nS 
is non-null. Since h2 is a multiple of a primitive c hain 
of N we deduce that there is a nonzero chain k of 
N'S, with coefficients res tri c ted to the values 1, - 1 and 
0, such that IIkll ~ IIhll- But the n IIkll =lI hll since h is 
elementary, and therefore k is a primitive c hain of 
N ·S. Since h is ele me ntary it must be a multiple of k_ 
We deduce that N· 5 is regular. 

The theore m follows from these two results. 
Minors of dual chain-groups are related by the follow

ing identity. 

3_27 (N ' S)* =N* xS. 

PROOF: Le t f be a chain on 5_ It belongs to (N· 5)* 
if and only if it is orthogonal to e very chain of N'S, 
that is if a nd only if the chain g on E which sati sfi es 
II gil = lIill and has f as its res tri c tion to 5 is orthogonal 
to every member of N. But thi s condition hold s if 
and only if gEN*, that is fEN* X 5 _ 
- In the cases of chief interes t to us we can supple me nt 
thi s result as follow s_ 
3.28 Suppose that R is a fie ld or that N is reguLar. 
Then 

(N X S)* = N* ·5, 

for each 5 ~ E. 
PROOF: Writing N* for N in 3_27, and th en taking 

dual c hain-groups we obtain 

(N** xS)*= (N* ·5) **_ 

But under the conditions of the theorem N** = N, by 
2_46_ Similarly (N* ·5)** = N* '5, by 2.47 and 3_26_ 
Th e theore m follows 
3.29 Under the conditions of 3_28 the duaLs of the 
minors of N are the minors of N* (by 3_27 and 3_28). 

3.3. Minors of Matroids 

This section is closely analogous to 3_2. 
Let M be a matroid on a set E, and suppose S~E. 
Let L be the class of non-null intersections with 5 

of atoms of M, and le t M·S be the class of minimal 
members of L. Since M sati sfi es Axiom II it is clear 
that L does so too. He nce M· 5 is a matroid on 5, 
by L12_ We call it the reduction of M to S. 

Le t M X 5 be the class of all atoms X of M such that 
X ~ S. Then M X 5 satisfi es Axioms I and II. It is 
thus a matroid on S. We call it the contraction of 
M to S. 

By a compari son of definitions we have the following 
theorem 



3.31 Let N be a chain-group on E over a ring R with 
a unit element and no divisors of zero. Then 

M(NX 5) = M(N) X 5, 

M(N ·5) = M(N) ·5. 

Now take N to be the group of coboundaries over R 
of a graph G. The n by 3.22, 3.23 and 3.31 we have 

3.321 

3.322 

B(G ' 5) = B(G) . 5, 

B(G X 5) = B(G) X S. 

Here B(G) is the bond-matroid of G defin ed in section 
2.5. 

Returning to the general case we suppose T <: 5 <: E. 
We establish the following identities 

3.331 

3.332 

3.333 

3.334 

(M xS) X T = M x T , 

(M·S) ·T= M·T, 

(M . 5) X T = (M X (E - (5 - T))) . T, 

(M X 5) . T = (M . (E - (5 - T))) X T. 

The first of these follows at once from the de finitions. 
To prove 3.332 we observe that if XE(M . 5) . T then 

X is a non-null intersec tion with T of an atom of M · 5, 
and therefore a non-null intersec tion with T of an atom 
of M. He nce there exists YEM· T such that Y <: X. 
Conversely suppose YEM · T. The n Y is a non-null 
intersection with T of an atom Z of M. But Z con· 
tains an atom ZI of M· 5 meeting T, by 1.11. Simi· 
larly Zl contains an atom X of (M' S) . T, and we have 
X <: Y. Applying Axiom I to these results we have 
3.332. 

We prove 3.333 in a similar way. Suppose XE 
(M ·5) X T. The n X is an atom of M · 5 contained 
in T. Ac<.;ordingly M has an atom XI such that 
XI n T=X and XI n (5 - T) is null. But then Xl is 
an atom of M X (E - (5 - T)) and hence there is 
an atom Y of (M X (E - (5 - T))) . T such that Y <: X. 
Conversely suppose YE (M X (E - (5 - T))) . T. Then 
Y is the intersec tion with T of an atom Yl of 
M X (E - (5 - T)) , and YI is an atom of M such that 
Yj n (5 - T) is null. Hence there is an atom X of M . 5 
which is contained in Y l . We have in fact X <: Y <: T. 
Hence (M· 5) X T has an atom X such that X <: Y. 
Applying Axiom I to these results we establish 3.333. 

We obtain 3.334 by writing E - (5 - T) for 5 in 3.333. 
We refer to a matroid of the form (M' 5) X T as a 

minor of M. The minors of M evidently include M 
itself and all its reductions and contractions. From 
the four identities just proved we deduce 
3.34 Every minor of a minor of M is a minor of M. 

Minors of dual matroids are related by the following 
identities 

3.351 

3.352 

(M· 5)* =M* xS, 

(MxS)*=M* ·5 . 
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To prove 3.351 suppose XE(M' 5)*. Then X <: 5 
and X is orthogonal to every atom of M . S. Now the 
class of intersec tions with 5 of atoms of M satisfies 
Axiom II and its minimal members constitute M· S. 
If X meets one of these intersections in a single cell, 
then it meets some atom of M . 5 in a si ngle cell, by 
1.11. He nce X is orthogonal to every atom of M . 
Accordingly there exis ts YEM* such that Y <: x. But 
then YEM* X S . 

Conversely suppose YEM* X S. Then Y <: 5 and 
YEM*. Hence Y is orthogonal to every member of M I 

and therefore to every member of M . S. Accordingly 
there exists XE (M . 5) * such that X <: Y. 

Applying Axiom I to these results we obtain 3.351. 
Writing M* for M in 3.351 and taking dual matroids 

we obtain 

(M*' 5)**= (M** xS)* 

By 2.65 this reduces to 3.352. 
3.36 The minors of M* are the duals of the minors of M . 

This follows from 3.351 and 3.352, with the help of 
3.334. 

The foregoing results can be applied to the bond· 
matroid and polygon· matroid of a graph G, these being 
duals by 2.67. On taking the dual form s of 3.321 and 
3.322 we obtain the following identiti es. 

3.371 

3.372 

P(G ·S ) = P(G) xS, 

peG X 5) = P(G) . s. 

3.4. Connection in Matroids 
Consider a matroid M on a se t E. We define a 

separator of M as a subset 5 of E such that each atom 
of M is contained ei ther in 5 or in E-S. Evidently 
any union or intersec tion of separators of M is a sepa
rator of M, and the complement of a separator of M 
is also a separator. 

We refer to the minimal non-null separators of M 
as its elementary separators . From the foregoing 
observations we deduce 
3.41 The elementary separators of M are disjoint non
null subsets of E whose union is E . 
3.42 Suppose 5 <: E. Then 5 is a separator of M if 
and only if 

M·S=MxS. 

PROOF: Let 5 be a separator of M. Then an atom 
of M has a non·null intersection with 5 if and only if 
it is itself a subset of S. It follows that M X 5 and 
M . 5 are identical. 

Conversely suppose M· 5 = M X 5, and let Y be 
any atom of M. If it mee ts 5 it contains an atom of 
M· 5, that is M X S . It is then itself an atom of M X 5 
and M, by Axiom 1. Thus Y <: S. We deduce that 
5 is a separator of M. 
3.43 Let 5 be a separator of M. Then,for each T <: E, 
5 nTis a separator of both M· T and M X T. 



---------

PROOF: Let Y be an atom of M . Tor M X T. There 
is an atom Z of M such that Y = Z n T. Either Z c;:S 
or Z C E - S. Hence Y is contained either in 5 n T 
or in (E-S) n T. The theorem follows. 
3.44 Let 5 be a separator of M, and let T be a separator 
of M· 5, that is M X S by 3.42. Then T is a separator 
ofM. 

PROOF:MxT=(MxS) xT=(MXS) ·T;=(M· 5) 
. T = M· T, by 3.331, 3.332 and 3.42. Hence T is a 
separator of M, by 3.42. 
3.45 The separators of M* are the separators of M. 

PROOF: If M· S=MxS we have M* xS=M*· S, 
by 3.351 and 3.352. Similarly if M*·S=M* X 5 we 
have M X 5 = M· 5, by 3.351, 3.352, and 2.65. The 
theorem follows, by 3.42. 

If S is an elementary separator of M we refer to the 
matroid M· S, that is M X 5, as a component of M. 

The matroid M is said to be connected if it has no 
separators other than the trivial ones, E and its null 
subset. Thus M is connected if and only if either E 
is null or M has just one ele me ntary separator. 
3.46 If a minor (M · S) X T of M is connected, and T 
is not null, then T is a subset of an elementary sepa
rator of M. 

We obtain thi s result by two applications of 3.43. 
3.47 Any component of M is connected (by 3 .44). 
3.48 Let M X 5 and M X T be connected reductions of 
M such that 5 nTis non-null . Then M X (S U T) is 
connected. 

PROOF: There is an elementary separator Z of M 
X (S U 1) which meets S nT, by 3.41. It contains both 
5 and T, by 3.331 and 3.43. Hence Z = 5 U T, and 
the theorem follows . 
3.49 The components of M* are the duals of the com
ponents of M. 

This follows from 3.45, with the help of 3.351, 
3.352 and 3.42. 

Consider a graph G wi thout isolated vertices . It 
is called nonseparable or cyclically connected if it 
has the following property: for any two comple me ntary 
non-null subse ts 5 and T of E(G) there exis ts a polygon 
of G whose edge-set mee ts both Sand T. 

The property of cyclic connection in graphs cor
responds to that of connection in matroids . For it is 
clear that G is nonseparable if and only if P(G) is con
nected. Hence G is nonseparable if and only if B(G) 
is connected, by 2.67 and 3.45. 

There is no property of matroids in general which 
corresponds in this way to ordinary connection for 
graphs. 

3.5. Properties of Rank 

Let M be a matroid on a set E. From the definition 
of rank given in section 2.2 we have the following 
theorem. 
3.51 0 ~ r(M) ~ I E I. Moreover r(M) = 0 if and only 
if M has no atom, and r(M) = I E I if and only if each 
cell of E constitutes by itself an atom of M. 

From 2.64 we deduce 

3.52 r(M) +r(M*) = lEI. 
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We now supplement these results with some for
mulae involving the ranks of minors of M. 
3.53 Let 5 be any subset of E. Let C be a dendroid 
of M X S and let D be a dendroid of M . (E - 5). Then 
CUD is a dendroid of M. 

PROOF: Let a be any cell of CuD. 
If aEC we denne Fa as the atom }(C, a) of M X S. 

It is of course also an atom of M, and IFa n DI = o . 
If aED we define Fa as an atom of M for which 

FanD={a} and for which IFanG! has the leas t 
value consistent with thi s condition. S uc h a se t 
exists since the atom }(D, a) of M· (E - S) is the 
intersection with E-S of some atom of M . We s how 
that in fact IF an C 1= O. For suppose bEFa n C. 
Applying Axiom II to Fa and the atom Y = } (C, b) of 
M X 5 we find that there is an atom F of M suc h that 
aEFc;:(FaUY)- {b}. But the n FnD = {a} and 
IF n C I < I Fa n C I , which is contrary to the de fini-
tion of Fa. . 

We conclude that for each aEC U D there is an atom 
Fa of M suc h that Fan (CUD) = {a} . 

On the other hand any atom of M meets D if it has 
a non-null inte rsec tion with E - S, and meets C if it 
is contained in S. He nce CUD is a de ndroid of M. 

We note the following corollaries . 

3.54 r(M X S) + r(M . (E - 5» = r(M) . 

3.55 Suppose aEE. Then r(M) - r(M X (E-{a}» = 1 
or 0 according as a does or does not belong to some atom 
ofM. 

The next theo rem finds frequ ent application s in the 
next chapter. 

3.56 Let 5 and T be subsets of E. Then 

r(M X (5 U T» + r(M X (5 n T) ~ r(M X S) + r(M X T). 

PROOF: Let C be a de ndroid of M X (5 n T). Le t 
DJ be a dendroid of (M X S) . (S - T) and Dz a den
droid of (MxT)· (T-S) . Write U = CUD J UD2 • 

Now C U DJ is a de ndroid of M X 5, by 3.331 and 
3.53. Hence if aEC U D J there is an atom F a of M 
X (5 U T), contained in 5, which meets U only in the 
cell a. An analogous res ult holds for aEC U D2• We 
deduce that each cell of (M X (5 U T» . U constitutes 
an atom of that matroid. Accordingly 

r( (M X (5 U T» . U) = I C U DJ U D21 , 

= r(M X 5) + r(M X T) - r(M X (5 n T). 

The theorem follow s, by 3.54. 
3.57 r(M) = 1 if and only if M has just one atom. 

PROOF: If M has just one atom X, then any cell of 
X constitutes a dendroid of M, and r(M) = 1. Con
versely if r(M) = 1 then M has a dendroid D consis ting 
of a single cell a. But M has only one atom }(D, a) 
which includes a. 
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4. Geometry of Matroids 

4.1. Flats 
Let M be a matroid on a set E. We propose to study 

the system of contractions M X 5 of M. We abbre· 
viate the expression r(M X 5) as r5. For the sake of 
geometrical analogies to be explained below we define 
the dimension d5 of 5 as the number 1'5 - l. 

A subset 5 of E is called ajlat of M if it is a union of 
atoms of M. The null subset of E is counted as a null 
union of atoms, and therefore a flat. For any subset 
5 of E there is an associated flat (5), defined as the 
union of all the atoms of M contained in 5, that is the 
union of the atoms of M X 5. By 3.54 we have 

4.11 d(Z) =dZ = rZ-1. 

In what follows we are concerned with the lattice 
of flats of M, as partially ordered by the inclusion 
relation. 
4.12 The only fiat of M with negative dimension is the 
null jlat 4>, for which dcp = - 1. The fiats of dimension 
o are the atoms of M. 

This follows from 3.51 and 3.57. It is convenient 
to take over some more geometrical terminology at 
this stage. We say that the flat 5 is on the flat T if 
either 5 c T or T c 5. The atoms of M are called also 
its point-;, and fl~s of dimensions 1 and 2 are lines 
and planes of M respectively. More generally a 
flat of dimension k is called a k-flat. 
4.13 If 5 is ajlat of M and aE5, then 

d(5-{a})=dS-1, 

by 3.55. 
4.14 If 5 and T are fiats of M such that 5 C T, then 
d5 < dT. Moreover there is a fiat U of M such that 
5 cUe T and dU = d5 + 1. 

PROOF: The first statement follows from 3.54. To 
prove the second we define U as a flat of M satisfying 
5 C U ~ T and such that I U I has the least value con
sistent with this condition. Choose aEU - 5. Then 
5 ~ ( U - {a} ) C T, and therefore 5 = ( U - {a}) by 
the choice of U. Hence dU = d5 + 1, by 4.13. 
4.15 Let 5 and T be flats of M such that 5 ~ T. Then 
there exists a jlat U of M such that U ~ T, (U n 5) = cp 
and dU = dT - dS - 1. 

PROOF: Write 50 = 5 and To = T. If possible choose 
aoE50 and write 5, = (50 - {ao}) , T, =(To- {ao}). 
It is clear that 5, ~ T,. If possible choose a,E5, and 
write 52 = (5,- {ad), T2 = (TI - {a,}). Then 52~ T2 • 

Continue this process until it terminates. By 4.13 
this will be with 5,. and Tk , where k = d5 + 1 and 5k = cpo 
Applying 4.13 to the sequence of the Ti we find that 
dTk=dT-d5-1. But (T,.n5)=(5-{ao, al, . .. , 
ak- d) = 5,. = cpo Hence the theorem is satisfied with 
U=T". 
4.16 Let 5 and T be fiats of M. Then 

d(5 U T) +d(5 n T) ~ d5+dT, 

by 3.56. 
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Many "geometrical" results can be deduced from 
4.14 and 4.16. An example follows. 
4.171 Let LI and L2 be distinct lines of M on the same 
plane P. Then LI and L2 have just one common point. 

PROOF: We have LI~L, UL2~P. Hence LI UL 2 

= P, by 4.14. Another application of 4.14 shows that 
diLl n L2 ) ,;;: ° since L, n L2 c L,. But d(L, nL2 ) ~o 
by 4.16. Hence d(L l nL2)=O, and the theorem fol
lows by 4.12. 

The two following theorems can be proved in a sim
ilar way. 
4.172 Let PI and P2 be distinct planes on the same 3-
jlat F of M. Then (P, n P2 ) is a line on F. 
4.173 Let P be a plane and L a line on the same 3-
fiat F. 5uppose L is not on P. Then (P n L) is a 
point on E. 

We observe that if G is any graph, then the flats of 
peG) correspond to those subgraphs of G which are 
unions of polygons . 

4.2. Connected Flats 

A flat 5 of M is called "connected" if M X 5 is a con
nected matroid. We then refer to the separators of 
M X 5 as the "separators of 5". The lattice of con
nected flats of M has some very interesting properties. 
We begin this section with a study of the line. 
4.21 Let L be a line of M, and suppose aEL. Then 
(L - {a}) is the only point on L which does not 
include a. 

PROOF: (L - {a}) is a point on L, by 4.13. But if 
X is any point on L not including a we have X ~ 
(L - {a}) and therefore X = (L - {a}) by Axiom I. 
4.22 Any line L of M is on two distinct points. If X 
and Yare distinct points on L then L = X U Y. M ore
over X n Y is non-null if and only if L is connected. 

PROOF: Choose aEL and bE(L- {a}). Then 
(L - {a}) and (L - {b}) are distinct points of L. 

Let X and Y be distinct points on L. Then Xc 
XUY~L. Hence XUY=L, by 4.14. IfXnYis non
null then L is connected, by 3.48. If X n Y is null 
then either X and Yare nontrivial separators of L, or 
there is a point Z on L meeting both X and Y. In 
the latter case X C X U Z eX U Y = L, by Axiom I. 
But ihis is impossible, by 4.14. 
4.23 A disconnected line is on just two points, and a 
connected line is on at least three points. 

PROOF: By 4.22 any two distinct points on a dis
connected line L are disjoint, and have L as their 
union. Hence L has at most two points, and therefore 
just two, by 4.22. 

By 4.22 any connected line L has two distinct points 
X and Y, and we can find au n Y. By 4.21 (L- {a}) 
is a point on L which is distinct from X and Y. 

It should perhaps be pointed out that two distinct 
points X and Y of a matroid M are not necessarily on 
a common line. There is indeed a fl at Xu Y, but its 
dimension may exceed 1. However the following 
theorem is sometimes helpful. 
4.24 Let T be a separator of a fiat 5 of M. Let X and 
Y be points on 5 such that X ~ T and Y ~ 5 - T. Then 
XU Y is a disconnected line of M. 



PROOF: X a nd Yare separators of the fl a t XU Y, by 
3.43. He nce d(X U Y) = dX + dY - 1 = 1, by 3.42 
a nd 3.54. Thus Xu Y is a disconnected line. 

We go on to prove two important theorems, 4.26 
a nd 4.27, about connected flats in general. We need 
the auxiliary result 
4.25 Let Sand T be connected flats of M such that 
Se T. Then there exists a connected (dS + 1) -flat 
U ofM such that S e U <:T. 

PROOF: Since T is connected we can find a point 
X of M suc h that XeT and X meets both S and T-S . 
Choose such an X so that IS uX I has the leas t possible 
value. 

SUX is a connected flat of M , by 3.48. Its dimension 
exceeds dS, by 4.14. 

S uppose deS UX) > dS + 1. C hoose aEX - S. The n 

d ((S UX)- {a}? "" dS + 1, 

by 4.13. Hence the re is a poi nt Y of M suc h that 
Y<:(SUX)-{a} a nd Y meets X-So But YnS = 1> 
by the choice of X. Hence YeX, whic h is co ntrary 
to Axiom I. We deduce that in fac t deS U X) = dS + 1. 
Hence the theore m holds with U=Sux. 
4.26 Let S be a connected d-flat on a connected (d + 2)
flat T of M. Then there exist dist inct connected (d + I )
flats U and V of M such that S = ( U n V) and T = U U V. 

PROOF: The following argument is illus trated by 
fi gure 4A for the case d = O, in w hi c h S is a point a nd 
T is a connected plane. 

By 4.25 there is a connec ted (d + 1)·flat U whic h is 
on both Sand T. Choose aEU - S and write W 
= (T - {a} ). By 4.13 W is another (d + 1)· fl at on both 
Sand T. By 4. 15 th ere is a lin e L on T having no co m· 
mon point with S. It meets U a nd W in point s X and 
Z , respectively, by 4. 16. By 4.14 we have S uX = U 
a nd SUZ = W . He nce Z is not on U and UUZ = T, 
by furth er applications of 4.14. 

Assume W is not connected . Th e n Snz = 1> , by 
3.48. 

Suppose Un Z = 1>. By th e co nnec tion of T, that 
is UUZ, there is an ato m Z ' of M suc h that Z' <: T 
and Z' meets both U and Z . Then Ue UuZ' e UuZ 
= T, by Axiom I. But thi s is impossible by 4.14. We 
deduce that Unz is non·null. A similar argume nt in 
which X, S, and U replace Z , U, and T res pec tively 
s how s that X n S is not null. Choose bEZ n U a nd 
cEXnS. 

Write V=(T-{b}) . By 4.13 V is a (d+l)-fl at. 
It is on S, since bEZ and snz = 1>. By 4.16 it has a 
common point Y with L. Since Land S have no co m· 
mon point we deduce from 4.14 that V = S U Y. More· 
over V is distinct from U and W, since bEZ n U <: W n U. 

Now cESnXeSnL=Sn(YUZ), by 4.22, =s nY, 
by our ass umption . Hence V is connected, by 3.48. 

In the re maining case, in which W is connec ted, we 
write V = W. 

In ei ther case we have two distinct connec ted 
(d + I)-flats U and V of M, eac h of whic h is on both S 
and T. He nce 

S<: (U n V) e Ue UU V<:T, 
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since neither of U or V co ntains th e othe r, by 4.14. 
Another application of 4 .14 shows that S = (U n V) 
and T =UUV. 
4.27 Let S, T, and U be flats of M such that Sand T 
are connected, S U U <: T and (S n U) = 1>. Then there 
exists a connected flat R of M such that S <: R <: T, 
( R n U) = 1>, and dR = dT -dU- 1. 

PROOF : If poss ible c hoose 5, T, and U so that th e 
th eorem fai ls and dU has th e leas t valu e consis te nt 
with thi s co ndition. The n dU > - 1, sin ce otherwi se 
the theore m hold s with T = R . 

Let W be a connec ted fl at of M of greates t poss ible 
d ime nsion suc h that Se W e T and W does not contain 
U. S uppose dW < dT-- l. The n, by 4.26, th ere are 
di stinct co nnec ted (dW + 1)·flats K and L on T s uc h 
that (KnL )=W. Bu t then K and L cannot both 
contain U, and thi s is con trary to the c hoice of W. 
We deduce, using 4.14, that dW = dT-l. We note 
that d (U n W) < dU, by 4.14. 

By the choi ce of S, T, a nd U th ere is a co nnec ted 
fl a t R of M suc h that S<: R <: W e T, (Rn (Un W )) 
= 1> and dR = dW - d (Un W )- 1. But th e n 
(R n U) = 1> a nd dR "" dT - dU - 1. However 
dR ~ dT- dU-l , by 4.14 and 4. 16. We deduce 
that dR = dT - dU - 1. Thus the th eo re m holds for 
S, T, and U, whic h is a contradiction. 

It follows that the theore m is tru e in general. 
We s hall also need th e followin g more special 

theorem. 
4.28 Let L be a disconnected Line on a connected d-flat 
S of M, where dS > 1. Then there exists a connected 
pLane P ofM such that LeP <: S. 

PROOF: Let the two points on L be X and Y. (See 
4.23.) Let P be a co nnec ted fl a t of M, of leas t pos· 
sible dimension, suc h that L e P <: S . Assume dP > 2. 

