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Distribution Function of the End-to-End Distances of Linear

Polymers With Excluded Volume Effects
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(March 9, 1965)

The distribution function of the absolute values of chain lengths of a polymer molecule
which displays the excluded volume effect cannot assume a Gaussian form. This fact follows
directly from theoretical considerations based on the application of the Central Limit
Theorem to the theory of Markov chains. In order to determine the exact shape of the
polymer chain-end distribution function we calculated its various moments taken about the
origin, and their dependence on the number of polymer segments, using a Monte Carlo

technique for generating polymer chains on a lattice.

The results obtained from the extrap-

olation of various combinations of these moments of the general form
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are used to determine the shape of the polymer distribution function.
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It is found that the

chain-end distribution function can be approximated by the following form:
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with {=3.2 and « being a parameter, determinable from the average mean square chain-end

distances.

1. On the Incompatibility of Excluded
Volume Effects With Gaussian Statistics

The distribution of end-to-end distances in a suffi-
ciently long, freely jointed chain is invariably a
Gaussian one. This fact follows directly from the
Central Limit Theorem as it is applied to the se-
quence of mutually independent random variables
with a common distribution. (That is, each of the
random variables which form a chain has the same
distribution; this kind of chain is sometimes desig-
nated as a homoweneoub one [1].})

One can apply the Central Limit Theorem to ran-
dom variables which form a homogeneous Markov
chain, in order to demonstrate the fact that the
Gaussian distribution law is approached in the limit
for chains in which the position of a polymer unit
depends on the position of the preceding one [2]
as well. Real polymer chains with internal rotation
around their bonds, whether free or hindered, will
be accurately described by Markov chains. The
classification of polymer chains as Markovian is
broader than this. Thus, if one eliminates chain
closures formed with a fixed number of steps (such
as four-step closures on cubic lattices or six-step
closures on diamond lattice), one still can apply the
theory of Markov chains for these models, since the
distribution of probabilities of a particular event is
still determined uniquely by the preceding event,

1 Figures in brackets indicate the literature references at the end of this paper.

which, in this case, is a formation of a four-step or
a six-step loop [3]. This description does not yet
exhaust all possible cases of polymer chains which can
be described by Markov chains.  As has been pointed
out by Montroll [4], for any polymer chain with
forbidden conformations being restricted to nonself
intersection of loops with / intery ening steps, the
distribution of intrachain distances of n steps will
assume a limiting Gaussian form, provided that =
>>[. For this reason any infinitely long polymer
chain with finite-range correlations can be described
as a Markov chain. The question as to whether
every Markov chain will lead to a limiting Gaussian
distribution is a more involved one. The restrictive
conditions under which the Central Limit Theorem
can be applied to a sequence of random variables
forming a homogeneous Markov chain are usually
satisfied for linear polymer chains as will be demon-
strated. For example, one of the conditions is the
nonperiodicity of the distribution of the individual
segments. However, whenever a polymer chain
satisfies the condition for the validity of the Central
Limit Theorem, the distribution of the intramolecular
distances becomes a Gaussian one, provided that the
number of intervening steps is large enough.

We propose that the distribution function of
polymer configurations with volume effect cannot be
Gaussian even in the asymptotic case of an infinitely
long chain. In other words, the application of
Gaussian statistics is invalid for the case of mutually
excluding random events, such as forbidden double
occupancy of the same volume element of the

355



The proof of this statement is
obtained from the following heuristic, rather than
from rigorous mathematical analysis: An excluded
volume effect implies an existence of long-range
order in a polymer chain for the simple reason that
the probability distribution function of a given
polymer segment is no longer independent of the
mitial probability distribution. (In the terminology
of the theory of cooperative phenomena, a system
for which there exists a correlation between the
distribution of any two statistical elements, no
matter how widely they are separated by other
elements, is characterized by the presence of a long-
range order. Therefore, excluded volume effects,
defined by mutual exclusions of double occupancies
of volume elements on a lattice, imply a presence of
long-range correlation in a p()1yme1 chain.)

