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This is an expository paper presenting the following:

erties of the Rayleigh distribution;

a test of the hypothesis that a set of observations is from a Rayleigh distribution;

(1) the origin, and (2) the prop-

(3) the most efficient estimators of its parameters; (4)

(5) the

distribution of the ratio of two independent Rayleigh variates; and (6) the Rayleigh

process derived from a normal process.

1. Introduction

In some problems of physies and engineering,
such as the diffusion process, or the distribution of
the power (or amplitude) of electromagnetic waves
received through a scattering medium, we are con-
cerned with the resultant of many (two- or three-
dimensional) random vectors. Such problems are
treated in probability theory under the heading of
“random walk’ in one, two, three, or, in general, I
dimensions. Here, we will confine our attention to
two-dimensional random walk problems which
asymptotically give rise to the so-called Rayleigh
distribution.  Unfortunately, in radiowave propaga-
tion literature the name “Rayleigh distribution” is
used indiseriminately both for the distribution of
power and of amplitude. To distinguish between
the two, we will call them Rayleigh power distribution
and  Rayleigh amplitude distribution, l'espo(tiv(\]_\'.
In statistical literature the distine tl(m is clear: the

Rayleich power is a multiple of x? (with 2 (h'gr(‘os
of freedom), whereas the Rayleigh amplitude is
a multiple of x. Since the properties of the Ray-
leich power (llslubutlon are much neater and better
suited for statistical estimation and for testing of
hypotheses than the properties of the Rayleigh

amplitude distribution, we will study only the
Rayleigh p()wor distribution. Important charac-

teristics of the amplitude distribution will be ob-
tained from the relationship amplitude= (power)'/2
The advantages of power over amplitude are roughly
the same as those of variance over standard devia-
tion, or of spectral density over its square root.
For example, the powers are additive and amplitudes
are not; the sum of two independent x* variates is
again a x° variate with added degrees of {reedom,
but the sum of two x variates is not a x variate. It
1s, therefore, suggested that the name ‘“Rayleigh
distribution,” if used without any other qualification,
be reserved for Rayleich power distribution, and
“Rayleigh variate” for a multiple of x* with 2
degrees of freedom.
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2. Notation

Ordinarily the same letter will be used to designate
both a random variable and the argument of its
probability density or distribution function. Thus
we may say: z is a random variable with probability
density function p(x) and distribution function F(z).
Il it becomes necessary to distinguish between the
two to avoid confusion or ambiguity, capital letters
will be used for the random variables and lower case
letters for the real variables.  Thus we may say: X
is a random variable and Pr(z < X <z+dx)=p(x)dz.

The function P, with one or more arguments, will
be used generically for any distribution function, and
p for any density function. Thus P(z) and P(y), in
general, will not be the same functions.  The former
denotes the distribution function of z and the latter
that of y, and the two may be different.

If 2 and y are random variables, Fr will stand for
the expected value of z, and E(z|y) for the condi-
tional expected value of z given the value of . Thus

[‘J‘_J an(@do= J f ap(ey)dy de,

E(x|y)= f

It 1s easy to see that, il e,

dy p(y) Jio i p ,/7;)

:J f ep(zy)dy de=Ex

The characteristics of a theoretical distribution,
e., its population parameters, will be designated by
Greek letters such as u, o, ¢. Their estimates may
be denoted by corresponding Latin letters, with or
without subseripts or primes. Thus if p denotes the

(z,y)
1)('/

* o

BlE ()~ |

=i
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mean (which is also the median) of a normal distri-
bution, m may denote the sample mean and m, the
sample median.

