
I 

;., 
I 

f' 

JOURNAL OF RESEARCH of the National Bureau of Standards-D. Radio Propagation 
Vol. 66D, No.2, March- April 1962 

Some Problems Connected With Rayleigh Distributions 

M. M. Siddiqui 

Contribution from Boulder Laboratories, National Bureau of Standards, Boulder, Colo. 

(October 19, 1961) 

This is an expository paper presenting t he following : (1) t hc origin, and (2) t he prop­
elties of the R ayleigh distribution ; (3) the most e fficient cstimators of its paramctcrs; (4) 
a test of the hypothesis that a set of observations is from a R ayleigh dist ribu t ion ; (5) t he 
distr ibu t ion of t he ratio of t wo independent Rayleigh vari "tcs; and (6) the Rayleigh 
process deri ved from a normal process. 

1. Introduction 

111 so me problem.s of physics and engineering, 
such as the diffusion process, or the distribu tion or 
t he power (or am.pli tude) of elecLrom.agnetic waves 
r eceived through a scattering m edium, we arc C011-
cerned with t he r esul tant of many (two- or three­
dimensional) random vectors. Such problems are 
treated in probability theory und er Lh e h eading of 
" random walk" in one, two, three, or, in general, k 
dimensions. H er e, we will confine our atten tion Lo 
two-dim.ensional random walk problem.s which 
asymptotically give rise to th e so-called R ayleigh 
distribution . U nfortuna tely , in radiowavc propaga­
tion literature the nam.e "Rayleigh distribution " is 
used indiscriminately both for tbe distribuLion or 
power a nd of amplitud e. To distinguish b eLwecn 
the two , we will call them Rayleigh power distribution 
and Rayleigh amplitude distribution, r especLively. 
In statistical li tera ture the distioclion is clear : th e 
Rayleigh power is a multiple of x2 (wi th 2 degrees 
of freedom), whereas t he Ra.d eigh am.pli tude is 
a multiple of x. Since the proper ties of the Ray­
leigh power distribution are much neater and bett er 
suited for statistical estirnation and for testing of 
h~-potheses than the properties of the Rayleigh 
amplitude distribution, we will study only tbe 
Ra.d eigh power distribution. Important charac­
teristics of the amplitude distribution will be ob­
tained from t he relationship amplitude = (power)1 /2. 
The advantages of power over amplitude are roughly 
the same as those of variance over standard devia­
t ion, or of s pectral density over its square rooL. 
For example, the po\,,rers are additive and am pli tudes 
are not ; t he sum of two independent x2 variates is 
again a x2 variate wi th added degrees of fr eedom, 
bu t th e sum of two x variates is no t a X variate. Jt 
is, therefore, suggested that th e name " Rayleigh 
distribution," if used without allY other qualification , 
be r eserved for Rayleigh power distribution , and 
"Rayleigh variate" for a multiple or x2 'with 2 
degr ees of freedom. 

2. Notation 

Ordinarily the same letter will be used Lo desi",nate 
both a random variable and th e argument of iL 
probability densit'y or distribu tion Junction. Thu 
we m.ay say: x is a random variable with probability 
density fUll ction p(x) and distribution function P(x). 
If i t beco mes necessary to dis Linguis h between the 
two to avoid confusion or ambig ui ty, capital letters 
will be used for th e random variables and lower case 
letters for the r eal variables. Thus we m ay say: X 
is a r andom vari able a nd Pr(x ~X ~x+ elx) =p (x) dx. 

Th e fUll etion P , with one or more arguiJlents, will 
be used generically for any distribut ion function , and 
p for any densiL~7 function . Thus P (x) and P (y) , in 
gener al, will not be the same Junctions. ' I'he /'onner 
denotes the disLribution /'un cLion of x and the latter 
that o/' y, a nd the Lvromay be differ en t. 

