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A Note on a Generalized Elliptic Integral
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An expansion of

df

Qj(k):fo (1 —k2 cos @yt1/2

in the neighborhood of #>=1 is obtained by a method based on an Abelian theorem.

In a recent paper Epstein and Hubbell have given a
short table of the function

[ db .
Qj(k)—J'O (1— & cos gy~ 7

=0,1,2, . .. (1)
which is important in certain problems in radiation
physics, [1].' It is simple to find a power series ex-
pansion for Qj(k) by expanding the denominator and
integrating term by term. It is somewhat more difh-
cult to find an approximation to (k) which is valid
for k&% close to one, and such an approximation is not
found in [1] except in the cases j=0,1. It is the pur-
pose of this note to furnish such an approximation.
Let us use the identity
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to write eq (1) in the form

Q(k) ﬁf def - 1/26 (1—k2 cos B)Idt (3)

It is not difficult to justify an interchange of orders of
integration. The integration over 6 can then be per-
formed by making use of the Bessel function formula

l fﬂ ek?t cos 9d0:]0(k2[)
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where Iy(x) is a modified Bessel function. (4)

Hence Qj(k) is

! Figures in brackets indicate the literature references at the end of this paper.
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We have therefore exposed €Qj(k) as a Laplace trans-
form in which the coefficient in the first exponential,
(1 —Fk?»/k?, approaches zero as k* approaches 1. We
can now apply an Abelian theorem for Laplace trans-
forms, [2], to determine the behavior of Qj(k) in the
neighborhood of k2=1. To do this we note the
asymptotic expansion
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as x tends to infinity. Substituting eq (6) into eq (5)
we find for the asymptotic expansion of €);(k):
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Another useful representation for €)(k) can be
obtained by noting that the Legendre function P, )
(cosh m) can be written, [3],

P12 (cosh n):lj" do
T

S n+1/: (8)
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from which it follows that . References
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However, a derivation of asymptotic behavior starting
with eq (9) is not as direct as the proof we have given. (Paper 68B1-108)



	jresv68Bn1p_1
	jresv68Bn1p_2

