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This paper presents some results concerning the selection of a method for estimating the slope 
of a straight line through the origin. For fitting the line y= {3x when the variance of y is proportional 
to xP, it is well known that the bes t estimate of {3 de pe nds on p. In practi ce, however, only integer 
values of p 1Y0uld be convenient to work with. One of the est imators appropriate for p = 0,1,2 would 
probably be used if the value of p were in fac t fractional, or if it were only a(lproximately known . This 
paper provides some guides for choosing the bes t among these es timators in a particular situation. 

Formulas for the bes t es timators of {3 and their variances are give n. Estimators of {3 appropriate 
for integer values of p are compared in the case when p is not integral, but is know n, and in the case 
whe n p is only approximately known . Es timation of the variances of es timators of {3 is considered. 
Finall y, some result s are given on the effec t of the s pac ing of the x values on the compari son of the 
es timators. 

This paper presents some results concerning the 
selection of a me thod for es timating the slope of a 
straight line through the origin. For fitting the line 
y= {3x whe n the variance of y is proportional to xP, 

it is well known that the bes t es timator of {3 depends 
on p . In prac tice, however, only integer values of p 
would be convenient to work with . One of the es ti· 
mators appropriate for p = 0,1,2 would probably be 
used if the value of p were in fact fractional, or if it 
were only approximately known . Thi s paper provides 
some guides for choosing the bes t one in a particular 
situation. 

The line y = {3x is to be fitted to observed points 
(Xl, YI) , ... , (Xn, Yn), where Xi> O. The values of X 

are assumed to be known without error. For fixed 
Xi , the corresponding Y;, is an observed value of the 
random variable Yi with mean {3Xi and variance 
V(Yi) = (T2XiP, P ;;,: O. 

Let Bp denote the " bes t," i. e., the minimum vari· 
ance unbiased linear, es timator of {3 whe n V(Yi ) = (T2X ;P, 

and le t Vp(Bp) be its variance. De note by Vp(B,.) the 
variance of the es timator B,. when V(Yi) = (T2xl and 
p 0/= r. When r is restricted to the integers it will be 
represented by k. 

Section 1 contains formulas for estimators of {3 and 
for the variances of these es timators . Comparisons 
of Bk and Bk+1 are considered in sections 2 and 3, with 
numerical calculations given for the case of equally 
spaced values of x. Section 2 is a comparison of Bk 
and B k + I (k integral) when p is known and k < P 
< k + 1. V lilues of p* = p,/k, k + 1) are given suc h that 
when k ~ p< p*, B k is better than Bk + J, and when 
p* < p ~ k + 1, then Bk +1 is be tter. In sec tion 3, B,; 
and Bk + 1 are compared when it is known that k < P 
< k + 1, but the value of p is unknown. Comparison 
of the relative effici encies of these estimators shows 
that Bk is better than Bk + 1 for k < P < k + 1. In sec· 
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tion 4, an es timator, t,., of the variance of B,. is con· 
sidered. It is an unbiased es timator of Vp(B,.) whenever 
r = p and for all p when r=2. It is positively biased 
whe n p < r < 2, and negatively biased when r < p < 2. 
Sec tion 5 contains some results on the effec t of the 
spacing of the X values on the co mpari son of es timators . 

Methods for fitting a s traight line when the variance 
dep end s on X are treated in a general way in, for 
example, Brownlee's chapter on linear regression. 2 

The present paper provides further details relating 
to the c hoice of weights, for a partic ular case of the 
problem considered in Brownlee's section 11.14, 
"Weighted Regression through the Origin. " The 
methods e mployed here could be adapted for con· 
sideratio n of other cases. 

Let YI , Y2 , • •• ,y" be mutually indepe nde nt ran· 
dom variables corresponding to a set of exac t positive 
values XI, X2, • • • , x n , with expec tations 

E(Yi) = {3Xi, 

and let the variances V(Yi) be proportional to XiP, 

i.e ., let 

p ;;': O. 

The n the best es timator Bp of {3 is the value of Bp 
that minimizes the sum of weighted squared residuals, 

2 K. A. Brownlee, S tati s ti cal Theory and Methodology in Science and Engineering, New 
York, John Wiley & Sons . Inc .• 1960 (C hapter II ). 