If x and yar e random variables, Ex will sLand for 
the expected value of x, and E(x ly) for lh e co ndi­
tional expected valu e of x given Lh e valu e of y . Thus 

Ex= f -"'", xp(x)dx= f _"'", f _oo", xp(x, y)dydx, 

E(x1y)= f '" x p (x, y) clx. 
- '" p(y) 

It is easy Lo sec tll at, if Ex < CD , 

E[E(x1Y)l= f '" clYP(y) f '" xp(x,y) elx 
-'" -00 p (y ) 

= f _"'", f _oo", xp(x, y)elydx=Ex. 

Th e characteristics of a theoretical dis tribution, 
i. e., its population parameters, will be designated by 
Greek letters such as p. , lX, (T. Their estimates may 
be denoted by corresponding Latin letters, with or 
without subscripts or primes. Thus if p. denotes the 
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mean (which is also the median) of a normal distri­
bution, m may denote the sample m ean and ml the 
ample median. 

3 . Asymptotic Distribution of the Resultant 

Let -;;=(ri cos ai, r i sin ai)' i = ], 2, ... , n be in­
dependent random coplanar vectors where all values 
of a;(i= 1, 2, ... , n) between 0 and 27r are equally 
likely. Let 1' , be a series of positive constants, or 
else be positive random variables distributed inde­
pendently of ai. Then 

u1=Eri cos2 ai=EdE cos2 ai=~ Eri . (3 .2) 

Similarly, 

E · OE 2 · ? l E2E 2 · 0 1ri SIn ai= , 1ri sm." ai=2 1ri , ri SIn ai cos ai= , 

(3.3) 

so that the components of a vector arc un corr elated. 
This does not mean, however, that they are statis­
tically independent. We note that if riis a constant 
Eri = r i, Eri=r1· 

The resultant v ector -; ~ (x, y) is given by 

n n 
X= L:; ri cos ai, y= L:; ri sin ai. (3.4) 

;= 1 ;= 1 

We immediately have 
n 

E x=Ey= O, u2= E x2= Ey2= L:;Q"~ . 
i= l 

(3.5) 

If in the equation above we make the transforma­
tions 

x= r cos a, y= r SIll a, (3 .6) 

the Jacobian of the transformation IS r , and the 
distribution of (r, a) is given by 

r2 

dP( ) l' -2u2 l da 
r,a = 2 e c.r· -2 ' 

17 7r 
(3 .7) 

Hence the resultant phase, a, and the r esultant 
amplitude, 1', are independ ently distributed. We 
will write ,,( = 2172, so that the distribution of l' is 

r 2 

21' - -
dP(r)=- e "Ydl' 0::;1'::; 00 . (3 .8) 

"( , 

This distribution is known as Rayleigh amplit'U.de 
dis tribution. :Making fmther the transform ation 

(3.9) 

we obtain the distribution of z, called the Rayleigh 
power distribution, as 

1 -.!-
dP(z)=- e ~ dz , O::; z ::; 00. 

"( 
(3. 10) 

IVe note that Z= X2+ y2 is the sum of two independent 
normal variates, x and y, each with mean zero and 
variance ,,( /2. Thus 2z/'Y is a x2 variate with 2 
degrees of freedom [Cramer 1951, p. 233]. 

In case all 1';= 1 in (3 .4), Kluyver [1906] showed 
that 

(3 .11) 

Applying the Central Limit Theorem. for vector If we make the transformation 
variates [Cramer , 1951 , pp . 215- 216, 285- 286], we 
obtain the following theorem. t = 2n- 1/ 2y 

THEOREM. Suppose that p~=Ed< 00 for all?, and 
write 

Ij the condition 
lim p/u= O 
n-4'" 

is satisefid, then, noting that x and yare unco1'related, 
we obtain the asymptotic distribut ion oj (x, y ) as 

X2+y2 

dP (X'Y)=2 1 
2 e -2,;2 dx dy, - 00 ::;x, y::; 00 . 

7rU 

Thus x/u and y /u are asymptotically indep endent 
standard normal variates. 