Consider a matrix P of transition probabilities
pi. The p;; are the probabilities for a random
variable having a certain value of «;, given that the
previous random variable has a value of «; From
the theory of Markov chains we know that if the
matrix P possesses a real nondegenerate root (or
eigenvalue) \;, which has a value that is larger than
the absolute value of any other root, then the proba-
bility distribution of a given random variable be-
comes independent of its initial distribution, provided
that the number of steps is sufficiently large. In
other words, the distribution of the polymer seg-
ments represented by the random variables becomes
stationary, and there is no correlation between
individual seegments which are a long distance apart
(no long-range order can exist). But we know from
the Clentral Limit Theorem that this is precisely the
condition for the Gaussian statistics to be descriptive
of the distribution function of intramolecular separa-
tions. In order to complete our proof that the
excluded volume effect is inconsistent with the
Gaussian statistics one has to discuss the possibility
of Markov chains with long range order. This long-
ange order will always be present whenever the
Ln‘oext root of the matrix of transition probabilities
is a degenerate one [5]. Therefore, we will demon-
strate that in regular polymer chains this degeneracy
cannot occur as long as they are 1'ep1esented bv
Markov chains. For this purpose, the model of
absorbing Markov chains is employed, since they
encompass the most general type of a polymer chain
in which certain chain conformations of finite num-
ber of steps are either biased or virtually excluded
[3]. In absorbing Markov chains, the absorbing
state represents a boundary which terminates the
process of adding a step to the chain. Thus, the
matrix of transition probabilities with absorbing
states is stochastic. This matrix is decomposable
since it can always be of the following form

polymer chain.

All A12
P= . (1)
0 Ay

This matrix, being stochastic, has a largest eigen-
value equal to 1. The matrix of transient states Ay,

raised to the nth power represents all real confor-
mations of an n-step polymer chain. By definition,
its largest eigenvalue must be less than 1 in absolute
value. Thus, the states of a polymer chain are
decomposed into the forbidden conformations, re-
sulting from short-range volume exclusions, and the
transient states. Since we are interested only in
the latter states, we demonstrate that the largest
eigenvalue of the matrix Ay, is also positive and single.
To do this, we employ the Frobenius theorem for
matrices with nonnegative elements as follows
[6].2  Any square matrix with nonnegative elements
has a characteristic root which is both larger in its
absolute value than any other root and is non-
degenerate, provided that such a matrix cannot be
decomposed, that is, no permutation matrix 7
exists such that

T[lgg ,IY_I = P

where P is the matrix of the general form (1). (A
permutation matrix is obtained through permutation
of columns of an identity matrix.) In order to show
that the matrix of transition probabilities for a chain
that reached its closure in a fixed number of steps in
the case of a linear homogeneous polymer is a non-
decomposable one, we demonstrate the following:
(1) All superdiagonal terms of such a matrix are
nonzero. This follows from the fact that the super-
diagonal terms represent the shortest path for the
random walk to form a closed configuration (or to
reach its absorbing state, which is a “point of no

return’’). (2) In addition, each of the columns must
have at least another nondiagonal, nonzero element.

This is because at least two different chain conforma-
tions should result when a step is added at random to
the end of the chain. In addition, the first column
(which does not possess a superdiagonal term) should
have at least one nonzero element other than the top
or the bottom one. Otherwise, we will encounter a
periodic boundary condition, since the same chain
conformation will be repeated regulacly, contrary to
our model for a regular polymer chain. In our
other publication [3], the two bottom rows of the
matrix of transition probabilities are all filled up, so
that the conditions for nondecomposability of the
matrix of transition probabilities are satisfied. (In
regular polymer chains, one should be able to reach
any permissible chain conformation from any other
chain conformation by a finite number of steps.)
Another way to prove the nondecomposability of
the Markov matrix with zero elements is to raise it to
some power. If this operation will result in matrix
having no zero elements, its nondecomposability
becomes obvious. In reference [3], the matrix of

eq (16) raised to the power of /-2, will have all its
original zeros replaced by positive elements. Thus,

2 The Frobenius theorem, as quoted by most authors, deals with matrices
with positive, nonzero elements [7]. This theorem has been applied in order to
investigate the conditions for the absence of long-range order in certain physical
models based on Markov chains, e.g., for Ising model of ferromagnet, order-
disorder transitions in crystals, ete. However, there is a later Frobenius theorem
[6] which deals with nonnegative matrices and which is applied here to polymer
chains.
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since there is no possibility, with simple polymer
chains, to exhibit a degeneracy, or a long-range order,
in their Markov-chain models, the Gaussian limiting
law could obtain only when long-range excluded
volume effects are absent in such chains. For ex-
ample, the proof given by Montrol [4] who derived
the Gaussian limiting law for any given function
whose average is taken over the Markov chain, re-
quires the existence of a single largest root of the
matrix of transition probabilities. One can easily
deduce from Montroll’s derivation, that, if the largest
root were degenerate, a Gaussian limiting law could
not be obtained.?

