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Angle as a Fourth Fundamental Quantity

Jacques E. Romain*

(April 18, 1962)

The advantage of considering angle as a fourth fundamental quantity of geometry
and physiecs is stressed, and an alternative approach is suggested to introduce an angular
dimension in such a way that the physical laws, in any form, are dimensionally homogeneous.
A few examples are described to show how some equations of mathematics and mechanies
should be revised to put the new point of view into practice.

1. Introduction

Chester H. Page! recently wrote in this Journal
a most interesting study about “physical entities and
their mathematical representations.” One of the
ideas in that paper, which will be of interest here, is
that advantage can be gained from considering angle
as an additional fundamental quantity. Dr. Page
rightly points out that, since the measure of an
angle depends on the chosen angle unit, it would be
natural not to consider it a dimensionless quantity.
That point of view could hardly be overstressed, and
the present writer has the unpleasant feeling of an
artificial trick about the generally accepted rule that
angle is a dimensionless quantity, but may only be
measured in radians if trouble is to be avoided.

Moreover, ignoring the dimension of angle de-
prives dimensional analysis of a part of its fruitfulness.
Although the number of fundamental quantities in a
dimensional theory is not assigned by any logical
prescription, it is well known? that the optimum
number of fundamental quantities 1s the smallest
number that is enough to express every physical
quantity in the theory in terms of properly chosen
fundamental quantities, without arbitrarily assigning
a dimensionless status to any physical constant. In
view of these arguments, it seems rather surprising
that earlier attempts® *?% did not seem to meet
any widespread audience.

This paper describes an alternative approach to the
mtroduction of an angular dimension. It must not
be construed as polemics against Page’s approach:
actually both systems are equally consistent. How-
ever, let it be noted that the present point of view
does away with the unappealing feature, in Page’s
system, that Euler’s formula

e¥=cos r+1 sin x (*=—1)

is dimensionally nonhomogeneous, and that therefore
dimensional homogeneity is not preserved when the
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complex exponential formalism is used in physics
instead of trigonometric functions. Of course, the
difficulty can be disposed of by stating that “this is
an illustration of the fact that equations used in
physics need not be dimensionally homogeneous
when terms arise from the use of an artifice. The
function ¢ does not actually occur in physics; it is
imtroduced with the convention that its real part
alone (or its imaginary part alone) represents a
variable of interest.  Nonartificial exponentials, such
as ¢ W5 have numeric exponents.”  (See footnote 1.)
But it seems simpler to define the angular dimension
so that Euler’s formula is dimensionally homogene-
ous; that will be done presently. (However, the
possibility of reconeciling Page’s scheme with the
requirement of homogeneity will be shown at the end
of section 3.) Moreover, the present treatment
seems to allow a more straightforward extension to
solid angles, taken as another distinet fundamental
quantity, on the same footing with plane angle, by
simply substituting “steradian” for “radian” and
“area” for “length” in eq (la).

On the other hand, this attempt misses the pleas-
ant feature, in Page’s work, that torque and energy
acquire different dimensions (as do action and angu-
lar momentum, or areal velocity and kinematic vis-
cosity coefficient). But there really is no reason, in
the theory of dimensions, to demand that no two
different physical quantities should have the same
dimensional formula; and it seems hardly possible to
devise a dimensional system in which no such dupli-
cation would happen anywhere: for instance, even
in Page’s system, a [requency and a velocity gradient
have the same dimensions.

2. Basic Definitions

The appearance of angles in an equation can often
be traced to the relation

s=0R (1)

between an arc s of a circle, its radius /2 and the

central angle 6 measured in radians. The necessity

of dimensional homogeneity of both sides of eq (1)

(in which s and R are lengths) seems to imply that
6 is dimensionless.



It has been tried (see footnote 6) to avoid contra-
diction by taking into consideration two kinds of
“angles”: the “geometrical angle’” which is the usual
one, a quantity related to the portion of the plane
contained between two concurrent straight lines, and
the “analytical angle” which is the 6 to be found in
eq (1). But the so-called “analytical angle” is no
new notion indeed: it is plainly the measure of the
angle in radians.  This can be seen immediately from
eq (1), which originates in a theorem stating that in
a circle two arcs are proportional to their central
angles.  When one of the arcs is equal to the radius
its central angle is one radian, and the proportion

becomes
s=(6/1 rad) R, (1a)

which is the correct form of eq (1), with 6 a true
“oeometrical” angle.

How is it that one should think himself obliged to
particularize the measures of angles under the name
of “analytical angles,” while not feeling any need
whatsoever of “analytical lengths,” “analytical
masses” or “analytical time”? The explanation,
and the reason why mechanics could be developed
without recognizing the fundamental dimension of
angle, is that angles often appear in mechanics
through their measure in radians, which indeed can
be seen to be derived from eq (1a). Something simi-
lar happens in other chapters of physies: for instance
it 1s well-known that the dimensional analysis in
photometry is less complete if the further funda-
mental dimension of solid angle is not taken into
account; actually what is here being said of angles
can be extended to solid angles.