We note that if r i have identical distributions and 
Erf. < 00, or if 1';=1', a constant for all i, p/u= O(n- 1/ 6) , 

which tends to zero as n~ 00 • 

and observe that 

lim [Jo(2n- l/2y) ]n= e- y2 , 
n-4 '" 

an asymptotic approximation to (3 .11) is obtained as 

This formula is originally du e to Rayleigh [1919]. 
In general, if we start with k dimensional vectors 

-4 -4 n -4 
r;=(x;l, ... , x tk ), and r = :L:: r i= (xl, ... , xk ), then, 

;= 1 
under the conditions of the Central Limit 
Theorem, xl, ... , Xk are asymptotically independent 
normal variates, each with mean zero, and the 
same variance, ,,(/2. Let z= xi+ ... + x% . Then 
2z/'Y is a x2 variate with k degrees of freedom 
[Cramer 1951 , p . 233]. Thus the asymptotic 
distribution of z is given by 
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[ ! (lc)J-l --'- 'i_ J dP(z)= 'Y 2 r 2 e >Z2 dz ; OSZs co. 

4. Rayleigh Power Distribution 

4 .1 . Distribution Characteristics 

In this section we will study SO I1l.e populatio n 
chara,cteristics of the Rayleigh power distribution . 
In the following sections the problems of estimation 
and of testing of hypotheses concerning this distri­
blltion will be considered . 

Th e probability density function of z is 

p (z)= ! e- m if z> O' 0 otherwise (4.1) 
'Y ' -" , 

which has a maximulll at z= o and decreases Illono­
tonicallv as z incr eases . 

The cZi8tributionfunction, Pr (Z sz), is g iven b\ 

(4.2) 

If q is a number b etwee n 0 and] , Lhe 100q per­
centile point, tQ, is defined b~ ' t he equation 

which has the solution 

.\q = -'Y 1n (I - g). (4.3) 

In particulilr the median 

L = 'Y In 2= 0.69315 'Y. 

The values of .\qh for q= O.O] , 0.05, 0.10, 0.25, 0 .50, 
0.75,0.90, 0.95, 0 .99, ar e given in table 1. 

TAR LE 1. Soh jor selected q 

q 0.0 1 0. 05 0.10 0.25 0.50 0. 7.> 0. 90 C.95 0. 99 
--- ------------------
',/-y----- - -- 0.01005 0.05129 0. 10536 0.28768 0.69315 l. 38629 2.30259 2.99573 4. 60517 

If lc is any real number greater than -- 1 

(4.4) 

Thus the mean , ,ul (Z), and the variance, 0-2(Z), are 

Also tlle m ean and variance of r=z% arc g iven by 

(4 .5' ) 

4 .2 . Estimation 

The Rayleigh distribution is compl"ctcly sp ecified 
if the parameter 'Y is known . If z], Z2 , •. . , ZN is 
a sample of N independent observations from this 
dis tribution, the likelihood funct ion ( lhe joint prob­
ability density of z], ... , ZN considered as a 
function of 'Y) is given by 

(4.6) 

where 

(4.7) 

This shows that c is sufficient for 'Y. Since Ec = 'Y , 
c is unbiased . We know that if an unbiased s ufficient 
estimator exists, i t is autom.atieally th e most efficient 
estimate, also th e maximum. likelihood estimate. 
T he variance of c is, of course, 

(4.8) 

If t is any other unbiased estimate of 'Y, then val' 
c < val' t. 

--:Si nee 2zd'Y is a x2 variate with 2 degrees of freedom , 
and ZlJ ... , ZN are ind ep endent 

N 

2Nc/'Y= 2::6 zb, 
;=1 

is a x2 variate ' 'lith 2N degrees of fr eedom . Thus 
Lh e d is t ribution of c is 

N N Nc 

dP (c) = 'Y"' r (N )e-7 cN - 1dc , if c2: 0; = 0, olherwise. 

