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The distribution function of t he absolute values of chain lengths of a polymer molec ule 
which displays t he excluded volume effect cannot assume a Gaussia n form . This fact follows 
directly from t heoretical considerations based on the application of t he Central Limit 
Theorem t o the theory of Markov chains . In order to determine the exact s hape of the 
polymer chain-end distribution function we calculated its vario us momel:ts taken a bou t t he 
ori"in and t heir dependence on the number of polymer segments, USll1g a Mo nte Carlo 
technique for generating polymer chains on a lattice. The results obta ined from t he extrap­
olat ion of various combinations of t hese moments of the general form 

arc used to determine t he shape of t he polymer distribu t ion function. It is found that t he 
cha in-end distribution function can be approximated by t he following form : 

W(r)dr= [ r (~) J-l tOfY'r2 exp ( - ar')dr, 

wit h t= 3.2 and a being a parameter, determina ble from the average mean square chain-end 
dis tances. 

1. On the Incompatibility of Excluded 
Volume Effects With Gaussian Statistics 

The distribution of end-to-end distances in a suffi­
ciently long, freely jointed chain is invariably a 
Gaussian one. This fact follows directly from the 
Central Limit Theorem as it is applied to the se­
quence of mutually independent random variables 
with a common distribution. (That is, each of the 
random variables which form a chain has the same 
distribution ; this kind of chain is sometimes desig­
nated as a homogeneous one (1).1) 

One can apply the Central Limit Theorem to ran­
dom variables which form a homogeneous Markov 
chain, in order to demonstrate the fact that the 
Gaussian distribution law is approached in the limit 
for chains in which the position of a polymer unit 
depends on the position of the preceding one [2] 
as well. Real polymer chains with internal rotation 
around their bonds, whether free or hindered, will 
be accurately described by Markov chains. The 
classification of polymer chains as Markovian is 
broader than this. Thus, if one eliminates chain 
closures formed with a fixed number of steps (such 
as four-step closures on cubic lattices or six-step 
closures on diamond lattice), one still can apply the 
theory of Markov chains for these models, since the 
distribution of probabilities of a particular event is 
still determined uniquely by the preceding event, 

I Figures in brackets ind icate the literature references at the end of this paper. 

which, in this case, is a formation of a four-step or 
a six-step loop [3]. This description does not yet 
exhaust all possible cases of polymer chains which can 
be described by :Markov chains. As has been pointed 
out by Montroll [4], for any poly mer chain with 
forbidden conformations being restricted to nonself 
intersection of loops with l in tervening steps, t~e 
distribution of intrachain distances of n steps WIll 
assume a limiting Gaussian form , prO\Tided that n 
> >l. For this reason any infinitely long polymer 
chain with finite-range correlations can be described 
as a Markov chain. The question as to whether 
every Markov chain will lead to a limiting Gaussian 
distribution is a more involved one. The restrictive 
conditions under which the Central Limit Theorem 
can be applied to a sequence of random variables 
forming a homogeneous Markov chain are usually 
satisfied for linear polymer chains as will be demon­
strated. For example, one of the conditions is the 
nonperiodicity of the distribution of the individu~l 
segments. However, whenever a polymer cham 
satisfies the condition for the validity of the Central 
Limit Theorem, the distribution of the in tramolecular 
distances becomes a Gaussian one, provided that the 
number of inter vening steps is large enough. 

We propose that the distribution function of 
polymer configurations with volume effect cannot be 
Gaussian even in the asymptotic case of an infinitely 
long chain. In other words, the application of 
Gaussian statistics is invalid for the case of mutually 
excluding random events, such as forbidden double 
occupancy of the same volume element of the 
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polymer chain. The proof of this statement is 
obtained from the following heuristic, rather than 
from rigorous mathematical analysis: An excluded 
volume effect implies an existence of long-range 
order in a polymer chain for the simple reason that 
the probability distribution function of a given 
polymer segment is no longer independent of the 
initial probability distribution. rIn the terminology 
of the theory of cooperative phenomena, a system 
for which there exists a correlation between the 
distribu tion of. any two statistical elemen ts, no 
matter how 'wIdely they are separated by other 
elements, is characterized by the presence of a long­
range order. Therefore, excluded volume effects, 
defined by mutual exclusions of double occupancies 
of volume elements on a lattice, imply a presence of 
long-range correlation in a polymer chain.) 