S uppose first tha t there is a seco nd di sconn ec ted 
line L' on X and P. Le t its point oth er than X be Z . 
The n X, Y, a nd Z are di s tinc t points, by 4.14. By 
4.27 there is a connec ted (dP - 2)-flat U on Y and P 
which has no point in common with L' . By 4.26 



there are distinct connected (dP-1)-flats Vand Won 
P such that (V n WI = U. These two flats meet L' 
in distin.ct points, by 4.14. Since there are only two 
points on L' we may suppose X is on V. But then L 
is on Vand the definition of P is contradicted. 

We deduce that there is no second di sconnec ted 
line on X and P, and similarly no second di sconnec ted 
line on Y and P. 

Choose aEP-L and write R= ( P-{a)/. Then 
L ~ R, and dR = dP - 1 by 4.13. By the definition of 
P the flat R is disconnected. But the only possible 
non-trivial separators of R are X and Y, by 4.24. Ac
cordingly R = Land dP = 2, contrary to assumption. 
The theorem follows. 
4.281 Let L be a disconnected line on a plane P 0/ M. 
Let X and Y be its two points, and let Z be any other 
point on P. Then Xu Z and Y U Z are connected 
lines, the only lines 0/ M which are on both Z and P . 

PROOF: Any line on P contains X or Y, by 4.17l. 
Hence, by 4.22, the only fiats on Z and P which can 
be lines are XU Z and Y U Z. Th ey must in fact be 
connected lines, by 4.26. 
4.282 Let L be a disconnected line on a connected 
plane P 0/ M. Then every line on P other than L is 
connected. 

PROOF: Let L' be such a line. It is on some point 
Z not contained in L, by 4.22. Hence it is connected, 
by 4.28l. 

The foregoing results can be applied to the polygon
matroid of a graph G to obtain some rather simple 
results in graph theory. A set 5 is a connected flat 
of P(G) if and only if G· 5, whose polygon matroid 
is P(G) X 5 by 3.371, is nonseparable. The rank of 
P( G) is the cycLomatic number of G, that is the least 
number PI(G) of edges of G which must be deleted in 
order to destroy every polygon. 

Two connected flats 5 and T of P(G) such that 
(5 n T 1 = cp correspond to two nonseparable sub
graphs of G which have no common polygon . 

4.3. Linear Subclasses 
Let M be a matroid on a se t E, and let C be any class 

of points of M. W e call C a linear subclass of M if it 
has the following property. If two distinct points X 
and Y of C are on a common line L in M, then every 
point on L belongs to C. In earlier work on matroids 
a linear subclass is called a "convex subclass". 

An obvious example of a linear subclass of M is 
provided by the class of all points on a given flat. 

Another important example arises as follows. Let 
us say that a subset 5 of E cuts another subset T of E 
if both S n T and T-S are non-null. Then we have 
the following theorem. 
4.31 Let 5 be any subset 0/ E. Let C be the class of 
aLL atoms of M which do not cut S. Then C is a linear 
subclass of M. 

PROOF: Let X and Y be points of C on a common 
line L. Let Z be any point on L. We have Z eX U Y 
=L, by 4.22. 

If xnS and YnS are null we have zns=cp and 

therefore ZEC. If S~X and S~Y we have S~Z \ 
and therefore ZEC. I 

In the remaining case we may s uppose X ns = cp I 
and 5 ~ Y. Hence L is di sconnec ted , by 4.22. 
Accordingly Z = X or Y , by 4.23. Again we have ZEC. 

The theorem follows. 
We have so far presented the th eory of matroids as 

some thing more general than that of graphs, having 
its own theore ms from whi ch the results of graph theory 
can be derived as special cases. It is somewhat 
surprising therefore to find that we must now use the 
technique of graph theory in order to study linear 
subclasses. However each matroid does have an 
associated graph. The vertices are the points of the 
matroid, and two points are said to be adjacent if 
and only if they are distinct points of the same con
nected line. 

A path in M is a finit e sequence 

P=(XI, . . . ,Xk ) 

of one or more points of M, not necessarily all distinct, 
such that any two consecutive terms are adjacent 
(and therefore distinct) points of M. We refer to 
X I and X k as the origin and terminus of Pres pecti vely. 
If they coincide we call Pre-entrant. If P has only one 
term it is degenerate. The length s(P) of P is one less 
that the number of terms of P. 

If P =(X " ... ,XI.) and Q =(X k , .•• , XIII) are paths of 
M such that the origin of Q is the terminus of P, 
then we define their product PQ as the path (X I, ... , 

XI., ... ,X",). Multiplication of paths is clearly as
soclatlve. We may therefore write a product (PQ)R 
or P(QR) simply as PQR 
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If P is any path of M we write p - I for the path 
obtained by taking the terms of P in reverse order. 
The following rules are obvious. 

4.321 

4.322 

(P- I) - I =P, 

(PQ) -I = Q- I P- I. 

If every term of a path P is on a flat 5 we say that P 
is on S. 

A path P in which the terms are all distinct is called 
simple. As an example of a theorem on paths we offer 
the following. 
4.33 Let P be a pathfromX to Yon aflat 50/ M. Then 
there is a simple path from X to Yon S. 

PROOF: Let PI be a shortest path from X to Yon S. 
If it is not simple we can write it as a product QRT 
where R is re-entrant and nondegenerate. But then 
QT is a path from X to Yon 5 whic h is shorter than PI. 
We conclude that in fact PI is s imple . 

The fundaf!l~ntal theorem about linear subclasses 
runs as follows. 
4.34 Let C be a linear subclass of M. Let 5 be a con
nected flat 0/ M, and let X and Y be points on 5 such 
that Y is not in C. Then there is a simple path P from 
X to Yon 5 such that no term 0/ P other than X belongs 
to C. 



PROOF: If possible choose S, X and Y so that th e 
theorem fail s and dS has the least value consi s te nt 
with thi s . Clearly dS > 1 and Y is distinct from X. 
Figure 4B illus trates the following argument for the 
case dS = 3 . 

By 4.25 and 4.26 there is a connected (dS - 2)·flat 
U a nd two connected (dS -I)-flats V and W such that 
X ~ U = ( Vn W ) and VU W=S. Moreover Y is 
not on Vor W, by the choice of S, X, and Y. 

By 4.27 there is a line L on S such that (L n U) = cp. 
It meets Vand W in distinct points T and Z, respec
tive ly. Th ey are not both in C, for otherwise Y would 
be in C. Without loss of generality we may suppose 
T not in C, 

By the choice of S, X, and Y there is a simple path o from X to T on V such that no term of 0 othe r than 
the fir s t is a point on C. The product OCT, Y) may be 
take n as the required s imple path P. As this res ult is 
contrary to the c hoice of S, X , and T the theore m 
follow s. 

A slight modifi cation of the above proof shows that 
we can arrange that s(P) = dS. 

The following theo re m is analogou s to a we ll -known 
result in graph theory. 
4.35 Let S be any flat 0/ M. Then S is connected if 
and only if for any two points X and Y on S th ere 
exists a simple path 011 S Fom X to Y. 

PROOF': Suppose S is connec ted . Le t X and Y be 
points of S. The n th e re is a simple path on S from 
X to Y, by 4.34, with C= cp . 

Now suppose S has a nontrivial separato r T. The re 
a re points X and Yon S s uc h that X ~ T and Y~S - T. 
If the re is a path on S from X to Y t here are con secutive 
te rms X' and Y' of P s uc h that X' ~ T and Y' ~S - T. 
But thi s is imposs ible s in ce X ' U Y' is not a connec ted 
line , by 4.24. 
4.36 Lpt C be any linear subclass 0/ M . LeI S be a 
d-fiat 0/ M on a (d + I )-fiat T . Suppose all the pain Is 
on S and at least one olh er point on T belong to C. 
Th en all the points on T belong 10 C. 

PROOF : Suppose the theore m fail s. The n we c an 
find points XEC and YfC, eac h be ing on T but not 
on S. The flat Xu Y is connected since othe rwi se 
SCSUXCT, contrary to 4.14. 

By 4.34 there is a path from X to Yon X U Y whose 
second term, X' say, is not in C . By 4 .16 the con
nec ted line XUX' has a point X" in common with S . 
But X" is not in C, by the definition of a lin ear subclass . 
This is contrary to hypothes is . 
4.37 Let S be a connected fiat of M. Let C, and C2 

be lin ear subclasses of M, neither of which includes all 
the points on S. Then th ere is a point Z all, S which 
belongs to neither C nor C2 • 

PROOF: Choose points X and Y on S such that 
XfC, and YfC2. We may suppose X and Y distinct 
s ince othe rwise the th eorem is trivially true. 

By 4.34 there is a point X' on S which is adjacent to 
X and not in C2 • We may suppose XEC2 and X'EC" 
for otherwise Gne of these points could be taken as Z . 
But now the re is a third point Z on the connec ted lin e 
XUX ' , and this can belong neithe r to C, nor to C2. 
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As important sp ecial c ases of 4.37 we not e the 
following. 
4.371 Let a and b be distinct cells of a conn ecled mal
raid M. Th en th ere is an alom 0/ M which includes 
both a and b. 
4 .372 LeI S and T be subsets olE, each cut by some atom 
of M , M being can nee ted. Then some atom of M cuts 
bOlh Sand T. 

To prove 4.371 w e tak e C to be the se t of point s on 
( £ - {a} ) , and C2 to be the se t on ( £ - {b} ). 4.372 
follows from 4.3l. 

Whe n we apply 4.371 to th e polygon-matroid of a 
graph we find that if a and b are di s tin c t e dges of a 
nonseparable graph G, then the re is a polygon of G 
through both a and b. This is on e of th e theore ms of 
Hassle r Whitn ey o n graph s . 

4.4. Carriers 

Let M be a matroid on a se t E, and S be any subse t 
of E. W e procee d to discuss the relations be t wee n 
the flats of M . S and those of M . Dime nsion s refe r
ril~g to M· S will be di s tingui s hed in formulae by 
primes . 

A carrier of M . S in M is a subse t Z of E s uc h that 

(M x Z) ·S = M·S 



and d(Z) has the least value consistent with this 
property. Such a carrier exists, since (M X E) ·5 
=M·5. 
4.41 Let Z be a carrier of M· 5 in M. Then dZ = d'S. 

PROOF: Assume there is an atom X of M such that 
X r:;;, Z - 5. Choose aEX and write 

MI=(M X (Z-{a})) ·5. 

Let Y be an atom of MI. Then there is an atom U 
of M such that U r:;;, Z - {a} and Y=5 n U. He nce 
there is an atom Y' of M ·5 such that Y' c Y. 

Conversely let Y' be an atom of M . 5= (M X Z) . S. 
There is an atom V of M X Z such that Y' = S n v. 
Suppose aEV. Then by applying Axiom II to V and 
X we find that there is an atom U of M X Z such that 
S n U is a non-null subset of Y', and afU. If afV we 
write U = V. In each case U is an atom of M X (Z 
- {a}) and S n U is non-null. Hence there exists an 
atom Y of MI such that Yc S n U c Y'. 

Applying Axiom I to th~ foregoing results we find 
that MI = M . S. But this is contrary to the definition 
of Z as a carrier of M· S. We deduce that d(Z -S) 
=-1. The theorem now follows from 3.54_ 
4.42 Let Z be a carrier of M· S in M . Let X be an 
atom of M· S. Then there is just one atom Y of M X Z 
such that S n y=x. 

PROOF: Such an atom Y exists, since M·S=(MxZ)·S. 
Suppose Y' is another such atom of M X Z. 
Choose aE5nY=SnY' =x. By Axiom I we can 
find bEY' - Y. By Axiom II there is an atom U of 
M X Z such that bEUr:;;, (YUY') - {a}. 

We have SnUcSnY=x. Hence snu is null, 
since M·S satisfies Axiom I. Hence UcZ -So 
But then d(Z -5) > -1, and dZ > d'S, by 3.54. 
This is contrary to 4.41. 

We can now define a mapping 0 of the set of fiats 
of M·5 onto a class of flats of M X Z, in the following 
way 

(i) If T is the null flat of M· S then OT is the null 
flat of M X z. 

(ii) If T is an atom of M· S, then OT is the unique 
atom U of M on Z such that S n U = T. (4.42). -

(iii) If T is a d'-flat of M'S, where d' ~ 1, then OT 
is the union of all atoms OX of M X Z such that X is an 
atom of M'S on T. 
4.43 If T and U are flats of M . S , then OTr:;;, OU if and 
only if T r:;;, U. 

This follows at once from the definition of O. It 
implies that OT and OU are distinct if T and U are 
distinct, and that OTc (}U if and only if Tc U. 
4.44 If T is a flat of M· S, then d'T= dOT. 

PROOF: By 4.14 we can construct a sequence 

of flats of M . S, where d' = d'S, such that each member 
of the sequence except T d' is a proper subset of its 
successor, such that d'Ti = i for each T i, and such 
that T is a member of the sequence. Then T= T", 
where k = d'T_ 

By 4.14 and 4.43 the dimension is strictly increasing 
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III the sequence 

(OT - I , (}To, OTI, .. . ,(}T d ,) 

of flats of M X Z . But dOLI =-1 and dOTd , = d', 
by 4.41. Hence d(}Ti = i for each member of the 
sequence. In particular dOT = d'T. 

We have .shown that 0 is a 1-1 mapping of the set 
of fiats of M· S onto a class of fiats of M X Z , and that 0 
preserves dime nsion and inclusion relations. We 
may say therefore that 0 transforms each geometrical 
figure made up of flats of M· S into a geometrically 
equivalent figure made up of fiats of M X Z. 

Not every fiat of M X Z need be of the form OT 
however. A simple example is provided by a matroid 
of three cells a, b, and c, and three atoms {a, b}, 
{b, C}, and {c,a} . W e putS ={a, b} andZ={a,b,c}. 
Then Z is clearly a carrier of M· S. But the set 5 
is a fiat of dimension 2 in M· S and dimension 1 in 
M X Z. Hence S cannot be of the form OT, with T 
a flat of M,S. 

In general we have the following theorem 
4.45 If V is a flat of M X Z, then Sn V is a flat of 
M·5, and moreover vr:;;,(}(SnV). 

PROOF: The first assertion follows from 1.11 and th e 
definition of M·S . 

It is evident that S n V r:;;, O(S n V). 
Suppose bEV - S. There is an atom Xb of M X Z 

such that bEXb and S nXb cS n V. Choose such an 
Xb so that IS nXb I has the l;;-ast possible value. Then 
5 nXb is non-null, by 4.41 and 3.54. 

Assume S nX/J is not an atom of M· S. There exists 
YEM·S such that Yc5nXb. Then b is not a cell of 
OY, by the choice of Xb. Choose aEY. Applying 
Axiom II to Xb and OY we find that M X Z has an atom 
Y' such that bEY'r:;;, (Xb U Y) - {a}. But then S n Y' 
cS nxb, and the definition of Xb is contradicted_ 

We deduce that S n Xb is an atom of M· S. Hence 
O(S nXb) = X b, by 4.42, and therefore bEO(S n V). 
Since this is true for all bEV - S we have V - S 
r:;;,O(Sn V). 

Combining the above results we . find that V 
r:;;,O(Sn V). 

5. Specializations 

5.1. Matroids and Chain-Groups 

As before we suppose given a commutative ring R 
with a unit element and no divisors of zero. 

We have to consider the following problem. Given 
a matroid M we are to determine whether there exis ts 
a chain-group N over R such that M = M (N). In 
this work we solve the problem only in some special 
cases, each time with the help of the following theorem. 
5.11 Let M be a matroid on a set E. With each atom 
X of M let there be associated a chain f(X) on E over R 
such that Ilf(X) II = x. Suppose further that whenever 
X, Y, and Z are distinct points on the same line of M 
there exist non-zero elements r, s, and t of R such that 

rf(X) +sf(Y) + tf(Z) = 0 



Let N be the chain-group on E over R generated by the 
chainsf(X) . 

ThenM=M(N). 
PROOF: Le t T be any point of M(N). There is an 

ele mentary chain f of N such that 11111 = T. By the 
definition of N we can find a flat S of M with the fol· 
lowing properties. 

(i) There is a nonzero element r of R such that 
,jis a sum of chains tfiX) withX~S, tER. 

(ii) dS has the least value consistent with (i). 
If possible choose aE5 - T and write S' = (S - {a} >. 

The set C of all points of M which are subsets of 5' is 
a linear subclass of M. (4.3) . 

If g and h are chains of N we write 

g = h mod S' 

to denote that g- h is a sum of chains tf(X) such that 
X~5'. In particular we may write 

~ rf= 'i,t;f(Yi) modS', 
I 

tiER . (1) 

where the Yi are points of M such that aEYi~S, 
Let Y be any point of M such that aEY~S. For 

each Yi the flat YU Y i of M is connected, by 3.48. 
He nce there is a path Pi from Yi to Y on S such that 
no term of Pi is a point of C, by 4.34. 

If U and V are consecutive points in Pi the n th e line 
Uu V meets S' in a point W of C, by 4.16. Then by 
hypothesis we have 

x;f( U) = y;f(V) mod S' , 

where Xi and Yi are nonzero me mbers of R. If Yi 
,e Y we state thi s congruence for eac h pair of consecu· 
tive terms of Pi and combine the r esults . In every 
case we have 

r;f(Yi ) = s;f(Y) mod S', (2) 

where ri and Si are nonzero elements of R. Multi· 
plying (1) by the product of the ele ments ri and us ing 
(2) we find that 

r'f= s'f(Y) modS', 

where r' and s' are elements of R, r' being nonzero. 
Since a does not belong to the domain off we deduce 

that s'=O, which is contrary to the definition of S. 
We conclude that in fact S = T. He nce there is a 
point T' of M on S such that T' ~ T. 

Conversely let T' be any point of M. The n f(T') 
is a chain of N. Hence there is a point T of M(N) 
such that Tc T'. 

Applying Lhiom I to these two results we find that 
the matroids M and M(N) are identical. 

5.2. Representative Matrices 

It is usually conve nient to specify a chain·group 
over R in the following way. 

757- 6 150-65-2 
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First we enumerate the set E, supposed non-null, 
as {el, e2, . .. ,en}. For each chain f on E over 
R we define the representative vector of f as the 
I-rowed matrix. 

Clearly linear relations be twee n c hains hold also for 
their representative vectors, and conve rsely. 

A matrix K, with elements in R,i s called a repre
sentative matrix of N if it sati s fi es the following 
conditions. 

(i) The rows of K are linearly independe nt repre
sentative vectors of chains of N. 

(ii) Every nonzero chain of N has a representative 
vector which is a linear combination of rows of K. 
Linear dependence is of course defined in terms of the 
eleme nts of R as coefficients. 

A matrix K sati sfying (i) and (ii) completely deter
mines the c hain group N. It is also evident that any 
matrix K with linearly ind e pe nd e nt rows can be inter· 
pre ted as a represe ntative matrix of a c hain-group. 

Condition (i) ensures that no row of K consists solely 
of zero ele ments . If N has only a zero c hain it is 
conve nient to say it has a nuLL re prese ntative matrix, 
with no rows but n columns . Such a matrix is con
sidered to satisfy (j). 

Let K be a representative matrix of N and le t S be 
any subse t of E. We defin e K(S ) as the sub matrix 
of K made up of those columns whi c h corres pond to 
cells of S. If S is null then K(S) is a second ki nd of 
nuLL matrix , being without column s but hav ing as 
many rows as K. If the number of such rows is non
zero the matrix K(S) is not regarded as having linearly 
independent rows. 

As an immediate consequence of the definition s 
we ha ve 
5.21 Let K be a representative matrix of N and let S 
be a subset of E such that the rows of K(S) are linearly 
independent. Then K(S) is a representative matrix 
ofN·S. 

Suppose the represe ntative matrix K of N has r 
rows and n columns. It may happe n that there is a 
s ubse t S of E, sati sfying 151 = r such that K(5) is a 
unit matrix, that is having only 1 's in the main diagonal 
and only O's elsewhere. In this case S is evidently a 
dendroid of N. We call K a standard representative 
matrix of N associated with the de ndroid S. If we 
wish we may think of the unit matrix K(5) as occ upying 
the first r columns of K. For this can be arranged 
by adjusting the initial enumeration of E. 
5.22 Let K be a standard representative matrix 0/ 
N associated with a dendroid D. Then the rows of 
K are representative vectors 0/ elementary chains of 
N, and these chains constitute a dendroid-basis of 
N corresponding to D. 

PROOF: By 2.3 there is a dendroid basis U;,laED} 
of N. The theore m follows from the Corollary to 2.3l. 

A null representative matrix of a trivial chain-group 
N may be regarded as standard, be ing associated with 
a null dendroid. 

Let K be a standard representative matrix of N, 

.1 



associated with a dendroid D and having r rows and n 
columns. 

We construct a matrix K*, having n - r rows and n 
columns, in the following way. The submatrix of K* 
occupying the n - r columns corresponding in position 
to those of K(E - D) in K is a unit matrix . Th e 
other columns constitute a submatrix of K* equal to 
minus the transpose of K(E - D). We illustrate the 
construction by an example, in which R is the nng 
of integers 

D E-D 
,......-"--. ~ 

K~l 1 0 2 -I 9] 
0 1 o 5 6 

r2 0 
1 0 

n K*= 1-5 0 1 
-9 -6 0 0 

5.23 K* is a standard representative matrix of N* 
associated with the dendroid E - D. 

PROOF: E - D is a dendroid of N; by 2.43. The 
theorem follows from 2.42 and 5.22. 

Returning to the matrix K we consider an arbitrary 
submatrix A of K(E - D). Let A I be the sub matrix 
of K constituted by those rows which meet A. Let 
A 2 be the sub matrix of A I constituted by those of its 
columns which have l's in K(D). Thus A2 is a unit 
matrix having the same number of rows as A. We 
refer to A2 as the annex Ann (A) of A. The submatrix 
of K made up of A and Ann (A) is the extension 
Ext (A) of A. We give an exam pIe below 

D E-D 

0 0 1 -1 1 1 -1 
0 0 1 -1 0 0 1 

AnnA 0 0-1 1 0 1 0 ;4 
1 0 1 -1 -1 o -1 
0 1 1 1 -1 0 0 

FIGURE SA. 

It is not of course essential that the rows and 
columns of A should occur consecutively in K. 
5.24 Let A be any submatrix of K(E - D). Then Ext 
(A) is a standard representative matrix of a minor of N. 
The corresponding dendroid D, is made up of those cells 
which correspond to columns of Ann (A). 

PROOF: Let D, and Z be subsets of E made up of the 
cells which correspond to columns of Ann (A) and A 
respectively. Let B be the sub matrix of K(E - D) 
made up of those rows of K(E-D) which meet A. 
Thus Ann (B) = Ann (A). 

We note that the rows of Ext (B) and Ext (A) are 
linearly independent. For each of these matrices 
contains the unit matrix Ann (A) and has the same 
number of rows as Ann (A). 
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It is clear that a chain f of N has a restnctJOn in 
N X «E - D) UD t ) if and only if its representative 
vector is a linear combination of rows of A 1. Hence .\ 
Ext (B) is a representative matrix ofNx«(E-D)UDt ), 

and therefore Ext (A) is a representative matrix of 
the minor. 

by 5.21. Evidently Ext (A) satisfies the definition of 
a standard representative matrix of N, associated 
with D,. 

A minor of N having a representative matrix of the 
form Ext (A), where A is a submatrix of K(E - D), 
will be said to be visible in K. 

In general we cannot assert that there is a standard 
representative matrix of N associated with each den
droid. However we have the following theorem. 
5.25 Suppose that either R is afield or that N is regu
lar. Then if D is any dendroid of N we can find a 
standard representative matrix of N associated with D. 