3. Asymptotic Distribution of the Resultant

Let 7[:(7“,- cos a;, 7; sin a;), i=1, 2, ..., n be in-
dependent random coplanar vectors where all values
of a;,(i=1, 2, . . ., n) between 0 and 27 are equally
likely. Tiet 7; be a series of positive constants, or
else be positive random variables distributed inde-
pendently of @;. Then

27
Er; cos a;=FEr.E cos a,=Er; %f cos a;da;=0,
0
(3.1)
ai=FEr? cos’ a,;=EriE cos® ai:% Er:. (3.2
Similarly,

. . 1 .
Er; sin a;=0, Er? sin’ =5 Eri, Eri sin a; cos a;=0,
(3.3)

so that the components of a vector are uncorrelated.
This does not mean, however, that they are statis-
tically independent. We note that if 7;1s a constant
I Bipe=iPe, 18—

= . C
The resultant vector = (z,y) is given by

n n
T= 7; COS Ay, Y=, 'y SIN @;. (3.4)
=1 =1
We immediately have
n
[Bp=18m=0), === > (3.5)
=1

Applying the Central Limit Theorem for vector
variates [Cramér, 1951, pp. 215-216, 285-286], we
obtain the following theoren.

Suppose that pi=Eri< o for all i, and

pP=p+...+0

THEOREM.
write

If the condition
lim p/e=0

n—w

is satisefid, then, noting that x and y are uncorrelated,
we obtain the asymptotic distribution of (x,y) as

i z2-1y3

- 242
5 € dx d
27'_0,2 ./}

([P(Z,y): — e Sx; ?/S ®©,

Thus x/a and ylo are asymptotically independent
standard normal variates.

We note that if 7, have identical distributions and
Eri< o, orif r;=r, a constant for all 4, p/o=0(n"""°),
which tends to zero as n— .

If in the equation above we make the transforma-
tions

r=7r cos a, Y=7rsin a, (3.6)

the Jacobian of the transformation is », and the

distribution of (r,a) is given by

r2

dP(r,a):U%e_Eﬁdr . d_a,,

0<r< o, 0<a<llr.
2

(3.7)

Hence the resultant phase, @, and the resultant

amplitude, 7, are independently distributed. We
will write y=2¢? so that the distribution of 7 is
r2
. 2r —3
(]P(r)=7 e "dr, 0<r<o. (3.8)

This distribution is known as Rayleigh amplitude
distribution. Making further the transformation

=i (3.9)

we obtain the distribution of z, called the Rayleigh
power distribution, as

dP(z)z’ly e_%dz, 0<z2< ., (3.10)

We note that z=ax>+9?is the sum of two independent
normal variates,  and v, each with mean zero and
variance v/2. Thus 2z/y is a x* variate with 2
degrees of freedom [Cramér 1951, p. 233].

In case all 7,=1 in (3.4), Kluyver [1906] showed
that

P(r)=r f o1 et (3.11)

If we make the transformation

t=2n=""%y
and observe that

lim [Jo(2n~ Y2y |n=e V",

n—yw

an asymptotic approximation to (3.11) is obtained as

r2

P(@r)~1— ¢ "

This formula is originally due to Rayleigh [1919].
In general, if we start with £ dimensional vectors

- - n -
ri=@q, ..., 2g), and r=Zl) Ty =1y e ey Tp); 0 ihien)
=

under the conditions of the Central TLimit
Theorem, x;, . . ., x, are asymptotically independent
normal variates, each with mean zero, and the
same variance, v/2. Let z=a2?+ . .. +ai. Then
2z/y is a x* variate with k& degrees of freedom
[Cramér 1951, p. 233]. Thus the asymptotic
distribution of z is given by
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k
dP( )~|:7 I‘(’;)] 22 dz; 0<z< o,

4. Rayleigh Power Distribution
4.1. Distribution Characteristics

In this section we will study some population
characteristics of the Rayleigh power distribution.
In the following sections the problems of estimation
and of testing of hypotheses concerning this distri-
bution will be considered.

The probability density function of z is

p(z )—* —#7if 2>0; 0, otherwise, (4.1)

which has a maximum at z=0 and decreases mono-

tonically as z increases.
The distribution function, Pr(Z<z), is given by

])(3.):,],J :0_541.1“:1—(‘,_%' (4.2)
Y Jo

If ¢ is a number between 0 and 1, the 100q per-
centile point, ¢,, is defined by the equation

P(s)=q,
which has the solution
te=—vIn (1—q). (4.3)
In particular the median
¢ s=v1In 2=0.69315 7.

