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The analysis for t h e impedance of a vertical electric dipole in the presence of an isotropic 
and homogeneo us conducting half-space is presented . Various a pproac hes to t he problem 
are t h en briefly compared and some n umerical results are presented in graphi cal form . 
T he extensions to an an isotrop ic half-space are also considered. Finally, t he dipole is located 
in t he space between a homogeneous ground and a shar ply bounded ionosphere. It is 
concluded t hat the presence of the ionosphere has a negligible efIect on the impedance of a 
ground-based antenna unless the frequency is less than 1,000 cis or so. 

1. Introduction 

The prinl.ary motivation for the presen t investiga­
tion was th e idea that the ionosphere may influ ence 
the impedance of a ground-based antenna. Nor­
mally, one would expect th e effect to be negligibl e 
since th e separation between the ionosphere and 
ground is large compared with a wavClength for 
medium and higher radio frequen cies. However , 
for lower frequencies, par ticularly those in the 
VLF and ELF regions, the heigh t of the ionosphere 
is comparable with the wavelength . Thus, it would 
appear wor thwhile to consider this question . 

A related and mo re basic problem is th e imp edance 
of an ante nna in the presen ce of a sin gle boundary 
of separ ation between t wo media. Therefore, this 

I problem is considered first. 

2 . Formulation 

A ver tical electric dipole of length ds is located in 
air at heigh t Zo over a homogeneous half-space of 
refrac tive index N. TIl e magnetic permeabili ty of 
tll e whole space is M and nssum ed to b e a constan t. 
' Vith r espect to a cylindrical coordin a te sys tem 
(p,c/> ,z), the in terface is the plane z= O, the dipole is 
located at Z=Zo on the z axis, the half-space z>O is 
air with dielectric constnn t to, and t he half-space 
z<O is a homogeneous medium wit h (complex) 
dielectric constan t N2 tO • The situation is illustra ted 
in figure la. 

When the curren t in the dipole varies ~LS J oe iwt the 
fi elds can be fo und from the solu tion of a well-lmown 
boundary value problem [Somm erfeld , 1949] . T he 

~ 

H ertz vector II has only a z componen t and, for 
z>O is given by 

(1) 
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wh ere t he priml' !"Y influ ence is 

mp)= J ?ds exp [- ik [p2+ (Z~ ,ZO)2]i] 
47r~ toW [p2+ (Z- ZO)2J; 

(2) 

ILnd t he s('colld 'Lry influ ence is 

(3) 

wh ere 

(4) 

k = (toJ.lo) ~ w= 271-jwavel c l! gt b . 

To sa tisfy the radiation conditions at infinity the 
real parts of u and Ul must be posi tive for}.. r anging 
from 0 to infinity.l 

To caITY out a complete calcula tion of the self­
impedance of the source dipole Iequires that t he 
elec tric fi eld in the gap on the connecting transmis­
sion line be determined from an in tegral equation 
formula tion. In this gener al case it is n ecessary to 
consider the finite length of tbe antenna. However, 
if atten tion is confined to the change of the imped­
ance resulting from the presence of the lower half 
space i t is permissible to retain the dipole 
fLpproximation. 

By defini tion the impedance cha nge flZ is related 
to the impedance Z by 

(5) 

I It may be remarked that if tbe in tegration .contou l" is defor med the real parts 
of u or 'lll can become negative. (Phis appears to be the source of Tnuch confusion 
011 the snbject. For the p rescot, the COil tour is the real axis of A and the real Pflfts 
of u are posith·c. 



\\"here 
Zo= ZJ ' 0=00 

is the free space impedance. It is assumed tha t Zo 
is either known or can be separately accounted for . 
According to the "EMF m ethod" i t follows tha t 

(6) 

wh ere th e limits are taken after performing the opera­
tion 

(7) 

This leads r eadily to the r esult 

where a = 2 zo. I t is convenient to normalize this 
by writing 

(9) 

wh ere R o= 20k2 (ds) 2 is the real part of Zo and is the 
radiation resistance of a dipole in th e free space, and 
I is then a dim ensionless parameter which contains 
th e essence of the problem . 