The estimator is 2. Comparison of Bk and BHl (k Integral) 
When k <p<k+l 

Since numerical calculation of Bp and its variance 

Its variance is given by 

(1-1) is not easy when P is not an integer, the question arises 
as to which estimator, Bk or Bk+l, is the "better" esti
mator when p is known but lies between the integers 
k and k + 1. Regardless of the true value of p, Bk is 
an unbiased estimator of f3. Thus the question of 
which of the two is the "better" reduces to the ques
tion of which one has the smaller variance. This can 

(1-2) be answered if we can find a value p* such that 
k < p* < k + 1 and 

Table 1 gives formulas for Bp and Vp(Bp) for p = 0, 
1 and 2, when there are n points: (Xl, YI), (X2, Y2), ... , 
(Xn, Yn). 

TABLE I.-Formulas for Bp and Vp(Bp) 

p Bp Vp(Bp) 

n 

LXiYi 
(J'2 

° 
i= 1 

n -n-

LXj2 LXj2 

i= 1 i= l 

n 

~>i (J'2 

1 !=.!....=.L 
n X n 

LAX; LX; 
i= l i = 1 

2 1 n (Yi) (Y) (J'2 

;;~ ~ = ~ n 

If there are m values of Y for each x, then Yi in the 
above formulas is replaced by Yu with j = 1, 2, ... , m, 
and the denominator of each estimate and variance 
has the additional factor m; e.g., for p = 1, 

and 

m n 

LLYij 
B _ j=J i = 1 
I- n 

mLXi 
i=1 

It has been assumed for convenience that all Xi are 
posItIve. In general, one might have both positive 
and negative values of x. The above formulas are 
easily modified for use when the variance depends on 
the absolute value of x, 

Alternatively, the formulas in table 1 may be used 
directly provided every pair (Xi, Yi) having Xi < ° has 
been replaced by (- Xi, Ji) ' 

Vp(Bk) < Vp(Bk+l ) , k ~ p < p* 

Here Vp(Bk) denotes the variance of Bk calculated 
under the assumption that V(Yi ) = a-2XiP• In general, 

(2-1) 

The value of p* may be found by setting Vp(Bk) equal 
to Vp (Bk +1), and then solving for p. 

Values of p* have been found for the case of equally 
spaced positive values of x; that is, Xi = ie, i = 1, 
2, ... , n, and e is any positive constant. The line 
y=f3x is then fitted to the points (c, YI), (2e, Y2), ... , 
(ne, Yn). Let Pn(k, k + 1) denote the solution of the 
equation Vp(Bk) = Vp(Bk+l ) in the interval k < P < k + 1. 
Values of Pn(k, k + 1) were found for k = 0, 1, and for 
various values of n. For small n (2 ~ n ~ 10), Pn(k, I 

k+ 1) was found by graphical methods. The exact 
values of Pn(k, k+ 1) for k=O, n=2 and k= 1, n=2, 
3, were also obtained directly by solving the equation 
Vp(Bk) = Vp(Bk+I ). These results agree well enough 
with the graphical results so that it is believed that 
the results obtained graphically are correct to within 
one unit in the second decimal place. The value for 
n= 100 was obtained by approximate methods. For 
n""" 00, Poo(k, k + 1) was found by letting n tend to 
infinity in the equation Vp(Bk) = Vp(Bk + I) and then 
solving the resulting equation for p. The values of 
Pn(k, k + 1) are given in table 2. Since the range of I 

Pn(k, k + 1) is comparatively small over all values of 
n, we state a convenient rule: 

When 

° <p < 0.6 
0.6 < P < 1.6 
1.6 <p < 2+? 

Table 3 contains formulas for the estimators Bk (k 
= 0, 1, 2) for equally spaced X and gives their variances 
Vp(Bk) for P = 0, 1, 2. 

Figure 1 and figure 2 give, for n = 3 and n = 10 
respectively, values of Vp(Bp) and Vp(Bk) for P rang-
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TABLE 2. 