The values of ¢,/v for ¢g=0.01, 0.05, 0.10, 0.25, 0.50,
0.75, 0.90, 0.95, 0.99, are given in table 1

TaBLe 1. {q/y for selected q

0.50 | 0.75 | 0.90 | €.95

[
-10.01005/0. 051290. 10536/ 0. 2%11)?“0 l)“)dl’)‘l 38()29 2. d(lZS‘J 2. 99511‘4 6051

q | 0.01 | 0.05 0.10 0.25

0.99

If /- is any real number greater than —1

#k(g):Egkzlfo zke_%dzzykl‘(/f—kl). (4.4)

Y

Thus the mean, u,(z), and the variance, ¢*(z), are
pi(2) =7, 0*(2) =p2(2) —pi(2) =7

are given by

(4.5)
Also the mean and variance of r=z*
Er=p,,(2)=v"T (3/2)=V5(my)*,

47r)

o*(r)=m () —u(2) =v—7— (4.5%)

4.2. Estimation

The Rayleigh distribution is completely specified
il the parameter v is known. . . . 2y 18
a sample of N independent observations {rom this
distribution, the likelihood function (the joint prob-

“ ~1, 29,

ability density of 2z, ... zy considered as a
function of v) is given by
3z Ne
1 1.~ (4.6)
L)=e " =ge ' ~
where
1 &
c= ?Z 21 (47)
N 3=

This shows that ¢ is sufficient for v. Since Ke=v,
¢ is unbiased. We know that if an unbiased sufficient
estimator exists, it is automatically the most efficient
estimate, also the maximum likelihood estimate.
The variance of ¢ is, of course,

72
Varc——- 4.8
! N ( )

If ¢ is any other unbiased estimate of v, then var
c<vart.

Since 2z, /v is a x* variate with 2
and z ., zy are independent

degrees of freedom,

AT
2Ne/y=2 2 1 247,
=

is a x? variate with 2N degrees of freedom. Thus
X VAlld] o 5
the distribution of ¢ 1s

Ny o _Ne
Y\.‘I,(— \;5() 7N Ude, if ¢>0; =0, otherwise.

(4.9)

(@)=

To set up confidence limits on v with a confidence
coefficient 1—a«, we determine from x* tables two
numbers x} and x%, corresponding to 2N degrees
of freedom, such that

Pro¢<x?)=a/2, Pr(X*’<x3)=1—a/2.
Then
Xi <2Nefy <x3,

has probability 1—« and

2Ne 2Ne
= <y<—; 4.10
a SYSSa (4.10)

will be 100(1—«a) percent confidence limits for .

Example 1. lLet N=3, 1—a=0.98. From x*
tables we find, for 6 degrees of freedom, Pr
(x*<0.872)=0.01, Pr(x*<16.812)=0.99. Hence

6 6
<
16.812 °=7= o872 ¢

or
0.357¢<y<6.88¢
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are 98 percent confidence limits for y. Similarly

0.476c<vy<3.67¢

are 90 percent confidence limits.
If N>>15 so that the number of degrees of freedom
f=2N>30,

4Ne

N2 —2f—1= ——\41\'—1

is approximately a standard normal variate [Cramér,
1951, p. 251]. If 2 is a number such that

: ¥
e =1~ (4.11)
V2w
then
i e A (4.12)
(VAN —1-+1)? (vVAN—1—x)?
are 100 (1 —«) percent confidence limits for v. When

N is large, say N >>100, (4.12) is approximated by

N N,
AL AL (4.13)
\N—f—l' '\*’A‘—x
Erample 2. Let N=100, 1—a=0.95. We find

r=1.96. From (4.12)

0.831¢<v<1.23¢.
If, on the other hand, we use (4.13), we get
0.836¢<v<1.24¢.