Consider a matrix P of transition probabilities 
P ij . The p ij are the probabilities for a random 
variable havi.ng a certain value of ai, given that the 
previous random variable has a value of aj. From 
the theory of Markov chains we Imow that if the 
matrix P possesses a real nondegenerate root (or 
eigenvalue) AI , which has a value that is larger than 
the absolute valu e of any other root, then the proba­
bility distribution of a given random variable be­
comes independent of its initial distribution, provided 
that the number of steps is sufficiently large. In 
other words, the distribution of the polymer seg­
ments represented by the random variables becomes 
stationary, and there is no correlation between 
individual segments which are a long distance apart 
(no long-range order can exist). But we know from 
the Central Limit Theorem that this is precisely the 
condition for the Gaussian statistics to be descriptive 
of the distribution function of intramolecular separa­
tions. In order to complete our proof that the 
excluded volume effect is inconsistent with the 
Gaussian statistics one has to discuss the possibility 
of Markov chains with long range order. This lon g­
range order will always be present whenever the 
largest root of the matrix of transition probabilities 
is a degenerate one [5]. Therefore, we will demon­
strate that in regular polymer chains this degeneracy 
cannot occur as long as they are represented by 
Markov chains. For this purpose, the model of 
absorbing Markov chains is employed, since they 
encompass the most general type of a polymer chain 
in which certain chain conformations of finite num­
ber of steps are either biased or virtually excluded 
[3]. In absorbing Markov chains, the absorbing 
state represents a boundary which terminates the 
process of adding a step to the chain. Thus, the 
matrL,( of transition probabilities with absorbing 
states is stochastic. This matrix is decomposable 
since it can always be of the following form 

(
All 

p = 
o 

(1) 

This matrix, being stochastic, has a largest eigen­
value equal to l. The matrix of transient states A 22 , 

raised to the nth power represents all real confor­
mations of an n-step polymer chain. By de6nition, 
its largest eigenvalue must be less than 1 in absolute 
value. Thus, the states of a polymer chain are 
decomposed into the forbidden conformations, re­
sulting from short-range volume exclusions, and the 
transient states. Since we are interested only in 
the latter states, we demonstrate that the largest 
eigenvalue of the matrixA22 is also positive and single. 
To do this, we employ the Frobenius theorem for 
matrices with nonnegative elements as follows 
(6).2 Any square matrix with nonnegative elements 
has a characteristic root which is both larger in its 
absolute value than any other root and is non­
degenerate, provided that such a matrix cannot be 
decomposed, that is, no permutation matrix T 
exists such that 

TA 2Z T-I = P 

where P is the matrix of the general form (1) . (A 
permutation matrix is obtained through permutation 
of columns of an identity matrix. ) In order to show 
that the matrix of transition probabilities for a chain 
that reached its closure in a fixed number of steps in 
the case of a linear homogeneous polymer is a non­
decomposable one, we demonstrate the following: 
(1) All superdiagonal terms of such a matrix are 
nonzero. This follows from the fact that the super­
diagonal terms represent the shortest path for the 
random walk to form a closed configuration (or to 
reach its absorbing state, which is a "point of no 
return"). (2) In addition, each of the columns must 
have at least another nondiagonal, nonzero element. 
This is because at least two different chain conforma­
tions should result when a step is added at random to 
the end of the chain. In addition, the first column 
(which does not possess a superdiagonal term) should 
have at least one nonzero element other than the top 
or the bottom one. Otherwise, we will encounter a 
periodic boundary condition, since the same chain 
conformation will be repeated regularly, contrary to 
our model for a regular polymer chain. In our 
other publication [3], the two bottom rows of the 
matrix of transition probabilities are all filled up, so 
that the conditions for non decomposability of the 
matrix of transition probabilities are satisfied. (In 
regular polymer chains, one should be able to reach 
any permissible chain conformation from any other 
chain conformation by a finite number of steps.) 