II 

2 
3 
4 
5 
6 
7 
8 
9 

10 
100 

00 

Values of Pn(k, k + l)for equally spaced x 

k = O 

0.5406 
.56 
.57 
.57 
.58 
.58 
.59 
.59 
.59 
.599+ 
.600---

k = l 

1.5146 
1.5350 
1.55 
1.56 
1.57 
1.58 
1.58 
1.59 
1.59 
1.64 
1.66---

TABLE 3. Variallces V p(Bk ) alld slopes Bkfor equally spaced x 

p k=O k = l k=2 

6u' 4u' 
(1"2 2: i-2 
~ 

11(11 + 1) (211 + 1)c2 11(11 + 1)2c2 n2c2 o 

9u2 2u2 (1"2 f i - I 

~ 
c(211 + 1)2 CII(II + 1) CII' 

6(3112 + 311- 1)u2 2(211 + 1)u2 u 2 

511(11 + 1) (2 n + 1) 3n(1I + 1) II 
2 

6 ~iY; 
,- I 

2 ~ Yi 
1= 1 

~ i - IYi 
~ 

cn(1I + 1) (2n + 1) CII( II + 1) CII 
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ing from 0.0 to at most 3.0 and k = 0, 1, and 2. Figures 
such as these (on a larger scale) were used to obtain 
the values of Pn(k, k+ 1), 2 ~ n ~ 10. For convenience, 
the values of c and (J2 were chosen equal to one . It 
is evident from the two figures, and it also can be s hown 
mathematically, that Vp(Bp) and Vp(Bk) are increas
ing functions of P when all values of x are at least 
equal to one. 

3. Relative Efficiency of Bk' BHl 

When k<p<k+l 

Suppose it is only known that the value of P is in 
the interval (k, k + 1). Which estimator of {3, Bk , 

or Bk + 1, is then the "better" of the two? One way 
to answer the question is to use the idea of relative 
efficiency. The efficiency of an es timator TI of 8 
relative to an estimator T2 of 8 is de fined to be 

expressed as a percentage. If R.E. (TIl T2) > 100 per
cent , TI may be considered the better estimator of 
8. If E(T1) = E(T2) = 8, the relative efficiency is the 
ratio of the variances, 

FIGURE 2. Variances V p(Bk), V p(Bp) for c = 1, u 2 = 1, n = 10. 



To compare Bk with Bk+I , we consider the least 
advantageous situation for each: (1) let Bk be the 
estimator when in fact p = k + 1, and (2) let Bk + 1 be 
the es timator when p = k. Under these conditions 
the best estimator can be found by comparing two 
particular relative efficiencies : 

(1) the efficiency of Bk relative to Bk+ J , assuming 
p=k+l, 

(3-1) 

(2) the efficiency of Bh'+ J relative to Bk , assuming 
p=k, 

(3-2) 

Both of these efficiencies are less than 100 percent, 
because the numerator is the variance of the es ti
mator whose variance is minimum. However, if 
one of these relative efficiencies is larger than the 
other , then the estimator whose variance is the 
denominator of this larger ratio may be considered 
the better of the two es timators in the sense that it 
is less ineffi cient under the worst possible circum
stances. A comparison between such pairs of rela
tive efficie ncies was made for the case of equally 
spaced x when k = 0 and k = 1. This comparison 
of the relative efficiencies showed that for both values 
of k, 

whenever n;': 2. Thus, Bo is better than BJ when 
o ~ p ~ 1 and BI is better than B2 when 1 ~ p ~ 2. 

Figure 3 and figure 4 show for n = 3 and n = 10 
respectively values of 

for all p in the interval 0.0 to 3.0 and k and l equal 
to some combinations of 0, 1, and 2. To verify the 
conclusion stated in the previous paragraph, notice 
for example that (in both figures) VO/VI at p = 0 is 
smaller than VdVo at p = 1; that is, the minimum of 
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FIGURE 4. Relative efficiency curves for n = 10. 

R E (B IB ) - [ Vp(B.)]_~ 
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R.E. (BdBo) is less than the minimum of R.E. (BoIBI) 
in the interval 0 ~ p ~ 1. 

4. Estimation of the Variance of Br 

It has been shown that the variance of estimator 
Br is 

(T2 

n 

L Xi2 - r 

i= 1 

Let tr denote the following estimator for the vanance 
of Br : 

5~ 
tr=-n---' 

L X i2 - r 

; = 1 

where 5~ is an es timator of (T2, 

52 = _1_ :f (Yi - BrXi)2 

r n -1 i = 1 xi ' 

(4-1) 

r;': 0, 

z 
<oj 

Q V, 
~--:;:::,,-~-V;;Vo or, in a form more convenient for computation 
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FIGURE 3. Relative efficiency curves for n = 3. 