(4.9) 

To set up confidence limils on 'Y with a confidence 
coeffi cient 1- a, we determ.ine from x2 tables two 
numbers xi and x~, correspo nding to 2JV degrees 
of freedom., such that 

Pr(x2SxD = a/2, Pr (x2S XD= 1- a/2. 
T hen 

has probability] - a and 

2Nc< < 2Nc, 
X2 - 'Y - X2 

2 1 

(4 .10) 

will be 100(1 - a) perce nt co nfldence l im.its for 'Y. 
E xample 1. Let N = 3, 1- a = 0.98. From x2 

tables we find, for 6 d @gr ees of freedom , Pr 
(x 2 ::=; 0.872) = 0.01 , Pr(x2 ::=; 16.812) = 0.99. Hence 

6 6 
16.812 cS'Y::=; 0.872 c 

or 
0.357cS'YS6.88c 
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are 98 percent confidence limi ts for "(. Similarly 

are 90 percent confidence limits. 

On the other hand, the asymptotic variance of the 
sample median, Z:5' is given by 

I 1 "(2 

If N > 15 so that the number of degrees of freedom Thus 
f= 2N> 30 , 

val' Z.5~ 4Np2(r. 5) N" 

var Z;5 ~0.480 
var Z.5 ' ~ - ~4NC fA7\T1 -y2x-- .. /2j- 1= -.:y--y4N- 1 

is approxirnately a standard normal variate [Cramer, 
1951, p. 251]. If x is a number such that 

then 

1 J X y2 
-= e -2dy= 1-a, 
,I2rr -x 

(4.11) 

(4. 12) 

are 100(1 - a) per cent confidence lim.its for "(. When 
Nis large, say N > 100, (4. 12) is approximated by 

,I~lc <"« -/Flc . (4. 13) 
·/lv+x- - ,IN- x 

Example 2. L et N = 100 , 1-a= 0.95. We find 
X= 1.96. From (4.12) 

O. 831c:S; "(:S; 1.23c. 

If, on the other hand, we use (4.13) , we get 

0.836c::=; "(::=; 1. 24c. 

Since c is the sufficient statis tic for the Rayleigh 
distribution, if it is known that the sample has come 
from a Rayleigh distribution, we simply evaluate 
c:and estimate th e entire distribution by 

A _~ 

P(z)= l -e c, O::=; z ::=; 00. (4.14) 

The usual practice of estimating th e population 
percentiles by the sample percentiles is utterly un­
justified. The distribution percentile, 5q, should be 
es tim.a ted by 

Zq= -c In (l - q) , (4.15) 

which is an unbiased and minimum variance esti­
mator of 5q. Thus, for example, the median, 5.5, 
will be estimated b~' 

Z.5= C In 2= 0.69315c, 

which has the variance 

i .e., the sample median is only 48 percent as efficient 
as Z.5' 

To take another example: the fhst decile, 5.1, is 
most efficiently estimated by 

Z.I = -C In (.90)= 0.10536c, 

which is unbiased and has variance 

The l'Jample 1st decile, Z :1 is biased 
asymptotic variance 

and has 

so that 

val' Z:l 
O.l X O.9 "(2. 

Np2 (r.I) 9N' 

val' z/ ~9 X O.0111 ~0.1 , 
val' Z. 1 

i .e., the efficiency of Z: 1 is only 10 percent. 

4 .2 .1. Estimation of the Amplitude Characteristics 

,Ve know that if sufficient statistics are available 
for a distribution, its characteristics are most offi­
ciently estimated in terms of these statistics. Thus 
the characteristics of the amplitude distribution are 
estimated in term.s of c. 

For example to estimate the mean amplitude, 
(rr"()1/2/2, we need only to find a function of c which 
is an unbiased estimator of this quantity. 