Another way to prove the nondecomposability of 
the Markov matrix with zero elements is to raise it to 
some power. If this operation will result in matrix 
having no zero elements, its non decomposability 
becomes obvious. In reference [3], the matrix of 
eq (16) raised to the power of l-2 , will have all its 
original zeros replaced by positive elements. Thus, 

2 The Frobenius theorem, as quoted by most authors, deals with matrices 
with positive, nonzero elements [7] . This theorem has been applied in order to 
investigate the conditions for the absence of long.range order in certain physical 
models based on Markov chains, e.g. , for Ising model of ferromagnet, order­
disorder transitions in crystals, etc. However, there is a later Frobenius theorem 
[6] which deals with uonnegative matrices and which is applied here to polymer 
chains. 
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since there is no possibility, with simple polymer 
chains, to exhibi t a degeneracy, or a long-range order, 
in their Markov-chain models, the Gaussian limiting 
law could obtain only when long-range excluded 
volume effects are absen t in such chains. For ex­
ample, the proof given by Montrol [4] who derived 
the Gaussian limiting law for any given function 
whose a \Terage is taken over the IVlarkov chain, re­
quires the existence of a single largest root of the 
matrix of transition probabilities. One can easily 
deduce from IVlontroll 's derivation, that, if the largest 
root were degenerate, a Gaussian limiting law could 
not be obtained.3 

In conclusion, we have demonstrated the follow­
ing: (a) Polymers which are characterized by a 
chain of independent events or by homogeneous 
1!Jarkov chains invariably lead to Gaussian distribu­
t ion of the probabilities of theu' lengths. This 
follows from the application of the Central Limit 
Theorem to random variables forming a statis­
tical chain. (b) Chains which possess long-range 
correlation, such as an excluded volum.e, cannot 
have a Gaussian distribution for their intramolecular 
dimensions, even in the limiting case of an infinitely 
long chain. This follows from the fact that, for t he 
distribution function of polymer dimensions to be 
Gaussian, the matrix of transition probabilities 
must be devoid of long-range order (i.e. , its largest 
root must be nondegenerate) . 

Wall, Windwer, and Gans [8]; Verdier and Stock­
mayer [9], an d Schatzki [10] have demonstrated, on 
the basis of Monte Carlo computations, that the dis­
tribution of end- to-end distances in a polymer chain 
is non-Gaussian. Similarly, Fisher and Hiley [11] 
have demonstra ted the same thing USUlg theu' chain­
counting method. Thus, dU'ect numerical computa­
t ions of the distribu tion of polymer chain-end lengths 
and the theoretical considerations along the above 
given guidelines prove the invalidity of the applica­
t ion of Gaussian statistics to the polymer chains with 
excluded volume. It is of importance to find from 
numerical analysis the form of the distribution of 
polymer configurations with excluded volume effects, 
and this is the purpose of the pres en t work. 

2 . Computational Part 

It is clear from the above arguments that the 
excluded volume effect of a polymer chain cannot be 
given a theoretical treatment on the basis of theories 
of Markov chains. There are certain physical prob­
lems in which long-m nge order is accessible to 
theoretical treatment; e.g., critical phenomena asso­
ciated with the conditions for the largest root of a 
Markov matrix of transition prob abilities becoming 
a degenerate one. Unfortuna tely, a similar t reat­
ment of excluded volume as a long-range order does 
not seem to be possible in t he case of a polymer chain. 

3A Simple statement that the Gaussian distri bution is always obtained for 
fmite Markov chains would serve our purpose, but it will be cri ticized as an over­
simplifLCation . We, therefore, prefer to present this more detailed proof, that such 
is the case with simple, linear poly mer chains. Our only assumption is that all 
polymer chains can be described as special cases of the general class of absorbing 
chains, which were first introduced by us ill reference [3] . 

Here, again , numerical methods rather than a theo­
retical analysis eem to be the only practical way for 
determining statistical properties of polymer chains 
resulting from the presence of excluded volume. 
Monte Carlo methods do provide a solu tion to the 
problem of estimating the mean square end-to-end 
distance of a polymer chain as a function of t he 
number of steps. If one, however, tries to apply 
directly the same Monte Carlo calculations in order 
to find the polymer chain-end distribution function , 
one will run in to technical difficulties : The "tail part" 
of the distribution function will show a very large 
scatter of data, since ther e will be few configurations 
in that part; on the other hand, near the peak of the 
distribution function the distances are small and one 
will run in to the so-called "lattice effect". This effect 
is related to the fact that only certain discrete intra­
molecular separations are possible. These distances 
do not possess the same degeneracy, since the number 
of lattice sites within a given distance l' from a given 
lattice point is an irregular function of r which 
depends on the lattice structure. The inspection of 
Monte Carlo data presented by Wall, Windwer, and 
Gans, by Verdier and Stockmayer, and by Schatzki 
clearly demonstrates the technical difficulties in 
finding the distrib ution of polymer configurations, 
except for demonstmting their non-Gaussin,n be­
havior, which is to be expected. Schatzki carried 
his calculations one step further by expanding the 
distribution function of end-to-end separations in 
terms of Hermite polynomials; the lowest term 
reduces, however, to the Gaussian distribution 
function for the case of no excluded volume. 