PROOF: There is a dendroid-basis {fa I aED} of N. 
If N is regular we can take each chain fa to be primi
tive . So in all cases covered by the theorem we may 
suppose fuCa) to have a reciprocal in R. Multiplying 
each chain fa by the reciprocal of fuCa) we obtain a 
dendroid-basis {ga I aED} of N such that ga(a) = 1 for 
each aED. Clearly there is a standard representative 
matrix of N, associated with D, whose rows are the 
representative vectors of the chains gao 

We may now supplement 5.24 as follows. 
5.26 Suppose that either R is a field or N is regular. 
Let L be any minor of N. Then we can find a standard 
representative matrix K of N, associated with a den
droid D, such that L is visible in K. 

PROOF: Let D, be any dendroid of L and let Z be 
the set of all cells of L not in Dt • Then we may write 

L= (Nx U)· (ZUD ,), 

by 3.243. 

We recall that th e dendroids of a chain-group N 
are the dendroids of the corresponding matroid M (N), 
by 2.3. 

Let V be a carrier of M (L), that is (M(N) X U) 
·(ZUD t ) by 3.31, in M(N) X U. Then D" being a 
dendroid of M(L), is also a dendroid of M(N) xV. 
Hence D, is a dendroid of N X V. 

We have 

L= (Nx V)· (ZUD ,), 

for the restrictions to ZUD , of the members of a den
droid basis of N X V corresponding to D, evidently 
form a dendroid-basis of L. (2.31, Corollary). 

Let D2 be a dendroid of N· (E - V), and write 
D, U D2 = D. Then D is a dendroid of N, by 3.31 and 
3.53. Let K be a standard representative matrix of 
N associated with D. Such a matrix exists, by 5.25. 

Let f be any chain of N X (E - D2 ). Its restriction 
to E - V has a domain not meeting D2 , and is therefore 
zero. Since E - D2 = (E - D) U D, we deduce that 



But by the argument of 5.24 this minor is visible in K. 

5 .3. Characterization of Binary Matroids 

A binary matroid is by definition the matroid of a 
binary chain-group N, that is a chain-group over the 
fi eld GF(2) of residues mod 2. 
5.3 1 Let M be any binary matroid. Then M* and the 
minors of M are binary. (2.66 and 3.31). 

A binary matroid is conveniently specified by giving 
a re presentative matrix of the associated binary chain
group. 
5.32 Let N be a binary chain-group on a set E. Then 
every nonzero chain of N is a sum of elementary 
chains of N with disjoint domains . 

PROOF: If possible let f be a nonzero chain of N for 
whic h the theorem fails, and .for which 11111 has the leas t 
number of cells consis te nt with thi s condition. 

There is an ele me ntary chain g of N s uc h that 
Ilgll ~ Ilfll · But g oF- f, for otherwise f would sa ti sfy th e 
theore m. Hence the c hains g and f+g have di sjoint 
domains, each with fewer cell s th an 11111. Accordingly 
g and f+ g satisfy the th eore m, and therefore f sa t
isfies it, contrary to ass umption. The theorem follows. 

In a binary c hain-group there is little di s tinc ti on 
between a chain and its dom ain . If 5 1,52 , ••• ,5" 
a re subse ts of E, not n ecessarily all distinct, we defin e 
the ir mod 2 sum as the subse t 5 of E suc h that aE5 
if and only if the number of suffices i, 1 ,,;;; i ,,;;; k, sati s· 
fying aE5i is odd. Thi s addition of subse ts is evidently 
co mmutative and associati ve, a nd we use the ordinary 
additive notation for it. C hains f; on E over GF(2) 
e vidently satisfy 

k k 

5.33 IILJdl=L IVil l· 
i = I i = I 

We conclude thi s sec tion with two theorems c har
ac terizing binary matroids. 
5.34 A matroid M on E is binary iJ and only iJ any 
non-null mod 2 sum oj atoms of M is a union of dis
joint atoms oj M. 

PROOF: Suppose M = M(N), where N is a binary 
chain-group. A non-null mod 2 sum of atoms of M 
is the domain of a non·null chain of N, by 5.33. This 
is a union of disjoint atoms of M by 5.32. 

Conversely suppose M satisfie s the stated condition. 
Let N be the chain-group generated by those chains on 
E over GF (2) whose domains are atoms of M. Clearly 
each atom of M contains an atom of M(N). On the 
other hand each atom of M(N) is a mod 2 sum of atoms 
of M a nd therefore contains an atom of M. Hence 
M = M(N) , by Axiom I , and so M is binary. 
5.35 A matroid M is binary iJ and only iJ each con
nected l ine of M is on exactly three points . 

PROOF: Suppose M is binary. Let L be any con
nec ted line of M. There are at least three di stinct 
points on L, by 4.23. Denote two of them by X 
and Y, and le t Z be any other. 

Since XUZ=L=XUY, by 4.22, we have Y - X~Z. 
Similarly X - Y~Z. Hence Z contains the mod 2 

sum X + Y, which is non-null by Axiom 1. But X + Y 
is a union of disjoint atoms of M, by 5.34. He nce 
Z = X + Y, by Axiom 1. Thus L is on just one point 
other than X and Y. 

Conversely suppose there are just three points on 
each connected line of M. If X is any point (atom) 
of M we write fiX) for the c hain on E over GF(2) 
whose domain is X. Let N be the binary chain-group 
on E generated by the chain s fiX). 

Let X, Y, and Z be the three points o n any connec ted 
line L of M. Then X + Y + Z is null, by 4.21. He nce 
fiX) + fiY) + fiZ) = 0, by 5.33. Accordingly M = M(N), 
by 5.11, and so M is binary. 

5.4. Regular Chain-Groups and Matroids 

A regular matroid is by de finition the matroid of a 
regular c hain·group N, as defined in . sec tion 1.2. 
5.41 Let M be any regular matroid. Then M* and 
the minors of M are regular. (2.47, 2.66, 3.26 and 
3.31). 

Let f and g be two integral c hains on a se t E. We 
say that f conforms to g if IlI1l ~ Ilgl l and fia)g(a) > 0 
for eac h aE IlI1l. 
5.42 Let N be a regular chain-group on E, and let f 
be a nonzero chain of N. Then there exists a primitive 
chain of N conforming to f 

PROOF: If possible c hoose f so that the th eore m fails 
a nd Ilfll has the least number of e le ments consis te nt 
with thi s condition. 

Since N is regular it has a primitive c hain g suc h 
that Ilgll~llf1l. C hoose aE llgl1 suc h that f(a) has 
the leas t possible absolute value. Replacing g by - g 
if necessary we arrange that g(a) . f(a) > O. Write 

h = f- f(a)g(a)g 

If h = ° then J is a positive multiple of g, a nd so g 
conforms to f If h oF- 0 it is clear that h conform s to 
f Moreover Ilhll then has fewer cells that 11111 and so 
there is a primitive chain k of N co nforming to h. But 
the n k conforms also to f So in each case the c hoice 
of f is contradi cted_ The theorem follows: 
5.43 Let N be a regular chain-group on E, and let f 
be a nonzero chain of N. Then f can be represented 
as a sum of primitive chains oj N, each conforming to f 

PROOF: Le t Z (k), where k is a chain of N, de note th e 
sum of the absolute values of the coeffi cients in k. 

If possible choose f so that the theore m fails and 
Z (f) has the least value consistent with thi s . By 5.42 
there is a primitive c hain g of N conforming to I 
Write h=f- g. ]f h = O then J = g . If h oF- 0 it is 
clear that Z(h) < Z (f) and th a t h confo rms to f He nce 
h is a sum of primitive c hain s of N, each co nforming to 
h and therefore to I In e ither case the de finition of 
J is contradicted. 

Le t f and g be integral c hains on E and le t q be an 
integer not less than 2. We call g a q-representative 
of f if the followin g conditions are sati s fi ed for eac h 
aEE. 

(i) g(a) == f(a) mod q, 
(ii) Ig(a) I < q. 
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5.44 Let f be a chain of a regular chain-group N on E. 
Then for each integer q;;;,: 2 some chain of N is a 
q-representative of f 

PROOF: There is at least one chain g of N which 
satisfies condition (i), namely f For each such g 
we define Y(g) as the number of cells aEE satisfying 
Ig(a) I ;;;,: q. We choose a particular g satisfying (i) 
so that Y(g) has the least possible value. 

If Y(g) > 0 choose bEE so that Ig(b) I ;;;,: q. By 5.43 
there is a primitive chain h of N conforming to g and 
satisfying h (b) = ± 1. Write 

g!=g-qh. 

Clearly g! satisfies (i). Moreover we have 

• 
(lg(a)1 < q) ~ (lg,(a)1 < q). 

Hence Y(f!) ~ Y(g), with equality only if Ig!(b)l;;;,: q. 
If Ig!(b) ;;;,: q we repeat the process with g, replacing 

g, and with the same choice of b. Proceeding in this 
way we eventually obtain a chain g' of N such that 
g' satisfies (i) and Y(g') < Y(g). But this is contrary 
to the choice of g. We deduce that in fact Y(g) = O. 
The theorem is thus true. 

We use 5.44 to prove the following important 
theorem about regular matroids. 
5.45 Every regular matroid is binary. 

PROOF: Let M be a regular matroid. Then 
M = M(N), where N is a regular chain-group. For 
each chain f of N letf' be the chain over GF (2) derived 
from it by replacing each coefficient in fby its residue 
mod 2. Then the chains I' constitute a binary chain
group Q. 

Let X be any atom of M. It is the domain of a primi
tive chain of N, and therefore of a nonzero chain of 
Q. There is an atom Y of M(Q) such that Y~X. 

Conversely let Y be an atom of M(Q). There is a 
chain f of N such that Y is the domain of 1'. But there 
is a chain g of N which is a 2-representative of f, by 
5.44, and we have Ilgll = III' II = Y. Hence there is 
an atom X of M = M (N) such that X ~ Y. 

Applying Axiom I we find that M = M( Q). Thus Mis 
binary. 

There are some important properties of regular 
chain-groups which are expressible in terms of their 
standard representative matrices. 
5.46 Let N be a regular chain-group on E. Let D 
be any dendroid of N. Let K be a standard represen
tative matrix of N associated with D, and let 5 be any 
subset of E such that 151 =1 D I. Then the determinant 
of the square sub matrix K(5) is ± 1 if 5 is a dendroid of 
N, and zero otherwise. 

PROOF: It is clear that 5 meets the domain of every 
nonzero chain of N if and only if K(5) is nonsingular. 
So, by 2.23 det K(5) is nonzero if and only if 5 is a 
dendroid of N. 

Suppose K(5) is nonsingular. Let K! be the 
standard representative matrix of N associated with 5 
(5.25) . Since the rows of K! are linear combinations 
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of those of K there is a square matrix A of integers 
such that AK=K, . But then AK(5)=K!(5). On 
taking determinants we have 

del A . det K(5) = 1, 

since K J(5) is a unit matrix. Since A and K(5) are 
matrices of integers it follows that det K(5) =± l. 

Using the formula for the determinant of a product 
of two rectangular matrices we can deduce from 5.46 
that the number of distinct dendroids of N is 

det (KK7), 

where KT is the transpose of K. This generalizes a 
well· known formula for the number of spanning trees 
in a graph G. 

There is a converse of 5.46 to the effect that if K 
is an r-rowed matrix of int.egers whose rows are linearly 
independent, and in which the determinants of the 
r X r submatrices are restricted to the values 1, -1, 
and 0, then K is a representative matrix of a regular 
chain group. We do not use this theorem in what 
follows, and we leave its proof as an exercise to the 
reader. 

The following consequence of 5.46 is of interest. 
5.47 Let N be a regular chain-group on E. Let K be a 
standard representative matrix of N associated with a 
dendroirl D. Then the determinants of the square 
submatrices of K(E - D) are restricted to the values 1, 
-1 and O. 

PROOF: Let A be such a square submatrix. Let T 
be the subset of E corresponding to the columns of 
K(E-D) meeting A and those of K(D) not meeting 
Ann (A). 

Now K(T) is square, and det K(T) = 1, -1 or 0 by 
5.46. But expansion of det K(T), using the columns 
in K(D) , shows that det K(T)=±det A. The theorem 
follows. 

We can express this result by saying that K(E-D) 
is completely unimodular. Evidently K is itself 
completely unimodular. 

5.5. Some Binary Matroids Which Are Not Regular 

In this section we show that the converse of 5.45 is 
not true. We do so by using the following observation. 
5.51 Let K be a standard representative matrix, associ
ated with a dendroid D, ofa binary chain-group Non E. 
Then if M(N) is regular we can replace each zero 
element of K by the integer 0, and each nonzero element 
by an integer + 1 or -1 in such a way as to transform 
K(E - D) into a completely unimodular matrix. 

PROOF: If M is regular we can write M = M (N) 
= M (N,) , where N, is a regular chain-group. 

Each row of K is the representative vector of an 
elementary chain of N. We replace it by the repre
sentative vector of a primitive chain of N, with the 
same domain. Performing this operation for each 
row, and then making appropriate multiplications of 
rows by - 1 we evidently transform K into a standard 
representative matroid KJ of N, associated with D. 



We observe that K is transformed into K, by an 
operation of the kind specified, and that K(E - D) is 
transformed into the completely unimodular matrix 
K ,(E - D), by 5.47. 

We now investigate a binary chain-group N with the 
standard representative matrix shown below 

o 1 0 1 

o 1 1 o 

1 o 1 1 

We shall describe a binary matroid corresponding to 
such a chain-group as being "of type BI". 
5.52 No matroid of Type BI is regular. 

PROOF: Suppose the theorem false . Then by 5.51 
there is a completely unimodular matrix A of the fol
lowing form. 

1 
XII 

X21 

o 

0 X I3 

X"j 
X22 0 X24 

X32 X33 X34 

Here each Xij is + 1 or -1. 
The determinant of the square submatrix 

{
XII X14] 

X21 X 24 

is clearly even. It is therefore zero since A is com
pletely unimodular. We deduce that XIIX24 = XI4X2 1, 

that is 

Similarly we have 

We have also 

Xli 0 XI 3 

(1) 

(2) 

(3) 

But this number is even, and therefore zero by the 
complete unimodularity of A. Hence 

(4) 

------- -

But equations (1), (2), (3), and (4) are inconsistent, 
for they imply 

=1. 

The theorem follows . 
The dual of a matroid of Type BI will be said to be 

"of Type BlI". Such a matroid is binary but not 
regular, by 5.31, 5.41, and 2.65 . 

By another application of 5.31 and 5.41 we have 
5.53 Let M be a binary matroid having a minor of 
Type BI or BlI. Then M is not regular. 

Our next main task is the proof of the converse of 
this theorem, that if a binary matroid is not regular 
it must have a minor of Type BI or BII. Our proof 
will be based on 5.11. But the ques tion whether it is 
possible to assign s uitable integral chains f(X) to the 
atoms X of a given binary matroid rai ses grave dif
ficulti es . Apparently these can only be resolved by 
the use of the homotopy theory developed in the next 
Chapter. 

5.6. Graphic and Cographic Matroids 

We have discussed specializations from general 
matroids to binary matroids, and from binary matroids 
to regular ones. The next step in thi s progression 
brings us to the graphic and cographic matroids. 

We have de fined a graphic matroid as one which 
can be interpreted as the bond-matroid of a graph 
(sec. 2.5). A cographic matroid is one which can be 
interpreted as the polygon-matroid of a graph. 
5.61 The cographic matroids are the duals of the 
graphic matroids. (2 .67). 
5.62 Let M be any graphic (cographic) matroid. 
Then the minors aIM are graphic (cographic). (3.321, 
3.322, 3.371, 3.372). 
5.63 Every graphic or cographic matroid is regular. 
(1.24, 5.41 and 5.61). 

The last of these theorems shows that the graphic 
and cographic matroids can be regarded as specializa
tions of the regular ones. We shall therefore have to 
discuss the question: when is a regular matroid 
graphic? Here we shall only state the result, leaving 
the proof for a later chapter. 

A complete 5-graph, or 5-cLique is a graph having 
just five vertices ai, ... , a5 and just ten edges Lij, 
the ends of Lij being ai and aj (1 ~ i < j ~ 5). A Thom
sen graph, or 4-cage is a graph having just six ve rtices 
at, a2, a3, bt, b2 , b3 and just nine edges Lij , the ends of 
Lij being ai and bj. {l ~ (i, J) ~ 3). These two graphs 
are illustrated in figure 5B. 

These two graphs are often spoken of as the Kura
towski graphs, in view of Kuratows ki's Theore m that 
every nonplanar graph contains a subdivision of one 
of them. 
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We shall prove in a later chapter that a regular 
matroid M is nongraphic if and only if one of its minors 



FIGURE 5B 

is the polygon-matroid of a Kuratowski graph. Dually 
M is noncographic if and only if one of its minors is 
the bond-matroid of a Kuratowski graph. 

6. Homotopy 

6.1. Elementary He-entrant Paths 
Throughout this chapter we suppose given a matroid 

M and a linear subclass C of M. We describe a path 
in M as being off C if it has no term which is a vertex 
of C, and we study the properties of those re-entrant 
paths in M which are off C. As a special case of 
course we can put C = 1> and study the set of all re
entrant paths of M. 

We specify four kinds of re-entrant path off C as 
fundamental, or elementary, and we show that every 
re-entrant path off C can, in a sense to be explained, 
be expressed as a combination of elementary ones. 

The first kind of elementary re-entrant path consists 
of all paths off C of the form (X, Y, X). The second 
consists of all fJaths off C of the form (X, Y, Z, X 
where d(XU YUZ):;:;; 2. 

Suppose P is a plane of M on which there are two 
distinct points A and B of C such that each connnected 
line on P is on either A or B. Then any path, on P 
and off C, of the form (X, Y, Z, T, X) where X, Y, Z, 
and T are distinct, XU Y and Z U T are lines on A, and 
YUZ and TUX are lines on B, is an elementary re
entrant path of the third kind. 

Such a path is shown in figure 6A. In this and 
other diagrams we adopt the convention that points 
of C are to be represented by 4-pointed stars. 

Now let J be a 3-flat of M on which there are three 
points ZI, Z2, and Z3 such that Z I UZ2, Z2UZ3 and 
Z3 UZ I are disconnected lines. Let there be just six 
connected planes on J, two on each of these lines. 
We enumerate the planes as PI, P2 , ••• , P6 in such 
a way that 

where (i, j, k) is any permutation of (1, 2, 3). 
If 1:;:;; i <j:;:;; 6 the flat (PinPj ) is a line, by 4.172. 

20 

A 

FIGURE 6A 

• 
We denote it by Lij. If j = i + 3 then Lij is the discon
nected line 

If j ¥= i + 3 let k be that integer 1, 2, or 3 which is not 
congruent to i or j mod 3. Then Lij is on ZA', and it 
meets Pk and Pk +3 in two distinct points. Hence Lij is 
connected by 4.23. Clearly it is on no connected 
plane on J other than Pi and Pj. 

We observe that j=P I UP2, by 4.14, and is thus 
connected, by 3.48. It follows that each connected 
line on J is on two connected planes of J. Hence the 
12 lines Lij, j ¥= i + 3, are the only connected lines on J. 

We write 

for 1:;:;; i < j < k :;:;; 6. Then Xijk is a point on J, by 
4.173, being identical with (LijnPk ). If two of the 
suffices i, j, and k are congruent mod 3, then XijA' is one 
of the points Zt, Z2, and Z3. The remaining eight 
points Xijk are all distinct, for on anyone of them there 
can be only three planes such that each is on L 14 , L25 , 

or L36 • These eight points, together with ZI, Z2, and 
Z3 are the only points on J. For each point on J is on 
three distinct connected planes of J, by two applica
tions of 4.26. 

The geometrical figure just described is shown in 
figure 6B. Three lines are broken to indicate dis
connection. 

We -refer to this structure as a box, saying that the 
planes Pi are its sides, the 12 connected lines are its 
edges, the points Zi are its radiants and the other eight 
points are its corners. 
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it may happen th at th e points of C on .I are four 
corn ers of the box . These corners mus t th e n occur 
alternately and we may suppose the m to be X 123 , XZ46 , 

X;j.15, and X I 51;, as shown .in the diagram. These are 
the four points Xijl• suc h that no two s uffices are con
grue nt mod 3 and th e numbe r of s uffices less than 4 is 
odd. 

Under these circumstances any path of the form 
(A, X, B, Y, A) , where A and B are radi ants of th e box, 
a nd X a nd Yare corn er s not in C, is called an elemen
tary re-e ntrant path of th e fourth kind. 

6.2. Homotopy 
S uppose we have two paths PR and PQR off C, 

where Q is an ele mentary re-entrant path of the kth 
kind. Then we call the process of deriving one of 
th ese paths from the other an elementary deformation 
of the kth kind . We say that two given paths P and 
Q off C are homotopic if one can be derived from the 
other by a finite sequence of elementary deformatio ns. 
We write this relation as P - Q, or if it is necessary to 
specify C as P - Q mod C. If a path P, necessarily 
re-entrant, is homotopic to a dege ne rate path we say 
that P is null-homotopic. We write thi s relation as 
P - 0, or as P - 0 mod C. 

Homotopy is clearly an equivale nce relation . 
W e note some simple rules of computation. 

6.21 If two path-products PQR and PQ,R off Care 
such that Q - QI . then PQR - PQ,R. 

PROOF: Any sequence of eleme ntary deformations 
transforming Q into QI must also transform PQR into 
PQ,R. 
6 .22 If P is any path off C then pp- I - O. 

PROOF : If possible choose P so that the theorem 
fails and s(P) has the leas t value consistent w ith this 
condition. 
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If s(P) = 0 the theorem is trivially true. If s(P) = 1 
it is true because pp- I is an elementary re-entrant 
path of the firs t kind. We deduce that s(P) "'" 2 . 

We can now write P= QR, where s(Q) and s(R) are 
both less tha n s(P). We have QQ- I - 0 and RR- ' - 0, 
bythech~ceofP. Butnow 

pp- I - QRR- 'Q- ' - QQ- I - 0, 

by 6.21. The theorem follow s. 
6.23 If PUR and PVR are paths off C such that UV- I 
- 0, then PUR - PVR. 

PROOF: PUR - PUV- I (V- I ) - 'R , by 6.21 and 6.22, 
- PUV- 'VR , by 4.321, 
- PVR, by 6.21. 

In what follows we prove that every re-e n Ira nt path 
on M and off C is null-homotopic, 

It will be convenient to de note by H (n) the propos i
tion that every re-entrant path off C whi c h is on a flat 
of M of dim e nsion ";; n is null-homotopic. 

Any path P =(X 1, X 2 , • •• , XI» of M determines a 
flat F(P) sati sfying 

6.24 if P is any path of M then the flat F(P) is con
nected. 

PROOF: Xi UXi+ I is a co nnec ted lin e whe ne ve r 
1 ,,;; i < k. He nce the th eo rem follows by repeated 
appli cation of 3.48. 

We refer to the dime nsion of F(P ) also as the di
mension of P. 

6.3. A Lemma 
We de vote th iS sec tion to a proof of the following 

propos ition. 
6.31 Suppose n ~ 2 and H( n) is true. Let Q = (W, X, 
Y , Z, W) be a path off C of dimension n + 1 such that 
WuXUY and YUZuW are connected planes and 
WU Y is a disconnected line. Then Q - O. 

We write F, = WUXUY and F 2 = YUZUW. 
We arrive at a proof of 6.31 by way of a c hain of 

minor propositions. 
6.311 Let Q' = (W, X ' , Y, Z', W) be a path off C such 
X' is on F, and Z' on F 2 • Then Q' - Q. 

PROOF: This situation is illus trated in figure 6C. 
The proof runs as follows: 

Q' - (W,X', y)(Y, X, W)(W,X, y)(Y, Z, W)(W, Z , y) 

(Y,Z', W), 
by 6.21 and 6.22, 

= (W,X', Y,X , W)(W,X, Y , Z , W)(W, Z , Y,Z' , W) 

- (W,X, Y,Z , Wj = Q, 

by H(n) , since (W, X', Y, X, W) and (W, Z, Y, Z', W) 
are on planes . 
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A transversal of dimension n is a connected n-flat 
of M which is on F(Q) but not on both Wand Y. Such 
a transversal meets each of FI and F2 in a connected 
line, by 4.14, 4.16, and 4_281. 

