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The analysis for the impedance of a vertical electric dipole in the presence of an isotropic

and homogeneous conducting half-space is presented.

Various approaches to the preblem

are then briefly compared and some numerical results are presented in graphical form.

The extensions to an anisotropic half-space are also considered.
in the space between a homogeneous ground and a sharply bounded ionosphere.

Finally, the dipole is located
It is

concluded that the presence of the ionosphere has a negligible effect on the impedance of a
ground-based antenna unless the frequency is less than 1,000 ¢/s or so.

1. Introduction

The primary motivation for the present investiga-
tion was the idea that the ionosphere may influence
the impedance of a ground-based antenna. Nor-
mally, one would expect the effect to be negligible
since the separation between the ionosphere and
ground is large compared with a wavelength for
medium and higher radio frequencies. However,
for lower frequencies, particularly those in the
VLE and ELF regions, the height of the ionosphere
is comparable with the wavelength. Thus, it would
appear worthwhile to consider this question.

A related and more basic problem is the impedance
of an antenna in the presence of a single boundary
of separation between two media. Therefore, this
problem is considered first.

2. Formulation

A vertical electric dipole of length ds is located in
air at height z, over a homogeneous half-space of
refractive index N. The magnetic permeability of
the whole space is u and assumed to be a constant.
With respect to a cylindrical coordinate system
(p,9,2), the interface is the plane z=0, the dipole is
located at z=z, on the z axis, the half-space z2>0 is
air with dielectric constant ¢, and the half-space
2< 0 1s a homogeneous medium with (complex)
dielectric constant N?%,. The situation is illustrated
in figure la.

When the current in the dipole varies as Je'! the
fields can be found from the solution of a well-known
boundary value problem [Sommerfeld, 1949]. The

-

Hertz vector II has only a z component and, for

z>0 is given by

IL,=II” +AIl, (1)

| where the primary influence is

i Jals o0 [CHMEE Gy
4mreow [p°F (2—20) %)}
and the secondary influence is
. © , —2U2() )
Ar,— Jols f RNJo(Ap) &—— Mn (3)
4mieqw Jo u
where
) ulN*—u,
RN =—5— 4
v u\ "—&—ul’ (4)
u=N—k?)?} u,=(\—N%?)?
and

k= (eopo)w=2m/wavelength.

To satisfly the radiation conditions at infinity the
real parts of » and %, must be positive for \ ranging
from 0 to infinity.!

To carry out a complete calculation of the self-
impedance of the source dipole requires that the
electric field in the gap on the connecting transmis-
sion line be determined from an integral equation
formulation. In this general case it is necessary to
consider the finite length of the antenna. However,
if attention is confined to the change of the imped-
ance resulting from the presence of the lower half
space 1t is permissible to retain the dipole
approximation.

By definition the impedance change AZ is related
to the impedance Z by

A =7—7, (5)

1Tt may be remarked that if the integration contour is deformed the real parts
of u or u; can become negative. This appears to be the source of much confusion
on the subject. For the present, the contour is the real axis of A and the real parts
of u are positive.
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where

Z():ZJ 7=
is the free space impedance. It is assumed that Z,
is either known or can be separately accounted for.
According to the “EME method’ it follows that

o AE_,(I.S] ©
292

Jo

p—0

where the limits are taken after performing the opera-
tion

AEz:<k2+ aa~> AIL, )

This leads readily to the result

(ds)*

4mieqw

A f ROV e-uagy ()
. u

where a=2z, It is convenient to normalize this

by writing

AZ=R,I 9)

where 12y=20k*(ds)? is the real part of 7, and is the
radiation resistance of a dipole in the free space, and
1 is then a dimensionless parameter which contains
the essence of the problem.

3. Asymptotic Approximation

To obtain an asymptotic approximation to the
integral for large values of « it is permissible to
expand Z(N\) about A=0 in a series of the form

I{(x):R(O)+)\R’(O)+% R"(0)+%3 R (0)+ . ..
(10)

where the prime indicates a differentiation with
respect to N\ before setting N=0. As it happens, in
this particular case, R’(0), R’’/(0), and all odd-
ordered differentiated terms vanish. The integrals,
to contend with, are then of the form '

M>\2m+1
pm:f ¢~vad for m=1,2,3, . ... (11)
0 u
Now
© _—ua —ika
Poe f e =" (12)
0 U @

and, noting that NM=wu?+£* it readily follows that

\ " B_ika

2
1)2rrL:<k2+%g (13)

o

This results in the expansion

Az s, 0% e
= =—R() (k +aa2>f, -
]1)//(0) / 5 22-\ 2 e——z’ka
ol <k +Da2) a
Bro(0) f(7a DF ) & 1% \
(e (14)

and so on. Retaining just the first two terms, this
may be explicitly written

T~ —[3|R(0)|A¢!lare EO© —¢,~kal

7‘*_6”“2]{//(0’)5];81'[”5; 1?"(0)—,,;5’)—1»':1]]
PPy T R L
116 'Prx—(l ka) (ka)27
mipp| 3 a3 LY.L 7
Beoom o (ay—se) J gy 07