In conclusion, we have demonstrated the follow-
ing: (a) Polymers which are characterized by a
chain of independent events or by homogeneous
Markov chains invariably lead to Gaussian distribu-
tion of the probabilities of their lengths. This
follows from the application of the Central Limit
Theorem to random variables forming a statis-
tical chain. (b) Chains which possess long-range
correlation, such as an excluded volume, cannot
have a Gaussian distribution for their intramolecular
dimensions, even in the limiting case of an infinitely
long chain. This follows from the fact that, for the
distribution function of polymer dimensions to be
Gaussian, the matrix of transition probabilities
must be devoid of long-range order (i.e., its largest
root must be nondegenerate).

Wall, Windwer, and Gans [S]; Verdier and Stock-
mayer [9], and Schatzki [10] have demonstrated, on
the basis of Monte Carlo computations, that the dis-
tribution of end-to-end distances in a polymer chain
is non-Gaussian. Similarly, Fisher and Hiley [11]
have demonstrated the same thing using their chain-
counting method. Thus, direct numerical computa-
tions of the distribution of polymer chain-end lengths
and the theoretical considerations along the above
given guidelines prove the invalidity of the applica-
tion of Gaussian statistics to the polymer chains with
excluded volume. It is of importance to find from
numerical analysis the form of the distribution of
polymer configurations with excluded volume effects,
and this is the purpose of the present work.

2. Computational Part

It is clear from the above arguments that the
excluded volume effect of a polymer chain cannot be
given a theoretical treatment on the basis of theories
of Markov chains. There are certain physical prob-
lems in which long-range order is accessible to
theoretical treatment; e.g., critical phenomena asso-
ciated with the conditions for the largest root of a
Markov matrix of transition probabilities becoming
a degenerate one. Unfortunately, a similar treat-
ment of excluded volume as a long-range order does
not seem to be possible in the case of a polymer chain.

3 A simple statement that the Gaussian distribution is always obtained for
finite Markov chains would serve our purpose, but it will be criticized as an over-
simplification. We, therefore, prefer to present this more detailed proof, that such
is the case with simple, linear polymer chains. Our only assumption is that all
polymer chains can be described as special cases of the general class of absorbing
chains, which were first introduced by us in reference [3].

Here, again, numerical methods rather than a theo-
retical analysis seem to be the only practical way for
determining statistical properties of polymer chains
resulting from the presence of excluded volume.
Monte Carlo methods do provide a solution to the
problem of estimating the mean square end-to-end
distance of a polymer chain as a function of the
number of steps. If one, however, tries to apply
directly the same Monte Carlo calculations in order
to find the polymer chain-end distribution function,
one will run into technical difficulties: The “tail part”
of the distribution function will show a very large
scatter of data, since there will be few configurations
in that part; on the other hand, near the peak of the
distribution function the distances are small and one
will run into the so-called “lattice effect”’. This effect
is related to the fact that only certain discrete intra-
molecular separations are possible. These distances
do not possess the same degeneracy, since the number
of lattice sites within a given distance » from a given
lattice point is an irregular function of » which
depends on the lattice structure. The inspection of
Monte Carlo data presented by Wall, Windwer, and
Gans, by Verdier and Stockmayer, and by Schatzki
clearly demonstrates the technical difficulties in
finding the distribution of polymer configurations,
except for demonstrating their non-Gaussian be-
havior, which is to be expected. Schatzki carried
his calculations one step further by expanding the
distribution function of end-to-end separations in
terms of Hermite polynomials; the lowest term
reduces, however, to the Gaussian distribution
function for the case of no excluded volume.

Our effort will be less ambitious. By going to the
case of an infinitely long chain we will establish the
shape of the distribution function from certain
combinations of the distance averages taken over it.
By the shape of the distribution function we imply
the particular term which determines its rate of
decay as the distance of separation between polymer
segments becomes large. If, in addition, we have
another relationship that establishes the dependence
of the mean-square dimension on the number of
polymer segments, we can readily construct the
entire polymer chain-end distribution function,
which for most practical purposes should be accurate
enough for the purpose of estimation of its various
statistical properties.