3 . Asymptotic Approximation 

To obtain an asymptotic approximation to the 
integral for large values of a i t is permissible to 
expand Re,,) about ,, = 0 in a series of the form 

R (}.)= R (O)+ }'R' (O)+ }.2 R" (O) +~ R"I (O)+ 
2 6 

(10) 

where the prime indicates a differentiation with 
r espect to }. before se t ting }.= o. As it happens, in 
this particular case, R' (0), Rill (0) , and aU odd­
ordered differen tiated terms vanish. The integrals, 
to contend with, ar e then of th e form 

(11) 

Now 

(12) 

and , noting that }.2= U 2+ P , it readily follows th at 

(13) 

This resul ts in the expansion 

t::..Z (02 ) -ika 
I =-=- R (O) k2+ - e-

R o oa2 a 

R" (0) ( 2 (2)2 e- ika 

- - 2-! - k +oa2 ~ 
R IV (0) ( 02 )4 e -ika 

- --I - lc2+~ --
4. v a a 

(14) 

and so on. R etaining just the fIrs t two terms, this 
may be explici tly wri tten 

I ~ - [3 IR (0) IA ei[arg R (Ohpa -kal 

where 
+ 6Jk2 R" (0) I B ei [arg R " (0) -q,b -kalj (1.5) 

N - 1 
R (O)= N + l ' 

(16) 

PR" (O) =-~ N- l=_~ R (O) (19) 
N N + l N . 

A question immediately arises as to the validity of 
asymp totic expansions of this kind. In the present. 
problem there is a pole where the denominator ,,1 
R (}.) is zero. This occurs when 

Also, there are branch points a t }. = ± Nk. To study 
the influence of these singular points the integral 
P 2m is written in the equivalent form 

(21 ) 

where the contour Co, in the U plane, is sketched in 
figure 1b by the solid curve. The poles of the in- I 

tegrand, which occur when N 2U +U 1 = 0, are denoted 
by ±up and the branch points, which occur at U = 

± v N 2- lk, are denoted ± U b. The loca tion of the 
singularities in the complex u plane are representa­
tive for a highly conducting medium where 

N~ INl e- i"' / 4 and [N 21» 1. 
Now the asymptotic evaluation of the integral by a 

steepest descent method amounts to deforming the 
contour Co to contour C1 shown in figure 1. H ere, 
C1 is a straight line running parallel to the real axis 
and is defined by the relation u = ik+ x wh er e x runs 
from 0 to 00 through real values. 

It is evident from figure 1b that no poles or other 
singularities are crossed in th e deformation of th e 
original contours to the steepest descent contour. 
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IMAG. 
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( b) 

Co 
------------~--------~------------------ REAL 

FI G t: RE lao Dipole over conducting half-s pace. 

Such is always the case for media in 'which the real 
part of N 2> 1. In the CcLse of certain plasma media 
this condition may be violated and then the integral 
along Go is asymptotically equal to the integral along 
C1 plus 27ri times the residue of t he pole at U p. In 
this study, it is assumed tha t the real part of N 2> 1 
so that the pole contribution does not appeal' in the' 
as~-mp totic evaluation of the integral P2m • 

4. Numerical Integration Approach 

Unfortunately, in many cases of interest, the 
asymptotic series development for the integral is 
poorly convergent. Such is the case when INI is 
not reasonably large with respcct to unity. In 
this case, it appears that a numerical integration 
is in order. After some study, the following method 
was employed. A new variable g, defined by X= lcg 
is introduced. Then I can be expressed in the form 

where 

and 

J: '" peg) . 
1= -( 1), dg o g- , 

(22) 

To comply with radiation conditions it is necessary 
to choose the square roots so that 

and 

I Also 

and 

Lim (g2- 1) L-7g 
g-'>'" 

Lim (g2_N 2)t--7g. 
g-'>'" 

Lim (g2- l) l--7(g- 1)t--7i 
g-,>Q 

Lim (gZ - N) t--7iN. 
g--?O 
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FIG a RE 1 b. The com plex u plane. 

To simplify the integration further lhe interval IS 

broken in to pm'ts sLlch thaL 

I =- i l' p eg) ( l - g)-l dg+ J'" p eg) (g- J) -l dg . 

(25) 

These integrals are not particularly suitable for 
numerical integration since there are singularities 
at g= 1. However , by further change of variable 
in each integral this objection can be removed. 
In the first integral, we set 

1--­
X='\ g- 1 

and in the seco nd integral , 

y=-Jl g. 

Therefore, 

where the function P is defined by eq (23). These 
integrals are quite suitable for numerical or graphical 
integration. 