The basic angular quantity will be taken here to
mean the ordinary “geometrical’” angle, certainly the
most primary notion in any study of angles. Trig-
onometric functions will be defined in the elemen-
tary way as ratios of lengths, i.e., dimensionless
quantities. This is simpler than starting from power
expansions, and has the advantage of putting sin
and cos on an equal footing.

Since the denominator (1 rad) will often appear, 1
shall write for the sake of brevity, for any quantity Q:

QR/(1 rad)=<Q>. @)

This should not be mistaken for the dimensionless
measure of €¢): it is so only for angles. (When ¢ is
an angle 6, <6 > is simply the “analytical” alter-
native to the “geometrical” angle 6.) Thus eq (1a)

will be written
s=<6>R. (3)

3. Angular Dimension in Mathematics

Restrictions are met in mathematics about angles,
at least on two occasions: these are eq (1), and the
following:

limg_,,(sin 60)/6=1, 4)

both of which are only true when 6§ is measured in
radians.  Equation (1) has just been dealt with, and
its general form (3) has been obtained. The same
can be done to eq (4), which is a direct daughter of

eq (1). The reader should turn back to the elemen-
tary demonstration of eq (4); the general scheme is:
(1) show that the length of an arc 6 of a circle lies
between those of two line segments which are pro-
portional to sin § and tan 6; (2) divide by the radius
I2: the two segments yield sin 6 and tan 6, while the
arc becomes s/I?, or <6 > on account of eq (3). Thus,
the true form of eq (4), valid for any unit of angle, is

limgy(sin 6) /<0 >=1. (5)

A similar equation would be obtained with tan 6
instead of sin 6.

The equations showing how to replace the sine
and tangent of a small angle by the angle itself
follow in the correct form

sin 0 =< 6>; tan 6 ~<6>. (6)

As a consequence, every equation derived from eq
(3) or (5) should be recalculated. The details of
the calculations are left to the reader.

Here are a few results:

(a) Derivatives of trigonometric functions:

d(sin z)/dz=(1/1 rad) cos r, (7)
or

d(sin x)=cos = d<x >, (8)
and analogous expressions for the derivatives of cos
x, tan x, . . . . An application of eq (7) which will
be of further use is

d(sin wt)/dt=<w >cos wt. 9)

(b) By comparing the power expansions of ¢ to
those of cos z, sin z derived from eq (7), namely

c0s .r:I—‘1)r<.r>"’-%—(1/4!)<.r>4 — .,

sin x=<zr>—(1/3)<e>*+ .. .,

one readily obtains for Euler’s equation the dimen-
sionally homogeneous form

¢'<*>=cos z-+7 sin x, (10)
which will be used in the form
ei<w>l=cos wt-+1 sin wt.
From eq (10) follows
cosh 1<<x>=cos z; sinh <z >=14sinz. (11)

(¢) When remembering eq (7) and computing
again the following integral, one gets

f(a‘—y“’)””zl/y: (1/trad) sin™! (y/a)+C
' =<sin™ (yla)>+C,

and similar expressions for cos™ and tan~'.
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It can be noticed that all the above equations are
homogeneous with respect to dimensions (z is an
.lngle, t the time, ¥ and a any quantities of the same
dimension; o has the dimension 67! if 6 denotes
the angular dimension): the arguments of trigono-
metric functions are angles, but those functions
themselves are pure dimensionless numbers, as well
as the arguments of hyperbolic functions and the
exponents. With those equations in mind no
difficulty can be experienced in setting up the equa-
tions of mechanics.

Before switching to mechanical equations, let it be
pointed out that homogenelty can easily be restored
in Page’s scheme for the equation

¢ =cos z-+1 sin ,

and more generally for the polar expression of any
complex number, wherein the same problem occurs.

What needs be done is simply assigning the
dimension of angle to the complex “”. Since [6]?

=[1] (Page’s notation), there is no conflict with
1P=—1

as a quantity equation; and as sin x, in that scheme,
also has the dimension of angle, that would make
both the exponent iz and the product 7 sin  dimen-
sionless.

The unusual feature is that in any complex
number a-+bi, @ is a numeric but 4 has the dimension
of angle (or more generally « has the dimensions of
the modulus and b those of modulus times angle).
The appearance of an angular dimension in complex
number representation would not seem incongruous
if one remembers that the natural geometric represen-
tation of complex numbers is in a plane.

But the feature just alluded to implies a further
consequence. If homogeneity is to be preserved
throughout, the imaginary part b of any complex
number a-bi must have the dimension of angle,
even when b=1. This implies introducing some
arbitrary “unit of imaginary part,” say u, with the
dimension of angle, by means of which the complex
number (a-+1) can be written (a+wuz). Tt 1s then
obvious that the use of u is completely equivalent
to putting

=

(7 dimensionless) and writing
a+t+bi=a-+ (b/u)j.

Now the dimensionless b/u is exactly the expression
defined by eq (2). In other words, in the suggested
“homogenized Page’s formalism,” the equations
mvolving complex numbers go over into a form
equivalent to that of the present approach.