The case of an infinitely long polymer molecule is
of theoretical interest. We study this case by
plotting the computed averages as functions of 1/n,
and extrapolating the resulting curve toward 1/n=0.
The limiting distribution function must incorporate
excluded volume effects resulting from the presence
of long-range correlations. As we know, incorpora-
tion of only finite-range correlations, e.g., nonself
intersections of finite-sized loops in polymer chain
will eventually lead to the Gaussian distribution of
chain-end separations. Therefore, the true non-
Gaussian form of the polymer distribution function
is most evident in the asymptotic case of an infinitely
long chain. Moreover, the effects of the finite size
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of the excluded volume per segment and of the
lattice structure are then obliterated.

Fisher and Hiley calculated the mean fourth power
of end-to-end distances, (r%), for nonself intersect-
ing random walks on simple cubic and plane-
square lattices, using the chain-counting method
[11]. From their values of (), they -calculated
the fractional variance of 7%, namely the quantity

an:<<rz—<rz>>2>/<rz,>2:<i;f§>>2—1. @

A plot of §, versus 1/n is easily extrapolated to the
limit of 1/n=0, in spite of the fact that the exact com-
putations were carried only to the first 10 steps.
For a cubic lattice, they obtained for the extrapolated
fractional variance of 72, 6.,=0.453 (for a Gaussian
distribution, §,=2/3). We were more interested to
notice the fact that, for a simple nonintersecting
chain, §, reaches a limiting value rapidly; therefore,
3, 1s practically independent of the number of steps.

A reasonable form for the polymer chain-end dis-
tribution function is of the form W(r, n)dr—=

S . . .
Cewr'dr ywhere (Jis determined from the normaliza-
tion condition imposed on W(r, n), taken over a
volume of a sphere.* If one defines

f e~ 42y
(") =" (3)

— t
e T An 3y

0

. . . r?
then it is evident that, for any value of ¢, 7(:—3/3

is in-
dependent of «, and therefore, is independent of the
number of steps. However, the integrations in eq
(3) should be taken not from r=0, but from r=a,
where @ corresponds to the distance of the nearest
possible approach. However, no matter how large
@ is, in the asymptotic case of n=o, the asymptotic

formula for §, should be independent of a. There-
fore,
3 3\ TPt
o TCArG)]
8. (p, 8)E<rs =l —1. (4)

CeT
i

In the case of s=2, 6. (p, 2) is identical with the

fractional variance of r?/?, since then

f TR ()W, adr
: (re/2)? ' ?

80u(p, 2)=

One would therefore expect that, if (r*) and (2
were calculated for a random walk on a cubic lattice

# Recently, C. Domb [12] proposed a different form for W(r ,n). In the appen-
dix of this paper these two choices for the chain-end distribution function are
compared, and a more general form for W(r, n), which involves two structural

parameters, is introduced.

with unit distances between any two lattice points
being forbidden, the same value of é_, (4, 2) would be
obtained, as calculated by Fisher and Hiley for
nonintersecting random walks on the same lattice.
However, the limiting value of 6., will be reached
much slower than in the case of simple noninter-
secting random walk. We therefore calculated
(rty as well as () for a random walk on a
cubic lattice with unit distances being forbidden.
The special method for the Monte Carlo compu-

tations employed here and the computational
details will be described elsewhere. In figure 1 the
results of these computations are shown. A total

number of 300,000 random walks were generated,
and the computations were carried up to n=60.
However, beyond n=50 the scatter of the data does
not permit us to use the corresponding results.

In order to avoid crowding of data owing to the
use of the reciprocal scale, the part of the curve for
22<n< 40 is redrawn in the insert on an enlarged
scale. This way, the entire §, versus 1/n curve as
well as the detailed data which are especially needed
for the accuracy of their extrapolation towards
n=o are shown. On the right-hand side of figure 1
and of the subsequent figures the values of the
parameter ¢ are shown, that are calculated from the
corresponding values of §.,(p, s), as given by eq (4).
Thus, the intercept of the extrapolated data of these
figures with the n=o axis leads to the correct value
of the parameter ¢ of eqs (3) and (4). The various
values of the parameter ¢ shown on the n= axis
are presented in order to demonstrate the accuracy
in this determination of the extrapolated value of ¢
An inspection of figure 1 not only points to the im--
possibility of approximating the Gaussian value of
t=2, but to the fact that the parameter ¢ can be
accurately determined to within one-tenth of a unit.