A transversal of dimension n -1 is a connected 
(n-l)-flat of M which is on F(Q) but not on Wor 
Y. By 4.14 and 4.16 the transversal has just one com
mon point with each of FI and F2. We call these 
two points the poles of the transversal. 

Let B be a transversal of dimension n -1 with poles 
X' on FI and Z' on F2• Using 4.26 we find that B is 
on two distinct connected n-flats on F(Q). By 4.14 
and 4.16 these are B U Wand BUY, and each of them 
is a transversal of dimension n. Their connected 
lines of intersection with FI and F2 are X' U W, X' U Y, 
Z'UW and Z'UY. 
6.312 Let B be a transversal of dimension n. Then 
either Q ~ 0 or B has a pole in C. 

PROOF: Let the poles of B be X' on FI and Z' on 
F2 • Suppose neither of them is in C. 

By 4.34 there is a path R from X' to Zion B which 
is off C. Hence there are' paths (W, X') R(Z', W) and 
(X', Y, Z')R-I on the transversals B U Wand BUY 
respectively of dimension n. We now have 

Q ~ (W, X', Y, X', W), by 6.311 

= (W, X') (X', Y, Z') (Z', W) 

~ (W, Z')R-IR(Z', W), by 6.23 and H(n), 

~ (W, Z', W) by 6.22 

~ 0, 

by an elementary deformation of the first kind. This 
proves the proposition. 

Let us make the assumption that Q is not null
homotopic. 

By 4.27 there is a transversal A of dimension n 
which is not on Y. Let its lines of intersection with 
FI and F2 be LI and L2 respectively. By the defini· 
tion of a linear subclass there is a point X', other than 
W, on LI and not in C. By 4.27 there is a connected 
(n-1) flat B on M which is on A and X' but not on W. 

L_ 

z'_--_ 
_-~x' 

w 

FIGURE 60 

Now B is a transversal of dimension n -1. Let its 
pole on L2 be V2 • Then V2EC, by 6.312. 

Similarly there is a transversal B' of dimension 
n -Ion A having a point Z' not in C as its pole on 
L2 and a point VI of C as its pole on L I • We write 
T= (BnB'). By 4.14 and 4.16 T is an (n- 2)-flat on 
A. (See fig. 6D.) 

Let l be the class of all points on T which are not 
in C. 
6.313 l is non-null. 

PROOF: Since T is an (n - 2) flat on an (n -I)-flat B, 
and since B has a point V 2 in C and a point X' not in C, 
this follows from 4.36. 
6.314 Let T; be any point of l. Then T; U Wand 
1'; U Yare disconnected lines. 

PROOF: Suppose the flat Ti U Y is connected (fig. 6E). 
There is a path Ro from Y to Ti on T; U Y, by 4.34, which 
is off C. Similarly there is a path R I from X' to Ti on 
B and a path R2 from Z' to Ti on B', both paths being 
off C. 

Now (X', y)RoR11 is a re-entrant path on the trans
versal BUY of dimension n, and (Y, Z')R 2Rr;1 is a 
re-entrant path on the transversal B' U Y of dimension 
n. Both these paths are null-homotopic, by H(n). We 
thus have 

Q ~ (W, X', Y, Z', W), by 6.311, 

= (W, X')(X', y)(Y, Z')(Z', W) 

~ (W, X')RJRr;IRoR;;I(Z', W), by 6.23, 

~ (W, X')RIR;;I(Z', W), by 6.22. 

But the last path is on the n-flat A. Hence Q ~ ° by 
H(n), contrary to assumption. 

We deduce that YU Ti has nontrivial separators Y 
and T j • Hence Y and Ti are the only points on it and 
the flat must be a disconnected line. (3.42 and 3.54.) 

The transversal BUY of dimension n is not on W. 
We can therefore repeat the construction for B', using 
BUY instead of A and interchanging the roles of Yand 
W. There results a transversal B" of dimension n-l 
on BUY. Its pole on the line V 2 U Y is not in C and 
its pole on the line X' U Y is in C. It meets B in an 
(n - 2)-flat T' analogous with T. 
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In view of the foregoing argument we may assert 
that any point T on T' which is not in C has the prop
erty that WU Tf is a disconnected line. In particular 
B" has a point in common with the di sconnected line 
YU Ti, and this point can only be Ti• Hence T; is on 
T' and therefore WU Ti is a di sconnected line. 

Let K be a connec ted Aat of M which is on FI and 
F(Q), and also on some point of k, and which has the 
least dimension consiste nt with th ese properties. 

Clearly either F(Q) or one of its subsets satisfies this 
definition. 

6.315 dK=3 . 

PROOF: We have 

n+l=dF(Q) =3 dK > dF , =2, 

and so dK =3 3. But dT = n - 2. Hence, by 4.16, 

d(KnT) =3 dK -3. 

Choose a point Non (KnT), taking N in C if this 
is possible. By 4.27 there is a connec ted (dK - 1)-Aat 
K' on FI and K, but not on N. By 4.14 and 4.16 (K' n T) 
is a Aat on (K n T ) of dim ension d(K n T) - l. 

All the points of M on (K' n T) belong to C, by the 
definition of K. By the c hoice of N this implies that 
either d(K' n T) =- 1 or N is in C. But in the latter 
case all the points of (KnT) are in C, by 4.36, which 
is contrary to the definition of K. 

We deduce that d(K' n T) =- 1 and therefore 
d(KnT) = 0. But we have seen that d(KnT) =3 dK 
- 3. The proposition follows. 

6.316. n=2. 

PROOF: Suppose n =3 3. The n F2 is not on K, s ince 
dF(Q) = d(F ,UF2) =34, by 6.315. By 4.27 there is a 
connected n-Aat K" on F2 and F(Q) but not on Tj • 

Write F3= (K"nK). Then F3 is a plane on K and 
WU Y, by 4.14 and 4.16 . 

By 4.27 there is a connected line L on K and T; which 
has no common point with the disconnected line WU Y. 
It mee ts F , and F3 in di stinc t points Xl and X3, r espec
tively, neither of which is T j • (Fig. 6F.) 

FIGURE 6F 
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We note that F3=WUYUX3, by 4.14. Moreover 
Xl U Wand XI U Yare connected lines , by 4.28l. 
Hence XI n Wand XI n Yare both non-null, by 4.22. 
On the other hand Ti U Wand Ti U Yare disconnected 
lines , by 6.314. Hence Ti n Wand Ti n Yare null, by 
4.22. But L = XI UTi = X3 UTi, by 4.22. He nce 
X3n Wand X 3nY are both non-null and therefore F 3 
is connected by 3.48. 

By 4.35 there is a path R from Y to W ~n F3 which 
is off C. The re-entrant paths (W, X, Y) Rand (Y, 
Z, W) R- I are on K and K" respec tively. They are 
thus null-homotopic, by H (n). Hence 

Q= (W, X, Y)(Y, Z, W) - R- I R - 0, 

by 6.22 and 6.23. 
Since n ~ 2 by the hypothesis of 6.31 we deduce, 

from this contradiction to our main assumption that 
Q is not null-homotopic , that n = 2. 

It follows from this result that dT= O. Hence the 
Rat T is a point of M, identical with Ti• The three 
Rats Wu Y, Yu T and TU Ware disconnec ted lines , 
by 6.314. Hence WU YU T is not a connec ted plane, 
by 4.282. 

Any plane on the 3-Rat F(Q) has a common point 
with each of the di sconnec ted lines Wu Y, YU T and 
TU W. It is therefore on one of these lines, by 4.23. 
Each line of F(Q) is on a plane of F (Q), by 4.14. He nce 
each such line is on W, Y, or T, by 4.17l. 
6.317 There are just four connected lines on each of 
the planes FI and F 2, two being on Wand two on Y. 
Moreover each such line is on just three points, of which 
just one is in C. 

PROOF: Suppose one such line LI is on k distinc t 
points XI, X2, ... , X k other than Y or W. Then 
k > 2, by 4.23. Of course LI is on Y or W. 

Suppose LI is on Fl. By 4.27 there is a transversal 
F of dimension 2 on LI and a transversal Bi of dimen
sion 1 on F and Xi for each i. (i = 1, 2, 3). Then F 
meets F2 in a connected line L2 • The line Bi is on T, 
since it is not on W or Y. Hence Bi = Xi U T, and B i 
is uniquely determined for each i. Let X; be the 
common point of Bi and L2 • Since BI =Xi' U T the 
k points XI', X 2', .. . , X k are all di stinct. But at 
most one point on each of the lines LI and L2 is in C, 
and each Bi has at least one pole in C. Similar reason
ing applies if LJ is on F 2 • 

We deduce that each connec ted line on FI or F2 
is on just three points, and that jus t one of these points 
is in C. 

There are two connected lines on Y and two on W 
in the plane F I , by 4.26. Si nce the lines through W 
(or Y) must meet those through Y (or W) in di stinct 
points it follows from the preceding result that there 
are just two such lines on Y and just two on W. The 
same result holds for F2 • 

6.318 Each of the disconnected lines WU Y, YU T 
and Tn W is on just two connected planes of F(Q). 

PROOF : Let L' and L" be the two connected lines 
on Wand Fl. (6.317). Each is on a transversal of 
dimension 2, by 4.27, and both these transversals are 
connected planes on TU W. There is no other con-
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nected plane on TU W since each suc h plane would 
meet FI in a connected line through W. (We have 
shown that T U W U Y is not a connected plane .) 
A similar argument applies for TU Y. 

Now suppose there is a connected plane F 3 , distinct 
from FI and F2 , on WUY. We note that F3 is not on 
T, since WU YU T is not a connected plane. 

Let U I be a point of C on Fl. By 4.27 it is on a 
transversal B of dimension 1. This must be on T. 
Let it meet F I, F 2 , and F3 in UI, U2 , and U3 respectively. 
Similarly let V2 be a point of Con F 2 • It is on a tran s
versal B ' of dimension 1. B' is on T and mee ts 
F I, F 2 , and F 3 in di stinct points VI, V 2 , and V3 respec
tively. Since T is not in C we deduce that the points 
U2 , U3 , VI, and V3 are not in C. (Fig. 6G.) 

We have 

(W, VI, Y) - (W, VI, V 3, W) (W, V3, VI, Y) 

- (W, VI, V3 , W) (W, V3 , Y) (Y, V3 , V!, Y) 

- (W, V!' y), 

by 6.21 and 6.22, with the help of H(n) = H(2). 
Similarly 

Hence 

the preceding results, 

- 0, by H (2) . 

But this is contrary to assumption. The proposition 
follows . 

We observe that our figure on F (Q) is a box with 
radiants Y, W, and T. We therefore revert to the 
notation of section 6 .1. We put Y = ZI , W=Zz and 
T = Z 3' We also identify P3 with FI and Ph with 

FIGURE 6G 



Ft. Each co nnec ted line is on Y, W, or T, and is 
thus on at most one point of C. But each connected 
line on P3 or P6 is on one point of C, by 6.317. We 
may therefore suppose the points of C to be as shown 
in figure 6B. 

This implies that Q is an elementary re·entrant path 
of the fourth kind. Thus Q ~ 0, contrary to assump
tion. This contradiction establishes the lemma 6.31. 

6.4. Homotopy Theorem 
We now turn to the proof of the main theore m of the 

c hapter. 
6.41 Every re-entrant path of M which is off C is null
homotopic 

PROOF: We proceed by induction. We observe 
first that H(O) is trivially true. We assume as an 
inductive hypothesis that H (n) is true for some non
negative integer n, and we try to deduce the truth of 
H(n+ 1). 

Let P be any path of M off C which is re-entrant and 
has dimension n + 1. Choose a connected n-flat J 
of M which is on F(P) and the origin Xo of P, as is 
possible by 4.25 and 6.24. 

Let R be any re-entrant path on F(P) with origin 
Xo. Write 

FIGURE 6H 

We write u(R) for the number of terms of R, counting 
re petitions, which are not on J. If u(R) > 0 we denote 
by Xi the first term of R which is not on]. We then 
write vCR) for the di mension of the connected flat v~::::::::::_-+ ______ +~ ______ ----"f\z:--
Xi - lUXiUXi+l, taking XIIl+1=Xo if i=m. If u(R) = O 
we wrire vCR) = O. 

We may suppose R c hosen so as to sati sfy the follow
ing conditions 

(i) R ~ P 
(ii) u(R) has the least value consistent with (i), 
(iii) vCR) has the least value consistent with (i) and 

(ii). 
We write F=Xi-l UXiUXi+1 • We also write R 
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in the form Hence 

so that Rl is a path on J. 
We assume u(R) > O. This implies vCR) > O. We 

consider separately the cases vCR) = 1, vCR) = 2 and 
vCR) ~ 3. 
Case I vCR) = 1. 

In this case F is a connected line. If X i + 1 = X i- I we 
have P ~ R ~ R,R2 , by an elementary deformation of 
the first kind. Since u(R ,R 2 ) < u(R) this is contrary 
to the choice of R. 

If X i+1 =P Xi - I, then 

IS an elementary re-entrant path of the second kind. 
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by 6.23. But this is impossible since 

u(R1(Xi- l, Xi+l)R 2 ) < u(R). 

Case II: vCR) = 2. 
F is now a connected plane on F(P). It meets J 

in a line L, by 4 .14 and 4.16. Let Z be the point of 
intersection of the lines L and Xi UXi+l on F. (Figs. 
6H and 61.) 

Suppose Z is not in C, as in figure 6H. We define 
Q as the degenerate path (Z) if Z=Xi+ l , and as the 
path (Z, Xi+ I) otherwise. Then 



is an elementary re-entrant path of the first or second 
kind. Hence 

by 6.23. If L is connected we have ' 

by an elementary deformation of the second kind, 
and so 

by 6.23. 
If L is not connected it is on a connected plane F' 

contained in J, by 4.28. We can find a connected 
line L' on Xi- I and F' by 4.26, and a point Ton L' 
distinct from Xi - I and not in C, by 4.23. The flats 
TUXi- 1 and TUZ are connected lines, by 4.282. 
Hence 

by 6.31. So by 6.23 we have 

Thus, whether or not L is connected, we have 

where R3 is on J. But this is contrary to the choice 
of R, since u(R 3QR 2 ) < u(R). 

We may now suppose ZEC, as shown in figure 61. 
In this case there is a connected line L' other than 
XiUXi+1 on Xi+1 and F, by 4.26. If L' is on Xi - I then 
(Xi - I, Xi, Xi+l , Xi- I) is an elementary re-entrant path 
of the second kind. We therefore have 

by 6.23. This is contrary to the choice of R, since 
u(R') < u(R). We deduce that in fact L' is not on 
Xi - I. It therefore meets the lines Xi - I UXi and L in 
distinct points U and V respectively. Since Z is in 
C and Xi - I is not, the point V is not in C. 

Suppose U is not in C, contrary to the indication 
given in figure 61. Using 6.23 with elementary 
re-entrant paths of the second kind we have 

R ~ RI(Xi - t, U, Xi, X i+1)R 2 

=R'say. 

But then u(R') < u(R), contrary to the choice of R. 
We deduce that U is in C, as indicated in figure 61. 

In this case it may happen that each connected line 
on F is on either U or Z. Then (Xi - I, Xi, Xi+I, V, Xi-I) 

is an elementary re·entrant path of the third kind. 
Using 6.23 we deduce that 

which is impossible, as before. 
It follows that there is a connected line L" on F 

which is not on U or Z. Let it cut the lines L, X i - I UXi 

and XiUXi+1 in the points WI, W2 , and W3 respec
tively. These points are distinct from U and Z and 
are therefore not in C. 

If L" is on Xi + l we can substitute it for L' in the 
preceding argument. This reduces the problem to the 
case in which U is not in C, and so yields a contradic· 
tion. We may accordingly suppose that L" is not on 
Xi + l • 

If L" is on Xi it meets L in a point WI distinct from 
Xi - I and Z. 
Writing 

we then have R ~ R', by an elementary deformation 
of the second kind. If L" is not on Xi then the points 
W2 , W3 , Xi, Xi+t, and Z are all distinct. If L" is then 
on X i - I we write 

and have R ~ R', by elementary deformations. 
If however L" is not on Xi - I the points X i - l and W2 

are distinct. We then write 

and have 

26 

~R', 

by 6.23. For each of these three possibilities we have 

R ~ R', u(R')=u(R), v(R')=v(R)=2. 

Hence we may replace R by R' in the preceding argu
ment. This reduces the problem to the case in which 
U is not in C, and so yields a contradiction. 

This completes the analysis of Case II. 
Case III. v(R) ~ 3. 

There is a connected plane K on F and the line 
Xi - l UXI • This plane meets J in a line L. Choose 
a point N, distinct from Xi- I, on L and if possible in 
C. By 4.27 there is a connected (v(R) -I)·flat F' on 
XiUXi+1 and F, but not on N. Now F' is not on Xi - I, 
for otherwise we would have F = Xi- l UXi UXi+ 1 cF'. 
Hence F' meets L in a point N' distinct from N and Xi- I. 
It follows that L is connected, by 4.23, and that N' is 
not in C. (See fig. 61.) 
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The fl a ts F' and K intersect in a line L' on Xi and N'. 
If L' is connected we wri te 

and have R' - R by 6.23. If L' is not co nnected it is 
on a connected plane K' on F', by 4.28. This mee ts J 
in a connected line L" on N', by 4.282. We can find 
a point U on L" distinct from N' and not in C. The 
fl at UUXi is a connected line, by 4.282. W e now have 

(N', U,Xi,Xi- I,N' ) - 0, 

by 6.31. In thi s case we write 

We then have 

by 6.23 and an elementary deformation. 
So, whether L' is connected or not, we have 

R' - R, u(R') = u(R), v(R') < v(R) . 

But thi s is contrary to the definition of R. 
From the above analysis of the hypothesis u(R ) > 0 

we deduce that in fact u(R) = o. He nce R is on J and 
has dimension ';;; n, and therefore R - 0, by H(n) . 
Hence P - o. 

We have now shown that H(n + 1) is deducible from 
H(n). Hence the proposition H(n) is true for every 
non-negative integer n (since H(O) is true), by induction. 
Thus our theorem holds. 
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6.5. Special Cases 

When C is null there are only two kinds of ele men
tary re-e ntrant path to consider, the first and the 
second. The homotopy theorem then tells us that 
every re-entrant path in a matroid can be deformed 
into a degenera te one by a sequence of operations each 
of which is co nfined to a single lin e or pla ne. 

The homotopy theore m can of course be appli ed to 
the polygon-matroid of a grap h G. But care mus t 
be taken to distinguish be tween the paths of P(G) 
and those of G itself. A path in P(G) correspond s to 
a sequence of polygons in G such that the union of two 
consecutive polygons is a non separable subgraph 
H such that P(H) has rank 2. It can be shown that 
these conditions on H imply that H is a " e-graph", 
made up of three arcs such that any two have both ends 
but no other edge or vertex in co mmon. 

The homotopy theorem with C null asserts th a t a 
re-entrant sequence of polygons of the above kind can 
be reduced to a d egenerate sequence by operations 
eac h of which is confined to a single polygon or 
e-graph of G. 

7. Characterization of Regular Matroids 

7.1. Some Preliminary Observations 

In thi s c hapter we resume the di scuss ion of regular 
chain-groups and matrioids whi c h was broken off a t 
the end of section 5.5. Our task is to s how that a 
binary matroid is regular if it has no minor of T ype 
BI or BU. 

W e fi rst note some s imple theorems whic h will 
be helpful in the di sc ussion. 
7.11 Let S be an {n-lJ-fiat on an n-fiat T oj a matroid 
M. Let a be any cell oj T -S. Then (T - {a}) = 5 . 

This follows from 4.13 a nd 4.14. 
7. 12 Let X, Y and Z be distinct collinear points oj a 
binary matroid M. Then X + Y + Z is null . 

A proof of thi s theorem is co ntained in th e proof of 
5.35. 
7.13 Let S be an n-fiat on an (n +2J-fiat ToJa binary 
matroid M, where n ~ o. Then there are at most three 
(n + l}-fiats oj M which are on both Sand T. 

PROOF: Suppose there are k suc h (n + I)-flats . 

By 4.27 there is a line L on T whi c h has no commo n 
point with 5. The k{n+ I)-flats mee t L in k distinct 
points. Hence k ,;;; 3, by 5.35 and 4.23. 

7.2. Fano Configuration 
We can de fin e a Fano configuration in a binary 

matroid M as a fi gure made up of a plane P of M, seven 
distinct lines on P, and the points of intersection of 
these seven lin es. 

Suppose F is such a configura tion. Any line L of 
F is on at most three points, by 5.35, and each of these 
is on a t mos t two other lines on P. But each line on P 
must have a common point with L. W e deduce that 
each line of F is on three di s tinct points of F, each of 
which is on exactly two other lines of F . Hence F 



has just seve+l points. Moreover there can be no 
eighth line on P, and the refore there is no eighth point 
on P, by 4.25 and 5.35. 

We enumerate the seven lines as L I , L 2 , • •• , L7. 

We denote the point of intersection, if any, of three 
lines Li , Lj, and L". by XUA-. 

We may assume a point X I 35 on LI, L3 , a nd L5 . The 
line L7 , whi ch is not on X 135 , meets L I , L:!, a nd L 5 in 
points we may label X14 7 , X36 7 , and X257 res pecti vely. 
The lines L2 and L4 each meet L3 in its point other 
than X I:l5 and X367 , whi ch point is therefore X2:l4 ' 

Similarly the remaining points of the figure are X456 

and X 126 . 

A Fano configuration is shown in fi gure 7 A, in whic h 
one of the seve n " lines" is indicated by a curve. 

The seven lines are co nnected , by 4.23, and so P 
is connected, by 3.48. 
7.2 1 If a binary matroid M includes a Fano configu· 
ration, then it has a minor of Type BI. 

PROOF : Let P be the plane of the Fano configuration . 
There is a binary chain·group N such that M(N) 
= M x P, by 5.31. 

Consider the c hains 1, g, and h on P over GF(2) 
whose domains are X 126 , X 2:H , and X 456 r espec tively. 
They are linearly inde pe nde nt chains of N since 
X 126 is not on L 4 , that is not contained in X 234 UX 456 . 

Moreover they generate the chains corresponding to 
all the a toms of M X P, by 7.12. Hence their represen· 
tati ve vec tors can be take n as the three rows of a repre· 
sentative matrix K of N, by 5.32. 

Since P is a union of atoms of M the matrix K has 
no zero column. If it has two equal columns corre· 
sponding to cells a and b it is. clear that an atom of 
M X P contains a if and only if it contains b. But 
the n (P-{a} )=(P-{b} ). 

FICU RE 7A 
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Since there are seven dist inct lines on P it fo llows 
from 7.11 that all the seven di stinct nonzero 3·vectors 
over GF(2) occur as columns of K . Hence, there exists 
S ~ P such that K(S) is the first matrix of sec tion 5.5, 
apart fro m a permutation of columns. But the n 
(M X P ) . S is a matroid of Type BI , by 5.21. Since 
(M X P) . S is a mi nor of M the theore m follows. 

7 .3 . Heptahedron 
We use th e term "heptahedron" to denote a fi gure 

on a 3-space F of a binary matroid M, defin ed by seven 
distinct planes such that no three are on a common line. 
We include in the fi gure the 21 lines of in tersection of 
the seven planes, and those points of F whi ch are 
common to three or more of the seven planes. 

We enumerate the seven planes as PI , P 2 , ••• , P7 , 

and write L ij for th e line of intersection of Pi and 
Pj, taking O :s; i < j :s; 7. 

A point on Lij is on at mos t three lines of Pi, by 7.13. 
On the other hand t here are exactly six lines of the 
heptahedron on Pi. It follows that eac h of the lines 
L ij is on exac tly three points of the fi gure , tha t one of 
these points is on e xac tly three of the seven planes , 
and that eac h of the two other points is on exactly 
four of the m (5.35). Hence each of the lines L ij is 
connected . It follows that the planes Pi and th e flat 
F are connected . 