I [Vp(B,)] V. 
R.E. (B, B,) = 100 Vp(B,) =V; 

When V(Yi ) = (T2X;P, the expectation of t,· is 

2 [f XiP-
r :f Xi

2
_

2r+p
] 

E ( ) = ~ .=1 _ .=J . 
ptr n-l n (n)2 

. ~ Xi 2- r ~ Xi2- r 

(4-2) 
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When p = r, t1' is an unbiased estimator of V1'(B1')' 
When p =1= r, one would like the expectation, £p(t1'), to be 
Vp(B1') as given in eq -(2-1), but this is not usually the 
case. However, when r = 2, t,· is an unbiased es ti· 
mator; i.e ., £p(t2) = Vp(B2) for all p. The bias of 
estimator t,· is the difference, £p(t,.) - Vp(B1')' and this 
quantity is positive or negative depending upon the 
values of p and r. In general, for positive values of x 
which are not all equal, the bias of es timator t1' is posi
tive if p < r < 2, and it is negative jf r < p < 2; i.e., 

£p(t1') > Vp(Br), p < r < 2, 

£p(t1') < Vp(Br), r < p < 2. 

A sketch of the proof of this result follows. 

which can also be written as 

(4-3) 

Consider the product (XjP - r - xf- r) (x/ - 1' - Xj2 - r); and 
take Xl :s.; X2 :s.; . . . :s.; Xn, but not all equal. 

(1) If p < r < 2, the signs of the two factors are 
(+) (+) for all pairs Xi , Xj for which Xi =1= Xj. The sum of 
such terms is positive and hence the bias js positive. 

(2) If r < p < 2, the signs are (-) (+) for all pairs 
Xi, Xj where Xi =1= Xj, and in this case the bias is negative. 

Thus the estimator t,. is likely to overestimate the 
variance Vp(B,.) if r is such that p < r < 2, and it is 
likely to underestimate Vp(Br) if r < p < 2. 

For the case of equally spaced x, the effect of 
differences between p and r is shown in figure 5, where 
the relative bias of estimator t,·, 

is plotted against p, O :s.; p :s.; 2, for r= k = 0, 1 and 
n = 3, 10. This quantity is independent of (T2 and 
of the constant e. 

Figure 5 illustrates the possibility that the estimated 
variance of Bk may be substantially biased if k is not 
close to p. For example, suppose that n = 10 and 
the value of p is unknown, but it is known to be in 
the interval (0, 1). If k = 0, to would most likely under
estimate Vp(Bo), for the relative bias ranges downward 
from 0.0 percent (at p = 0) to about - 33 percent 
(at p = 1). On the other hand, if k = 1, t1 would be 
likely to overestimate Vp(Bl), and the bias in this case 
could be as high as 68 percent (if p = 0) of Vp(B1). 

71 

40 

n=3 

0 

-10 

-20 

-3 0 

-40 

-50 

-60 

~ 0 

<Ii 
ci 

40 

30 n"O 

20 

10 

-20 
k 'I 

-30 

-40 

k 'O 
-50 

-60 
0 .5 1.0 1.5 2.0 2.5 

FIGURE 5. Relative bias of estimator t r, when r = k = 0,1. 

5. Effect of the Spacing of the x Values on 
the Comparison of the Estimators 

Up to this point emphasis has been on the case 
where the X values were n in number and were equally 
spaced on the interval (0, ne) ; that is, Xi = ie, i = 1, 
2, ... , n; and to each X there corresponded a single y. 

Now suppose that instead of n different x's, there 
are N = n/m equally spaced x's on the interval (0, ne), 
and my's corresponding to each X; that is, the line 
y= f3x is fitted to the n points, (Xi, Yu) = (mie, Yij), 
i=1,2, ... ,N,j=1,2, ... ,m. 

Of course, if m = 1, we are bac k to the case of n x's 
and a single y for each, so it is a special case of this 
more general form. For the more general case, the 
estimator Bp and variances Vp(Bp) and Vp(B1') have 
the following forms: 

N 

em22: i2- p 

i = l 

(5-1) 



(I2 

N 

c2- P m3 - p 2: i2 - p 

i.= 1 

(5-2) 

(5-3) 

In comparing estimators Bk and Bk+ 1 in section 2, 
the equation, Vp(Bk) = Vp(Bk+ I ) , was solved for p, and 
the solutions, Pn(k, k+ 1), are given in table 2. The 
solutions of thi s equation when the variances are 
of the general form, eq (5-3), are also found in table 2. 
It is the number of x values, N, that determ'ines the 
solution, and so the solutions are found by substituting 
the value of N for the value n of the table. For 
example , if n = 15 and m = 3, then N:== 15/3 = 5, and 
the solutions are those corresponding to n = 5, i.e., 
0.57 and 1.56. 