As was to be expected, the limiting value for & is
almost identical with the one reported by Fisher and
Hiley (6.,=0.443 as compared to their §,=0.453).

430
21315
440

15.0

5,(4,2)

L L1
5 10 20 30 40 ®

n

Ficure 1. Plot of 6, (4, 2), the relative fractional variance of
12, versus 1/n, for random walk on a simple cubic lattice with
excluded unit distance approaches.
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Moreover, the limiting value of § is reached much
slower now, owing to the fact that the distance of
closest approach is considerably larger than it was
for the case of simple nonintersecting chains with no
other restriction being imposed on the closest pos-
sible approach between chain elements. For short
chains 6, is much less than its limiting value 6., as
is to be expected, considering the particular form for
the distribution function. From the extrapolated
value of 6.(4,2)=0.443, one finds that ¢=3.2.
Therefore, for three-dimensional lattices with ex-
cluded volume, the normalized distribution function,
W(r, n)dr=3.0765a""r* exp (—ar®?)dr. (For two
dimensional lattices, ¢ is considerably larger.) The
parameter « is undetermined. However, it can be
easily calculated from any given relationship between
(r*y and n. For example, one can replace a by

5 1.6
r (E>

a=| ——22L (6)

r(55)

if the relationship between (r?) and = is given
independently.

In order to reassure ourselves that the suggested
form for the distribution function serves as a good
approximation, we calculated, for the same lattice
model, the following averages: (r), (*), (%), and (r%).
Thus, 6..(p, s) is calculated for several combinations
of pand s. Infigures 2 through 5 the following frac-
tional “averages” were computed. (If s#2, 8(p, s)
cannot be any more designated as a fractional
variance.)

(r) o e
W—l (p_2; 8_1)7

(r’) PR
Zr3—>g_1 (p_Gy 8—3),
%3-—1 (]’:67 822)7
() R e
W—l (p=8, s=4).

We notice that the results for 6, (p, s), based on t=3.2
and computed from eq (4) agree all very well with
the extrapolated results of figures 2 through 5.

For further verification of this fortuitously chosen
distribution function we will investigate the depend-
ence of 6,(p, s) on n and on the distance of the near-
est possible approach a, as follows:

A general expression for §,(p,s) is given in terms
of incomplete Gamma Functions, T'(y, x),

r p_—f—ﬁ’ ¢ I:F 3), t]p/s—l
oo [<l <>>]

Y]
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Frcure 2. Plot of 6, (2, 1) versus 1/n.
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Ficure 4. Plot of 6, (6, 2) versus 1/n.
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Ficure 5. Plot of 8, (8, 4) versus 1/n.

with the following definition for I'(y, z),
T(y, x):fw e~ 'tv=1dt.
z

The most convenient expansion for the incomplete
Gamma Function with small z is: T'(y, 2)=T(y)—
y~lave "M(1, 14y, x) where M(1, 1+y, x) is a con-
fluent hypergeometric function [13]. Since z, which
is equal to aa!, is invariably small (except when n is
also small), M(l 1-+y, ) can be approximated by the
first two terms of Kummer’s Function as M (1, 14y, x)

Therefore,

+ _z
20 s>g{r (2 (ig) e
1+tp—+—3>}

[ ((3>_—ata3(1 aa)(1+taat):|

TED-dterom (]
®)

Next, eq (8) can be approximated as follows:

8.(p, 8)=26.(p, 8)[1—Ci(aa')?*?]

(1—aa)

[1—Ca(p/s—1)(aa'*)*] - [1+Csp/s (aa*)* ] (9)
with S .
el (pj )] '(p+3>’
ar ()] 5

(O]

In eq (9), one notices that the deviation of 4,(p, s)
from its limiting value of 6, comes primarily from
the integral associated with the normalization con-
dition. ThlS is because the normalization integral,

There-

JO
fore, for large = (i.e., for aa’<<1), the first-order
correction to 6, can be written as

-
47 f r*e~"'dr involves the lowest power of 7.