Now 

Ecli=E (,,(+ c- "()} 

= "(1E [1 +~ c~"( -~ (C~2"() 2 + .. .J 
~"Yt [1 _ _ 1 J. 
- SN 

Thus to the order N - l, [1 + 1/ (8N)JCl/2 is an unbiased 
estim'ate of "( 1/ 2. The mean of r is then estimated by 

1( 1) ,-m=2 l+ SN ·yrrC . (4.16) 
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Since 

7r'Y 
val' m~16N' 

On the other hand , let 1'i=zl, and 

1 N 
r=- ~1'i ' 

Ni= l 

(4.17) 

'" W·c have 

) 

~ 

I 

Thus 
var m 
var l' 

i.e ., Lhe sample m ean, r, is oilly 91 pOl·cout as effi cien t 
as the unbiased estimator based on th e suffLCie n t 
statistic c. 

Similar considerations apply to estimating other 
character istics of the amplitude distribution , and 
h ence there is no need for us to go into details . 

4.2 .2. Estimation When the Data Are Truncated 

SomeLimes, due to th e limitations of Lhe recording 
instrument, observations above a cer tain level x arc 
not recorded. Hmvever , Lhe prior information is 
there that the unrecorded observations will be greaLer 
t ha n x, and the recorded OIlCS will be less Lhan x. 
This prior information together with the acLual valucs 
of t he recorded observaLions should b e u Lilized Lo 
obtain the most efficient es Limator of 'Y. 

In a sample of N indez)endent observations let N - lc 
values exceed x, and let Lhe r emaining lc obscrva­
tions be ZI, Z2, ... , Zk . Obviously, lc itself is a 
random variable with possible valu es 0, 1, 2, ... , 
N. Also the probability density function of Zi is now 
conditioned upon the knowledge that 0:::; Zi :::;x. 

The conditional probability density function is 

x 
"'h er e p = l -e -:y. The probability distribu tion of lc is 

Hence the likelihood fUlletion is 

r - Nx 
e-'- , jf lc= O, 

1 (N) 1 [1 k ] L ('Y)= lc iCexP --{ (N-lc)x+~ zt} , 
'Y 'Y .=1 

\" O:::; Z I , . .. , zk:::;x, lc= l, 2, ... , N. (4.18) 

Obviously, when lc = O no point estima te of 'Y is 
possible, since the only information available is that 
all observations arc greater than x. In this case, 

Nx 

which has probability e - -:;, we can only infer thaL 
x< 'Y < eo . When !c,c.O, themaxinnllnlikelihoodes ti­
mate of 'Y is 

lc 
(4.19) 

The properties of CI arc not as easy to establish as 
those of c in section 4.2. Using the well known 
properties of the maximum likelihood estimators, 
however, we can say that for large N , CI will be 
normally distributed with mean ECI , and variance, 
val' ClI where 

x( l - p ) 
ECI~'Y+ Np2 ' 

2 2 
val' C ~-.l I- Np 

(4p - 3)X2 - "" 
N3,p= 1- e "Y. p 

4 .3. Is the Variate Rayleigh Distributed? 

(4.20) 

Let ZI, Z2, . .. , ZN be independent observaLions on 
a non-negative varia te z. We wish to test whether 
Z is Rayleigh distributed. P roceed in the following 
lnannel". 

Choose an integcr m, no t Loo small (aL leas t 5), 
such that N /m is greater Lhan 5, preferably gr eater 

N 

Lhan 10. Calculate c=~ zt/N. DeLermine nUIn­
i= 1 

bcrsxl , .. . , X"'_ l, such that 

I.e. , 

T· 

" _.2 i 
P(xi)= l - e'=--, i = l , 2, ... , m - 1, 

m 

Xi= C In (~.), i= l , 2, ... , m-l, m-'/, 

The range (O, eo) of Z is then divided illto m 11onover­
lapping intervals 11 = (0,x1), 12= (XI,X?) , .. . , 1",= 
(Xm - l, eo), such that the expected munber of obser-

A 

vations, under the hypothesis F (z), in each interval 
is N /m. 

Let t he number of actual obscrvations falling in 
these intervals be jJ, j z, ... , j m- Then 

( 4.21) 

is approximately a XZ variate wiLh m-2 degrees of 
freedom [Cram.er , 1951, pp. 424- 426]. Pre-assign 
sorne critical probability level a( = 0 .05, or 0.01 , say) 
and let x~ be tbe number such tha t 

Pr(x2 2:x~) = a. 

