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This paper describes the advantages of having an objective classification system for

DF bearings.

The Brooke system is described in some detail, and the problems involved

in setting up a system on these lines are considered.

1. Introduction

For many years we used a simple ABCD classi-
fication system for HE DF bearings taken with
U-Adcock direction finders. This was not entirely
satisfactory for various reasons. The fundamental
difficulty was that, although in theory the classifi-
cation depended in a well-defined way on the con-
sistency of the observed bearings, in practice it was
largely subjective. The Brooke Variance Classifi-
cation System is based on the Ross-Barfield system
developed during the Second World War and
described by Ross [1947].  The present paper is an
attempt to describe the system from the point of
view of a group that might be considering the intro-
duction of such a system.

Section 2 of this paper reviews the reasons for
having a bearing classification system. The sources
of error in DEF bearings are described briefly in
section 3. The history of the Brooke system is
reviewed in section 4. Section 5 1s devoted to :
discussion of the problems involved in introducing a
similar system into another network. The solutions
found for the Brooke system are indicated. Section
6 describes the statistical analysis required to esti-
mate variance components from check bearing data.

2. Why Does One Need a Classification
System?

The first question is, why does one need a bearing
classification system? It is impossible to give a
short answer to this question, since it depends on
the answer to an even more fundamental question:
What use is one trying to make of one’s DF bearings?
One will presumably plot the bearings reported on
any task on a gnomonic chart. One can then either

(1) gaze in wonder at the set of plotted lines, and
finally emerge with a point estimate for the position
of the transmitter, and a circle of arbitrary radius
centered on this point such that the true position
“probably” lies within the circle, )
or (2) use one of the many unsound plotting methods
that have been proposed from time to time,

1 Contribution from Admiralty Research Laboratory, Teddington, Middlesex,
England. .

‘-'Ll‘upur presented at the Conference on Transmission Problems Related to
High-Frequency Direction Finding, at UCLA, June 21-24, 1960.

or (3) use an electronic computer to find a more
precise least squares solution, 1.e., to find
(a) a Best Point Estimate (or Most Probable

Point) defined as the point minimizing the weighted

sum of squares of the angular errors, the weights

being inversely proportional to the assumed
rariances of bearing errors at the station concerned,
and

(b) a region, normally a circle or a rectangle,
approximating to the region where this weighted
sum of squares exceeds its minimum value by less
than some given constant, such as 4. The region
may be called a 90 percent (say) Probability

Region, or Confidence Region. Its purpose is to

give an appreciation of the probable accuracy of

the point estimate,’
or (4) use a method based on some valid approxima-
tion to the least squares solution.

In cases (1) and (2) it may be helpful to have some
rough measure of the accuracy of any particular
bearing, but the traditional ABCD classification
based on the consistency of repeated observations,
or some other subjective method, may be good
enough.

In cases (3) and (4) it is important to have a
realistic measure of the probable accuracy of any
particular bearing.  Ross [1947] wrote

“It has long been customary for bearings to be classified
somewhat arbitrarily by the direction-finding operator. This
classification, intended to give an indication of the probable
reliability of the bearings, is usually based on the quality
(sharpness) and steadiness of the minimum. This practice
is a legacy from the days when radio communication was
conducted chiefly on the long and medium wavelengths, and
it was not unreasonable to expect the operator to estimate the
reliability of bearings in this way. In the short-wave band,
however (20 to 100 m approximately), where propagation is
chiefly controlled by ionospheric reflections, conditions are
far from simple. Bearings are generally in a state of con-
tinuous variation and it becomes increasingly difficult for an
operator to classify them by any more or less intuitive
process.”

3 The conventional justification for this as a Confidence Region is based on
the assumption that all possible bearing lines from a given station are approxi-
mately parallel. Beale [1960] provides a method of justifying it even when this
approximation is unacceptable. Beale’s paper shows that the approximate
confidence region is justified if a quantity Ny, called the ““‘intrinsic nonlinearity
of the model” is smaller than about 0.1. It seems likely that the DF problem
nearly always satisfies this condition; even though one can easily imagine situ-
ations with a ““narrow base line”” when the problem is decidedly nonlinear when
expressed in terms of natural parameters, such as the latitude and longitude o
the transmitter.
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Ross proceeds to describe an objective classifica-
tion system which is the basis of the Brooke system.
The details of such systems will be described in
section 4. Meanwhile we should consider another
advantage in having a rational and objective
classification system: it is almost indispensable to a
thorough quantitative analysis of the magnitudes of
the various errors arising in practical DF. It is
virtually impossible to get a set of observations that
1s statistically balanced with respect to all relevant
factors. So, for example, when studying the effect
of distance one must allow for the difference in fre-
quencies of transmitters at different distances; and
such a process requires the estimation of variance
components due to the different errors making up
the observed bearing error.

3. Sources of Error in HF DF Bearings

The sources of error in HE DF bearings are dis-
cussed by Ross [1947] and Bowen [1955]. They can
be summarized as follows:

(1) Instrumental errors due to small errors of
antenna balance, and similar causes. These errors
can be greatly reduced by a local calibration, but
there may be an appreciable residual error varying
with radio frequency and direction of incidence (in
azimuth and elevation) and from site to site.