8,26, [1— Co(pls—1) (aa!’")?]. (10)
(s 1s here close to unity in its value. Thus, to a first
approximation, 8,/8., for a given value of s is a_con-
stant, independent of p, pI‘OVIded that n is large
enough for the approximations leading to eqs (8) and
(9) to be valid.
In order to examine the dependence of §,/d.,

p, for given s, one has to consider the second donunant
term in the expansion of eq (8), which is brought up

by the denominator of this equation. To this
approximation
8, 28,[1—Ca(p/s—1) (aa'*)*|[1+4 Cyp/s(ae!’*)**] (1)

and, therefore, §,/6., is expected to decrease with
increasing p for fixed values of s. The following
table of 8,/6,, for s=2 confirms this observation.

P 850/0c
2 0. 865
4 . 852
6 . 832
8 . 809

Another qualitative check of our results can be
made on the basis of data presented in figures 4 and
5. These two figures represent the same value of p
but different values of s. From eq (10) it is obvious
that increasing s will have an effect of slightly de-
creasing the corresponding value of 4§,/6.,. Here,
again, we have 6,/6.,=0.832 for s=2, and 6,/5,=
0.827 for s=3, in qualitative agreement with these
analytical considerations.

The dependence of 4, on n for the asymptotic
case of large n can be estimated from the following:
If one assumes that (#2)~An” (A and vy are nu-

. 1 .
merical constants), then from wcc T one obtains

(7
1 1
that acc PETIE Hence, 6,/6.~1—0 E") fory=1.25

and =3.2, and the §, versus 1/n curves should not
be straight lines but somewhat concave upward in
the vicinity of 1/n=0. Therefore, somewhat lower
values for # than the extrapolated value of t=3.2
(based on linear extrapolation of data shown in the
inserts in figs. 1 through 5) might be expected.
Another aspect worth noticing is the tremendous
influence of @, the radius of closest approach, on the
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shape of the curves in our figures. The correction
term to 4.,(p, s) is proportional to at least the cube
of the radius of closest approach. For this reason
it is not surprising to find that in the case of ex-
cluded volume restricted to only self-intersections
the limiting value of §,(p, s) is reached almost im-
mediately, as 7 increases, as shown by Fisher and
Hiley [11], while in our case with larger a, it is
reached considerably slower.

3. Discussion

The polymer distribution function for the chain-
end displacement to have its absolute value in the
range between 7 and r+-dr is given by

L, tarPexp (—arf)dr r(5t) T2,
WO ="""1Gm TG I:I‘(S/t)<r2):| ’

exp [‘(f’g% %)Ug:' dr. (13)

For a Markov-type polymer chain, ¢=2, while for a
nonself intersecting chain t=3.2. The latter value
seems to be independent of the size of volume ex-
clusion in the asymptotic case of an infinitely long
chain. The comparison of these two representations
of polymer chains is shown in figure 6, in which
W(r) is plotted versus »/(z?) '/ for a Gaussian chain
(t=2) and for a nonself intersecting chain (t=3.2).
For (r*, the value of (=200 was taken; /[,
the length of a single polymer link is conveniently
assumed to have a value of one.

The shapes of these two curves are consistent
with the general trend of the effect of excluded
volume on the shape of the distribution function, as
pointed out by Verdier and Stockmayer [9]. Com-
pared to the Gaussian distribution, the distribution
function is deficient at low values of ». The tail
part for large extension has a sharper cutoff, as is
the case for a real polymer chain. To compensate
for these effects, more polymer configurations are
crowded around the mean distance. In figure 6,
the position of (#)/@*)"* is shown for both
types of polymer chain-end distributions. In the
case of a non-Gaussian chain the value of (r)
agrees better with the most probable polymer
configuration. This latter fact is open to experi-
mental verification.

The fact that the polymer distribution function
(or, rather, its shape) is so simply determined from
certain combinations of its moments does not imply
that the proposed form is the only one that could be
correct. As a matter of fact, even if the single-term
exponential form for the polymer distribution
function were correct for the case for which it was
obtained, namely, for an infinitely long polymer,
this does not imply that the same function will
correctly describe the entire range of polymer
dimensions. It could well be that the exact polymer
distribution function is built of several terms, which
either converge to the form derived in this work as
n—o  or, this single-term expression for the distribu-

772—-343—65——=6

tion function is all that is eventually left. A
straightforward procedure to determine the polyme
distribution function would be to calculate as many
moments as it is practically possible, within the
storage capacities of digital computers. Then, one
can derive enough terms of a moment-generating
function in order to calculate the distribution func-
tion using an inversion formula. However, we
would prefer rather to test first our single-term
polymer distribution function with existing ex-
perimental data, whenever applicable, and, if there
1s a need to do so, to seek a more exact representation.