Since ¢ is the sufficient statistic for the Rayleigh
distribution, if it is known that the sample has come
from a lemgh distribution, we simply evaluate
cland estimate the entire distribution by

P)=1—¢"¢, 0<2< . (4.14)

The usual practice of estimating the population
percentiles by the sample percentiles is utterly un-
justified. The distribution percentile, ¢,, should be
estimated by

z,=—cln (1—¢q), (4.15)

which is an unbiased and minimum variance esti-
mator of ¢,. Thus, for example, the median, {;,
will be estimated by

z.s=c In 2=0.69315c,
which has the variance

s=(In 2)% var (':9'4;:91_-

var z

On the other hand the asymptotic variance of the
sample median, z’;, is given by

var z/,~ I
T ANP (v N
Thus
THE5 ~0.480,
var z’s

1.e., the sample median is only 48 percent as efficient
as 2.

To take another example: the first decile, ¢, is
most efficiently estimated by

1=—c In (.90)=0.10536¢,

which is unbiased and has variance

72
var z ;=0.0111 N

The sample 1st decile, z/; is biased and has

asymptotic variance

var 2’ _0 1X0.9 v?
SITNPE(r) 9N
so that
YA 21 095 0.0111~0.1,
var z/;

i.e., the efficiency of z'; is only 10 percent.

4.2.1. Estimation of the Amplitude Characteristics

We know that if sufficient statistics are available
for a distribution, its characteristics are most effi-
ciently estimated in terms of these statistics. Thus
the characteristics of the amplitude distribution are
estimated in terms of c.

For example to estimate the mean amplitude,
(my)¥2/2, we need only to find a function of ¢ which
is an unbiased estimator of this quantity.

Now

Ec=E (y+c—7)
[
¥

Jo 17
= |:1 &\']

Thus, to the order N1, [1+1/(SN)]e¢2is an unbiased
estimate of v?.  The mean of 7 is then estimated by

1 1 —
m =§ <1+;N>\ .

1(c—v)*
RIC .

(4.16)
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Since
var ¢t=FEc— (Ec?)?

—— (1_L>2~ gl
=YW T8N/ TaN’

var m :> 7
: 16A

(4.17)

On the other hand, let »,=z%, and

We have

YA 3,
Var 1=y =" 57
Thus
var m ™
var 7 4(4 1r)»‘0 7

J1s only 91 percent as efficient
based on the sufficient

i.e., the sample mean,
as the unbiased cslmmlm
statistic ¢

Similar considerations apply to estimating other
characteristics of the amplitude distribution, and
hence there is no need for us to go into details.

4.2.2. Estimation When the Data Are Truncated

Sometimes, due to the limitations of the recording
instrument, observations above a certain level x are
not recorded. However, the prior information is
there that the unrecorded observations will be greater
than z, and the recorded ones will be less than z.
'l‘his prior information together with the actual values
of the recorded observations should be utilized to
obtain the most efficient estimator of .

In a sample of Nindependent observations let N—/F
values exceed z, and let the remaining £ observa-
tions be z, 2, . .., 2. Obviously, £ itself is a
random variable with possible values 0, 1, 2, .
N. Also the probability density function of z; is now
conditioned upon the knowledge that 0 <z, <u.

The conditional probability density function is

[
1)(,2}()5331):;;0 WL,
&
l—e 7

where p= The probability distribution of k is

Pr(

(‘2)1)*-(1—;))\'—*;k:o, 1,..., N.

Hence the likelihood function is

—Nz
e v ,if k=0,
L=< (ML o
2 7 eXP N = A)I—*—Z”}
k Y i=1
0<L2y, . .., 5 <x,k=1,2,..., N. (4.18)

Obviously, when £=0 no point estimate of v is
possible, since the only information available is that
all observations are greater than z. In this case,

_ Nz
which has probability ¢ ~
ry< .

mate of v is

, we can only infer that
When k#O the maximum likelihood esti-

(N= k)x+2 24
A LI (4.19)

The properties of ¢, are not as easy to establish as
those of ¢ in section 4.2. Using the well known
properties of the maximum likelihood estimators,
however, we can say that for large N, ¢; will be
normally distributed with mean Fe;, and variance,
var ¢;, where

- z(1—
FEe, ~y4 '(ATV.])-)Z)),

Ci=

2y (4p—3)a? _z ‘
val 01%"‘/'71*)—"’ :}1’)3 =5 ]):1—0 i (42())

4.3. Is the Variate Rayleigh Distributed?

Liet 21, 25, . . ., zy be independent observations on
a non-negative variate z. We wish to test whether
z is Rayleigh distributed. Proceed in the following
manner.