N—1

(15)

where
(16)

(18)

2 N— 9
A AR 7

kﬂlu’”(ﬂ):”—ﬁﬁrﬁz—l\f 1

A question immediately arises as to the validity of
asymptotic expansions of this kind. In the present
problem there is a pole where the denominator »f
R(N\) is zero. This oceurs when

N2 (N—E2) (N — N2 =0. (20)
Also, there are branch points at A==+ Nk. To study
the influence of these singular points the integral
P,,, is written in the equivalent form

Pap— f Nmg =y (1)
J €y

where the contour (), in the u plane, is sketched in
figure 1b by the solid curve. The poles of the in-
tegrand, which occur when N?*u+wu,=0, are denoted
by 4w, and the branch points, which occur at u=
+ +/N?—1k, are denoted +u,. The location of the
singularities in the complex u plane are representa-
tive for a highly conducting medium where

N=|N|e~*/* and |N?>>1.

Now the asymptotic evaluation of the integral by a
steepest descent method amounts to deforming the
contour Cy to contour C; shown in figure 1. Here,
C; is a straight line running parallel to the real axis
and 1s defined by the relation uw=1k -+ where x runs
from 0 to « through real values.

It is evident from figure 1b that no poles or other
singularities are crossed in the deformation of the
original contours to the steepest descent contour.
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Ficure la. Dipole over conducting half-space.

Such is always the case for media in which the real
part of N2>1. In the case of certain plasma media
this condition may be violated and then the integral
along () is asymptotically equal to the integral along
) plus 270 times the residue of the pole at u,. In
this study, it is assumed that the real part of N*>1
so that the pole contribution does not appear in the
asymptotic evaluation of the integral Ps,,.

4. Numerical Integration Approach

Unfortunately, in many cases of interest, the
asymptotic series development for the integral is
poorly convergent. Such is the case when |[N| is
not reasonably large with respect to unity. In
this case, it appears that a numerical integration
1s in order.  After some study, the following method
was employed. A new variable g, defined by N=Fkg
is introduced. Then 7 can be expressed in the form

where
P(g)=i 3 R(kg) g (1+9)~) exp [—ha(g—1)1] (23)
and
B (b N @=Di= (¢ =N 3

N (=D (=)}

To comply with radiation conditions it is necessary
to choose the square roots so that

Lim (g*—1)i—¢

g
and
Lim (¢*—N?)i—yg.
g
Also
Lim (¢?—1)}—(g—1)i—1
g0
and

Lim (¢°>—N)*—iNN.
g0

o Ub
Ficure 1b. The complex u plane.
To simplify the integration further the interval is
broken into parts such that
1 [«
e f P(g) (lf.(/)‘ir/.f/Jrf P(g) (—1)"1dg.
JO J 1
(25)
These integrals are not particularly suitable for
numerical integration since there are singularities
at g=1. However, by further change of variable
in each integral this objection can be removed.
In the first integral, we set
r=vg—1
and in the second integral,
y=+v1l—g.
Therefore,

A 7/ © 1
3742122 f P(+x*)dx—21 f P(—y)dy (26)
o Jo Jo

where the function 7 is defined by eq (23). These
integrals are quite suitable for numerical orgraphical
mtegration.

5. Compensation Theorem Approach

Another approach to the determination of AZ is
based on the compensation theorem from network
theory. This method has been used extensively in
the study of antenna ground systems [Wait and Pope,

1955; Maley and King, 1961]. Using such an
approach one may write
AZ=AZ),. . +AZ, (27)
where
1 r )
22— [TH OB (02e0ls @9
0

where /3 (p,0) is the magnetic field of the dipole on
a perfectly conducting ground plane at z=0 and
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,(p,0) is the actual tangential electric field on the
interface z=0. While this formula is exact, it is not
a solution to the problem since 7,(p,0) is an unknown.
However, if |N| is reasonably large compared with
unity,

1207

Ey(p,0)=—=7 H (p,0).