5 . Compensation Theorem Approach 

Another approach to the determination of t::,] is 
based on the compensation theorem from network 
theory. This method has been used extensively in 
the study of antenna ground systems [Wait and Pope, 
1955 ; Maley and King, 1961J. Using such an 
approach one may write 

where 
t::,Z= t::,Zh= '" + t::,Zt (27) 

t::,Zt=-J~ l '" H ; (p,0)Ep ( p,0)27rpdp (28) 

where H ;(p,O) is the magnetic field of the dipole on 
a perfectly conducting ground plane at Z= O and 



Ep(p,O) is the actual tangen tial electric"Beld on t he 
in terface z= O. While this formula is exact, it is no t 
a' solu tion t o the problem sinceEp(p,O) is an unknown . 
However, if INI is reasonably large compared with 
unity, 

(29) 

Insertin g this r esult into eq (28) r eadily leads to 

-~-. - 1-- e-' "'- ?, - ?, a t..Z 3 [ i ( i ) 'k E'( 'k )] 
R o N ka ka 

(30) 

'where 

E i( - ika)=-J '" e- x dx 
- ik", X 

(31) 

is the exponential in tegral. For computational 
purposes i t is convenient to use the r elation. 

E i( - ika) = Ci(ka) + i [(7r/2) - Si(ka) ] (32) 

where Ci and Si are th e cosine and sine integrals 
which are extens ively tabulated. 

As an interesting ch eck one m ay use th e expansion 

. e- i X [ 1 2! 3! 
E(- ?'x)~-. 1+ -( - .- )+-( . )2+ -( . )3+ - LX - ?,X - ?,X - '/,X .. ] 

(33) 

This r esult m ay b e compared with the first two term s 
of the asymp totic expansion given by.:.. eq (15). 
N oting that 

[ t..Zl =-3 (1=:.£) ~ e-ik",= t..ZC"') 

R-;;-J N~'" ka (ka) 
(35) 

and 

N - l 2 
R (O)= N + 1 ~ 1-N (36) 

it imm ediately follows, from eqs (16) and (1 7), tha t 
t h e asymptotic r esul t is 

or 

+12 [ i + l - ik 
N (kap "'-1 e '" (37) 

which to the order given is identical to the r esult 
ob tain ed from th e m ethod based on the compensa­
t ion theorem. 

6. Discussion of Numerica l Results 

Some numerical r esults b ased on th e ab ove for ­
mulas are now consider ed . For INI = ex> , corre­
sponding to a perfectly conducting plan e at z=O, 
t he imp edance incremen t is given exactly by eq (15) . 
The results for this case are shown in figure 2 in the 
form of an Argand plo t wi th th e values of ka indi­
cated on the curves. It is immedia tely apparen t 
t ha t the impedan ce incremen t becomes indefini tely 
large as ka b ecomes sm all. However , the r eal 
par t of I approaches unity as k a tends to zero.2 
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REA L PART OF I 

F I GU R E 2. T he change of impedance of a veTticai dipole over a I 

horizontal perfectl y conducting plane. 
(T he results are expressed as a ratio to the free-space radiation resistance.) 

This is physically acceptable and r epresen ts the 
doubling of the free-space r adiation r esistance as 
th e dipole approaches the conducting plane. 

Some r esults for finite values of N are shown in 
figures 3a and 3b for N = 30e- i"ff / 4 and lOe- i .. /\ 
r espec tively. These would correspond to a highly 
conductin g half-space where displacement currents 
are n egligible. The solid curves ar e b ased on using' 
two terms in the asympt otic formula for I given by 
eq (15) . The das hed curves correspond to just 
using the first term in the sam e formula (i.e. , set 
B = 0) . The distance between these curves (meas­
ured on a r adius from the origin) gives some idea 
as to the accuracy of t he two-term asymp totic 
formula for 1. In the case of INI=30, i t appears 
that the r esults should be qui te accura te even for 

' This follows from the relation 
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FIGURE 3a. The change oJ 'impedance of a vert ical dipole oveT a 
hOTizontal impel:fecUy conducting plane. 

(rrho resul ts are expressed as a ratio to the Cree-space radiation resistance.) 

l"elativeh- small valu es of lea. A further check for 
t hese t\VO cases is afforded by a numerical integra­
tion for lca= 3 for each case, Tbis is shown by a 
s mall circle in both figure 3a and figure :3b. 

T Jl e formula for t.Z or I based on the compensa­
tion theorem is also shown in figures 3a and 3b and 
indicated by broken curves. In both cc),ses it falls in 
b etween the curves for the one- a nd two-term 
asymptotic formulas. Also, it appears to agrec 
quite closely with the points obtained from a direct 
n um erical integration. 