The two computational results, our eq (13) and
another relation which determines the dependence of
the parameter « (or, the mean square distance
(%)) on the number of steps n should complete
the entire picture of the statistics of polymer end-
to-end distances. Either one of these two relation-
ships should be regarded as a compromise rather
than as a rigorous expression.

In the case of a polymer which can be adequately
described as Markovian (i.e., which is devoid of
excluded volume effect which results from existence
of long-range intramolecular correlations), the “poly-
mer structure index’” y=1 and t=2. (y is defined
as ((r,2)/rH—1)n in the limit of n-—>o, assum-
ing that such limiting value exists.) Otherwise, v
can have any value between 1 and 2 (depending on
the size of the excluded volume) and t=3.2. If our
assumption that ¢ does not depend on the kind of a
lattice, only on its dimensionality, is correct, then it
is this parameter which shows, that the two classes of
random walks on a lattice, the intersecting and the
nonselfl intersecting ones, represent two distinct
topological structures. A transition from one class
to another class would be impossible without first
breaking through the chain bonds. However, the
size of the excluded volume (or the range of hard-
sphere potential energy for intramolecular repulsion)
does not affect the topology (or the parameter ¢) of
the chain.
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04}
.02 <r’ <resle <r> Y.
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z A/<|72>A
I 1 ! 1\ ‘1/ L 1 L I
2 4 6 8 0 12 14 16 18 20
r/<r232
Ficgure 6. The chain-end disiribution function for random

walk on a simple cubic lattice with excluded unit-distance
approaches (curve A) and for wunrestricted Gaussian-type
random walk on the same lattice (curve B).

In both cases <r,2>=200Xunit step length.
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4. Appendix

Unless one considers very high moments, it is
obvious that the so-called ‘“fractional moments”
4, are rather insensitive to the tail-part of the chain-
end distribution function. For this reason, one
could expect that other forms for the radial distribu-
tion functions of the general form

W(r)dr=Ar' exp (—art)dr (AlD)
with /2, could lead to the correct results in terms of
6(p,s). Recently Professor Domb [12] indicated
that for a simple nonintersecting random walk on a
cubic lattice the general form for W(r) is the above
relation with [=¢ and ¢t=2.5. We checked this
particular form for the distribution function, based
on the proposition that [=t¢, with our data and found
that for this model the value of t=2.58 leads to a
good agreement between the computed values of
6(p,s) and these quantities as calculated from the
moments of this distribution function. Moreover,
if curve A of figure 6 is replaced by the distribution
function with [=t, while retaining all other param-
eters, the resulting curve will overlap almost exactly
curve A, except for its tail-part. The advantage of
the radial distribution function with /=t lies in the
fact that W(x)dx, the distribution of a rectangular
coordinate will then assume a simple single- term
exponential function with the same exponent as in
the radial function, namely

W(z)de=A exp [—a|z|']dz (A2)
while in our case this simple form for W(z) is not
obtainable [14]. As a matter of fact, a rectangular
coordinate chain-end distribution function will then
be given by

f y(t )e “dydx (A3)

assuming, as we did, that /[=2. Of course, when
t=2, either approach leads to the well-known one-
and three-dimensional Gaussian distributions.

These considerations are illustrated in table 1
and figure 7. In table 1, the extrapolated values
for o(p, p/2) are shown, together with the data
calculated from the following equation for 8(p, p/2)
which is based on the (reneraf form for the chain-end
distribution function given by eq (A1)

DI
(o2 3+1( ")
'—t_—

1 (A4)

for the following cases:

(1) 1=2,{=32
(2) 1=t=2.6
(3) 1=2.1, t=3.0

For comparison, the values of 6(p, p/2) for Gaussian
distribution are also presented.