In section 3, the relative efficiency of estimators 
was used to show that estimator Bk was better than 
estimator Bk+l under certain circumstances. The 
same result is obtained for the more general case. 
In addition, any combination of nand m for which 
N is constant gives the same relative efficiency 
(eq (3-1) or (3-2». Thus, figure 4 is identical 
to those obtained for all pairs nand m such that 
N=n/m=lO. 

The estimator tr (introduced in sec. 4) of the variance 
Vr(Br) can here be written in the form 

where 

S; 
tr = ---...:.......,N.,----

c2 - rm3 - r 2: i2 - r 
i = 1 

(5-4) 

The results given in section 4 on the sign of the bias of 
estimator tr apply in the general case. However, the 
magnitude of the relative bias (R.B.) of tr is affected by 
the choice of Nand m for fixed n = mN. 

Table 4 gives the relative bias for n = 10, and shows 
that it is smallest for N = 1 (which holds for all n). 
Table 4 can also be used to calculate the relative bias of 
tr for other values of n. 

From section 4, the R.B. for n observations is given 
by eq (4--4), using eqs (4<-3) and (2- 1). Let the formula 
obtained fro m eq (4<-4) with Xi = i be denoted by G(n). 
For the general case, the R.B. for N = n/m equally 
spaced x values is found to be 

R.B. (N, n)=(n~ 1) (N; 1) G(N). 

Table 4 gives R.B. (N, n) for n = 10, and also approxi
mately R.B. (N, n) for other values of n, where the 

TABLE 4. Values of V p(Bk), Ep(tk), and R.B. (N, n) for n = 10, (T' = 1, 
c = 1, and N = n/m 

k = O k = I k = 2* 
p N 

Vp(B, ) Ep(t,) R.B. V,(B,) Ep(t ,) R.B. V,(B,) 

10 0.002597 0.002597 0 0.003306 0.005550 68 0.01550 
0 5 .002273 .002273 0 .002778 .003920 41 .00732 

2 .001600 .001600 0 .001778 .002025 14 .00250 
I .001000 .001000 0 .001000 .00100 0 .00100 

10 .02041 .01361 -33 .01818 .01818 0 .0293 
I 5 .01860 .01309 -30 .01667 .01667 0 .0228 

2 .01440 .01173 - 19 .01333 .01333 0 .0 150 
1 .01000 .01000 0 .01000 .01000 0 .0100 

10 .1709 .0921 -46 .1273 .0970 -24 .100 
2 5 .1618 .0931 -42 .1222 .0975 -20 .100 

2 .1360 .0960 -29 .1111 .0988 - II .100 
I .1000 .1000 0 .1000 .1000 0 .100 

'When k = 2, Ep(t.) = Vp(B,) . and R.B. = 0 for al l p . 

approximation should be fairly good if Nand n are 
large. More precisely, 

h(n-l) 
R.B. (N, hn)= hn-l R.B. (N, n). 

In comparing B k , k = 0, 1, 2, for fixed p, notice in 
table 4 that the differences among the three estimators 
are less pronounced when N is smaller. Furthermore, 
table 4 illustrates the way in which the choice of spacing 
for x-values affects the e fficiency of the estimators Bk , 

and tk for fixed p and k. 
Thus, it is seen in table 4 that for given p and k, 

Vp(Bk) is smallest when N = 1. This result is not 
unexpected since it is well known for p = ° that the 
best estimate of the slope of a line through the origin 
is obtained with all observations made at one point 
as far away from the origin as possible. The same is 
true for any p "s; 2, as follows. When all Xi are equal 
to the largest, X n , then from eq (2-1) 

Vp(Bk) = (I2/ n Xn2- p. 

This choice of the Xi minimizes Vp(Bk), since 

and 

n 2: Xi2- p :;;; n x n2- p if p :;;; 2 . 
i= 1 

Minimizing the variance of the estimate of Bk by 
choosing N = 1 is desirable only when the experi
menter does not need observations at intermediate 
points to check on linearity. The dependence of the 
variance of Yi on Xi is irrelevant, of course, when all 
Xi are equal; for then all observations Yi have equal 
vanances. 

I thank Churchill Eisenhart for sugges ting this 
study and Joan R. Rosenblatt for helpful advice and 
assistance. 

(Paper 68B2-119) 
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