7 . Extension to an Anisotropic Half-Space 

An importan t extension of the preceding r esults 
is to n, vertical electric dipole over a n anisotropic 
half-space. In this case th e dielectric constant is in 
the form of a tensor and the problem b ecomes quite 
complica ted . However , if the anisotropic medium 
is a dense ionized medium with n, superimposed d-c 
magn eb c fi eld pantllel to th e z axis, symmetry about 
this axis is preserved. In this case, it is permissible 
to employ the Q.L. (quasi-longitudinal) approxi­
mation. The refractive index J.I. in th is case is 
doubl e-valu ed and given by 

2 • Wr ±. 
J.I. ~ l -~-e 1.r 

W 
(39) 

where 
tan T= WL/V, WT= W~(V2+ wiJ-!, 

In the n bove, wo = angular plasma frequency, 
v=collision number , assumed con­

stant, and 
wL = angular gyrofrequency. 

FIGURE 3b. The change oj impedance of a vertical dipole over a 
hortzontal im1Jerfectly conducting plane. 

(The results are expressed as a ratio io ihe free-space radiation resistance.) 

It is also assumed that in writing th ese expressions, 
w< <v. A good discussion of th e validi ty of tbe Q.L. 
approximation has been given by Budden [1961]. 

Th e increm ental electric H er tz vector in the ait' 
space z>O is written in the following form 

which h as the same form as eq (8). However , III 

t bis case, 

wh er e 

(J.l.O+ J.l.e) (C2 - CoCe) + (MOJ.l.e- 1) (CO + Ce) C 
(J.l.o+ J.l.e)(C2- CoCe) + (J.l.oJ.l.e+ 1)(Co+ Ce) C 

(41) 

C= (1- 8 2)1, 8 = t../le 

Ce= [l -(S /J.l. e)2 ]t 

Co= [l - (S/Mo)2Jl. 

It can be r eadily verified that if the d-c magnetic 
1\ 

field is removed (i.e., 7= 0) R(t..) reduces to R (t..) 
given by eq (4) since J.l.o= Me=N. 

The incremental impedance t.Z r esulting from 
the presence of the anisotropic half-space is then 
formally given by 

where again a= 2zo. The two-term asymptotic ex-
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pn,nsioll for this case can be written in the form 

/::'Z= R oI (43) 

where 

A A 

I ~ -[3IR (0) IAei[argR(o)-<I>.-l:a] 

+ 6jk2k ' (0) IB ei[arg k'(O)-<I>b-ka]j. (44) 

The complex quantities A e-i<l>a and B e-i</>b are de-
A 

fined by eqs (16) and (1 7). Using eq (41) for R (}.. ) 
;1,nel cil lTying out t he required differentiations leads 
to 

A 

R (O) 
J.lO+ J.l ,+ J.loJ.l ,+ l 

(45) 

AgtLin , th ese reduce to the isotropic case when J.lo= 
J.le = lY. 

8. Extension to Two-Boundary Case 

Anoth er in teresting extension is when the dipole 
is located in a homogeneous space bounded by two 
plane in terfaces. The situation is illustrated in fig­
ure 4. The media beyond th e plane interfaces (i.e., 
z<O and z>h ) ar e not specified at th e momen t. 
However , it is assumed that th e fields are everywhere 
symmetrical about th e polar axis. 

F or the situa tion described , and for 0 ~ z ~ Zo the 
electric H er tz vector h as only a z compon en t an d 
mr\'~- be wri tten in the form [Wai t, 1960] 

z 

wher e 

F( }.. ) 
[eU'+ R , (}.. )e- U '] [eU(h-:ol + R 2(}.. )e-U(h-'ol] 

eUh [l + R 1 (}.. )R 2(}.. )e- 2Uil ] 
(4 ) 

If z and Zo are interchanged in the above expression, 
the result also hold s for th e range zo~ z ~ h . The 
coefficien ts Rl and R 2 may be regarded as r eflection 
coefficients for ver tically polarized waves inciden t 
at fl, (complex) angle sin- 1 (}.. /k ) at the in terfaces z= o 
and z= h, r espectively. vVhen the t wo haH-spaces 
are homogeneous mediil with refractive indices Nl 
ilnd N z, the r eflection coeffi cients have th eir usual 
Fresnel form given by 

for j = l , 2 (49) 

and u= (}..z-P)~ il nd u j = (}..2- lc])1 . In anisotropic 
cases Rl ilnd R2 would bc two-by-two ma lrices 
[Budden , 1961; "VVtt it, 1960]. 