We wri te X ij'" for a point which is on jus t three plcines 
Pi, Pj, and PA- of the heptahedron , and X;jkl for a point 
on jus t four such planes Pi , Pj, Ph', and PI. Eac h 
point of the firs t kind is on exactly three lin es of the 
heptahedron, and e ach point of the second kind on 
exactly six. It follows that the figure has just seve n 
points of each kind. 

Y=X Z467 

FI GU RE 7B 



We may ass ume LI7 to be on X 147, X I2 :n , and X 1567 . 

T he line L47 is on two points Y and Z dis tinc t from 
X 147. On P 7 each of these is on three lines of the 
he ptahedron meeting L 17 in three distinct points. We 
may therefore suppose Y to be on L27 and L67 while 
Z is on L 37 and L 57 . Then Y = X 2467 and Z = X1457. 

(Fig. 7B.) 
The remaining points of the heptahedron on P 7 

are X 367 = (L 37 nL67 ) and X 257 = (L27nLS7) . 
The lines LI 3 and LI4 on P, meet in a point X 134 X , 

si nee LI4 is on X 147 . Since no three planes of the 
he ptahedron are on a common line this point cannot 
have three suffices in common with any of the points 
on P7 . It is therefore X'346. But X I:146 is on the lines 
L 13 , L 14 , L'6, L 34 , L36 , and L46 • These mee t P7 in X'237, 

X147 , XI 5(;7 , X1457, X 367 , and X 2467 respectively. The 
third points on these lines are therefore X 135 , X 1245 , 

X126 , X 234 , X 2356 , and X456• 

We have now accounted for all the points of the 
fi gure. Those of the first kind are 

and those of the second kind are 

A hep tahedron can b e constructed from the box of 
figure 6B. To do thi s we replace the three di scon
nec ted lines by conn ected ones, and we imagine a 
seve nth plane to pass throu gh the poi nts of C and to 
cut the lines Z;Zj in the ir third points . Since any two 
points of C determine a uni que plane of th e box it 
is clear that no line of the resulting figure is on three 
of the seven planes . The notation of fi gure 6B is 
not that used above. 
7.31 If a binary matrqid M includes a heptahedron, 
then it has a minor 0/ T ype 81I. 

PROOF: We use for the heptahedron the notation 
se t out above. There is a binary c hain-group N s uc h 
that M(N) = M X F , by 5.31: The rank of M(N) is 4. 

Le t f, g, h, and j be the chains on F over GF(2) 
whose domains are X234 , X 1346, X 1245, and X 1237 respec
tively. Any three of these atoms define a plane whic h 
is not on the fourth, so the four chains are linearly 
inde pe ndent. Using 7.12 we can verify that they 
generate the chains corresponding to the a toms of 
M(N), and therefore all the chains of N by 5.32. He nce 
their representative vectors can be taken as the four 
rows of a representative matrix K of N. 

For each Pi we select a cell aiEF-Pi. W e then 
have Pi = (F-{ai}), by 7.11. We write S = {al, 
a2, . .. , a7}. We further suppose that the e numera
tion of the cells of F, used in defining K, is such that 
the columns representing the cells a i occur in the order 
of their suffices . 

Now a plane Pi passes through a point X of the 
heptahedron if and only if i is one of the suffi ces of 
X_ Moreover this happens if and only if ai is not a 
cell of X. We can therefore evaluate the matrix 

K(S) as 

1000111 

o 100 1 0 1 

0010011 

000 1 1 1 0 

This is a representative matrix of the minor MI = 
(M X F) . 5 of M, by 5.21. But then MI * is a matroid of 
Type EI, by 5.23. Thus M, is of Type BII, and the 
theorem follows. 

Theorems 7.21 and 7.31 have simple converses. 
It is easily verified that a matroid of Type BI or BlI 
has a Fano configuration or he ptahedron on its plane 
or 3-space. If the matroid is a minor (M X 5) . T 
of a larger matroid M , a corresponding configuration 
must occur on any carri er Z of (M X 5) . T in M X S. 
(See sec tion 4.4). The configuration then occurs on 
the flat (Z) of M . 

7.4. Condition for a Regular Matroid 
We de vote thi s sec tion to a proof of the following 

theorem. 
7.41 A binary matroid M on a set E is regular if it 
includes no Fano configuration and no heptahedron. 

PROOF: Assume the theore m false . Then there 
exists a matroid M, on a se t E, whi c h is binary and 
includes no Fano configuration or heptahedron, but 
which is not regular. Choose suc h a matroid M so 
that lEI has the leas t possible valu e. 

Clearly lEI ~ L Choose aEE and write M' = 
M· (E-{a}) . Then M' has a carri er Z in M, and Z is 
either E or E - {a }. By sec tion 4.4 there is a 1 - 1 
mapping 0 of the se t of fl ats of M' onto a s ubse t 
of the set of flats of M whic h preserves dime nsion 
and geometrical incidence. 

As in the case of 6.31 we arrive at a proof of 7.41 
through a sequence of subsidiary theore ms. 
7.411 M' is regular. 

PROOF . M' is binary, by 5.31. It includes no Fano 
configuration or heptahedron , for otherwise 0 would 
induce another such figure in M. Hence M' is regular, 
by the choice of M_ 

By 7.411 there is a r egular chain-group N' on E - {a} 
s uc h that M' = M (N'). For each a tom X of M' we 
selec t a primitive chain g(X) of N' ~ uc h that 11g(X)11 =X. 
For each bEE - {a} we de note the coeffi cient of b in 
g(X) by seX, b). Thus sex, b) is 1 or -1 if bEX, and is 
zero otherwise. 

Let C denote the class of all points T of M' suc h that 
at-OT. 
7.412 C is a linear subclass of M '. 

PROOF: Suppose X, Y, and Z are distinct points of 
M' on a line L of M', and that X and Y belong to C. 
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Then OX, OY, and OZ are distinct points of M on OL, 
and OL is a line of M. But now a;'OX U OY = OL, by 
4.22, and therefore at-OZ. Hence tEC. The propo
sition follows. 

Let X and Y be any two distinct points of M', not 
in C, which are on the same connected line L of M'. 
By 4.22 there exists a cell dEX n Y. We now write 

t(X, Y)=s(X, d)s(Y, d). 

7.413 If X and Y satisfy the conditions just stated, 
then t(X, Y) is uniquely determined. 

PROOF: Suppose this proposition is false for some 
X and Y. Then there are distinct cells d and e of 
X n Y such that 

s(X, d)s(Y, d) =- s(X, e)s(Y, e) 

Without loss of generality we may assume that 

s(X, d)+ s(Y, d) =0, 

s(X, e) + s(Y, e) = ± 2. 

The third point Z on L is the mod 2 sum of X and Y, 
by Hence we have 

Z C 11 g(X) + g(Y)11 CL, 

since e is in 11g(x)+g(Y)llbut not Z, and d is in L but 
not Ilg(X) + g(Y) II. But Ilg(X) + g(Y) II is a flat of 
M', by 5.43. Hence this result implies that dL ~ 2, 
by 4.14, which is contrary to the definition of a line. 
The proposition follows. 

If R = (XI, . . ., X k ) is any nondegenerate path off 
C in M' we write 

k - I 

u(R) = I1 t(Xi, Xi + I) 
i= l 

7.414 If R is any nondegenerate re·entrant path off C 
on M', then u(R) = 1. 

PROOF: We first note that by 6.41, there is a positive 
integer m(R) which is the least number of elementary 
deformations, with respect to C, required to convert 
R into a degenerate path. 

Assume the proposition false. Then we can find 
a nondegenerate re-entrant path Q off C on M' such 
that u(Q) =-1. and m(Q) has the least value consist· 
ent with this condition. 

If m(Q) > 1 we can write either Q = QIVQ2 and 
Q'=QIQ2 or Q'=Q IVQ2 and Q=QIQ2, where Vis an 
elementary re-entrant path with respect to C and 
m(Q') = m(Q) -1 > O. In either case we have 

u(Q) = u(Q) . u(Q'). 

But this is impossible , since u(Q) = u(Q') = 1 by the 
choice of Q. We deduce that in fact m(Q) = 1. In 
other words Q is an elementary re-entrant path wi! :. 
respect to C. 

We must now consider four cases, one for ea-.;h 
kind of elementary re·entrant path. 
Case I. Q is of the first kind. 

We have Q = (X, Y, X) for some points X and Y. 
Hence 

u(Q) = {t(X, Y)}2 = 1. 

Case II. Q is of the second kind. 
In this case we have Q=(X, Y, Z, X), where X, Y, 

and Z are distinct points on the same line or plane of 
M' . 

If they are on the same line L of M', then OX, OY 
and OZ are distinct points on the line OL of M. But 
aEOX U OYu OZ and therefore OL has a fourth point 
(OL - {a} ) . This is impossible since M is binary. 
(5.35). 

We may now suppose that X, Y, and Z are on the 
same plane P of M', but not on a common line. P 
is connected, by 6.24 Let X J, Y I , and Z I be the third 
points on the connected lines YUZ, ZuX and Xu Yof 
M' respectively 

Suppose first that two of the points X J, ft, and Z I 
are on a common line L of M'. There is a cell d of 
P such that L=(P-{d}), by 7.11. It is clear that 
L is not on X, Y, or Z. Hence dEXnYnZ. We 
thus have 

u(Q) = s(X, d)s(Y, d)s(Y, d)s(Z, d)s(Z, d)s(X , d) = 1, 

which is contrary to the choice of Q. 
We conclude that no two of XI, Yt, and ZI are on a 

common line of M'. Any line through one of them is 
therefore on X, Y, or Z, by 5.35. Hence, by 4.26, 
there are six distinct lines on P, each on one of the 
points X, Y, and Z. 

These six lines are mapped by 0 onto six distinct 
lines of M on the plane OP, each being on one of the 
points OX, OY, and OZ and therefore having a as a cell. 
But then there is a seventh line (OP- {a}) on OP, by 
7.11. Accordingly M includes a Fano configuration. 
Case III. Q is of the third kind. 

We now have Q=(X, Y, Z, T, X), where X , Y, Z, and 
T are distinct points on a plane P of M' such that no 
three are on a common line. We can therefore find 
cells bEP - (X U y), CEP - (Y U Z), dEP - (Z U 1), 
and eEP- (TUX). Then b belongs to Z and T but 
not to X or Y, C belongs to T and X but not to Y or Z , 
and so on. 

If the chains g(X), g(y), g(Z) , and g(T) are linearly 
independent we can construct a nonzero linear com· 
bination of them, h say, such that h(b) = h(c) =h(d) 
=0. Then there is a point V of M' contained in Ilhll, 
by 5.43. This point is common to the lines (P - {b}) 
=XUY, (P-{c})=YUZ and (P-{d})=ZUT. 
Hence V = Y = Z. But this is impossible since Y 
and Z are distinct. We deduce that g(x), g(y), g(Z), 
and g(T) are in fact linearly dependent. We thus have 
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tha t is 

o 
s(2, e) 
s(Y, e) 

o 

o 
o 

s(Y, d) 
seX, d) 

s(2, b)s(T, e)s(X, d)s(Y, e) 

seT, e) 
o 
o 

:s(X, e) 

seT, b) 
s(2, b) 

o 
o 

= 0, 

-seT, b)s(X, elsey, d)s(2, e) =0 

It follows from this result that 

u(Q)=t(X, Y)t(Y, 2)t(2, T)t(T, X) = 1. 

Case IV. Q is of the fourth kind. 
In thi s case there is a box on some 3·Rat J of M' 

suc h that the six sides PI, Pt , .. • , Pr; of the box have 
the following properties, Each is on jus t two poi nts 
of C and no two of the P; have more than one point of 
C in com mon. By the de finiti on of a box no three of 
the planes P; are on a co mmo n line. 

h follows that no three of the s ix planes OP; of M 
on eJ have a co mmon line, and that each of the m has a 
as a cell. Moreover eac h line of inte rsec ti on of two 
pla nes ep; is of the form eL , where L is the line of 
intersec tion of the corresponding planes P; in M'. 
L is on some point of M' not in C and the refore eL 
has a as a cell. 

The plane (eJ - {a} ) of M on OJ is thus di s tinc t 
from eac h of the six planes OP; and is not on a ny of 
the ir lines of intersec tio n. Hence M includ es a he pta
hedron. 

In each of the four cases we have deduced a contra
di c ti on, e ither of the hypo th es is of 7.41 or of our 
assumption that 7.414 is fal se. We deduce that 7.414 
is i n fac t valid . 

We ca n partition the se t of points of M' not in C 
into disjoint non-null classes K 1, K2 , ••• , Kq suc h 
that for any two points X and Y of M' off C there is 
a path from X to Y off C in M' if a nd only if X and 
Y belong to the same class Kj . For eac h c lass Kj 

we selec t an arbitra ry re prese ntative T j and write 

For any other point X in Kj we write 

veX) = u(Q)v(T;), 

where Q is any path from T; to X off C in M' . 
This de finition determines the integer v(X) uniquely. 

For suppose Q' is another path from T; to X off C 
in M'. The n 

u(Q) = U(Q- I) = U(Q- I)U(Q')u(Q') . 

= U(Q- IQ' )U(Q' ) 

= u(Q' ), 

by 7.414 since Q- IQ' is re-e ntra nt. 

757- 615 0-65-3 

For each UEM we define a chain f v over th e ring of 
intege rs as follow s . 

S uppose firs t that aEU. If U= {a} we write fda) 
= 1, a nd j i;(b) = 0 whe ne ver b =i' a. If U=i'{a}, then 
U - {a} is a non-null Rat of M', by 4.45. The Rat 
O(U-{a} ) of M is U-{a} or U, and the form er 
alte rnative is rul ed out by Ax iom I. He nce U - {a} is 
a point X of M' not in C. We c hoose fe to agree 
with g(X) in E - {a}, and to sa ti sfy 

j U(A) = veX). 

Suppose next that a¢U. Then U is a Rat of M', 
by 4.45, and eu is U or UU{a}. 

If eu = U, then U is a point of M'. We the n c hoose 
f v to agree with g(U) in E- {a} and to sati sfy 

jU(a) = 0 

If ins tead ()U = U U {a} th e n Uu {a} is a line of M, 
by 4.13, and U is a line of M', by 4.44. Now e ac h point 
on U in M' is mapped bye onto a point of M on UU {a}. 
But the re are at mos t three point s of M on UU {a}, 
by 5.35, and one of these is U. He nce U mu st be a 
di sconn ec ted line of M', hav ing onl y two points X 
and Y. Writ e v=ex and fl7 = ey. The n V=XU{a} 
a nd W = YU {a}, by Axiom I. Thu s f1 a nd I II are 
a lread y defin ed. We take e ith e r ji · or - I r' to be 

j i(a)jil- f11'(a)ji. 

We note th a t for eac h atom U of M we have Ilji,1I = U 
and tha t the coe ffi cients in each j i; are res tri c ted to 
the values 1, - 1 a nd O. Moreo ver the restric tion of 
Iv to E-{a} is a c hain of N'. 
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7.415 Let U, V, and W be the three points on a con· 
nected line L of M. Then j i;, F and iii' are linearly 
dependent. 

PROOF: We di scuss fir s t the case aEL. 
We may suppose a EVU Wand afU, by 7.12. The n 

there are pointsX=V-{a} and Y = W - {a} ofM ' 
suc h that ex = V and eY= W. Write L' = Ln (E - {a}) 
= L- {a}. Then L' is a Rat of M', by 4.45. It c learl y 
sati sfies eL' = L and is the refore a line of M ' . The se t 
U is also a Rat of M', by 4.45. It is e ither the line L' 
or a point of M' on it. 

If U is a point of M' on L' , the n eu = U, and U is 
di stinc t from X and Y. The line L' is thu s connec ted, 
by 4.23. We can define veX) by a path Q off C from a 
representative point T; to X, and the n defin e v( Y) by 
the path Q(X, Y). We the n have 

v(X)v(Y) = u(Q)v(T; ) . u(Q)r(X, Y)v( T; ) = t(X, Y). 

He nce for eac h bEX n Y we have v(X)v(Y) = seX, b)s(Y, b). 
By 7.12 thi s implies 

Ilv(X)g(Y) - v(y)g(x)11 ~ u. 

s ince M' is binary. But th e express ion on the left is 
non-null by Axiom I , and s ince g(U) is a n e le mentary 



chain of N' it follows that 

g(U) =± (v(X)g{Y) - v(Y)g(X)). 

Hence, by the definitions of lv, fv, and fw, we have 

fv=± ifl'(a)fw - fw(a)fv). 

If instead U is the line L' of M' we have OU = Uu {a} 
= L. Then the preceding equation follows at once 
from the definition of fv. The required linear depend
ence is thus established for the case aEL. 

Now suppose a¢L. It may happen that L is a line 
of M' so that OL = L. Then U, V, and Ware flats of 
M', and therefore points of M' on L, by 4.14. There 
is a linear relation between g(u), g(v), and g(w), as 
we may see by applying 2.31 to the regular chain
group N' X L. A corresponding relation holds be
tweenfv,!v, andfw. 

In the remaining case L is a flat, but not a line, of 
M', by 4.45. Then OL =Lu {a}, and OL is a plane of 
M. It is a connected plane since some point X of 
M' on L must satisfy aEOX. (See sec 4.4.) By 4.26 
there are connected lines Lv, Lv and Lw on OL, dis
tinct from L, which are on U, V, and W respectively. 

We can choose these lines to have no common point. 
For suppose T is such a common point. There is a 
point T', distinct from T and U, on Lv. By 4.26 there 
is a connected line L', distinct from Lv, on OL and 
T'. Without loss of generality we may suppose L' 
to meet L in V, by 5.35. Replacing Lv by L' we obtain 
three lines of the kind required. 

Write X= (LvnL w/, Y= (LwnLv/ and Z 
=(LvnLv/. We note that (OL-{a})=L, by 7.11. 
Hence aEXn Ynz. We may therefore apply the result 
already proved to Lv, Lv, and L w, and obtain 

fv = ± (fy(a)fz - fz(a)fy) , 

fv =± (fz(a)fx - fx(a)fz) , 

fw =± (fx(a)fy- fy(a)fx). 

Thus fv, fv, and fw are linearly dependent in this case 
also. This completes the proof of 7.415. 

The preceding result shows that the chains fv cor
responding to the atoms of M satisfy the conditions of 
5.11. They therefore generate an integral chain
group N such that M = M(N). But the coefficients in 
each fv are restricted to the values 1, -1 and O. 
Hence the fv are primitive chains of N. It follows 
that N is a regular chain-group and M is a regular 
matroid. We have thus completed the proof of 7.41. 

7.5. Characterization of Regular Matroids 

Combining the results 5.53, 7.21, 7.31, and 7.41 we 
have the theorem. 
7.51 A binary matroid M is regular if and only if it 
has no minor of Type BI or BII. 

An equivalent condition is that M shall include 
no Fano configuration or heptahedron. 
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We may also apply 5.26 and 5.23 to obtain the fol- I 
lowing rule. 
7.52 A binary matroid M is non-regular if and only I 
if some standard representative matrix K of M has a I 
sub matrix J such that either J or its transpose is of the 
foLLowing form, to within a permutation of columns. 

In one respect the preceding theory is incomplete: 
we still need a convenient algorithm for determining 
whether a given binary matroid is regular. 

8. The Matroid and the Atom 

8.1. General Matroid 

In this chapter we suppose given a matroid M on a 
set E, and we fix some atom Y of M. We discuss 
theorems concerned with the relationship of Y to the 
rest of the matroid. 

We refer to the elementary separators of M· (E- Y) 
as the bridges of Y in M. Such a bridge is trivial 
if it contains no atom of M· (E - y), and monatomic 
if it contains just one. A trivial bridge of Y consists 
of a single cell of E - Y contained in no atom of 
M . (E - y), and every such cell of E - Y defines a 
trivial bridge of Y. A nontrivial bridge of Y in M is 
thus a flat of M . (E - Y). 
8.11 d(M· (E - Y))= dM-1. 

PROOF: Since d(M X Y) = dY = 0 this follows from 
3.54 
8.12 Suppose SCE- Y and let d be an integer 
~ -i. Then S is {f d-flat of M· (E - Y) if and only if 
SUY is a (d+ iNlat of M. 

PROOF: Suppose 5 is a flat of M· (E - Y). Then 
each atom of M . (E - Y) on 5 is the intersection with 
E - Y of an atom of M contained in 5 U Y. Hence 
5 U Y is a union of atoms of M, that is a flat of M. 

Conversely suppose 5 U Y is a flat of M. Each cell 
of 5 belongs to an atom of M on 5 U Y and therefore 
to an atom of M· (E - Y) on 5, by 1.11 and the defini
tion of a reduction. Hence 5 is a flat of M . (E - Y). 

To complete the proof we observe that 

d((M' (E - Y)) X 5) = deeM X (5 U Y)) . 5) 

= d(M X (S U Y)) -1, 

by 3.333 and 8.11. 
8.13 Let 5 be a connected flat of M . (E - Y). Then 
the only possible non-trivial separators of M X (5 U Y) 
are 5 and Y. Moreover 5 and Yare separators of 
M X (5 U Y) if and only if 

(M' (E- Y)) xS=M X S. 



PROOF: Let Z be a separator of M X (S U Y). Then 
either Y~Z or Ynz=cp. Moreover ZnS is a sepa· 
rator of (M X (S U Y)) . S, by 3.43, and this matroid is 
(M· (E- Y)) xS, by 3.334. Hence S~Z or snz=r:/J, 
by hypothesis. Accordingly Y and S are the only 
possible nontrivial separators of M X (S U Y). 

The necessary and sufficient condition for Sand 
, Y to be separators of M X (S U Y) is 

(Mx(SUy)) 'S=(MX(SUy))XS, 

by 3.42. This is equivalent to the condition stated 
in the enunciation, by 3.331 and 3.333. 

In what follows we shall be concerned only with 
binary matroids, and we do not pursue the general 
theory any further. 

8.2. Binary Matroid 
From now on we suppose M binary. If ZEM· (E-Y) 

the n YUZ is a line of M, by 8.12. If it is connected 
it has just two points other than Z, by 5.35. Their 
intersections with Yare complementary non· null sub· 
sets T and U of Y, by 7.12. We call these subsets 
the primary segments of Y determined by Z. The 
unordered pair {T, U} is the partition of Y deter· 
mined by Z. If YuZ is not connected it has only two 
points Y and Z . In this case it is co nve nient to say 
that the partition of Y determined by Z is {V, r:/J}, and 
that the corresponding primary segments are Y and r:/J. 

Let B be any bridge of Yin M. If there is an atom 
of M· (E - Y) on B we make the following defi nition. 
A segment ofY determined by B, briefly a "B.segment" 
of Y is a minimal non·null intersec tion of primary seg
me nts of Y determine d by atoms of M· (E - Y) on B. 
If B is trivial we say that the only B·segment of Y is 
Y itself. Evidently we have 
8.21 The B-segments o/Y are disjoint non·null subsets 
ofY whose union is Y. 

The class of B-segments of Y is the partition of Y 
determined by B. We denote it by 7T(M, B, Y). 

Two bridges BI and B2 of Yin M will be said to avoid 
one another if there exists SIE1T(M, Bt, Y) and 
S2E7T(M, B2, Y) such that SI US2 = Y, and to overlap one 
another in the contrary case. 

The atom Y is bridge.separable in M if its bridges can 
be classified in two disjoint classes P and Q so that 
no two bridges belonging to the same class overlap. 
In an extreme case Y may have no two bridges which 
overlap. We then say Y is totally bridge-separable 
in M. 

We call a binary matroid M an even matroid if every 
atom is bridge·separable. 

The following examples may clarify our terminology. 
Consider a binary matroid of Type BI. This is the 

matroid of a binary chain-group N which, with an ap· 
propriate enumeration of cells, has the following stand· 
ard representative matrix. 
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o 

1 

1 

1 

o 
1 

Let us denote the cell correspo nding to the / h column 
byaj. 

