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The problem of saturating a particular configuration of space with electrons is con-

sidered.

It is shown that with unipotential guns of axial symmetry derived from space

charge limited diodes there exist both a minimum energy and a maximum width-to-length

ratio of the space that can be saturated.
flow between concentric spheres.

These limits are derived for the case of convergent,
Similar limits for partial saturation of the space are

derived for cases of convergent, parallel, and divergent flow.

One of the constantly recurring problems in elec-
tron physics is the generation of low energy electron
beams in free space. These beams are usually re-
quired to be circular in cross sections of some specified
length and diameter and have some energy between
1 and 1,000 ev. The highest electron current possible
within these specifications is usually desired. The
authors recently gave [1]! a procedure for designing
such guns using the multistaging principle, i.e., the
use of an intermediate anode operated far above the
final beam voltage. Since added complexity and
practical difficulties, such as the increased probability
of ionizing the residual gas and increased problems
of interelectrode leakage, are inherent in such designs,
it appears desirable to delineate the regions where
the failure of unipotential guns makes multistaging
essential.

It is essential to understand the basic physical
limitations on achievable electron flow patterns for
it is the nature of these limitations which determines
the beam profile and density. These limitations are
of two classes, one the result of space charge repul-
sion, the other essentially of thermodynamic nature.
The resulting restrictions function both individually
and most importantly in combination.

Let us consider the usual case figure 1. Tt is
desired to irradiate a volume defined by a length
[ and a diameter 2. Alternately we may consider
the space defined by / and the angle v.

As is well known [2], the maximum current, 7,,,.,
that can be forced through such a space against the
dispersive forces of space charge is

Inax=38.5 E322 %:38.51«:3/2 tan? y (1)

where current is in microamperes and energies ' are
in ev. It can be further shown that this results in a
maximum current density at the point of minimum
m&oss section (where the beam diameter is 27,/2.35)
0
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Jma,(:;g— E372 tan? (2)

1 Figures in brackets indicate the literature references at the end of this paper.
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where current density is in microamperes per square
length unit used in measuring 7.

To achieve this maximum the beam must be
launched through a hole the same size as the diameter
of the space and directed so that in the absence of
space charge there would be a crossover in the center
of the volume. We note that while the current
depends only on the shape but not the size of the
space this is not true of the density and moreover no
absolute upper limit on density is predicted.

One solution to the problem of generating space
charge limited beams and launching them at the
proper angle was found by the design techniques
developed by Pierce [3] and expanded by Samuel [4]
Field [5] and other more recent workers [6, 7].

These solutions consist of a section of a spherical
diode where the effects of the radial flow beyond the
beam limits are simulated by proper electrode profiles
or auxiliary electrodes. When proper account is
taken of the lens formed by the hole in the inner sphere
(anode lens) such guns can be designed for currents
up to the point where the effect of the anode hole on
the field at the cathode can no longer be compensated.
For guns without an anode grid this point occurs
when the hole size approaches the diode spacing or
at a point where 7 (w amp) approaches £°7 (v), i.e., a
microperveance of unity. Particularly useful design
curves for such guns may be found in Spangenberg’s
work [8].

Field [5] seems to have been the first to point out
that the effects of the thermal energies of the electrons
at the cathode spread the beam and may be an im-
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Figure 1.

Definition of space to be saturated and of defining
angle vy.



portant factor in limiting beam current and density.
This beam spread is a consequence of a fundamental
law of optics which in various forms carries the names
of Helmholtz, Lagrange, Clausius, and Langmuir.
This law, based upon general arguments of classical
mechanics and derivable from Liouville’s theorem,
states, for electrons, that

E}*? sin 0,d0,dx,=EY* sin 0,d0,dx,.

In this case £, and F, are the energies of the
electrons in planes 1 and 2, 0 the convergence angles
in these planes and dz, and dz, are the corresponding
elements of length in these planes.

As written in differential form, this law applies to
any system whether or not images are formed. It is
generally not very useful since to determine the 2’s
and 6’s a complete trajectory calculation must be
performed. If, however, planes 1 and 2 are conjugate
object and image, or object and crossover then the
equation may be integrated to give

E12 sin 6,=ME?/* sin 6,

when M is the Gaussian magnification.

If we specialize further to the case where plane 1
is a thermionic cathode and express /£, in terms of the
cathode temperature and M as a ratio of current
densities we can obtain the Langmuir [9] form:

Jo=J\[14+E/(T/11,600)] sin®f, =J,(11,600L/T") sin *,.
®3)

The general consequences of these equations are well
known and are treated at length in the standard
texts [10].

If we compare eqs (2) and (3) we see that a prior:
there is no reason why the density required by eq (2)
cannot be obtained subject to eq (3) since o/, is not
limited. In practice of course there are material
limits on the cathede, but it can be shown that for
energies below a few hundred volts modern cathodes
are sufficiently “bricht” to satisfy almost any
demand.

However, there is a third restriction on unipotential
guns which in certain voltage regions prohibits the
densities required by eq (2) to saturate a given space.
This restriction is the bound on obtainable ./, which
is set by space charge within the gun structure.
Meltzer [11] has shown that a limitation of the form:

k2
J="5 4)

where S a linear dimension is a general characteristic
of space charge limited diodes [12]. If we now
consider a gun based on such a diode 7, can serve
to determine the scale and play the role of Sin eq (4).
The value of the multiplier % is set by the overall
geometry necessary to give the convergence angle
in free space beyond the gun. Hence k£ is a [unction
of v. There are, of course, many conceivable guns
which give an angle ¥ but for each general class &

remains a function of y. The result is a limitation
on cathode current density of the form:

JTWE" @
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Substitution of this value of .J, for J, in eq (3)
gives the maximum obtainable current density, ./,
in the space to be saturated. If J, is less than J,

from eq (2), the space cannot be saturated. Combin-
ing the equations shows that if
211 T tan %y
(6)

e 11,600 f(y) sin %0,

the space cannot be saturated. The connection
between v, the launching angle, and 6,, the angle at
minimum beam density, 1s somewhat subtle involving
as it does the detailed nature of the trajectories
between the anode and the point of minimum beam
cross section as well as the angle and energy with
which a given electron leaves the cathode. However,
without this detailed knowledge one fact is clear: 6,
cannot exceed v without some electrons passing
outside of the space to be saturated. Hence, we can
set 0, equal to v without violating the inequality.