Choose an integer m, not too small (at least 5),
such that N/m is greater than 5, preferably greater

N
Calculate ¢=2> z;/N.

i=1

than 10. Determine num-

bers z;, . . ., x,_,, such that

T:
i

i\ == b .
](J',):l—‘ (% ';‘—’n*[,y 1:1,‘2, o

b=t 111( —/> 1=1, 2, ..., m—1,

The range (0, ) of zis then divided into m nonover-
lapping intervals 1,=(0,z,), 1,= (z,2,), sy =
(2,1, @), such that the expected number of obser-

o =1l

rations, under the hypothesis IA’(:), in each interval
is N/m.

Let the number of actual observations falling in
these intervals be fi, 5, . . ., f,,. Then

" m : J\T 2 m
Xg=25 = < '(*/2/;:") =52 fi—

i=1 A i=1

(4.21)

is approximately a x* variate with m—2 degrees of
freedom [Cramér, 1951, pp. 424-426]. Pre-assign
some critical probability level a(=0.05, or 0.01, say)
and let x2 be the number such that

1P 208 =02,

If the observed value Xj<'x, accept the hypothe-
sis that z is a Rayleigh variate, and estimate its dis-
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A
tribution function by P(z). If xi>x2, reject the
hypothesis of Rayleigh distribution.
If the sample is truncated, i.e., if the maximum
value which could be recorded is x, we estimate v by

@ =[(L\'—k).l“—|—2 2{|/lc, where N—Fk values are
=1 _

greater than z and unrecorded. We proceed as
above, changing the last interval (or intervals), if
necessary, to read (z,o) and determining the
expected number of observations in this interval by

Ne—z/er; and calculating xX=2> (o ff) =ob-

served, f,=expected frequency.

Ezxample 3. The following is a systematic sample
of 80 observations (read at 5 sec intervals) of re-
ceived field intensity in (microvolts)?. The follow-
ing are the transmission parameters:

Frequency: 400 Me/s
Transmitter power: 2 kw
Angle: Zero
Path length: 300milliradians (165 miles)
Antennas: 60 ft diam parabolic re-
flectors having a gain of
38 db over an isotropic
radiator
Loss: The measured hourly me-
dian  basic transmission
loss~209 db
Time: 0425 a.m., July 27, 196
Observed values of received power in (uv)* (read
left to right):
0.20, 0.71, 0.06, 0.05, 0.76, 0.32, 0.96, 0.63, 0.09,
018, 0.25. 0.45 0.26, 0.10, 0.95, 0.01, 0.50, 1.26,
1.99. 032, 0.51, 0.01, 0.16, 0.56, 3.16, 1.27, 2.24,
1,00, 0,81, 1.29, 0.28. 0.21, 0.35, 0.20, 0.39, 0.89,
1.24, 0.08, 0.98 1.01, 0.49, 0.90, 1.9(), 1 42 1.56,
132, 120, 1.59, 2.40, 2.24, 0.80, 0.56, 1.45, 0.18,
0.02, 0.28, 0.81, 0.18, 1.31, 0.64, 1.95, 0.48, 0.55,
0.44, 028 0.07, 0.71, 0.45, 0.40, 0.06, 0.79, 1.01,
0.51, 0.70, 0.14, 016 0.01, 0.06, 0.03, 0.01.

V\g have N=80, ¢=0.71. Take m=8, «=0.05.
For 6 degrees of freedom the critical value of x2
1s 12.592.