A special case wor thy of some stud y is when the 
SOl1l'ce dipole is on the bottom interface (i. e., zo= O) 
and th e lower h ilH-space is a perfect conductor (i.e., 
IN ,I = ro ). For this case th e increm ental impedance 
/::,Z of th e dipole is defined by 

I t follows without difficult~- tha t 

/::,Z .3 r" g3R (kg)e -2kh'/~ clg 
2Ro= ~ '2J o [1 -R (kg)e -2kll~g'-l J .,jg2- 1 (50) 

where 2Ro is th e radia lion r esistance of the dipole 
located on a perfectly conducting plane. If one 
expands the denominator in a geometric series the 
f'0l'l11fl1 connection between this r esul t and eq (22) 
for th e sin gle boundary is evid ent. This in tegml 
has not been studied numerically. However , as a 
first approximation one may neglect multiple reflec­
tions between the two boundaries. This amounts 
to r eplacing the square bracket term in th e denom­
inator by unity. Then the formula for (/::,Z /2Ro) is 
the same as th at given by the righ t-hand side of 
eq (15) if a is iden ti.fi ed wi th 2kh. 

9 . Concluding Remarks 

The question originally ask ed h as been implicitly 
answered . Namely, the impedance of a ground­
based antennil is not significantly influenced by t he 
presence of th e ionosphere unless the reflecting 
h eights are somewhat less than a wavelength . For 
example, at a frequency of 15 kc/s it is seen from 
figures 2, 3a, or 3b that the change of impedan ce 
(r elative to the fr ee space radiation resistance) is 
only of the order of one per cen t. This is hardly 
measurable. However , at 1,000 cis, k a is of the 
order of 4 and the relative change amounts to abou t 

FIGt:RE 4. D ipole in homogeneous space bounded by two plane 15 percen t. This is measurable if speciill precilutions 
interfaces. were made. 
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The impor tanL concl usion is that, in transmission 
loss calculations [Norton , 1959], th e presence of 
the ionosphere ma~- be neglected insoffLr as the 
resistance of th e an tenna is considered. Thus, th e 
ionosphere onl~' influences Lh e propagation loss 
[Wait, 1959]. Such an assumption is impliciLly 
made in mosL previous studies. 

In a sequel to this paper th e effect or raisin g the 
antenna to a large h eight will be investigated. 
Actually, th e problem has already been formulated 
in this paper . 

I thank Mrs. Alyce Conda for carryin g ou t Lhe 
computations. The work in this paper WItS sup­
ported by Electronics R esearch Directorate, Air 
Force Cambridge Reseltrcll Labont tories, Con trnct 
PRO- 61- 568. 

569 

10 . Reference s 

B udden, K . G., Radio waves in the ionosphere (Cambridge 
Univ. Press, Cambridge, 1961). 

:\Ialey, S. W., and R . J. h ing, T he impedance of a monopole 
antenna with a circula r conducting-disk gro und system 
on the surface of a lossy half space, J . Research ~BS 
65D (R adio Prop.), No.2, 183- 188 (Mar.- Apr. 1961) . 

Norton, K. A. , System loss in radio wave propagation, J. 
R esearch NBS 63D (R ad io Prop.), No.1, 53- 73 (July­
Aug. 1959). 

Sommerfeld, A. N., Partial differential equations (Academic 
Press, New York, 1949). 

Wait, J . R , Transmi ssion of power in radio propagation, 
Electronic and Radio Engineer 36, No.4, 146- 150 (Apr. 
1959) . 

Wait, J. R , Terrestrial propagation of very-low-frequen c~' 
radio waves, J . Research NBS 64D (Radio Prop.), No.2, 
153- 204 ( Mar.- Apr. 1960). 

Wait, J . R , and W. A. Pope, Input resistance of LF unipole 
aerials, Wireless Engineer 32, 131- 138 (May 1955). 

(Paper 66D5- 216) 


	jresv66Dn5p_563
	jresv66Dn5p_564
	jresv66Dn5p_565
	jresv66Dn5p_566
	jresv66Dn5p_567
	jresv66Dn5p_568
	jresv66Dn5p_569
	jresv66Dn5p_570