OUl' effort will be less ambitious. By going to the 
case of an infinitely long chain we will establish the 
shape of the di tribution function from cer tain 
combinations of the distance averages taken over i t . 
By the shape of the distribution function we imply 
the particular term which determines its rate of 
decay as the distance of separation between polymer 
segments becomes large. If, in addition, we have 
another relationship that establishes the dependence 
of the mean-square dimension on the number of 
polymer segments, we can readily construct the 
entire polymer chain-end distribution function, 
which for most practical purposes should be accurate 
enough for the purpose of estimation of its various 
statistical properties. 

The case of an infinitely long polymer molecule is 
of theoretical in terest. We study this case by 
plotting the computed averages as functions of l /n, 
and extrapolating the resulting curve toward l /n = O. 
The limiting distribution function m ust incorporate 
excluded volume effects resulting from the presence 
of long-range correlations. As we know, incorpora­
tion of only finite-range correlations, e.g. , nonself 
intersections of finite-sized loops in polymer chain 
will eventually lead to the Gaussian distribution of 
chain-end separations. Therefore, the true non­
Gaussian form of the polymer distribution function 
is most evident in the asymptotic case of an infinitely 
long chain. Moreover, the effects of the finite size 
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of the excluded volume per segment and of the 
lattice structure are then obliterated. 

Fisher and Hiley calculated the mean fourth power 
of end-to-end distances, (r~) , for nonself intersect­
ing random walks on simple cubic and plane­
square lattices, usin& the chain-counting method 
[ll]. From their values of (1'!) , they calculated 
the fractional variance of r;, namely the quantity 

• _ «( ,2 (.2» 2)/( 2)2 (r~) 1 
un- 1n- f n r n = (r~)2- . (2) 

A plot of On versus l /n is easily extrapolated to the 
limit of l /n = O, in spite of th e fact that the exact com­
putations were carried only to the first 10 steps. 
For a cubic lattice, they obtained for the extrapolated 
fractional variance of r;" 0", = 0.453 (for a Gaussian 
distribution, 0", = 2/3). We were more interested to 
notice the fact that, for a simple nonintersecting 
ch~in , On r.eache~ a limiting valu e r apidly; therefore, 
On IS practIcally Independent of the number of steps. 

A reasonable form for the polymer chain-end dis­
tribution function is of the form W(1', n)dr= 
O e- aCn)rtdr where 0 is determined from the normaliza­
tion condition imposed on liver, n), taken over a 
volume of a sphere.4 If one defines 

(3) 

h .. 'd h f I (r P) • • t en It IS eVI ent t at, or any va ue of t, (1'~)1) IS IS lll-

dependent of (x , and therefore, is independent of the 
number of steps. However, the integrations in eq 
(3) should be taken not from 1'= 0, but from r = a 
where a corresponds to the distance of the nearest 
possible approach. However, no matter how larO'e 
a is, in the asymptotic case of n = ro , the asymptotic 
formula for 0" should be independent of a. There­
fore , 

r (~)[r (f)TiS- 1 

[r (8~3) TIS -1. (4) 

In the case of 8= 2, o", (p , 2) is identical with the 
fractional variance of 1'P12, since then 

0", (p, 2) 
i '" (1'1)12_ (1'PI2) )2W(1', a)d1' 

(1'p I2)Z (5) 

One would therefore expect that, if (1'4) and (1'2) 
were calculated for a random walk on a cubic lattice 

.' R ecently, C. Domb [12) proposed a different form for W (T ,n) . In theappen' 
dlX of t his paper these two choices for the chain-end distribution fun ctio ll are 
compared, and a more general form for WeT, n) , which involves t wo strnctnral 
parameters, is introduced. 

wi.th unit .distances between any two lattice points 
bemg forbIdden , the same valu e of 0", (4 , 2) would be 
obtained, as calculated by Fisher and Hiley for 
nonintersecting random "valks on the same lattice. 
However, the lim.iting value of 0", will be reached 
much slower than in the case of simple nonioter­
secting random walk. We therefore calculated 
(1'~> as well as (1';;) for a random walk on a 
cubic lattice with unit distances being forbidden. 
The special method for the Monte Carlo compu­
tfLtions employed here and the computational 
details will be described elsewhere. In figure 1 the 
results of these computations are shown. A total 
number of 300,000 random walks were generated, 
and the computations were carried up to n = 60. 
However, beyond n = 50 the scatter of the data does 
not permit us to use the corresponding results . 