We take Yto be the atom {a3, a5, as, a7} correspo nd· 
ing to the third row of K. Then E - Y = {ai, a2, a4}. 
(See 5.22.) 

It is clear that the only nonzero chains of N . (E - Y) 
are those with representative vectors (1, 0, 1), (0, 1, 1) 
and their sum (1, 1, 0). Moreover these three chains 
are elementary. Accordingly the matroid M· (E - Y) 
= M(N . (E - Y)) has just three atoms {ai, ad, {a2, a4} 
and {ai, a4}. (See 3.31.) 

We observe that M · (E- Y) is connected. Hence 
{ai, a2, a4} is the only bridge of Yin M. Accordingly 
Y must be classed as bridge·separable. 

It can be verified that all seve n atoms of Mare 
bridge·separable. Indeed they are all equivalent 
under the symmetry of th e Fano configuration. He nce 
the matroids of Type BI are eve n. 

In our example the se ts {ai, a4}UYand {a2, a4}UY 
are lines of M, by 8.12. They are on points correspond· 
ing to the first and second rows of K respectively. We 
deduce that they determine the partitions {{ a3, as}, 
{a6, a7}} and {{a3, a6}, {a5, a7}} of Y respectively. 

Considering the intersections of these four primary 
segments we see that 

Next we discuss binary matroids of Type BII. Such 
a matroid M corresponds to a binary chain-group N 
with the following representative matrix K, by 5.23. 

K= 

1 000 1 1 0 

o 1 000 1 1 

o 0 1 0 101 

000 1 111 

Again we enumerate the cells as ai, a2, ... , a7, In 

the order of the columns of K. 
We take Y to be the atom {a4, a5, as, a7} correspond

ing to the last row of K. Now each of the sets {al}, 
{ad and {a3} are domains of c hains of N·(E-Y). 
Hence these three sets are the only atoms of M . (E - y), 
by Axiom I. Accordingly they are also the ele mentary 
separators of M· (E - y), that is they are the three 
bridges of Yin M. 

The line Yu {ad of M is on a point corresponding 
to the first row of M. We deduce that the atom {al} 
of M· (E - Y) determines the partition {{a4, ad, 
{a5, a6}} of Y. Since {ad is a monatomic bridge of 



Yin M we thus have 

Similarly 

Tr(M, {az}, Y) = {{a4, as}, {a6, a7}}, 

Tr(M, {a3}, Y) = {{ a4, a6}, {a5, a7}}' 

Inspection of these formulae shows that the three 
bridges of Y in M are mutually overlapping. Hence 
Y is not bridge-separable and the binary matroid M is 
odd, that is not even. 
8.22 Every binary matroid of Type BII is odd. 

8.3. Kuratowski Graphs 
We now show the application of our terminology to 

certain matroids associated with graphs. 
Suppose first that G is the cOIl!plete 5-graph shown 

in figure 5B. We use the notation for it given at the 
end of chapter 5. 

Let M be the polygon-matroid of G, so that atoms of 
M correspond to polygons of G. In particular there 
is an atom 

Y = {L I2 , L 23 , L34 , L45 , Lid 

of M corresponding to the outer polygon in figure 5B. 
Now M . (E - Y) is the polygon matroid of G X (E - y), 

by 3.372. In this graph the polygon G· Y has been 
replaced by a single vertex v, and each cell of E - Y has 
become a loop whose ends coincide in v. Accordingly 
each cell of E - Y constitutes by itself an atom of 
M· (E - Y). It also constitutes an elementary sepa
rator of M· (E - Y), by Axiom I. We deduce that 
there are just five bridges of Y in M, namely the sets 

Considering the triangle defined by LIZ, L23 , and 
LI3 we see that {L I3 } determines the partition {{LIZ, 
L23 }, {L34 , L45 , L 15 } } of Y. Hence, using the symmetry 
of G, we have 

Tr(M, {L I3 }, Y) = {{LIz, L23 }, {L34 , L45 , LIS}}' 

Tr(M, {LZ4 }, Y) = {{L 23 , L34 }, {L45 , L 15 , L 12 } }, 

and so on. 
Inspection of these formulae shows that {L I3 } 

overlaps {L24 }, {L24 } overlaps {L3s} , {L3s} overlaps 
{L I4 }, {L I4 } overlaps {L25 } and {L25 } overlaps {L I3 }. 
It is thus impossible to arrange these five bridges in 
two classes so that no two members of the same class 
overlap. Thus Y is not bridge-separable. 

Next let G be a Thomsen graph as shown in the 
second diagram of figure 5B. A similar analysis 
applies. 

We write M=P(G) and take Y= {L II , L21 , L22 , D12, 
L:I:I, L I3 }, corresponding to the outer polygon of the 

- l 
I 

diagram. Then we find that {Lid, {LZ3 }, and {DII} I 
are the three atoms of M . (E - Y) and the three bridges 
of Y in M. Considering the quadrilaterals such as I 
al b l a2 b2 we arrive at the following partition formulae. I 

Tr(M, {Ld, Y) = {{LII, L21 , Ld, {L32 , L3:1, L I:I}}, 

Tr(M, {L23 }, Y) = {{LZ2 , L32 , L33 }, {L I3 , L II , Lzd}' 

Tr(M, {L31 }, Y) = {{L33 , L 13 , Lid, {L21 , LZ2 , L3Z}}' 

We see from these formulae that the three bridges 
are mutually overlapping. Hence Y is not bridge
separable. 

We say that a matroid is of Type KI or KII if it can 
be interpreted as the polygon-matroid of a complete 
5-graph or a Thomsen graph respectively. We sum 
up the results of the present section in the following 
theorem 
8.31 Every matroid of Type Kf or Kif is odd. 
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8.4. Skewness 
In this section M denotes an arbitrary binary 

matroid and Y denotes an atom of M. 
We say that an atom Z of M . (E - Y) cuts a subset 

5 of Y if it determines a partition {T, V} of Y such that 
5 n T and 5 n V are both non-null. 
8.41 The points of M . (E - Y) which do not cut a 
given subset 5 of Y constitute a linear subclass of 
M· (E-Y). 

PROOF: Let ZI, Zz, and Z:1 be the three points on 
some connected line L of M· (E - Y). Suppose Z I 
and Zz do not cut S. Then each point on the lines 
Y U ZI and Y U Z2 of M either contains 5 or does not 
meet S. That is it does not "cut" 5 in the sense of 
section 4.3. 

Let X3 be any point of M, other than Y, on the line 
YuZ3 • There is a line L' of M on X3 and the plane 
YU L which is not on Y, by 4.15. This line meets 
YUZ I and YUZz in two distinct points of M, by 4.171. 
Hence X3 either contains 5 or does not meet 5, by 
4.31. It follows that the point Z3 of M . (E - Y) does 
not cut S. 

We say that two points Z and Z' of M . (E - Y) are 
skew with respect to Y if they determine partitions 
{T, V} and {T', U'} of Y such that the intersections 
Tn T', Tn V', V nT' and V n V' are all non-null. 

We extend this definition by saying that two bridges 
Band B' of Yin M are skew if there are points Z and Z' 
of M· (E - Y), skew with respect to Y, which are on 
Band B' respectively. We also say that a point Z of 
M . (E - Y) is skew to a bridge B of Yin M if there is a 
point Z' of M· (E - Y) on B which is skew to Z. 
8.42 Let B I, B2 and B3 be distinct bridges of Y in M 
such that B2 is skew both to BI and to B3. Then either 
there is a point Z2 of M . (E - Y) on B2 which is skew to 
both Bland B3 or there are points Z I and Z3 of M . (E - Y) 
on BI and B3 respectively such that Zt, B2, and Z3 are 
mutually skew. 

PROOF: There are points Z I, z.;, Z~;, and Z;l of 
M· (E- Y), on B I, B z, B2, and B:1 respectively, such 
that ZI is skew to Z~ and Z~ is skew to Z:l. If ZI and 



Z3 are skew the second alternative of the theorem 
holds. 

I In the remaining case Z, and Z3 determine parti
tions {S" Td and {53, T3 } of Ysuch that T,nT3 =1>, 
that is T, cS3 and T3 CS,. 

Now Z""[ cuts T" Z~ cuts TJ, and B2 is a connected 
I flat of M . (E - Y). Hence, by 4.37 and 8.41 there is a 
point Z2 of M· (E - Y) on Bz cutting both T, and Tl. 

I But then Zz is skew to both Z, and Z3, that is to both 
B, andB3• 

Let B be any bridge of Yin M. We call it an n-bridge 
of Y, where n is an integer, if 

17T(M, B, Y)I = n. 

I Two n·bridges B, and B2 of Yin Mare equipartite if 

7T(M, B" Y)=7T(M, B" Y) 

I 8.43 Let B be a 2-brid~e or 3-bridge of Y in M, and 
. suppose WE7T(M, B, Y). Then there is a point Z of 
' M . (E - Y) on B which determines the partition 
I {W, Y- W} ofY. 
I PROOF: If B is a 2-bridge this result follows at once 

from the definitions . We may therefore write 7T(M, 
B, Y) = {U, V, W} . There is a point of M· (E - Y) 
on B which cuts UU Wand another which cuts VU W. 
Hence, by 4.37 and 8.41 there is such a point Z which 
cuts both. This can only determine the partition 
{W, UU V} of Y. 

The next theorem shows the relation between skew· 
ness and overlapping for bridges. 
8.44 Let B, and B2 be overlapping bridges of Yin M. 
Then either BI and B2 are skew or they are equipartite 
3-bridges. 

PROOF: Assume B, and Bz are not skew. 
Le t Z, be a point of M· (E- Y) on B, determining 

a partition {S, T} of Y. Suppose 5 and T each meet 
more than one member of 7T(M, B z, Y). Then 5 and 
T ~re each cut by some point of M . (E - Y) on B2 , and 
therefore there is one such point which cuts both of 
the m, by 4.37 and 8.41. But then B, and Bz are skew, 
contrary to assumption. We deduce that one of 5 
and T must be contained in a member of 7T(M, B z, Y). 

Suppose B, is a 2-bridge or 3-bridge. Then if 
WE7T(M, B" Y) we can apply the preceding result with 
W=S and Y-W=T, hy 8.43. We find that there exists 
Um(M, B2, Y) such that either WCV or Y-WCV. 
The second alternative must be ruled out since it 
implies WU V = Y, contrary to the hypothesis that 
B, and B2 overlap. We deduce further that B, is not 
a 2-bridge since then Y-WE7T(M, B" Y) and both 
alternatives are ruled out. 

Suppose B, is a 3-bridge. Write 7T(M, B" Y) 
= {V, V, W}. Then by the above reasoning there am 
members V', V', and W' of 7T(M, B z, Y) such that 
UCV', VCV', and WCW'. These three B2-segments 
are distinct. If for example we had V' = V' it would 
follow that V' U W = Y, contrary to hypothesis. It 
follows that B, and Bz are equipartite 3-bridges. 

We have still to consider the case in which B, is an 
n-bridge, with n ;3 4. 
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Let WI, W z, W 3 , and W 4 be distinct members of 
7T(M, B" Y). Using 4.37 and 8.41 we find that there is 
a point Z of M· (E - Y) on B, which cuts both WI U W2 

and W3 U W4 • It determines a partition {S, T} of Y 
such that W, and Wz are in different sets 5 and T, as 
are also W3 and W4 • 

By the first part of the proof we can find V 'E7T(M, 
Bz, Y) such that lj' contains two of the given four B,
segments. Let W' be a membe r of 7T(M, B z, Y) con
taining the greatest possible number k of B,-segments. 
(k;3 2). 

Suppose there are at least two B,-segments not in 
W'. Then by the result just proved for four B,-seg
ments WI, W z, W 3 , W 4 it follows that some point of 
M· (E - Y) on B, determines a partition {S, T} of Y 
such that 5 and T each meet both W' and Y - W'. 
Since some member of 7T(M, B z, Y) must contain 5 
or T we have a contradiction. We are forced to con
clude that there is at most one B ,-segment which is 
not contained in W'. But then B, and B2 avoid one 
another, contrary to hypothesis . 

This completes the proof of the theorem. 

8.5. Segments Determined by Bridges 
This section deals with some auxiliary results to be 

used in later proofs. They enable us to go from Y to 
another atom of the binary matroid M, or to replace 
M by one of its minors. 
8.51 Let 5 be a subset of E, and Let X be an atom of M 
such that X n 5 is non-nuLL. Then X n 5 is a union of 
disjoint atoms of M . S. 

PROOF: Let N be the binary chain-group such that 
M = M(N). Then M . 5 = M(N . 5), by 3.31. But 
xnS is the domain of a chain of N· S. The theore m 
now follows from 5.32. 
8.52 Let B be a bridge of Y in M. Then the B-seg
ments of Y in M are the minimaL non-nuLL intersections 
of atoms of(M X (B U Y)) . Y. 

PROOF. Let the class of minimal non-null inter
sections of atoms of (M X (B U Y)) . Y be denoted by J. 
The members of J are disjoint and their union is Y, by 
1.1l. 

Let a be any cell of Y. It is contained in a unique 
B-segment Vof Yand a unique member W of J. 

Consider an atom Z of M . (E ~ Y) on B determining 
a partition {S, T} of Y, where aES. Since SUZ is an 
atom of M X (B U y), by 8.12, unless S = Y, it follows 
that WcS. Since this result must hold for all choices 
of Z we-have WcV. 

Suppose wis not the whole of U. Then there is 
an atom X of M X (B U Y) which cuts V, in the sense 
of section 4.3. Choose such an X so that IB nXI has 
the least possible value. 

Assume BnX is not an atom of (M X (BUY)) . B. 
Then there is an atom Z of this matroid such that 
Z c.B UX, and there is an atom X' of M X (B U Y) such 
that X' n B = Z. By the choice of X the set X' does 
not cut V. 

Consider the mod 2 sum X + X'. Clearly it cuts V. 
But it is a union of disjoint atoms of M X (B U y), by 



5.34, and one of th ese must c ut U. This is contrary 
to the c hoice of X. 

W e dedu ce that B nx is in fa c t an atom of 
(Mx(BUy))·B, that is (M·(E-y))xB, by 3.334. 
Hence B nx is an atom of M . (E - Y) on B. But then 
X does not cut U, by the definition of a B·segme nt. 

From this contradiction it follows that in fact W = U. 
Since this result holds for all choices of a the theorem 
follows. 
8.53 Let B be a bridge of Y in M, and 5 a subset of E 
such that B U YC:;;;S. Then B is a bridge ofY in M X 5, 
and 

1T(M X 5, B, Y) =1T(M, B, Y). 

PROOF: We have 

(M X 5) . (5 - Y) = (M . (E - Y)) X (5 - y), 

by 3.334. Hence B is a separator of (M X 5) . (5 - Y), 
by 3.43. Moreover 

((M. (E- Y)) X (5- Y)) xB=(M· (E- Y)) x B, 

by 3.331, and this matroid is connected. Hence B is a 
bridge of Yin M X S. Since 

(M X 5) X (B U Y) = M X (B U Y), 

by 3.331, the theorem now follows from 8.52. 
8.531 Let B be a bridge of Yin M. Let 5 be a subset 
of E such that BU Yc:;;;S and no ZEM· (E- Y) is a subset 
of E - S. Then YEM· 5, B is a bridge ofY in M . 5, and 

1T(M· 5, B, Y) = 1T(M, B, y). 

PROOF: We have 

(M . 5) . (5 - Y) = (M . (E - Y)) . (5 - Y), 

by 3.332. Hence B is a separator of (M . 5) . (5 - y), 
by 3.43. Moreover 

((M· 5) . (5 - Y)) . B = (M . (E - Y)). B, 

by 3.332, and thi s matroid is connected. Hence B is 
a bridge of Y in M· 5, provided that Y is an atom of 
M · S. 

Suppose some atom X of M X ((E - 5) U BUy) mee ts 
E-S. Then some ZEM · (E- Y) mee ts E-S and 
satisfies 

Z C:;;;Xn(E - y)C:;;;(E -5) UB, 

by 1.11 . But then ZC:;;;E-S, since B is a separator of 
M· (E - Y), and this is contrary to the definition of S. 
We deduce that 

(M· 5) X (BUy) 

=(Mx((E-S)UBUy))· (BUY), 

by 3.333, 

= (M X (B U Y)) . (B U Y) 

= M x(BUY). 

We note that thi s implies YEM . S. An application of 
8.52 completes the proof. 
8.54 Let B be any bridge of Yin M. Let 5 be a subset 
of E such that E-YcS . Then SnYEM·S, B is a 
bridge of 5 n Y in M· 5, and 

1T(M . 5, B, 5 n Y) 

is the class of all non-null intersections with 5 of I 
members of 1T(M, B, y). 

PROOF: There exists Y'EM · S such that Y'c5nY. 
Moreover there exi sts Y"EM such that Y" n-S = Y'. 
But the n Y"C:;;;Y. Hence Y" = Y and SnY=Y'EM·S, 
by Axiom 1. 

We have 

(M . 5) . (5 - (5 n Y)) = M . (5 - (5 n Y)) = M . (E - y), 

by 3.332. Hence B is a bridge of 5 n Y in M · S. 
Moreover 

((M . 5) X (B U (5 n Y))) . (5 n Y) 

= (M X (E- (5 - (BU Y)))) . Sn Y) 

= ((M X (B U Y)) . y) . (5 n Y), 

by 3.332 and 3.333. The theorem now follows from 
8.51 and 8.52. 
8.55 Let Bl and B2 be distinct bridges of Y in M. 
Let Z be a point of M . (E - Y) on B 1 determining a 
partition {S, T} of Y where 5 and T are non-null. Let 
Y' be the point 5 u Z of M' Then the following prop
ositions hold. 

(i) T is an atom of M . (E - Y' ). 
(ii) There is a bridge B ' ofY' in M such that B2 C:;;;B' . 
(iii) If T is contained in some WE7T(M, B2 , y), then 

B2 =B'. Moreover 1T(M, B', Y') differs from 1T(M, 
B2 , Y) only in the replacement of W by (W - T) U Z. 

(iv) If T is contained in no member of 1T(M, B2 , y), 
then Tc:;;;B'. Moreover each member of 1T(M, B', Y') 
is then contained either in Z or in a member of1T(M, B2 , 

Y). 

PROOF: Since Zu T is an atom of M there is an atom 
T' of M· (E - Y' ) suc h that T' c:;;; T. There is an atom 
X of M such that Xn(E- Y') = T'. But then X is a 
point of M on the line Y ' U T = YUZ. Since the only 
points on this line are Y, SUZ and TUZ we have 
X = TUZ and T' = T. This establishes (i) . 
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We have 

(M· (E - Y' )) . B2 = (M . (E - Y)) . B2, 

by 3.332. As the expression on the right represent s 
a connected matroid we deduce that B2 is contained 



in so me ele me ntary separator B' of M· (E - Y' ), by 
3.46. Then B' is a bridge of Y' in M suc h that B2 C B'. 
This es tabli shes (ii). 

To prove (iii) assume that T is contc:ined in some 
WE7T(M , B2, y). Le t Z] be any atom of M . (E - Y') on 
B' which meets Bt . 

The re is an atom X of M X (B' U Y) such that X n B' 
= Z]. Thus X is an a tom of M meeting B2 • It follows 
that there is an atom Zt of M . (E - Y) such that Zt n B2 
is non·null and Z2CXn(E- Y), by 1.11. Clearly Zt 
is on B 2• We thus have 

Z2 determines a partition {St, Ttl of Y, and by our 
assumption we may suppose TCTt . The se t St UZ t 

is an atom of M which meets Bt and the refo re B' . 
He nce th ere is an atom Z:l of M . (E - Y') on B' suc h 
that Z ;J C(Z2US2)n(E - Y'). But S2 does not meet 
E-Y' since T CTt . Hence Z:ICZtC Z] . 

Applying A~iom J to M ·(E - -Y') we find that 
ZI = Z2 = Z ;J. We ded uce th at Bt is a se parator of 
(M· (E - Y')) X B' . He nce Bt = B', by 3.44. We note 
further that 

(M · (E- Y')) X Bt 

=(M' (E - Y' ))· Bt 

=(M· (E- Y)) . Bt 

= (M . (E - Y)) X Bt , 

by 3.332 and 3.42. He nce M . (E - Y) a nd M . (E - Y') 
have the same atoms on B2 • 

I[ one such atom Zo de termines a partition {So, To} 
of Y, with TC To, th e n it de termines th e partition 
{So, (To-T)UZ} of Y'. For the point SoUZo is on 
both YUZo and Y' UZo. These results es tablis h (iii). 

Now le t us assum e that T is contain ed in no me mber 
of 7T(M, Bt , Y) , and di scuss proposition (iv). 

There is an atom of M X (B t U Y) wh ic h cuts T in the 
.se nse of section 4.3. Hence there is an atom ZI of 
M . (E - Y') whic h cuts T in this se nse and sati sfies 
ZI C(B2 Uy)n(E-Y' )C B'UT. Since TEM . (E-Y'), 
by (i), it follows that Z I meets both B' and T. He nce 
T C B' , by 3.48. 

Now Z is the int ersec tion of Y' with an atom Zu T 
of M X (B' U Y'). He nce it is a union of me mbe rs of 
7T(M, B', Y') by 8.51 and 8.52. 

Again, let Zo be any atom of M . (E - Y) o n Bt , de· 
te rmining a partition {So, To} of Y. The n 5 nso is 
the intersection with Y' of the atom SoUZo of 
M X (B' U Y'), since TC B'. Hence 5 nSo and similarly 
5 n To a re unions of members of 7T(M, B', Y) , by 8.51 
and 8.52. Since this is true for eac h choice of Zo 
proposition (iv) follows. 

8 .6. Regular Matroid 

We conclude t hi s c hapte r with so me theore ms abo ut 
binary matroid s with no minors of one of the types Bl 

and BII. These are all true for regular matroids, by 
7.51. 
8.61 Suppose M has no minor of Type BI. Let ZI 
and Z2 be points on a connected line L of M . (E - Y). 
Then Z] and Z 2 are not skew with respect to Y. 

PROOF: L U Y is a pl ane P of M, by 8.12. It includes 
three distinc t lin es YUZ I, YUZ2, and YUZ:l of M, 
where Z3 is the third point of M· (E- Y) on L , by 8.12. 

Assume ZI and Zt skew . They determin e palti· 
tions {51, T I } and {52, T2 } of Y respec t ively. Th ere 
are cells aES] ns2 , bESI n T2 , cETI ns2 , and dETI n T2 . 

The Rats (P - {a} ), (P - {b}), (P - {c}), and 
(P- {d}) are lines on P whic h are not on Y, by 4.13. 
It is eas ily see n that th ey are di s tinc t. For exa mple 
(P '- {a}) is th e on ly one whi c h is on th e two points 
ZIUTI and Z 2 UT2 of M. 

We see that there are se ve n di s tin c t lin es on P. 
Thus M includes a Fano configuration, whi c h is con· 
trary to hypothesis, by 7.21. 
8.62 Suppose M has no minor oj'Type BI. Let B be 
any non·trivial bridge of Y in M, and let W be any 
member oj'7T(M, B, Y) . Then there exists ZEM· (E- Y) 
on B determining the partition {W, Y - W } oj' Y. 
(Compare 8.43). 

PROOF: Let a be a ny cell of Y. Let U be a subse t 
of Y suc h that aEU, so me ZEM . (E - Y) on B deter· 
mines th e partition {U, Y -U} of Y, and lU I has th e 
leas t value co nsiste nt with th ese conditions. 