The comparison between Page’s scheme and the
present proposal can thus be summarized as follows:

In Page’s scheme the relations

d(sin z)/dr=cos x; ¢"=cos r+1 sin x

are quantity equations, whereas in the present
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proposal eqs (8) and (10) include explicit reference
to the radian. But this advantage of Page’s scheme
18, to this writer’s feeling, canceled by the necessity
of either introducing u in the complex numbers or
retaining inhomogeneous equations wherever com-
plex numbers are involved in the polar form.

The only irreducible difference between the two
approaches boils down to the fact that m Page’s
scheme the dimension of angle is singled out by
the requirement that [0]°=([1], while all four dimen-
sions, as such, are put on an equal footing in the
present approach. (In fact, however, the explicit
reference to the radian, or to u, also singles out the
angular dimension in both systems.) Admittedly,
this is essentially a matter of taste.

4. Angular Dimension in Kinematics

The basic appearance of angles in kinematics is
through angular velocity. 'The mutual dependence
of linear and angular velocities in a circular motion
is obtained by differentiating eq (3) with respect to
time, and putting » for ds/dt and  for d6/di:

r=<w>R. (12)
This equation is dimensionally homogeneous, for
the dimensional formula of « i1s 677 thus that
of <w>1s T

llet us now investigate a few consequences of
eq (12). From eq (12) the dimensionally correct
expressions can be deduced for the rotational kinetic
energy of a solid:

for the centrifugal force on a particle:
F.=m<w >R,

and for the law of areas:
R2d<0>/ct=C.
The angular velocity vector € of a rotating solid
is defined by the equation
V= XTr.

)
)

(1:

It is usually considered to have a length equal to
the value of the angular velocity w. The dimen-
sional homogeneity of eq (13) (where the cross-
product svmbol is dimensionless) shows that the
true relation, when angle is considered a fundamental

quantity, is
Lw>,

with the dimensional formula 7' This dimen-
sional formula is found to agree with the particular
ase of the vortex vector of a fluid:

)

Q= (14)

1
25 VXV,

in which no angular dimension appears.



Binet’s formula expressing the radial acceleration
of a point obeying the law of areas reads

Jr=—(A%r?) [d*(1/r)[d<6>2+1/r],

where A is the constant of area.

And, finally, the radius of curvature R of a curve
in a point is defined, in terms of the infinitesimal arc
ds and the corresponding angular displacement 6
of the tangent, by

R=ds/d<6>,

which 1s a direct application of eq (3).

(15)

5. Angular Dimension in Dynamics

The appearance of angles in dynamics may derive
from many of the above equations:

From eq (6) comes the proper form of the equation
yielding the shear angle:

<Y>=2T(1+0)/E (16)

(where o is Poisson’s ratio and /£ Young’s modulus),
and the physical expression of the nondlagonal com-
ponents ¢; of the infinitesimal strain tensor of a
continuous medium in terms of the shear angles
relevant to the directions 7, j:

eij:<’l/i]'>'

Also from eq (6) follows the second-order approxima-
tion of the formula for the period of the circular
pendulum with amplitude 6:

r=2r ()21 +<O>16+ . . .).

Equation (9) leads to the expression of the equa-
tion for the harmonic motion of a point on a straight
line under a central attractive force —kr proportional
to distance:

= (vo/<w>) sin wt+x, cos wt,
<L w>=(k/m)V?,

(17)
with
(18)

the period is

r=2n/< >

and has the correct dimension of a time.
The analogous motion under a central repulsive
force +/kr is deduced from eq (17) by changing &

into —kin eq (17) and keeping eq (18) as a definition
of w; it reads, thanks to eq (11):

r=1xy cosh <w >t+ (vy/<w>) sinh <w >t.

Equations (13), (14) show that the relation between
the (normal) torque M on the axis causing a gyro-
scope to precess, the moment of inertia 7 about that
axis, and the angular velocities of rotation and of

precession is
M=<w><w'>I,

where ¢ has the conventional dimension.

Equation (15) is responsible for the formulation
of the law of distribution of tension in a string con-
strained to lie on a surface with friction, in terms of
the angle 6 of rotation of the tangent:

T=Toe'<%>,

The same eq (15) would be involved in the study of
the motion of a point missile in the air with friction.

The dimensional homogeneity shows that the rela-
tion between torque, angle of rotation, and the
torsional constant i a twisted wire is

M=C<6>,

which can also be seen theoretically to proceed from
eq (16). The expression for the torsional period
follows with the correct dimension:

r=2x(I/C)?=27(I<6> /D)2,
6. Conclusion

The above survey does not claim to be anything
like an exhaustive study of the introduction of an
angular dimension in mechanies. Tt 1s just a collec-
tion of examples to show that no disadvantage can
arise from its systematic use. Actually, this writer
taught rational mechanics for five years with this
system of dimensions without ever coming across
any inconvenience.” On the contrary, he found the
new point of view often illuminating since it allows
an appreciable widening of the scope of dimensional
analysis.
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