In order to avoid crowding of data owing to the 
use of the reciprocal scale, the part of the curve for 
22 < n< 40 is redrawn in the insert on an enlarged 
scale. This way, the entire On versus l /n curve as 
well as the detailed data which are especially needed 
for the accuracy of their extrapolation towards 
n = ro are shown. On the right-hand side of figure 1 
and of the subsequent figures the values of the 
parameter t are shown, that are calculated from the 
corresponding values of o", (p, s), as given by eq (4). 
Thus, the intercept of the extrapolated data of these 
figures wi th the n = ro axis leads to the correct v alue 
of the parameter t of eqs (3) and (4). The various 
values of the parameter t shown on the n = ro axis 
are presented in order to demonstrate the accuracy 
in this determination of the extrapolated value of t 
An inspection of figure 1 not only points to the im-: 
possibility of approximating the Gaussian value of' 
t= 2, but to the fact that the parameter t can be 
accurately determined to within one-tenth of a unit. 

As was to be expected, the limiting value for 0 is 
almost identical with the one reported by Fisher and 
Hiley (0 ", = 0.443 as compared to their 0", = 0.453). 

l:: .5 .38 
1 

N 

:J i ·36 
c 

.4 GO . 34 3.5 

N 
4.0 

.32 
~ I 5.0 ;c: .3 I 

2 5 3 0 40 

.2 

10 20 3040 

FIGURE 1. Plot of On (4, 2), the relative fractional variance of 
r2n, versus l !n, for random walk on a simple cubic lattice with 
excluded unit distance approaches. 
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Moreover, the limiting value of 0 is reached much 
slower now, owing to the fact that the distance of 
closest approach is considerably larger than it was 
for the case of simple nonintersecting chains with no 
other restriction being imposed on the closest pos­
sible approach between chain elements. For short 
chains On is much less than its limiting value 0"" as 
is to be expected, considering the particular form for 
the distribution function. From the extrapolated 
value of 0", (4,2) = 0.443 , one finds that t=3.2. 
Therefore, for three-dimensional lattices with ex­
cluded volume, the normalized distribution function, 
W(r, n)dr= 3.0765ao.9375r2 exp (- exr3· 2)clr. (For two 
dimensional lattices, t is considerably larger.) The 
parameter ex is undetermined. However, it can be 
easily calculated from any given relationship between 
(r P) and n. For example, one can replace ex by 

[ r(~) ] 1.6 
a= r (3~2) (r!) 

(6) 

if the relationship between (r ~) and n is glven 
independen tl y. 

In order to reassure ourselves that the suggested 
form for the distribution function ser ves as a good 
approximation, we calculated, for the same lattice 
model, the following averages: (r), (r3) , (r6) , and (r8). 

Thus, 0", (p, 8) is calculated for several combinations 
of p and 8. In figures 2 through 5 the following frac­
tional "averages" were computed. (If 8;t: 2 , o(p, 8) 
cannot be any more designated as a fractional 
variance.) 

(r 2) 

(r)2-1 (p = 2, 8= 1), 

(r6) . 

(r3)2- 1 (p = 6, 8= 3), 

(r 6) 
(r2)3- 1 (p=6, 8=2), 

(r8) 
(r4)2- 1 (p=8, 8= 4) . 

We notice that the resuJ ts for 0", (p, 8), based on t= 3.2 
and computed from eq (4) agree all very well with 
the extrapolated results of figures 2 through 5. 