Ass ume there is a W E7T(M, B, Y) suc h th a t W n U 
is a non·null proper subset of U. Th en the re exi sts 
XEM X (B U Y) such that X n U is a non-n ull prope r 
s ubse t of U. Clearly XU Y is a co nnec ted Rat of 
M X (B U Y). By 4.31 and 4.34 we can find a point 
X' of M X (B U Y) on Xu Y whic h c uts V in the sense 
of sec tion 4. 3 a nd has the property that X' U Y is a 
co nnec ted line of M X (B U Y) . Th en X' - Y is a point 
of M . (E - Y) on B, by 8.12. it de termines the palti· 
tion {X' n Y, Y - X'} of Y, and so cuts V in the se nse 
of section 8.4. 

By 4.34 and 8.41 we can find Z' EM . (E - Y) on B 
which cuts V and is such th atZUZ' is a co nn ected line 
of M· (E - Y) . By 8.61 Z' dete rmines a partition 
{S, Y -S} of Y such that ScV. By th e definition of 
Vwe have aEV-S. 

Choose bES. By 8.12 the se t YUZuZ' is a plane 
P of M. The line (P-{b}) of M is on the points 
Z U (Y - U) and Z' U (Y - S) of M. Since these are 
distinct and not disjoint their mod 2 sum, Q say, is 
also a point of M on (P - {b} ), by 5.34 and 5.35. But 
the mod 2 sum of Z and Z' is the third point of M· (E-Y) 
on the connected line ZUZ'. [t de te rmines the 
partition 
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{QnY, Y - Q} = {V - S, Y- (V-S )} 

of Y. But thi s contradicts the definition of V. 
W e deduce from this contradic tion that V is itself 

a member of 7T(M , B, Y) . Since a may be any cell of 
Y the theorem follows. 
8.63 Suppose M has no minor oj' Type BI, and that 
dM ~ 2. Then there is an atom Y of M which has two 
distinct bridges in M. 



PROOF: Assume the theorem false. Choose XEM. 
Then E - X is a bridge of X in M. It is nontrivial 
since dM ~ 2. 

Choose WE1T(M, E-X, X). There exists ZEM . (E-X) 
determining the partition (W, X - W) of X, by 8.62. 
Then XUZ is a line of M, possibly disconnected, and 
ZU(X-W),=Y say, is a point of M. Since dM ~ 2 
the set E - (X U Z) is non-null. 

W is a point of M· (E - y), by 8.55. Suppose 
Z' EM· (E - Y) and Z' n W is non·null. Then there 
exists VEM such that Z'=Vn(E-Y). Then vnW 
=Z'nw. Hence Wc:;:;,Z' since Werr(M,E-X,X), and 
therefore W=Z' by Axiom I. 

It follows that W is a separator of M . (E - Y). But 
(E - Y) - W = E - (YUZ) '" cp. Hence there are at 
least two bridges of X in M, one being W. 
8.64 Suppose M has no minor of Type BlI. Let ZI, Z2 
and Z3 be points of M . (E - Y) on distinct bridges B I, 
B2 and B3 respectively ofY in M . Let Zj determine the 
partition {S;, Td ofY. (i=l, 2, 3). Then if 53 meets 
both 51 n 52 and TI n T2 it contains one of the sets 
51 n Tz and 52 n TI. 

PROOF: Suppose the theorem false. Then we can 
choose K = {a, b, c, d, e, j; g} c:;:;,E such that aEZ!, bEZz, 
CEZ3, dES l nS2 ns:J, eETlnT2nS:J,fE(SlnT2)-S3, and 
gE(Sz n T I) - 53. 

In the matroid M· (E-Y) the sets Z IUZ2, Z2UZ3 , 

and Z 3 UZ I are disconnected lines, by 4.24. Moreover 
ZI UZ2UZ3 is a plane since there are only three disjoint 
points on it. ({a, b, c} is a dendroid of MX(Z IUZ2 
UZ3)). Hence YU(ZI UZ2UZ3) is a 3·flat .J of M, 
by 8.12. 

There are points of M on J whose intersections 
with K are {a, d,}}, {a,g, e}, {b, d, g}, {b, e,}}, {c,f,g}, 
{c, d, e}, and {a, b, c}. For example (ZIUSdnK 
= {a, d,}}, and similar verifications may be made for 
the next five intersections. As for {a, b, c} we observe 
that 

ZI U TI C ZI U TI U Z2 U T2 

cZI UTIUZ2UT2UZ3 UT3C J. 

Hence ZI UTI UZ2UT2 is a line of M, by 4.14. Its 
points are Z, U T!, Z2 U T2 and their mod 2 sum, Q 
say. We have QnK= {a, b, f, g}. Moreover 
ZIUTIUZ2UT2UZ3UT3 is a plane P of M on E, by 
4.14. The line (P - {e}) of M is on the points Z3 U T3 
and Q. As these two distinct points have a common 
cellf their mod 2 sum, R say, is the third point of M on 
(P- {e}). But R nK= {a, b, c}. 

Considering the seven intersections with K set out 
above we see that each cell of K occurs in just three 
of them and that no two have two cells in common. 
Hence given any three cells x, y, and z of K we can find 
a point of M on J which includes x but not y or z. It 
follows that no three of the planes U - {x}), xEK, 
have a common line; we can find a point on any two 
of them which is not on the third. 

Hence these seven planes on J are distinct and 
define a heptahedron. This is contrary to hypothesis, 
by 7.31. 
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9. Graphic Matroids 

9.1. Bonds 

We consider the group N of coboundaries of a graph 
G over a commutative ring R, with a unit element and 
no divisors of zero. As explained in section 2.5 1 
M(N) is the bond·matroid B(G) of G, and is independent 
of R. I 
9.11 Let f be any O-chain on Gover R. Let H be any 
component of the spanning subgraph G: (E(G) -110111 
of G. (See sec. 3.1.) Then the vertices of H have I 
equal coefficients in f. 

PROOF: Suppose the contrary. Then some edge 
A of H has ends with different coefficients in f. But 
then AEIIOf1I, by the definition of a coboundary, which 
is contrary to the definition of H. 
9.12 Let g be an elementary chain of N. Then there 
are distinct components Hand K of G: (E(G) -II gil) 
such that each edge of Ilgll has one end in V(H) and 
one in V(K) . 

PROOF: Write g=of. Let A be any edge of Ilgll· 
Its ends x and y have unequal coefficients hand k 
respectively in f. Let Hand K be the components of 
G :(E(G) -llgl J) containing x and y respectively. They 
are distinct, by 9.11. 

Let fH be the O-chain in which the members of V(H) 
have coefficient 1 and all other vertices of G have 
coefficient o. Then IlofHl1 c:;:;, IloJ11 = Ilgll and therefore 
II0ji,II = Ilgjl since g is elementary. We deduce that 
each edge of 111511 has one end in V(H) and similarly 
one end in V(K). 
9.13 A set Yc:;:;,E(G) is an atom of M(N) if and only if 
there are components Hand K of G: (E(G) - Y) such 
that each edge of Y has one end in V(H) and one in 
V(K). 

PROOF: If YEM(N) the above condition is satisfied, 
by 9.12. 

Conversely suppose G: (E(G) - Y) has components H 
and K with the stated property. Clearly Y is the 
domain of a coboundary 8f such that the vertices of 
H have coefficient 1 in f, and those of V(G) - V(H) 
coefficient O. 

Suppose however that there is a coboundary 0/, 
of G such that Iloflll is a proper subset of Y. Then 
there is a component J of G: (E(G) -lloflll which con
tains both Hand K. Hence ofl = 0, by 9.11 and the 
definition of a coboundary. 

Theorem 9.13 provides another proof that M(N) is 
independent of R. Its atoms are the bonds of C. 

If Y is any bond of G then the graphs Hand K 
of 9.13 are the end-graphs of Yin G. 

If SCE(G) the common vertices of G · Sand C· 
(E(G) - 5) are the vertices of attachment of 5 (and of 
E(G)-S) in G. We denote their number by w(S). 
They may also be defined as those vertices of G 
which are incident with edges of both 5 and E(G)-S. 
If w(S) = 1 then the single vertex of attachment of 
S is called a cut-vertex of G. 

Let x be any vertex of G. The star St(x) of x in G 
is the set of all edges having one end at x and one in 

I 
I 



V(G)-x. We also write L(x) for the set of all edges 
(loops) of G whose e nds coincide at x. 

The remaining theorems of this section relate the 
s tructure of G to that of B(G). 
9.14 Let 5 be a subset ofE(G) such that w(S) ,;;; 1. Then 
5 is a separator of B(G). 

PROOF: Let Y be any bond of G, with end graphs H 
and K. We may suppose K to include no common 
vertex of G·S and G·(E(G)-S). Then the inter
sections of K with G· 5 and G· (E(G) - 5) have no 
common edge or vertex, and since K is connected 
one of them is null. Hence either V(K) <:;;, V(G . 5) or 
V(K) <:;;, V(G· (E(G) - 5)), whence it follows that either 
Y<:;;'S or Y<:;;,E(G) -5. The theore m follows. 

As a corollary we have 

9.141 Ifa is a loop ofG then {a} is aseparatorofB(G). 

S il c h a separator may be called trivial since it meets 
no atom of B(G). 
9.15 Let x be any vertex of G such that St( x) is non· null, 
and let GI be the graph derived from it by deleting the 
loops of L( x). Then St(x) is a bond of G if and only 
if x is not a cut·vertex of GI . 

PROOF: Let G2 be the graph obtained from G by 
dele ting the vertex x and its incide nt ed~es .. L~t 
those co mpone nts of G2 which includ e vertIces m CI· 
de nt with members of St(x) in G be e numerated as 
Ht, H2 , •• • , Hh•• S uc h components exist since St(x) 
is non-nulL (See fig. 9A.) 

Clearly x is a cut-vertex of Glif and only if k:;", 2. 
But the set of ed ges of St(x) incident in G with 

me mbers of V(Hi) is a bond of G for each i, by 9.13, 
one of its e nd·graphs being Hi. Hence St(x) is a bond 
of G if k = 1. But if k :;", 2 then St(x) has a bond of G 
as a proper subse t, and is not itself an atom of B(G), 
by Axiom 1. . . . . 
9.16 B(G) is a connected matrmd if and only ifG . E(G) 
is connected and G has no cut-vertex . 

PROOF: If G·E(G) is not connected or if G has a 
c ut-vertex it is c lear that some non-null proper subset 
5 of E(G) satisfies w(5),;;; 1. The n 5 is a separator of 
B(G), by 9.14. 

Conversely suppose B(G) is not a connected matroid. 
The n there is a proper non-null subset 5 of E(G) 
which is a separator of B(G) . 

Suppose G has a loop A incident with a vertex x. 
Then either x is a cut-vertex of G, or G· {A} is a com· 
ponent of G· E (G). In either case the theorem is 
sati s fi ed . 

W e may now assume that G as no loop or cut·vertex. 
Let x be any vertex of attachment of S . Then St(x) is 
an atom of B(G) meeting both 5 a nd E (G)-S, by 9.15, 
which contradicts the definition of 5 as a separator. 
We conclude that w (5) = O. He nce G· 5 is a union of 
components of G· E (G). Thi s completes the proof 
of the theorem. 

9.17 Let 5 be a non-null subset of E(G). Then 5 is 
an elementary separator of B(G) if and only if the 
following conditions hold. 

FIGURE 9A 

(i) G· 5 is connected and has no cut-vertex . 
(ii) Each component ofG: (E(G)-S) has at most one 

vertex in common with G· S. 
PROOF: S uppose firs t that 5 is an elementary sepa· 

rator of B(G). The n B(G) ·5 is a connec ted matroid, 
by 3.47. But B(G) · S=B(G· 5), by 3.321. He nce 
G ·S is conn ec ted and has no cut· vertex, by 9.16. 

It may happe n that 5 co nsis ts of a single loop of G. 
In that case proposition (ii) is trivially true. We may 
the refore assume that no edge of 5 is a loop . 

Let x be any vertex of G'S, and let T be its s tar in 
G . S. Then T is an atom of B(G' 5), of B(G) . 5, of 
B(G) X 5 and B(G), by 3.321 and 3.42. Le t C(x) be its 
end·graph in G which includes x . Clearly C(x) is a 
compone nt of G: (E(G) - S), and x is its only common 
vertex with G · S. 

Conversely suppose 5 to sati sfy (i) and (ii). If C 
is any component of G: (E(G) - 5) the n w(E(C)) ,;;; 1, 
by (i i), and therefore E(C) is a separator of B(G), 
by 9.14. The union of all s uc h se ts E(C), namely 
E(G) - 5, is thus also a separator of B(G). Hence 5 
is a separator of B(G). 

If 5 is not a n ele me ntary separator of B(G) there is 
another no n· null separator 5' of B(G) suc h that 
5' cS. But the n 5' is a separator of B(G . 5), by 3.321 
and 3.43. H ence (i) is co~tradicted, by 9.16. 

This completes the proof. 
Suppose we are given an ele me ntary separator 5 of 

B(G). For each vertex x of G · 5 we defin e C(G, 5, x) 
as that component of G: (E(G) - 5) whic h has x as a 
vertex . If x and yare di stinct vertices of G ·5 the n 
C(G, 5, x) and C(G, 5, y) have no co mmon vertex, 
by 9.17. 
9.18 Let G be a connected graph, and let 5 and T be 
distinct elementary separators of B(G). Then there are 
vertices sand t, of G· 5 and G· T , respectively, such 
that G·S is a subgraph ofC(G, T, t) , and G·T is a 
subgraph of C(G, 5, s) . Moreover each vertex of G 
belongs to one or both of C(G, T , s) and C(G, T, t). 

PROOF: The first part of th e theore m follows from 
the fact that G'S is a connec ted s ubgraph of G: 
(E(G) - T), by 9.17, and from the analogous res ult for 
G·T. 

To prove the second part suppose v is a vertex of 
G not belonging to C(G, 5, s) . Then, by the connection 
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FIGURE 9B 

of G, v belongs to some C(G, S, u) such that u 01= sand 
C(G, 5, u) has no common vertex with G· T. But 
then c(G, 5, u), with G . 5, is a subgraph of C(G, T, t). 
(See fig. 9B.) 

9.2. Bridges in a Bond-Matroid 
Let Y be a bond in a graph G, with end-graphs H 

and K. Write GI = G· (E(G) - Y). 
If 5 is an elementary separator of B(G I ), that is 

B( G) . (E( G) - y), then the connected graph GI . S is 
a subgraph of some component of GI • We refer to 
GI'S, which is identical with C'S, as a bridge-graph 
of Yin G. 

We note that any component of CI either consists 
solely of an isolated vertex, or it is a union of bridge
graphs of Yin G. In particular this observation applies 
to Hand K. It leads immediately to the following 
important theorem. 
9.21 If B(G)' (E(G) - Y) is a connected matroid, 
then either H or K consists of a single vertex. 

This result is often helpful in determining whether 
a given binary matroid is graphic. 

Suppose C· S is_ .a bridge-graph of Yin G. Let v be 
one of its vertices. We write YeS, v) for the set of 
all edges of Y having one end in C(C I , 5, v). The set 
YeS, v) can thus be non-null only if G . 5 is contained 
in an end·graph of Yin G. (See fig. 9C.) 
9.22 Let S be a bridge of Y in B(G), so that G· 5 is a 
bridge-graph of Y in C. Then either 1T(B(G), S, Y) is 
{Y, cf>} or it is the class of all non-null subsets YeS, v) 
of Y such that VEV(G . S). 

PROOF: Let Z be any atom of B(G)' (E(G) - Y) 
on S. Then Z is a bond of G-S. Let its end·graphs 
in C·S be Hand K. These two subgraphs of G, 
together with the edges of Z constitute the whole of 
C·S, by 9.17. 

Let HI be the union of H with all the graphs C(G I , 

S, v) such that VEV(H), and let KI be defined similarly. 
It may happen that one of HI and KI has no vertex 

incident in C with a member of Y. In that case Z is 
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a bond of G with either HI or KI as one end·graph. It 
then determines the trivial partition {Y, cf>} of Y. 

In the remaining case each of HI and KI has a vertex 
incident with a member of Y. Then G· S is contained 
in an end-graph J of Yin C. Let the other end-graph 
of Yin G be L. (See fig. 9D.) Then HI is an end-graph 
of a bond YI of G, whose other end-graph is made up of 
L, KI and the edges of Y joining L to KI . We have 

YI = ZU [u YeS, V)] 
v<V(/1l 

Since this argument applies for each c hoice of Z we 
deduce that each member of 1T(B(G), S, Y) is a union 
of sets of the form YeS, v). The argument assumes 
5 to be a nontrivial bridge, but the result is still trivially 
true in the remaining case. 

Consider any vertex v of G· S. If S consists of a 
single loop of G we have Y = YeS, v). In the remaining 
case S includes no loop of C, by 9.17. Let Z be th e 
star of v in G·S. Then Z is a bond ofG·S one of whose 
end·graphs consists solely of the vertex v, by 9.15 



and 9.17. It therefore determines a partItIOn of Y 
having Y(5, v) as one of its primary segments, by the 
preceding result. 

Combining the above results we find that Y(5, v) is 
either null or a member of 1/"(B(G), 5, Y), for each 
VEV(G . 5), and hence that the theorem is true. 

This theorem may be regarded as verifying 8.62 for 
graphic matroids. 
9.23 Every graphic matroid is even. 

PROOF: Let M be a graphic matroid. Then 
M = B(G) for some graph G. Let Y be any atom of 
M, that is any bond of G, and le t the end-graphs of Y 
in G be Hand K. 

Let 51 and 52 be overlapping bridges of Y in B(G). 
The bridge graphs G· 5 I and G· 52 are each contained 
in an end-graph of G. 

Suppose they are subgraphs of the same e nd-graph 
H. There are vertices V I of G· 5 I and V2 of G· 52 
such that G· 52 is a subgraph of G(GI, 51, v) and 
G - 51 is a subgraph of G(G2 , 52, v), by 9.18, appli ed 
to H. Moreover 

by the sa me theorem. This co ntradic ts th e hypo
th es is that 5 I and 52 ove rlap, by 9.22. 

We deduce that if 51 and 52 overlap then G·5 1 and 
G·5 2 are s ubgraphs of distinct end-grap hs of G. 

Let P be the class of all bridges 5 of Yin M s uch 
that G·5 is a subgrap h of H, and le t Q be th e class 
of all other bridges of Y in M. Then, by the result 
just proved no members of the same class P or Q 
ove rlap. Thus Y is bridge-separable. 

It follows that M is an eve n matroid. 
Our next theorem s hows that two di stin ct graphs, 

even though without c ut- vertices, can have id e ntical 
bond-matroids. 

Let G be a graph aru:lle t 5 be a subse t of E(G) suc h 
th at w(5) = 2. Let the vertices of attachment of 5 
be x and y . We construct a grap h G' such that E(G) 
= E(G'), V(G)=V(G'), and the sa me inc ide nce rela
ti ons hold in G' as in G, with the following exception. 
If AE5, the n A is in c id ent with x or y in G' if and only 
if it is incident with yOI' x respec tively in G. We say 
G' is obtained from G by reversing 5. We can recover 
G from G' by reversing 5 again. W e illustrate the 
operation in figure 9E. 
9.24 B(G) is invariant under the operation of reversing 
a subset 5 of G such that w(5) = 2. 

PROOF: Let g be the O-chain of Gover GF(2) such 
that g(z) = 1 when z is a vertex of G· 5 other than x or y, 
and g(z) = 0 in the re maining cases. 

If f is any O-chain on Gover GF(2) it is readily 
verified that the coboundary off In C is the coboundary 
ofJ+ g in G'. Hence G and G' have the same co bound
ary group over GF(2)_ Th e theore m follows, by the 
definition of a bond-matroid. 
9.25 Let Y be a totally bridge-separable atom of a 
connected graphic matroid M. Then there is a con
nected graph G, having no cut-vertex, such that M 
= I}(G) and some end-graph of Y in G consists of a 
single vertex. 
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PROOF: There exists G such that M = B(G). We 
may suppose G to be without isolated verti ces, s ince 
M = B(G) 'E(G) =B(G·E(G))_ Then G is conn ec ted 
and has no cut-vertex, by 9.17. We write GI = 
G . (E(C) - Y) as before. 

Let the e nd-grap hs of Y in G be HI and H2 • By 
the connection of G these are th e only co mpone nts 
of Gl. We suppose G, HI, a nd H2 c hose n so that 
IE(H2 ) I has the leas t poss ible value. 

Assume IE(H2) I > O. The n also IE(HI )I > 0, by 
the above choice. 

Choose bridge-graphs C· 5 I and G· 52 of Yin C 
contained in HI and H2 respectively. Since the 
bridges 51 and 52 do not overlap there are, by 9.22, 
vertices VI and V2 of G·5 1 and G·52 respec tively suc h 
that 

(i) Y(5 I, VI) U Y(52 , V2) = y. 
Keepi ng 52 and V2 fixed we co ns ider all possible choices 
of 51 and VI for which (i) is true, and we select one for 
which G(G I , 51, V I ) has the leas t number of edges. 

Consider the se t of all bridges 5 of Yin M suc h that 
C·5 has VI as a vertex. (See fi g_ 9F.) Let them be 
e numerated as PI , Pz, ... , p", taking PI =51, 

I 
I , 

f 
\ 

FIGURE 9£ 

------
,// 

/' 

// HI 

FIGURE 9F 



For each Pj le t Fj be the subgraph of H I which is 
the union of G· Pj and those subgraphs C(G I , Pj, x) 
of GI for which XE V( G . Pj) - {vd. The graphs 
Fj have the common vertex VI, and each of them is 
connected. By 9.17 no two of them have any common 
vertex other than VI. Since H I is connected it is 
the union of the graphs Fj . 

For each Pj there is a vertex pj of G . Pj and a vertex 
qj of G . 52 such that 

(ii) 

This follows from the hypothesis that Y is totally 
bridge-separable, and from 9.22. In accordance with 
(i) we take PI=VI and ql=V2. 

Since G has no cut· vertex it follows that for each 
Pj there is an edge Aj in Y(5 2 , qj) but not in Y(Pj, Pj), 
and an edge Dj in Y(Pj, Pj) but not in Y(52 , qj). 

Suppose pj CP VI . Considering the edge A I, of 
which one end is a vertex of FI other than VI, we 
find that qj = ql = V2, by (ii). But in this case C(G I , 

Pj, Pj) is a subgraph of C(G, 51, VI), and has fewer 
edges than C(Gt, 51, VI). This however contradicts 
the definition of 51 and VI. We deduce that in fact 

(iii) 

for each j. 
Considering the edge Aj we see that qj is uniquely 

determined for each Pj. Let Zj be the set of all edges 
of Y having one end a vertex of Fj other than VI. Then 
Zj is non-null since it includes A j. By (ii) each edge 
of Zj has one end a vertex of C(G I , 52, qj). 

For each vertex x of G . 52 we define R(x) as the 
subgraph of G formed by taking the union of C(Gt, 
52, x) and those graphs F j for which qj = x, and then 
adjoining the members of the corresponding sets 
Zj as new edges. 

For a given x the graph R(x) may have only the one 
vertex x. If this is not so the set E(R(x)) is non-null 
and its vertices of attachment in G are x and VI, 

since x is not a cut-vertex of G. 
Let us reverse all the non-null sets R(x) (which are 

disjoint). By 9.24 G is then transformed into another 
graph G' with the same bond-matroid M. We note 
that G' has no isolated vertex. But the transformation 
replaces H I by an end-graph K of Y in G' such that 
E(K)=E(H2 )-52 • But this is contrary to the choice 
of G, HI, and H 2• 

We deduce that in fact IE(H2 )1 = O. The theorem 
follows. 

9.3. Properly of Odd Matroids 

In this section we prove the following theorem . 
9.31 Every odd binary matroid has a minor of Type 
BlI, KI or KII. 

PROOF: Assume that the theorem fails. Then there 
exists an odd binary matroid M, on a set E, which 
has no minor of Type BII, KI, or KII. Choose such 
a matroid so that lEI has the least possible value . 
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By definition there is at least one atom Y of M 
which is not bridge-separable. 

There must be a cyclic sequence 

of an odd number 2n+ 1, where n;::': 1, of distinct 
bridges Bi of Y in M such that each overlaps its two 
neighbors in the sequence. We refer to P as an 
odd overlap-circuit of Y. 