) 8—1 .
Calculate z;=—0.71 In 3 ! p=lil

The resulting class intervals and the
frequencies are as follows.

7.

observed

Class intervals | f,

0 -0. 095 13
0.095- . 204 9
. 204 . 334 8
. 334— . 492 8
. 492— . 696 8
. 696 . 984 13
. 984-1. 476 12
1. 476 9

We

The expected frequency in each interval is 10.
have

xgz%Z]‘?— 80=3.6<12.592.

The data are consistent with the hyvpothesis that
z is Rayleigh distributed. In fact, the probability
that such a sample or worse, as measured by x%
comes from a Rayvleich distribution is more than
70 percent. The entire distribution is estimated by

P(z)=1—¢ *" 0<2< w.
4.4. Two Independent Samples

Sometimes we wish to test the hypothesis that
two samples, which are known to be {from Rayleigh
distributions, are from the same distribution, i.e.,
v1=v:. For example, to test the assumption of
stationarity of a Rayleigh process, we may take
two samples from the record (sufficiently far apart
in time to insure independence), and test the hypoth-
esis that y,=v,. Or, we may be recording a
signal, not continuously, but after breaks in be-
tween recordings, and may wish to test whether
the characteristics of the received signal have
changed from record to record.

Let 1t be known that two independent samples,

21, 2, . . ., 2y, and 2z, 25, . . ., 2’5, are irom
Rayleigh distributions. To test the hypothesis
that v, —=7s, it is sufficient to note that
-
F(2N, 20) _HE
e 2:\Y M " Cy
<i

is a Fisher-Snedecor F variate with the indicated
degrees of freedom. Here, ¢, and ¢, denote the
sample means of the first and second sample re-
spectively.  We assume that ¢ > ¢; if not we
simply invert the ratio and interchange the degrees
of freedom. Pre-assign a significance level «, and
test for the significance of the calculated F.

Example 4. Consider the data in example 3. Let
us test the hypothesis that the first 25 observations
are from the same Rayleigh distribution as the last
25 observations. Let the significance level be
taken as 0.05. From F tables the 5 percent significant
value, for 50 and 50 degrees of freedom, is 1.60.
Denoting by ¢, and ¢, the mean values of the first
25 and the last 25 observations, respectively, we have

¢;=0.578, ¢,=0.482.
Hence, the calculated value of F'is

H78
Fo={g5=1.20,
which iz less than 1.60.
hypothesis that v, =7,.

Hence we accept the
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5. Distribution of the Ratio of Two Rayleigh
Variates

Many problems in radio engineering require the
knowledge of the distribution of the ratio of two
independent Rayleigh variates, such as the signal
power and the noise power, or the powers of two
interfering signals.

Let 2z, and 2, be two independent Rayleigh variates
with parameters v, and ~v.. lLet uw=z/z, and
e=71/v2. Since 2z/y; and 2z/y, are independent
x° variates each with 2 degrees of freedom,

~1/’Yl 21
~z/’)’2 €22

is a Fisher-Snedecor /7 variate with 2 and 2 degrees
of freedom [Cramér, 1951, pp. 241-242]. Hence the
distribution of u:eul is given by

edu

(]]’(u)=<;+“)—9,

0<u< o; (5.1)

Puw)=Pr(z:/z:=u)=

5.2
+ n 9.2

vrample 5. Lt the average signal power be 20 db
above the average noise power so that e=100. Iet
satisfactory service require signal power 10 db above
the noise power. To calculate the probability of
satisfactory service we set e=100, =10 in (5.2) and
obtain Pr(z;/z,>10)=0.91.

The distribution of % involves only one parameter
€=71/v2, which is the median of the distribution.
We note that the mean, variance, and higher
moments of % do not exist.