For further verification of this fortuitously chosen 
distribution function we will investigate the depend­
ence of on(P, 8) on n and on the distance of the near­
est possible approach a, as follows: 

A general expression for On(p,8) is given in terms 
of incomplete Gamma Functions, r(y, x), 

( +3 ) [ (3) ]P/S-l r ~'exat r t 'exat 

On(p,8) = [ (8+3 )]P/s r --, exat 
t 

(7) 

.2 . 11 
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.1 5.0 
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FIGURE 2. Plol of On (2, 1) versus l in. 
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FIGURE 3. Plot of On (6, 3) versus l in. 
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FIGURE 4. Plol of On (6, 2) versus lin. 
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FIGURE 5. Plot of On (8, 4) versus l in . 

with the following definition for r(y, x), 

2 .5 

3.0 
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The most cOllvenient expansion for the incomplete 
Gamma Function with small x is: r(y, x)= r(y) ­
y- lxYe-XM(I, I + y, x) where 1\1(1 , I + y , x) is a con­
fluent hypergeometric function [13]. Since x, which 
is equal to aat , is invariably small (except when n is 
also small), M(l, I + y, x) can be approximated by the 
first two terms of Kummer's Function as M(I, 1 + y, x) 

x 
~I+I+Y' Therefore, 

on(P, 8)~ { r (P~3)_(P~3) apr aP+3 

(I-aa t ) (I + t pa~13) } 

Next, eq (8) can be approximated as follows: 

on(P, 8)~ 0", (p, 8)[I-Ol(aa1/t )P+3] 

In eq (9), one notices that the deviation of on(P, 8) 
from its limiting value of 0", comes primarily from 
the integral associated with the normalization con­
dition. This is because the normalization integral, 

471" r'" r2e- a r1dr involves the lowest power of r. There-
.10 

fore, for large n (i.e., for aat< < 1) , the fu'st-order 
correction to 0", can be written as 

O2 is here close to unity in its value. Thus, to a fu'st 
approximation, On/O", for a given value of 8 is a con­
stant, independent of p, provided that n is large 
enough for the approximations leading to eqs (8) and 
(9) to be valid. 

In order to examine the dependence of on/o", on 
p, for given 8, one has to consider the second dominant 
term in the expansion of eq (8), which is brought up 
by the denominator of this equation. To this 
approximation 

and, therefore, on/o", is expected to decrease with 
increasing p for fixed values of s. The following 
table of 040/0", for 8=2 confu'ms this obsenation. 

p 

2 
4 
6 
8 

O. 865 
.852 
.832 
.809 

Another qualitative check of our results can be 
made on the basis of data presented in figures 4 and 
5. These two figures represent the same value of p 
but different values of 8. From eq (10) it is obvious 
that increasing 8 will have an effect of slightly de­
creasing the corresponding value of on/o", . Here, 
again, we have 040/0",= 0.832 for 8=2, and 040/0",= 
0.827 for 8= 3, in qualitative agreement with these 
analytical considerations. 

The dependence of On on n for the asymptotic 
case of large n can be estimated from the following: 
If one assumes that (r~> '" An l' (A and "( are nu-

merical constants) , then from aCC (r;~t /2 one obtains 

[1- 02(p/8- I ) (aa1/t )3]. [1 + 03P/8 (aa1/I)'H] (9) that aCC n~ /2 ' Hence, On/O ", "'I - O(~} for "( = 1.25 

and t= 3.2 , and the On versus l in curves should not 
be straight lines but somewhat concave upward in 
the vicinity of I ln = O. Therefore, somewhat lower 
values for t than the extrapolated value of t= 3.2 
(based on linear extrapolation of data shown in the 
inserts in figs. 1 through 5) might be expected. 

with 

Another aspect worth noticing is the tremendous 
influence of a, the radius of closest approach, on the 
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shape of the curves in our figures. The correction 
term to ooo (p, s) is proportional to at least the cube 
of the radius of closest approach. For this reason 
it is not smprising to find that in the case of ex­
cluded volume restricted to only self-intersections 
the limiting value of o,,(p, s) is reached almost im­
mediately, as n increases, as shown by Fisher and 
Hiley [11] , while in our case with larger a, it is 
reached considerably slower . 

3. Discussion 

The polymer distribution function for the chain­
end displacement to have its absolute value in the 
range between l' and 1' + d1' is given by 

W(r)d1' tci /tr2 ex)) (-art)dr = _ t_ [ r(5/t) J3/21'2 

r(3/ t) r(3/ t) r(3/t) (1'2) 

[ Cr (5/t) 1'2 )t /2J ' 
exp - r (3 / t) (1'2) dl. (13) 

For a J\tlarkov-type polymer chain, t= 2, while for a 
nonself intersecting chain t = 3.2. The latter value 
seems to be independent of the size of volume ex­
clusion in the asymptotic case of an infinitely long 
chain. The comparison of these two representations 
of polymer chains is shown in figure 6, in which 
W(r) is plotted versus 1'/(1'2) 1 /2 for a Gaussian chain 
(t= 2) and for a nonse1£ intersecting chain (t = 3.2). 
For (1'2), the value of (r2)= 200l2 was taken; l, 
the length o( a single polymer link is conveniently 
assumed to haye a value of one. 