If the observed value X5 < xJ, accept the hypothe­
sis that Z is a Rayleigh variate, and estimate its clis-
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tribu j ion function by F (z). If X6~ x~, reject the 
hypothesis of R ayleigh distribution. 

If the sample is truncated , i.e. , if the maximum 
value which could be r ecorded is x, we estimate "I by 

cl = [ (N-k)x+tZiJ/ k, where N - k values are 

greater than x and unrecorded. vVe proceed as 
above, changing the last interval ( 01' intervals), if 
necessary, to read (x, (0) and d etermi n i ng the 
expected number of observations in this interval by 

N e-x/cl; and calculating X6= L: (Jo-ie) 2; i o= ob-
i e 

served, i e= expected fr equenc:y. 
Example 3. The following is a systematic sample 

of 80 observations (read at 5 sec intervals) of re­
ceived field intensity in (m.icrovolts)2. Th e follow­
ing are the transmission parameters: 

Frequency: 400 ~lc/s 
Transmitt er power: 2 kw 
Angle: zero 
Path leng th: 300 mill iradians (165 miles) 
Antennas: 60 ft diam parabolic re­

fl ectors h aving a gain of 
38 db over an isotropic 
radiator 

Loss: The m easured hourly me­
dian basic transmission 
10ss~ 209 db 

Time: 0425 a.m. , July 27, 196J 

Observed values of received power in (J.lV)2 (read 
left to r ight) : 
0.20, 0.71 , 0.06, 0.05 , 0.76 , 0.32 , 0.96, 0.63, 0.09 , 
0.18, 0.25 , 0.45 , 0.26 , 0.10 , 0.95 , 0.01 , 0.50, 1.26, 
1.99, 0.32, 0.51, 0.01 , 0.16 , 0.56, 3.16, 1.27, 2.24, 
1.00, 0.81, 1.29, 0.28, 0.21, 0.35, 0.20 , 0.39, 0.89, 
1.24, 0.08, 0.98, 1.01 , 0.49, 0.90, 1.90, 1,42, 1.56, 
1.32, 1.20, 1.59, 2.40 , 2.24 , 0.80, 0.56, 1.45, 0.18, 
0.02, 0.28, 0.81, 0.18, 1.31, 0.64 , 1.95, 0.48, 0.55, 
0.44, 0.28, 0.07 , 0.71 , 0.48, 0.40, 0.06 , 0.79, 1.01 , 
0.51 , 0.70, 0.14 , 0.16, 0.0] , 0.06 , 0.03 , 0.01. 

VVe have N = 80, c= 0.71. Take m = 8, a= 0.05. 
For 6 degr ees of freedom the critical value of x2 

is 12.592. 
8-i 

Calculate xl=-0.71 In 8' i= l , 2, ., 7. 

The resulting class in tervals and the observed 
fr equ encies ar e as follows. 

=======;=== 
Class intervals f 0 

o - 0. 095 
O. 095- . 204 
.204- .334 
.334- . 492 
.492- .696 
.696- . 984 
. 984-].476 

1. 476- 00 

13 
9 
8 
8 
8 

13 
12 

9 

The expected fr equency in each in terval is 10. ' iYe 
have 

X5=8~L:P-80= 3.6< ] 2.592. 

The data are consisten t with th e llypothesis that 
Z is Rayleigh distribu tcd. In fact, the pl'Obabilit~' 
that such a sam.ple or worsc, as measured b:y X2, 
comes from a Rayleigh disLribution is n'ore than 
70 p erce nt. Th e entire dis lribution is es tiwated b:y 

P (z)= l -e-o.71 , O::;z::; 00. 