Let w;, . . ., uy be independent observations on
u. The logarithm of the likelihood function is

o
In L()=N1ne—2> In (etu,), (5.3)
=1

which shows that no sufficient estimator exists for e.
The maximum likelihood estimator, ¢, of e is the
solution of the equation

oln L
ae e=e—0’
ie., of
N
¢ Hetu (6.4)
This equation is quite difficult to solve if N >3,

We, therefore, find some less efficient but easily
available estimator. The Cramér-Rao greatest
lower bound for the variance of any unbiased

estimator is found to be

T:[E alnL>]

V (5.5)

which is also the asymptotic variance of e¢. The

asymptotic variance of the sample median, /5
is given by
1 4¢®
var u 5~ -—=—— 5.6
5= 47\ (e) N (40

so that the efficiency of the s‘lm])l(‘ median is 75
percent. Thus, for a quick estimate of ¢, the median
may be used. "In any case the sample mean should
not be taken as an estimate of .

6. A Rayleigh Process Derived From a
Normal Process

Referring back to the theoretical framework of

section 3, we assume now that the resultant vector r
i1s a function of time, i.c., ;(i) is a random vector
process. The components (z, y) will now be written
(x(t), y()) and 1t will be assumed that z(#) and ()
are independent stationary mnormal processes with
the same variance o’ and the same autocorrelation
function p(s). That is to say, for all £ and s

1B =17 () =0,
Ex(t)x (t+s)=FEy (t)y (t+s)=d%p(s). (6.1)
Set
z()=2* () +y* @), v=2¢° (6.2)
Then, for all ¢ and s,
Ez(t)=n,
t2(t)z(t+8) =" (110 (s)). (6.3)
Writing «(s) for the autocorrelation of the z(¢)
process, we have
el Gl G )T (6.4)

’Y“

The process is completely determined if v and
als)=p*(s) are known.
As before we use the sample mean now given by

I
C:Tjo z(t)dt, (6.5)
to estimate v. ¢ is unbiased and has variance
(317" T s X
var PZ:%J; <1—-—71\—,>a(.\‘)(/.\'. (6.6)

We note that in the case of a discrete sample

2(1), 2(2), ., 2(N), (6.6) will read
g =t
%ﬁ@.

var c~N+ N - Z (6.67)
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The exact distribution of ¢ is unknown. However,
let N’ be defined by the equation
var c=73/N’,i.e., N'="*/var c, (6.7)

where var ¢ is given by (6.6) or (6.6”). N’ will be
called equivalent random sample size for estimating .
The results of sections 4.2-4.4, then, will approxi-
mately hold with N and M replaced by equivalent
random sample sizes N’ and M’. N’; in general,
will not be an integer, but this presents no difficulty
either in theory or in calculations. If [2N’] is the
largest integer in 2N’, we will simply interpolate
between the percentiles of x* for [2N’] and [2N']+1
degrees of freedom to obtain the percentile points
of 2N’¢/y. Similarly, for F(2N’,2M’) of section 4.4.

Erample 6. Let a(s)=a(—s)=e*, s>0, u>0.
Also, let p=¢7# so that a(s)=p*. From (6.6)

92 __ ,—uT On?
var c= i [1-—1 ¢ ~Y

uT oI |=uT
if pu7'1s large. Hence, the equivalent random sample
size N'>~=uT/2.

In case of a discrete sample, we obtain from (6.67)

2
Y (Lp
var CZAT 1_p>)

so that N'~N(1—p)/(14p).

For example, if e #=p=0.5, p=0.69315, 2N'=
0.693157 in the continuous sample case, and 2N’ =
2N/3 in the discrete sample case.

Let

O(s) :TL_ ﬂ )ttt 6.8)

s
Then

o) ‘;(f) 1 (6.9)

is a consistent estimate of «(s).

From the joint distribution of z(#) and z(t+s),
obtained from Siddiqui’s [1961] equations (5.8) and
(5.9) by setting n=2, we also find the following:

E(z(t+9)[2(t)) =a(s) 2 (1) +v(1—als)),

so that the regression of z(t-+s) on z(1) is linear.
However,

var (2(t-+s)|2(t) =v*(1—a(s))*+2ya(s) (1—a(s)2 (1),
(6.11)

(6.10)

is not independent of z(¢).
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