The shapes of these two curves are consistent 
with the general trend of the effect of excluded 
volume on the shape of the distribution function , as 
pointed out by VenEer and Stockmayer [9]. Com­
pared to the Gaussian distribution, the distribution 
function is deficient at low values of 1'. The tail 
part for large extension has a sharper cutoff, as is 
the case for a real polymer chain. To compensate 
for these effects, more polymer configurations are 
crowded around the mean distance. In figure 6, 
the position of (1')/(1'2)1/2 is shown for both 
types of polymer chain-end distributions. In the 
case of a non-Gaussian chain the value of (1') 
agTees better with the most probable polymer 
configuration. This latter fact is open to experi­
mental verification. 

The fact that the polymer distribution function 
(or , rather, its shape) is so simply determined from 
certain combinations of its moments does not imply 
that the proposed form is the only one that could be 
correct. As a matter of fact , even if the single-term 
exponential form for the polymer distribution 
function were correct for the case for which it was 
obtained, namely, for an infinitely long polymer, 
this does not imply that the same function will 
correctly describe the entire range of polymer 
dimensions. It could well be that the exact polymer 
distribution function is built of several terms, which 
either converge to the form derived in this work as 
n ---? oo, or, this single-term expression for the distribu-

tion function is all that is eventually left. A 
straightforward procedure to determine the polyme 
distribution function would be to calculate as many 
moments as it is practically possible, within the 
storage capacities of digital computers. Then , one 
can derive enough terms of a moment-generating 
function in order to calculate the distribution func­
t ion using an inversion formula. However, we 
would prefer rather to test fll·st our single-term 
polymer distribution function with existing ex­
perimental data, whenever applicable, and, if there 
is a need to do so, to seek a more exact representation. 

The two computational results, our eq (13) and 
another relation which determines the dependence of 
the parameter a (or, the mean square distance 
(1'~» on the number of steps n should complete 
the entire picture of the statistics of polymer end­
to-end distances. Either one of these two relation­
ships should be regarded as a compromise rather 
than as a rigorous expression. 

In the case of a polymer which can be adequately 
described as Markovian (i.e., which is devoid of 
excluded volume effect which results from existence 
of long-range intramolecular correlations), the "poly­
mer structure index" 'Y = 1 and t = 2. ('Y is defined 
as (1'n~I)/(r!) -1)n in the limit of n ---? oo, assum­
ing that such limiting value exists.) Otherwise, 'Y 
can have any value between 1 and 2 (depending on 
the size of the excluded volume) and t =3 .2. If our 
assumption that t does not depend on the kind of a 
lattice, only on its dimensionality, is correct, then it 
is this parameter which shows, that the two classes of 
random walks on a lattice, the intersecting and the 
nonseH intersecting ones, represent two distinct 
topological structures. A transition from one class 
to another class would be impossible without first 
breaking through the chain boods. However, the 
size of the excluded volume (or the range of harcl­
sphere potential energy fur intramolecular repulsion) 
does not affect the topology (or the parameter t ) of 
the chain. 

.10 

.08 

-:: 
.0 6 

~ 

.04 

.02 <r>e/<r 2>'.'2 <r>j " A <r2~ 2 

~/ 
.2 .4 .6 .8 1.0 1.2 1.4 

r /< r2~/2 

FIGURE 6. The chain-end distribution function for random 
walk on a simple cubic lattice with excluded unit-distance 
approaches (curve A) and for unrestricted Gaussian-type 
random walk on the same lattice (curve B ). 