There is moreover an upper limit on v since the
anode hole lens of a diode is always divergent.
Hence electrons make a larger angle with the axis
just before the lens than they do after the lens.
Considering a class of guns which give saturation
and taking 90° as a natural limit of the angle inside
the lens we see that there is always a maximum
value of v for which the space can be saturated.
Actually the limit is reached at smaller angles since
a large v requires a higher perveance which in most
structures requires closer anode cathode spacing re-
sulting in higher fields inside the anode and hence
stronger divergence at the anode lens.

For guns based on radial flow between concentric
spheres the quantity 7(y) in eq (6) may be obtained
from the well-known optics of Pierce guns [8].
Pierce [14] has calculated the values of the gun
parameters where the space charge spread equals
the thermal spread. In our notation this procedue.
is equivalent to the assumption that y equals 6,.
Danielson, Rosenfeld, and Saloom [6] have done
careful numerical calculations on the trajectories in
a series of Pierce guns and obtained the final size
of the minimum beam cross section when both
space charge and thermal spread are important.
This procedure, of course, accounts fully for the
detailed relationship between v and 6. Over the
range of gun parameters studied, there is no doubt
that the latter is the more precise calculation and
should be the final check on any proposed design.
However, both calculations focus their attention on
the gun and require the calculation of a series of
guns each of which will saturate the space. It is
more useful, especially in the early stages of design
of an experiment, to concentrate on the space so
that the feasibiiity of the experiment may be judged
prior to detailed gun design.

280



To achieve this end we have evaluated eq (6)
using an f(y) derived from the results of Pierce.
We assumed a current efficiency of 0.9 and a corre-
sponding intensity efliciency of 0.39. The anode
lens was assumed to be of the Davisson [15] form,
the ~10 percent correction of Danielson et al., not
being significant for our purposes. We assumed vy
eqtml to 6,. Our calculations are hence much in the
spirit of those ol Pierce but extended to account
more fully for the effect of the anode lens. They
are somewhat less optimistic than his, but still must
be considered outer bounds of possible operation.

The limits found are independent of the scale of
the space, depending only on . If the scale is re-
duced beyond a critical minimum, it is possible that
the cathode material limit may be reached. How-
ever, if a cathode-anode spacing of 1 mm is con-
sidered a practical lower limit 1 amp/em? cannot be
exceeded below 265 v.

The results of the calculation are shown in figure 2.
On this plot lines of constant perveance, I/ V2 ap-
pear as straight lines sloping upward to the right.
When the space is saturated, as in the upper portion
of the eraph, eq (1) gives the relation between the
perveance and corresponding value of . In this
portion of the graph the unity perveance line corre-
sponds to a y=9.2°. The area to the left of this
line is generally not accessible to unipotential guns
because of their limited perveance. In the area
above the almost horizontal line 7//,..—1, spaces
characterized by gammas up to 9.2 dee may be
fully saturated. Below this ///,,,=1 line ‘the spread
of the beam due to thermal velocities dominates the
situation and frustrates attempts to operate at lower
voltages by reducing the current drastically below
the value predicted by extending the lines of con-
stant v. It will be noted that there is no unipoten-
tial gun which will saturate a space below ~220v
beam energy.

If one is prepared to relax the current requirement
so that only 0.5 of the maximum possible current is
passed, the guns need be less convergent and the
area between the perveance=1.0 curves now marked
vy=12.8 and ///,,,=0.5 is available. The entrance
diameter (anode hole of the gun) instead of being
equal to the space diameter is now found to equal
0.52 of this diameter.

If one still further reduces the current requirement
to 0.25 /.. 1t is possible to use guns whose injection
angle into the space is 0°.  Under this circumstance
the anode hole diameter should be 0.425 of the tube
diameter. The details of the calculation are slightly
different since now the maximum density lies within
the gun structure but the results are of the same

form. The minimum usable voltage is decreased to
10 ev and spaces up to y=17.85° may be one-quarter

saturated.

A sort of natural limit to this process is reached at
the dotted curves above and to the right of which
the highly divergent parallel diode guns are usable.
Althouoh such guns can be used to a minimum of
almost 1 ev and to space angles of y=74° (we
assumed a unity spaced diode of microporvcuncc
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F1Gure 2.  Graph of current versus voltage showing regions
accessible to guns capable of saturating a given space with Iy qx.
Cases of subsaturation, 0.5 Tmax, 0.25 Imax and 0.05 Imax are shown. The usable

range l‘!vs to the right and above of all curves. On the right margin are given
the ratio of cathode/anode radius of the optimum Pierce gun.

2.33 whose anode diameter is very much smaller
than the tube diameter) the fact that they will only
put 0.05 7.« through any given space makes them
not very attractive.

The curves of figure 2 show clearly that the range
of applicability of umpot,('nt,ml cuns lies at compar-
atively high energy and wide angles. To operate
outside these limits it is necessary to effectively
decouple the thermal energy and space charee limit
by adopting the multistaging principle and operating
a diode or triode at LOlll[)&l(LLlVCly high voltage
and decelerating to the desired low energy.
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