N (29)

Inserting this result into eq (28) readily leads to

AZ 3[4 N e g s ‘
Ry~ N Lka <1‘;7a> € —Ez(—zka):l (30)
where
Bi(—ika)=— £ gy (31)
—ika L

is the exponential integral. For computational
purposes it is convenient to use the relation_

Ei(— ko) =Ci(ka) 41l (w/2) — St (ka)] (32)
where (i and St are the cosine and sine integrals

which are extensively tabulated.
As an interesting check one may use the expansion

e L1 2 3! ]
B—igate |1 ot et
(33)

to show, from eq (30), that

AZ, 6e¢ e 1 ) . 1 .
RO’g eN I:(ka)z—l—(k—;ﬁ—{—tenns‘irf @&)—4} etc.]- (34)

This result may be compared with the first two terms
of the asymptotic expansion given by eq (15).
Noting that

A£ — :_,L_ 1_ — ko () =
(7], =3 () =22 @

and

_N—1~1_3
" N+1T N

R(0) (36)

it immediately follows, from eqs (16) and (17), that
the asymptotic result is

6 1 i .
VAL 7 () = | = 7 —ika
AZ=AZ—AZ *N[(kaf Tt - .]e

121 4 ik
or
.,  Be ke 1 7 . 1
AL~ N I:(ka)z—{—(ka)a—{—tcrms in Uf;)? etc.:l (38)

which to the order given is identical to the result
obtained from the method based on the compensa-
tion theorem.

6. Discussion of Numerical Results

Some numerical results based on the above for-
mulas are now considered. For |[N|=o, 6 corre-
sponding to a perfectly conducting plane at z=0,
the impedance increment is given exactly by eq (15).
The results for this case are shown in figure 2 in the
form of an Argand plot with the values of ka indi-
cated on the curves. It is immediately apparent
that the impedance increment becomes indefinitely
large as ko becomes small. However, the real
part of I approaches unity as ka tends to zero.?
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Ficure 2. The change of tmpedance of a vertical dipole over a
horizontal perfectly conducting plane.

(The results are expressed as a ratio fo the free-space radiation resistance.)

This 1s physically acceptable and represents the
doubling of the free-space radiation resistance as
the dipole approaches the conducting plane.

Some results for finite values of N are shown in
figures 3a and 3b for N=30¢ "* and 10e /%
respectively. These would correspond to a highly
conducting half-space where displacement currents
are negligible. The solid curves are based on using
two terms in the asymptotic formula for 7 given by
eq (15). 'The dashed curves correspond to just
using the first term in the same formula (i.e., set
B=0). The distance between these curves (meas-
ured on a radius from the origin) gives some idea
as to the accuracy of the two-term asymptotic
formula for 7. In the case of |[N|=30, it appears
that the results should be quite accurate even for

2 This follows from the relation

Lim {RC [ _.3,(1__1.> g—iz] }:1.
z—0 2 T
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Ficure 3a. The change of impedance of a vertical dipole over a
horizontal imperfectly conducting plane.

(The results are expressed as a ratio to the free-space radiation resistance.)
relatively small values of ka. A further check for
these two cases is afforded by a numerical integra-
tion for ka=3 for each case. This is shown b\' a
small cirele in both figure 3a and figure 3b.

The formula for AZ or I based on the compensa-
tion theorem is also shown in figures 3a and 3b and
indicated by broken curves. Tn both cases it falls in
between the curves for the one- and two-term
asymptotic formulas. Also, it appears to agree
quite closely with the points obtained from a direct
numerical integration.

7. Extension to an Anisotropic Half-Space

An important extension of the preceding results
is to a vertical electric dipole over an anisotropic
half-space. 1In this case the dielectric constant is in
the form of a tensor and the problem becomes quite
complicated. However, if the anisotropic medium
is a dense ionized medium with a superimposed d-c¢
magnetic field parallel to the z axis, symmetry about
this axis is preserved. In this case, 1t is permissible
to employ the Q.L. quasplonmtudmdl) approxi-
mation. The refractive index wu in this case is
double-valued and given by

we~l—g %’— cint (39)

where
tan r=w, /v, w,=wy(¥*+w3) "L
In the above, wy,=angular plasma frequency,
=collision number, assumed con-

stant, and
wr,=angular gyrofrequency.
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Ficure 3b. The change of impedance of a vertical dipole over a
horizontal imperfectly conducting plane.

(The results are expressed as a ratio to the free-space radiation resistance.)

It is also assumed that in writing these expressions,
w< <p. A good discussion of the validity of the Q.L.
approximation has been given by Budden [1961].