We observe here another intrusion of graph theory 
into the general theory of matroids. The bridges 
Bi can be regarded as the vertices of a graph whose 
edges are the overlapping pairs. We have used the 
well-known theorem that a graph is bipartite if and only 
if it has no polygon with an odd number of edges. 

We proceed by a sequence of subsidiary theorems. 
9.311 Let Y be any atom of M which is not bridge
separable. Then the bridges of Yin M can be arranged 
in a single odd overlap-circuit P so that two bridges 
overlap only if they are consecutive in P. 

PROOF: Choose an odd overlap-circuit P of Y having 
as few terms as possible. This clearly implies that 
nonconsecutive members of P do not overlap. 

Let 5 be the union of the members of P. Then 
P is an odd overlap-circuit of M X (SU y) , by 8.53. 
But every minor of M X (5 U Y) is a minor of M. Hence 
E=5UY, by the choice of M. The theorem follows. 

In the next few propositions we suppose given an 
atom Y of M, with a corresponding odd overlap-circuit 

9.312 5uppose there is an atom Z of M· (E - Y) on Bi 
which is skew to both B;_I and Bi+l. Then Bi consists 
of a single cell. 

PROOF: With regard to the suffices we adopt the 
convention that Bo=B2n+l, B _1 =B211' and in general 
B r =B2n+l+ r ' 

Write 5 = E - (B i - Z). The bridges B j of Yother 
than B i are also bridges of Y in M X 5, determining the 
same partitions of Y as in M, by 8.53. 

On the other hand Z is an atom of ((M· (E - Y)) 
X B i) X Z, that is of (M . B i) X Z by 3.332 and 3.42. But 
this matroid is (M X 5) . Z = ((M X 5) . (5 - Y)) . Z. 
Hence Z is the only remaining bridge of Y in M X 5. 

Since YUZ is a line of M on M X 5 the atom Z 
determines the same partition {U, V} of Y in M X 5 
as in M. Each of the sets U and V meets at least two 
members of rr(M, B i - I , Y) and at least two of rr(M, Bi+t, 
Y). 

From the above results we deduce that the replace
ment of B i by Z in P yields an odd overlap-circuit of 
M X 5. Hence B i is monatomic, with the single 
atom Z, by the choice of M. 

Now let a be any cell of Z. Write T = E - (Z - {a}). 
We have YEM· T, by 8.531. The bridges of Yin M, 
other than Z, are also bridges of Y in M· T, deter
mining the same partitions of Y as in M, by 8.531. 
The only other bridge of Y in M . T is the atom {a}. 

Z determines the partition {U, V} of Yin M. There 
exists X'EM·T such that {a} <;;:X'<;;:ZU UEM. There 



ex ists XEM such that XnT=X'. But thi s implies 
Xr;;,ZUU, and therefore X=ZUU, by Axiom I. 
He nce X' = U U {a} . Accordingly a determines the 
sa me partition of Y in M· T as does Z in M. 

We deduce that the replacement of Bi = Z by {a} 
in P yields an odd overlap· circuit of M· T. Hence 
Bi = {a}, by the choice of M. 

We refer to a bridge consisting of a single cell as 
unicellular . 
9.313 If n ~ 2, then every bridge ofY in M is unicellular 

PROOF: Consider any bridge Bi in P. Now Bi 
and B i+1 are not equipartite 3-bridges, for otherwise 
Bi- 1 and B i+ 1 would overlap, contrary to 9. 311. Hence 
Bi is ske w to B;+I, and similarly to Bi- 1, by 8.44. 
But Bi- 1 and Bi+l are not skew, by 9.311. He nce 
there is an atom Z of M . (E - Y) on B i whic h is skew to 
both Bi- I and Bi+1, by 8.42. Accordingly Bi is uni cellu
lar, by 9.312. 

Let L be the class of a ll non-null subse ts of Y of 
the form 

2n = 1 
n Wi, 
i= 1 

wh ere W iE7T(M, B i, Y). Clearly th e me mbers of L 
are di sjoint and their union is Y. 
9.314 If Q EL, then IQI = 1. Moreover there is an 
integer i such that Y-Q = W i U Wi+ l , where WiE7T(M, 
Bi, Y) and Wi+1E7T(M, Bi+1, Y). 

PROOF: C hoose aEQ. Now Y-{a}EM·(E-{a}), 
by 8.54. But P is not an odd ove rlap-circ uit of Y - {a} 
in M· (E - {a}), by the c hoice of M. It follows from 
8.54 that Q - {a} must be null. Moreover there is an 
integer i suc h that Bi and Bi+1 do not overlap as bridges 
of Y - {a} in M . (E - {a}). The propos ition follows. 

Suppose n? 2. Then eac h bridge of Y in M is 
unicellular, by 9.313. Write Bi = {b i }. For each i 
the atom { b;} of M·(E-Y) determin es a partition 

7T(M, Bi, Y) = {5i , Ti } 

of Y. S ince consecutive me mbers of P overlap ne ither 
5 i nor Ti is null. 

Consi der a partic ular bridge B i • By 9.311 we ca n 
adjust the notation so that 5j CSi or 5j C Ti whe never 
Bj is distinct from and not consecutive with Bi in P. 
We choose one Bj of this kind and arrange, by inter
c hanging 5; and Ti if necessary, that 5j C Ti. 

Let Bk be the first member of the sequence 

such that 5k +1 n5i is non-null. Th en 5"+1 meets both 
5 i a nd Ti, s ince BH l is s kew to Bk . Hence BH l is 
consecutive with Bi in P, that is Bk = Bi- 2 • 

Similarly if BI is the last member of the sequence 

such that 51-1 n 5; is non-null we find that l = i + 2. 
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It follows that 5"cTi for each BII not co nsec utive with 
Bi in P. (h oF- i.) 

By the result jus t proved we can adjust the notation 
so that 5 i contains neither 5j nor Tj as a subse t when
ever Bi and Bj are distinct. The n by 9.311 we find 
that 5 i n 5j is non-null if an d only if Bi a nd Bj are 
co nsecutive in P. 

It follows that the 2n+ 1 se ts 5 i n 5 i+J, (l ~ i ~ 2n + 1) 
are di stinct memb ers of L. We mu st now show th at 
they are th e only me mbers of L. 

Choose any WEL. By 9.314 we ca n writ e W =5; 
n5i+l , 5i nTi+ l , Tin5i+1 or TinTi+J, for so me i. In 
th e first case th ere is nothing to prove. In the second 
case we observe that 5 i - 1 mee ts 5 i and is a s ubse t of 
Ti+J. He nce W is the me mber 5i- 1 n5i of L. We 
deal with th e third case similarly, using 5 i +2 in s tead 
of 5;- 1. In the fourth case we have 5 i +3 r;;, Ti nT;+1 = W, 
whence 5;+3 = W. But the n B;+3 overlaps no othe r 
bridge of Y, since Ti+3 U W = Y, a nd thi s is a co ntra
diction. 

We are now in a position to prove 
9.3 15 The assumption that n ? 2 leads to the contra
diction that M is a matroid 0./ Type KI . 

PROOF: The above diagram represen ts M , on 
the as yet. unproved assumption th a t it is cograp hic. 
We write ai for th e single cell of th e me mber 5i n 5i+ 1 

of W. (See 9.314.) 
If n > 2 we write Y' =(Y-51)UB 1• By 8.55 Y'EM 

and B3 , B4 , • •• , B211 are bridges of Y' in M. Moreove r 
there is another bridge B' which contain s 51, B2 , an d 
B211+ 1• It also follows from 8.55 that (B', B3 , B4 , • •• , 

B2n , B') is an odd overlap-circuit of Y' in M. This 
contradicts 9.312 since B' is not unicellular. 

_J 
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In the remaining case n = 2. (Fig. 9H.) 
Let us write ai = L i, i+l if 1 ,;;; i ,;;; 4, and a5 = L I, 5· 

We put also bi =L I ,i+2 if 1,;;;i,;;;3, b4 =L, ,4, and 
b5 = L~ , 5. We construct a graph G such that E(G) = E. 
We take it to have just five vertices v" V2, V3, V4, and 
V5, the ends of Li, j in G being Vi and Vj. Then G is 
a complete 5-graph. 

We find that M=P(G). To prove this we observe 
that Yand the five sets {bi} USi are atoms of both M 
and P(G). Any atom X of M is a linear combination 
of these six. For otherwise some combination of 
atoms of M would be a non-null proper subset of Y, 
which, by 5.34, is contrary to Axiom I. Hence X is 
a mod 2 sum of atoms of P(G) and so has an atom X' 
of P(G) as a subset, by 5.34. Similarly any atom of 
P(G) contains an atom of M. 

We deduce that M = P( G), by Axiom I. Thus M is 
of Type KI. 

We may now assume that no atom of M has an odd 
overlap· circuit constituted by more than three bridges. 

We select a particular atom Y which is not bridge
separable, and we denote its three mutually over
laping bridges by B" B2, and B3. 

In our analysis we make use of the following propo
sition. 
9.316 Suppose WI is a member of 1T(M, B"y) with the 
property that some atom Z of M . (E - Y) on B I deter
mines the partition {WI, Y - Wd of Y. Then either 
1T(M, B2 , Y) or 1T(M, B3 , y) has a member which cuts 
WI. 

PROOF: Assume the contrary. Then there exist 
W2E1T(M, B2, y) and W3E1T(M, B3, Y) such that WI ~ W2 
nWa. 

Let Y' denote the atom (Y - WI) U Z of M. It follows 
from 8.55 that B2 and B3 are overlapping bridges of 
Y' in M. 

Now WI is an atom of M . (E - V'), by 8.55. Suppose 
it meets another atom X of M· (E - yl). Since X - W, 
is non-null, and X cannot be an atom of the bridge 
B2 or Ba of Y' we have X~B,UY'CBIUY. There is 
thus an atom of M X (B I U Y) which cuts WI. This is 
impossible, by 8.51 and 8.52. We deduce that WI is 
another bridge of Y' in M. Determining the partition 
{Y - WI, Z} of Y' it overlaps neither B2 nor Ba. 

Let H be the class of all remaining bridges of Y' 
in M. The union of the members of H is BI -Z. 
This set is non-null since Z determines the partition 
{Y - W" WI} of Y, while BI overlaps B2 and B3. 

Applying 8.55 with Y and Y' interchanged we see 
that if BEH, then no member of 1T(M, B, V') can con· 
tain Z. 

Since B I and B z overlap with respect to Y there is 
an atom X of M on BIUY-WI=BIUY' which cuts 
Y - W2 • Then X n (E - V') is a union of disjoint atoms 
of M· (E - V'), all contained in BI U yl, by 8.51. Let 
us enumerate them as XI, X z, ... , X k • Let Xi 
determine the partition {Si, Ti} of V'. The mod 2 
sum of X and the atoms Xi U 5 i of M is contained in 
Y', and is either Y' or f/J. by 5.32 and Axiom I. Hence 
some Xi cuts Y - W2• This Xi must be on some 
member of H. 

We deduce that there exists CIEH such that no memo 
ber of 1T(M, C I , V') contains either Z or Y - W2. Then 
C I overlaps both WI and B2 as bridges of Y'. Similarly 
there exists CzEH overlapping both WI and B3 • 

We may have C I = C2 • In that case (B2, B 3 , C I ) is 
an odd overlap· circuit of Y' which does not include 
WI, and this contradicts 9.311. 

In the remaining case Y' has an odd overlap-circuit 
(B2, B 3 , C2 , WI, C" B 2) having five members. But 
such odd overlap-circuits are ruled out by 9.315. 
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The proposition follows. 
By 8.43 and 9.316 B" B 2, and B3 are not equip

artite 3-bridges. 
Suppose 1T(M, B" y)=1T(M, B 2, Y)= {WI, W2, W3}' 

Then B3 is skew to BI and B2 , by 8.44. But BI and 
B2 are clearly not skew to each other. Hence B 3 

is unicellular, by 9.312. It determines a partition 
{S, T} of Y. 

We may suppose without loss of generality that 
WI nS is non-null. Then WI nSEI. Moreover 
WI nS is a proper subset of WI, by 8.43 and 9.316. 
In view of 9.314 we may write, without loss of gen· 
erality, 

Y-(WtnS)=TUWi , 

where i = 1 or 2. In the apparent alternative 
Y-(W,nS)=suw; we have Y=SUWi , which is 
impossible since B, and B3 overlap. But then W3 ~ T, 
W3EI, and we have a contradiction of 8.43 and 9.316. 

We may now suppose that B" B 2, and Ba are 
mutually skew, by 8.44. Applying 8.42 and 9.312 
we find that two of them, say Bland B2 , are unicellular. 



Le t the m determine partItIOns {51, Td a nd {52, 
T 2 } of Y respec tively. We write 

The number k is at leas t 2, since the three bridges 
ove rlap . 
9.317 The assumption that k= 2 leads to the contra
diction that M has a minor of Type BlI or KIl. 

PROOF: On this assumption B3 must be unicellular, 
by 9.312. 

S uppose WI does not meet both 51 n52 and TI nTz. 
The n it mee ts both 51 n Tz and 52 n TI, for it is not con
tained in a ny of the sets 51, 5 z, TJ, Tz, by the over
lapping of the bridges . We may therefore adjus t the 
nota tion so that WI meets both 5 I n5z and TI n Tz. 

Assume that WI contains neithe r 5 In Tz not 5z n TI. 
The n M has a minor of T ype BlI, by 8.64, whic h is 
co ntrary to the c hoice of M. W e may the refore make 
a furthe r adju s tme nt of nota tio n so th at 51 n Tz~ WI. 

We now observe that WI cuts both 5 I n 52 and TI n Tz. 
For othe rwise Wz would be a subse t of TI o r 52, and 
B3 would not overla p both BI a nd Bz. A nothe r appli
cati on of 8.64 shows that 52 n TI ~ Wz. 

We ca n now li s t the me mbers of L , eac h uni ce llul ar 
by 9.314, as follows. 

51n5znWI = {L I , d, 

5 I n5znWz = {Lz. d 

5zn TI n Wz = {Lz, z} 

TI n Tzn Wz = {L:J, z} 

TI n Tz n WI = {L:1,3} 

51 nTzn WI = {L I, 3} ' 

We al so write BI = {Lz , :J}, Bz={ LI , z} and B;J= {L3, d· 
This situation is represe nted in fi gure 91, on the as
sumption that M is cographic . 

We now co ns truct a graph C with six vertices aI, 
az, a3, bl, b2, b:l , ta king the cells Li, j as edges. The 
e nds of Li , j are ai and bj • Thu s G is a Thomse n graph. 
By a n argume nt like the one which concludes th e 
proof of 9.315 we find that M = P(C). 

Thu s M is a matroid of Typ e KII, contrary to the 
c hoice of M. 

W e may now suppose k ~ 3. 
One of 51 n 52 and Tl n T2 must be co ntain ed in a 

me mber of 1T(M, B3 , Y). For o therwi se we could find 
a n a to m Z of M· (E - Y) on B3 cuuing both 51 n 52 
a nd TI n Tz, by 4.37 and 8.41. The n Z would be ske w 
to both Bland Bz, and B3 wo uld be unicellular, by 
9.312. This is imposs ible since k ~ 3. Similarly 
one of 5 In T2 and 52 n TI is contained in a me mber 
of 1T(M , B :l, Y). 

We may thus adjust the nota tion so that 
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For 5 In 52 a nd 51 n T2 a re not both In WI: 0 1 he rwise 
BI a nd B3 would not ove rlap . 

We note th at WI does not mee t TI n Tz. Fo r oth er
wi se WI would co ntain 51 n Tz or 52n TI, by 8.64, s ince 
M has no mino r of T ype Bll. But the n WI wo uld 
contain 51 or Tz, a nd B3 would not ove rl ap both B I 
and B2 • Similarly W2 does not mee t 52 n T I • 

S uppose WI mee ts 52 n TI. This case is re prese nted 
sc he ma ti call y in fi gure 9J. 

I 
_J 



By 9.314 we have 

Y-(WI n52nTI )=51 UT2, 51 U Wx or T2U Wx, 

for a suitable suffix x. The first alternative implies 
that 52 n TI C WI. But then 52 C WI which is impos· 
sible since B2 and B:l overlap. . 

The second possibility requires TI n T2 C W x and 
WI U W2 U Wx= Y. Thus x= k=3. But now W2 is a 
subset of 51 and of T2• Hence this case is ruled out 
by 8.43 and 9.316. 

In the third case 51 n52 C Wx, so that Wx= WI. But 
it is then necessary that 52 n TI C WI. This is impos
sible since it requires 52 C WI. 

We deduce that WI =51 n52 • Similarly W2 =51 n 12. 
Let W3 be a member of 7T(M, B3, Y) which meets 

52 n T I • Then by 9.314 we have 

The first alternative implies 52 n TI C W3 , the sec
ond that k = 3 or 4 and TI n T2 C Wx. The third im
plies 51 n52c Wx= WI. Then 52nTI C W3. 

'similar results are obtained when we consider a 
member of 7T(M, B3, 1') meeting TI n T2. Since 52 n TI 
and TI n T2 are not contained in the same member of 
7T(M, B3, y), by the overlapping of BI and B3, it follows 
that we can adjust the notation so that 

W3 c52 nT!, 

Tl nT2 C W4 • 

Now there is an atom Z of M· (E - Y) on B3 which 
cuts both WI U W2 and WI U W3, by 4.37 and 8.41. 
This atom must determine one of the partitions 
{WI,Y-Wd and {WIUW4 , W2UW3 } of Y. The 
latter requires M to have a minor of Type BII, by 8.64, 
and can be ruled out. But now we have a contradic
tion of 9.316, since WI C5 1 and WI C52 • 

The analysis is now complete. No matroid satsifies 
the conditions imposed on M, and theorem 9.31 is 
established. 

9.4. Characterization of Graphic Matroids 
One more major result is required to complete our 

theory. 
9.41 If a matroid M is regular and has no minor of 
Type KI or KIl, then M is graphic. 

PROOF: Assume the contrary. Then there is a reg
ular matroid M on a set E which has no minor of Type 
KI or KII but which is not graphic. Choose M so the 
dM has the least possible value. 
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Suppose first that M is not connected. We can 
find complementary non-null separators 51 and 52 
of M. There exist graphs GI and G2 such that 

by 5.62. We may take V(G 1) and V(G2) to be disjoint 
subsets of some larger set V. Then GI and G2 together 
cons titute a graph G. We note that 51 and 52 are 
separators of B(G), by 9.14. 

If XEB(G) we have 

XeB(G) X 5 i = B(G) . 5 i = B(G . 5i) = B(Gi) = M X 5i , 

where i = 1 or 2. Hence XeM. We find similarly 
that if XeM then XeB(G). We deduce that M = B(G), a 
contradiction. 

We may now suppose M connected. 
Suppose dM =-1. Then lEI = 0 or 1 since M is 

connected. We thus have M=B(G) for some graph 
G with just one vertex. If lEI = 0, G is edgeless. If 
lEI = 1 G has a single loop. 

If dM=O we have M= {E}, by 3.57 and the connec
tion of M. Then M=B(G), where G has just two 
vertices and each cell of M is an edge incident with 
each of them. 

Next suppose dM = 1. Then E is a connected line 
of M. Let its three points be XI, X2, and X3. Each 
is the mod 2 sum of the others, by 7.12. Hence they 
have no common cell. The sets XI nx2 , X2 nx3 , and 
X3 nX I are non-null, by Axiom I, and their union is 
E. Let G be a graph with just three vertices VI, V2, 

and V3, and such that E(G) = E. We take each member 
of Xi nXj to have ends Vi and Vj, (1 ~ i < j ~ 3). It is 
readily verified that M = B(G). 

We deduce that dM;:. 2. 
Now M has no minor of Type BI, BII, KI, or KII, 

by 7.51. Hence there is an atom Y of M having two 
distinct bridges, by 8.63. Moreover M is even, by 
9.31, and therefore Y is bridge-separable. We can 
arrange the bridges of Y in M in two disjoint classes 
P and Q so that no two members of the same class 
overlap, and we can clearly arrange that P and Q are 
non-null. 

Let 5 and T be the unions of the members of P and Q 
rcspectively_ The matroids M X (5U 1') and M X (TU Y) 
are connected, by 3.48 and 8.13. For if the 5 of 8.13 
is a bridge of Y the condition (M . (E - Y)) X 5= Mx 5 
is equivalent to M· 5=M X 5. (See 3.42.) 

There exist graphs Hand K such that 

B(H) = M X (5 U y), 

B(K) = M X (TU y), 

by the choice of M. 

Hence we may choose H to have a vertex h which is 
incident with the members of Yand no other edges, by 
9.25 and 8.53. Similarly K may be supposed to have a 
vertex k incident only with the members of Y. 



We may take V(H) and V(K) to be di sjoint subse ts 
of some larger se t. We construct a graph C as follows 

E(C)= E 
V(C) = (V(H) - {h}) U(V(K) - {k}) . 

If AEE - Y the ends of A in C are its ends in H or K. 
But if AEY the n its ends in C are its end othe r than h 
in H and its end other than kin K. We illustrate this 
cons truction in figure 9K. 

There is a binary chain-group N such that M=M(N). 
Le t f be any chain of N. Its restriction to E - Y is 

a sum of ele mentary chains/I,h, . .. , j , of N ·(E - Y), 
by 5.32. Each J; has a domain restric ted to one of the 
bridges in Y in M. He nce J; is the restriction to E - Y 
of a c hain gi of N such that Ilgill is contained in 5 U Y 
or Tu Y. The sum of / and the chains g i has a domain 
contained in Y. It is thus either zero or the ele mentary 

I c hain of N with domain Y. 
We conclude that / is the sum of two chains p and 

q of N with domains contained in 5 U Y and Tu Y reo 
spec tively . 

The res tri ction of p to 5 u Y is a coboundary of a 
O- chain L of Hover CF(2). We may change each co
effi c ie nt in L by 1 without altering 8L, by the definiti on 

I of a coboundary. We may therefore suppose L(h) = O. 
But then p is the coboundary of a corresponding O- c hain 
in C. Similarly q is a coboundary in C. He nce / is 
s uc h a coboundary. 

Conversely suppose f is a coboundary of a O- c hain 
L in C. Let LI and L2 be formed from L by replacing 
the coefficients of the ve rtices in V(H)- {h} and 
V(K) - {k } res~ec tively by zeroes . Then 8l = 81 1 + 8L2 • 

Moreover 118ldl~5UY and IIM~TUY. The restri c
tions to 5 U Y and Tu Y of 8LI a nd 812 are chains of 
N X (5 U Y) and N X (TU Y) respec tively. He nce 81 1 

and 8L2 are chains of N, and therefore 8L is a c hain 
of N. 

We deduce that N is the coboundary group of C. 
Hence M = M(N) = 8(G), contrary to the c hoice of M . 
The theorem follows. 

We may now combine some of the preceding re
sults into the following theorem. 
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FIGURE 9K 

9.42 A binary matroid is graphic if and onLy if it is 
regular and has no minor 0/ Type KI or KI I. 

PROOF: If M sati s fi es thi s co ndition it is graphic, 
by 9.41. Conversely if M is graphi c it is regular , by 
2.54. No minor of M is of T ype KI or KII, by 5.62, 
for matroids of these two types are odd, by 8.31, a nd 
therefore not graphic, by 9.23. 

Cographic matroids can b e charac teri zed by a dual 
form of 9.42. They are those regular matroids for 
whic h no minor is the bond-matroid of a Kuratowski 
graph. 

A ma troid is planar if it is both graphic and co
graphic_ It is possible to d erive Kuratowski 's The
orem on planar graphs by a pp lying 9.42 to the polygo n
matroid of a planar graph. 

An algorithm for de termining whe ther a given binary 
matroid, give n by a representative matrix, is graphic 
has recently bee n presented in the Canadian Journal 
of Mathe matics 16, 108- 127 (1964). 

(Paper 69B1- 131) 
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