4.4. Two Independent Samples 

Sometimes we wish to test the hypoth esis that 
two samples, which are known to be from Rayleigh 
distributions, are from th e same distribution, i. e., 
"II = "12' For example, to test the assumption of 
stationarity of a Rayleigh process, we may take 
two samples from the record (suffi ciently far apart 
in t ime to insure independence), and test the llypoth­
esis that "II = "12' Or, we may be r ecording a 
signal, not continuously, but after breaks in be­
tween r ecordings, and may wish to test whether 
the characteristics of th e r eceived signal have 
changed from record to record. 

L et it be known that two independ ent saluples, 
Zl , Z2, . . . , ZN, and z;, z~, . . . , Z'lIf' ar e 1'1'on1 
Rayleigh distributions . To test th e h~ 'pothesis 
tha t "II = "12 , it is sufficient to note that 

IS a Fishel'-Snedecor F variate with the indicated 
degrees of fr eedom. Here, Cj and C2 denote the 
sample means of the first and second sample re­
spectively. vVe assume that Cj ~ C2; if not we 
sim.ply invert the ratio and interchange th e degrees 
of freedom. Pre-assign a significance level a, and 
tes t for the significance of the calculated F. 

Example 4. Consider the data in example 3. L et 
us test the hypothesis that the first 25 observations 
are from th e same Rayleigh distribution as th e last 
25 observations. Let the significance level be 
taken as 0.05 . From F tables the 5 percent significant 
value, for 50 and 50 degrees of fr eedom, is 1.60. 
Denoting by c) and C2 the mean values of the first 
25 and the last 25 observations, respec tively , we have 

CI = 0.578, c2=0.482. 

H ence, th e calculated valu e of F is 

which is less than l.60. Hence we accept th e 
hypothesis that "II = "12. 
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5. Distribution of the Ratio of Two Rayleigh 
Variates 

~Ian~· problems in radio engin eering r equire the 
knowledge of the distribution of th e ratio of two 
independent Ra'yleigh variates, such as th e signal 
power nnd the noise power, or the powers of two 
interfel'ing signals. 

Let Zl and Z2 be two independent Rayleigh variates 
with paran1.eters ')'1 and ')'2. Let U =Zl/ Z2, and 
E= "/Lhz. Since 2ZlhL and 2zzh2 are independent 
x2 variates each with 2 degrees of freedom, 

is a Fish er-Snedecor F variate with 2 and 2 degrees 
of freedom [Cramer, 1951, pp. 241- 242] . Hence the 
distribution of U= EU1 is given by 

dP(u ) = ( E~~)2' O::;u::; 00; (5. 1) 

I-P(U)=PI' (zJz2?U)= E ~U· (5 .2) 

Example 5. Let the average signal power be 20 db 
above the average noise power so that E= 100. Let 
satisfactory service r equire signal power 10 db above 
the noise power . To ealeulate the probability of 
satisfactory service we set E= 100, u = 10 in (5. 2) and 
obtain PI' (ZdZ2 ~ 10) = 0.91. 

The distribution of U involves only one parameter 
E= "/lh2, which is the median of the distribution. 
'Ve note that the m ean, variance, and higher 
moments of U do not exist . 

Let UI , ... , UN be independent observations on 
u. The logarithm of th e likelihood function is 

N 
In L (e)=Nln £- 2 ~ In (£+ Ui), (5.3) 

i= 1 

which shows that no sufficient estimator exists for E. 

The maximum likelihood estimator, e, of E is the 
solu tion of the equation 

o In LI = 0 
Ot • ~e ' 

I.e., of 

(5.4) 

'fhis equation is quite difficult to solve if N > 3. 
' Ve, th erofore, :find some less efficient but easily 
available estimator. The Cramer-Rao gr eatest 
lower bound for th e variance of any unbiased 
estimator is found to be 

V= E -- = - , [ - (0 In L)2J-l 3£2 
OE N (5.5) 

which is also the asymptotic variance of e. 
aSY1nptotie variance of th e sample median, 
is given by 

The , 
U.5, 

(5 .6) 

so that the efficiency of the sample median is 75 
pereent. Thus, for a quick estimate of f: , the median 
may be used. In any case the sample mean should 
not be taken as an estimate oj E. 