TaBre 1.  Comparison of Monte Carlo computation of §(p,p/2)
with values obtainted from eq (A4)
Monte C: 1r10 1=2,t=3.2| I=t=2.6 |[l=2.1,{=3. 0 1=t=2.0
computation | ‘ (Gaussian)
‘ ‘
5(2,1) | 0.126 | 0.127 0.120 0.127 0.178
5(4,2) | . 442 .438 .433 . 446 . 667
5 (6,3) L 958 .939 . 967 . 968 1.577
5(8,4) 1.735 1. 696 1.816 1.770 3.200

The case of /=2.1 and ¢=3.0 was found from
computations of eq (A4) performed on a high-speed
computer, as representing the best fit of results
based on eq (A4) and the numerical data based on
the Monte Carlo computations. This is shown in
ﬁgule 7, in which [ is plotted versus ¢ for each of the
four “reduced” moments §(p, p/2). Therefore, our
data justify the a priori assumption that [=2.

In spite of this agreement, the justification for our
radial distribution function with /=2 is more
heuristic than rigorous, owing to the uncertainty
in extrapolated data based on higher moments.
Thus, the total volume of all volume elements at a
distance 7 is 47’ %dr, which is proportional to the
number of possible positions between » and »+dr on
a lattice. And, indeed, Wall, Windwer, and Gans
[8] found that the number of possible sites on a
tetrahedral lattice is approximately proportional to
r?. Thus, our distribution function retains the
volume element, multiplied by a single term which
represents the exponential decay of the distribution.

30 8 (6,3)
3(4,2)
3(2,1)
25 3(8,4)
A

20
1 1 | 1
285 3.0 3.5 4.0

t

Frcure 7. Graphical determinaiion of the parameters 1 and t
of the chain-end radial distribution funciion of the genmeral
form (Al).
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However, the behavior of the distribution function
as 7—0 1s hard to ascertain owing to the lattice
effects. The indications on the basis of previous
Monte Carlo calculations [8-10] are that 1>>2
represents a better description near the origin, than
the case with [=2.

In the case of the general form of the distribution
function of eq (A1) which involves two parameters,
the Monte Carlo approach used here is not sensitive
enough to determine a unique pair of the parameters
{ and ¢. 'This is because very few samples are
generated in the tail-part of the distribution which,
in turn, is particularly sensitive to the exponent-
parameter . One can improve the accuracy of our
computations only if higher moments than the
eighth moment are calculated. For this reason, one
should generate enough samples for chains which are
considerably longer than the ones generated by us,
since the higher-order moments are more sensitive to
the “lattice effects” than are the lower ones. We
hope to undertake these computations in the future.

(Paper 69A4-355)

5. References

[1] M. Fisz, Probability Theory and Mathematical Statis-
tics, ;:h. 6. (John Wiley & Sons, New York, N.Y.,
1963.

[2] M. Fisz, ch. 7, p. 264. At the end of this chapter there
is an extensive bibliography for conditions for the
validity of the Central Limit Theorem for Markov
chains.

[3] J. Mazur, J. Chem. Phys. 41, 2256 (1964).

[4] E. Montroll, Ann. of Math. Statist. 18, 18 (1947).

[5] On long-range orders in lattices see, for example, G. F,
Newell and E. Montroll, Rev. Modern Physics 25,
353 (1953); J. Ashkin and W. K. Lamb, Physical
Review 64, 159 (1943).

[6] G. Frobenius, Sitzungsberichte, 451, 1912; also, G.
Debreu and I. N. Herstein, 21, 597 (1953).

[71 G. Frobenius, Sitzungsberichte, 514 (1909).

[8] F.T. Wall; S. Windwer, and P. J. Gans, J. Chem. Phys.
38, 2220 (1963).

[9] P. H. Verdier and W. H. Stockmayer, J. Chem. Phys.
36, 227 (1962).

[10] T. F. Schatzki, J. Poly. Sci. 57, 337 (1962).

[11] M.( E. Fisher and B. J. Hiley, J. Chem. Phys. 34, 1253
1961).

] C. Domb, private communication.

| Handbook of Mathematical Funections, NBS Applied

Mathematies Series, pp. 262 and 504.

[14] L. R. G. Treloar, Trans Faraday Soc. 42, 77 (1946).

[15] The work mentioned in ref. 12 was in press at the time
this manuscript was being prepared for print: C. Domb,
J. Gillis, and G. Wilmers, Proc Phys. Soc. 85, 625
(1965).

[12 (See ref. [15].)
[13

363



	jresv69An4p_355
	jresv69An4p_356
	jresv69An4p_357
	jresv69An4p_358
	jresv69An4p_359
	jresv69An4p_360
	jresv69An4p_361
	jresv69An4p_362
	jresv69An4p_363
	jresv69An4p_364