In both cases <T.'> = 200X Wlit step length . 
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4 . Appendix 

Unless one considers very high moments, it is 
obvious that the so-called "fractional moments" 
On are rather insensitive to the tail-part of the chain­
end distribution function. For this reason, one 
could expect that other forms for the radial distribu­
tion functions of the general form 

W(r)dr=Arl exp (-exr')dr (AI) 

with l ~ 2, could lead to the correct results in terms of 
o(p, s). Recently Professor Domb [12] indicated 
that for a simple nonintersecting random walk on a 
cubic lattice the general form for W(r) is the above 
relation with l= t and t= 2.5. We checked this 
particular form for the distribution function, based 
on the proposition that l= t, with our data and found 
that for this model the value of t= 2.58 leads to a 
good agreement between the computed values of 
o(p, s) and these quantities as calculated from the 
moments of this distribution function. Moreover, 
if curve A of figure 6 is replaced by the distribution 
function with l=t, while retaining all other param­
eters, the resulting curve will overlap almost exactly 
curve A, except for its tail-part. The advantage of 
the radial distribution function with l= t lies in the 
fact that W(x)dx, the distribution of a rectangular 
coordinate will then assume a simple single-term 
exponential function with the same exponent as in 
the radial function, namely 

W(x)dx=A exp [-ex ixi' ]dx (A2) 

while in our case this simple form for W(x) is not 
obtainable [14] . As a matter of fact, a rectangular 
coordinate chain-end distribution function will then 
be given by 

W(x)dx ex y /-1 e-Vdydx (A3) 1/ , J OO (2 ) 
2r (f) ax' 

assuming, as we did, that l=2. Of course, when 
t=2, either approach leads to the well-known one­
and three-dimensional Gaussian distributions. 

These considerations are illustrated in table 1 
and fig me 7. In table 1, the extrapolated values 
for o(p, p12) are shown, together with the data 
calculated from the followinrO" equation for oCP, p12) 
which is based on the genera form for the chain-end 
distribution function given by eq (AI) 

1 (A4) 

for the following cases: 

(1) l = 2, t= 3.2 
(2) l = t = 2.6 
(3) l = 2.1, t=3.0. 

For comparison, the values of a(p, p12) for Gaussian 
distribution are also presented. 

TABLE 1. Comparison of Monte Carlo computation of o(p,p /2) 
with values obtain ted from eq (A4) 

Monte Carlo 1= 2, t = 3.2 l=t=2.6 1= 2.1,t=3.0 l =t=2.0 
computation (Gauss ian ) 

~ (2, 1) 0. 126 0.127 0.120 0.127 0.178 
il (4, 2) .442 .438 .433 . 446 .667 
il (6,3) .958 .939 .967 . 968 1. 577 
il (8,4) 1. 735 1.696 1.816 1. 770 3. 200 

The case of l= 2.1 and t= 3.0 was found from 
computations of eq (A4) performed on a high-speed 
computer, as representing the best fit of results 
based on eq (A4) and the numerical data based on 
the Monte Carlo computations. This is shown in 
figure 7, in which l is plotted versus t for each of the 
four " reduced" moments o(p, pI2). Therefore, our 
data justify the a priori assumption that l = 2. 

In spite of this agreement, the justification for our 
radial distribution function with l = 2 is more 
heuristic than rigorous, owing to the uncertainty 
in extrapolated data based on higher moments. 
Thus, the total volume of all volume elements at a 
distance r is 47r1'2dr, which is proportional to the 
number of possible positions between rand r+ dr on 
a lattice. And, indeed, Wall, Wind weI', and Gans 
[8] found that the number of possible sites on a 
tetrahedral lattice is approximately proportional to 
1'2. Thus, our distribution function retains the 
volume element, multiplied by a single term which 
represents the exponential decay of the distribution. 

3.0 016 ,3) 
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2.0 
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FIGURE 7. Graphical determination of the parameters 1 and t 
of the chain-end radial distributi on function of the general 
form (AI ). 
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However, the behavior of the distribution function 
as r-70 is hard to ascertain owing to the lattice 
effects. The indications on the basis of previous 
Monte Carlo calculations [8-10] are that l> 2 
represents a better description near the origin, than 
the case with l = 2. 

In the case of the general form of the distribution 
function of eq (AI ) which involves two parameters, 
the Monte Carlo approach used here is not sensi tive 
enough to determine a unique pair of the parameters 
land t. This is because very few samples are 
generated in the tail-par t of the distribution which, 
in turn, is particularly sensitive to the exponent­
parameter t. One can improve the accuracy of our 
compu tations only if higher moments than the 
eighth moment are calculated. For this reason, one 
should generate enough samples for chains which are 
considerably longer than the ones generated by us, 
since the higher-order moments are more sensitive to 
the "lattice effects" than are the lower ones. We 
hope to undertake these computations in the future. 

(Paper 69A4- 355) 
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