The incremental electric Hertz vector in the air
space z_>0 is written in the following form

s f ROVToOp)hu=dN (40)
47rle wJo
which has the same form as eq (8). However, in
this case,
1)()\)_(#0+Mn)((w_((>( )i(fio/i ( +(Y)('
(soF 1) (C*— CoC) + (owe+1) (G +C) C
(41)
where
C=(1—-.8?}, S=/k

Co=[1—(S/u)’I}
Co=[1—(S/mo)*]".
It can be readily verified that if the d-¢c magnetic

A
field is removed (i.e., 7=0) R(\) reduces to I(N\)
given by eq (4) since py=p.=N.
The incremental impedance AZ resulting from
the presence of the anisotropic half-space is then
formally given by

(ds)* f > 3
4Ti€e)w Z i

The two-term asymptotic ex-

AZ=— p~ta )\ (42)

where again a=2z,.
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pansion for this case can be written in the form

AZ=R,I (43)
where
— 3|1 (0)| Aeilare 20 ~6.—ka]
+-6[k21R" (0| Beitare R/ —or—ked] - (44)

The complex quantities Ae=?: and Be~ " are de-

A
fined by eqs (16) and (17). Using eq (41) for 2(\)
and carrying out the required differentiations leads
to

1
]‘ O — Moke ™ 4'.
0= o+ to - poe +1 45)
)=
1
. (motp 2———=
kR (0)=—1 ( L e

2 potmetmoset1

Again, these reduce to the isotropic case when py=

Me =N,

8. Extension to Two-Boundary Case

Another interesting extension is when the dipole
is located in a homogeneous space bounded by two
plane interfaces. The situation is illustrated in fig-
ure 4. The media beyond the plane interfaces (i.e.,
=<0 and z>h) are not specified at the moment.
However, it is assumed that the fields are everywhere
syvmmetrical about the polar axis.

For the situation described, and for 0 =z=<z, the
electric Hertz vector has only a z component and
may be written in the form [Wait, 1960]

—ﬁlwf FOVJoo)\u™ldN  (47)
Z
N N
|
h
17
/ 7 / IO

Frcure 4. Dipole in homogeneous space bounded by two plane
inlerfaces.

where

uz+]{l(x)€vuz] [eu()zf:o) +_R2(A)e—u(h—zo)].

4 — [6
F(N)= M1 +Ri(N) Ra(N) e 2]

(45)

If z and 2, are interchanged in the above expression,
the result also holds for the range z,=z=h. The
coefficients R; and R, may be regalded as reflection
coefficients for vertically polarized waves incident
at a (complex) angle sin™* (\/k) at the interfaces z=0
and z=h, respectively. When the two half-spaces
are homogeneous media with refractive indices N,
and N,, the reflection coeflicients have their usual
Fresnel form given by

uN3
”H—u

and u=N\—k** and w,=(\*—k3)%.  In anisotropic
cases Iy and £, would be two-by-two matrices
[Budden, 1961; Wait, 1960].

A special case worthy of some study is when the
source dipole is on the bottom interface (i.e., z,=0)
and the lower half-space is a perfect conductor (i.e.,
N,|= o). For this case the incremental impedance
AZ of the dipole is defined by

[Z =

R;(N)= for j=1,2 (49)

A=7—
It follows without difficulty that

—2khy/g2—1

f GR(kg)e dg
‘)110 [1—R(kg)e V=1 ] Vg—1

(50)

where 2R, is the radiation resistance of the dipole
located on a perfectly conducting plane. If one
expands the denominator in a geometric series the
formal connection between this result and eq (22)
for the single boundary is evident. This integral
has not been studied numerically. However, as a
first approximation one may neglect multiple reflec-
tions between the two boundaries. This amounts
to replacing the square bracket term in the denom-
inator by unity. Then the formula for (AZ/2R) is
the same as tlmt given by the right-hand side of
eq (15) if a is identified with 2/h.

9. Concluding Remarks

The question originally asked has been implicitly
answered. Namely, the impedance of a ground-
based antenna is not significantly influenced by the
presence of the ionosphere unless the reflecting
heights are somewhat less than a wavelength. For
example, at a frequency of 15 ke/s it is seen from
figures 2, 3a, or 3b that the change of impedance
(relative to the free space radiation resistance) is
only of the order of one percent. This is hardly
measurable. However, at 1,000 c¢/s, ka is of the
order of 4 and the relative change amounts to about
15 percent. This is measurable if special precautions
were made.
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The important conclusion is that, in transmission
loss caleulations [Norton, 1959], the presence of
the 1onosphere may be neglected insofar as the
resistance of the antenna is considered. Thus, the
ionosphere only influences the propagation loss
[Wait, 1959]. Such an assumption is implicitly
made in most previous studies.

In a sequel to this paper the effect of raising the
antenna to a large height will be investigated.
Actually, the problem has already been formulated
in this paper.

I thank Murs. Alyce Conda for carrying out the
computations. The work in this paper was sup-
ported by Electronics Research Directorate, Air
Force Cambridge Research Laboratories, Contract
PRO-61-568.
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