6. A Rayleigh Process Derived From a 
Normal Process 

Referring back to lhe Lheol'etical framework of 

section 3, we as UIl1.e now that the resultant vector r 

is a function of Lime, i.e., -;'(t) is a random vector 
process. The cornponcnts (x , y) will now be wI'itten 
(x(t), y et» ~ and it will be assmned that x(t) and y et) 
are independenL sLational'Y normal processes with 
the same variance u 2 and th e satne autocorrelation 
function pes) . ThaL is to say, for all t and s 

Ex2 (t ) = Ey2 (t) = u2, 

Ex (t )x (t +s) = Ey (t )y (t +s) = u2p(s). (6.1 ) 
SeL 

(6.2) 

Then , for all t and 8, 

E z(t )=,,/, 

E z( t)z(t +s) = ,,/2 (1 + p2 (8»). (6.3) 

WriLing a (6') for lh e uuLocorl'claLion of th e z(t) 
process, we have 

a (s) cov (z(t),.~( t +s»=/ (s). 
"/-

(6.4) 

The process is cOlnpletely determined if "/ and 
a(s)= p2(s) are known . 

As before we use the sample mean now given by 

1 ( T 
c= T Jo z( l )cZl , (6.5) 

to estimate "/. c is unbiased and has variance 

2,,/217'( S) val' c= - 1- -- a(s)ds. 
T o T 

(6.6) 

We note thaL in the case of a discrete sample 
z(l) , z(2), . .. , zeN), (6.6) will r ead 

val' c=-+=-- ~ 1-- a(s) . 
')'2 9,,/2 N-l ( S) 
N N 8= 1 N 

(6.6') 
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The exact distribution of c is unknown. However, 
let N' be defined by the equation 

val' c= 'Y2/N' , i.e. , N' = 'Y2jvar c, (6.7) 

where val' c is given by (6.6) or (6.6'). N' will be 
called equivalent random sample size jar estimating 'Y. 
The results of sections 4.2- 4.4, then, will approxi­
mately hold with Nand ]\I[ replaced by equivalent 
random sample sizes N' and M'. N', in general, 
will not be an integer, but this presents no difficulty 
either in theory or in calculations. If [2N'] is the 
largest integer in 2N' , we will simply interpolate 
between the percentiles of x2 for [2N'] and [2N'] + 1 
degrees of freedom to obtain the percentile points 
of 2N' c/'Y. Similarly , for F(2N',21y[') of section 4.4. 

Example 6. Let a(s)= a( - s) =e-ps, s:?;O, J.I> O. 
Also, let p=e- JIo , so that a(s) = ps. From (6.6) 

2 ? [ 

val' c= J.I;: 1 

if J.lTis large. Hence, the equivalent random sample 
size N'~J.lT/2 . 

In case of a discrete sample, we obtain from (6.6') 

val' C~ .'Y2 (l + p) , 
N 1- p 

so that N'~N(l-p)/ (l + p ). 
For example, if e-p= p= 0.5 , J.I = 0.69315 , 2N' = 

0.69315T in the continuous sample case, and 2N' = 
2N/3 in the discrete sample case. 

Let 

O(s) =-1,1 J' 1'-8 z(t )z(t +s)dt . 
-s 0 

(6.8) 

Then 

a(s)= 0(:)_ 1 
c 

(6.9) 

is a consistent estimate of a(s). 
From the joint distribution of z(t) and z(t+s), 

obtained from Siddiqui's [1961] equations (5.8) and 
(5.9) by setting n = 2, we also find the following: 

E(z(t + s) I z (t» = a (s) z (t) + y(l -a(s», (6. 10) 

so that the regression of z(t+ s) on z(t) is linear. 
However, 

val' (z (t + s) I z(t» = 'Y 2(1-a(s) )2+2')'a (s) (l - a (s) )z(t ), 

(6. 11) 
is not independent of z(t). 
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