(2) Distant-site errors, due to irregularities of, and
obstacles on, the terrain around a high-frequency
direction finder but outside the near site or calibra-
tion area. The values of these errors vary with
radio frequency and direction of incidence (in
azimuth and elevation). The variances vary from
site to site, and tend to decrease as the radio fre-
quency increases.

From our present point of view, errors of types
(1) and (2) are similar. They are virtually inde-
pendent of time. For a given transmitter working
on a given frequency the errors may vary a little
in that the angle of elevation of the incoming ray
will depend to some extent on ionospheric conditions,
but there will be an appreciable systematic compo-
nent of such an error.

(3) Tonospheric lateral deviation errors, due to
large scale 1rregularities in the ionosphere. These
errors vary ounly slowly with time (with periods of
the order of tens of minutes). Their variance does
not depend on the DF site, but depends strongly on
the distance of the transmitter. Not much is known
about the effects of time of day and radiofrequency
on lateral deviation. It seems possible that errors
are somewhat greater at night than by day and some-
what greater on low frequencies than on high fre-
quencies. If so, this is probably due to the increased
number of multiple reflections possible at night and
on lower frequencies. Large systematic and random
effects can be observed around sunrise. Later
studies have not essentially changed the views ex-
pressed by Ross [1949] on the subject of lateral
deviation.

(4) Wave interference errors and polarization
errors. These errors may be quite large, but they

generally vary rapidly (with periods of the order of
seconds). Their effect can therefore be greatly
reduced by taking the average bearing (preflerably
weighted according to signal strength) over a period
of 10 sec or longer.

4. History of the Brooke System

The Brooke Variance Classification System arose
out of the system developed during the Second
World War by Mr. W. Ross and Dr. R. H. Barfield,
and described by Ross [1947]. The basic assumption
underlying the system is that the error in any ob-
served DF bearing is a sum of three uncorrelated
errors:

(1) An instrumental and distant site error, whose
mean square value can be determined as a function
of the radiofrequency and the DF site.

(2) A lateral deviation error, whose mean square
value can be determined as a function of the distance
from the transmitter to the DF site. This component
must of course be estimated at the plotting center.

(3) A wave interference and polarization error.
An estimate of the mean square value of this error
can be determined from the mean ‘“‘swing’”” of the
observed bearing over a period of 1 or 2 sec, or from
the scatter of repeated observations made at intervals
of about 5 or more see, or both. The distance from
the transmitter to the DF site can also be used to
throw some light on the probable magnitude of this
error, since wave interference due to multipath
arrival 1s apt to be more serious on the more distant
targets.

When after the war attention was again directed
to the classification of HF DF bearings, the Ross
system was examined but considered to be unsatis-
factory in its existing form. The users also con-
sidered the subjective method of classifying bearings,
then in use, to be unsatisfactory. Mr. Norman
Brooke, while a member of the Admiralty Depart-
ment of Operational Research, carried out an investi-
gation into the problem of classifying HF DF
bearings, the outcome of which was a proposal to
modify the Ross system, and to extend it to apply
to visual, as well as aural null, equipment. He
found that it was necessary to give the variance
components values that were rather larger than
those proposed by Ross.

The modified version was found to be satisfactory.
It was decided, with Mr. Ross’s concurrence, that
the system should be called the Brooke system.

Before the system was introduced a statistical
analysis was made of a large number of check bear-
ings on known transmitters, in order to derive
realistic estimates of all the variance components.
Further, it is known that station performance
changes to some extent with time, so the analysis
of check bearing data continues on a routine basis
in order to keep track of these changes. It is found
that the variance component depending on the DF
station has to be changed by 1 unit (i.e., 1° squared)
from time to time—perhaps once every 2 years on
the average. The other variance components are
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reviewed from time to time,
been found necessary.

So we may conclude that the Brooke system works
satisfactorily. The essential reason for this seems
to be that the system combines physical theory and
empiricism in about the right proportions for our
present state of knowledge about HEF DF. We
certainly do not maintain that no further improve-
ments in the system are possible.

but changes have not

5. How Could a Similar Classification Sys-
tem Be Introduced Into Another Organ-
ization?

Suppose that some authority has decided that it
would be worth introducing an objective bearing
classification system on these lines into his HF DF
network, what steps must be taken to implement
this decision?

The first task is to define a set of factors on which
the variance is assumed to depend. It would seem
natural to include

(a) The DF station,

(b) the radiofrequency,

(¢) the distance of the

station, and

(d) some measure of the quality of the observed

bearing.

Some discussion on this last item 1s perhaps
required. A cursory reading of Ross [1947] might
give the impression that an objective classification
system is only possible if one takes repeated snap
observations to determine the bearing. This is not
s0. The true situation is as follows:

Admittedly if one takes repeated snap observations
(which may be mental averages over a period of 1
or 2 sec), then one is likely to obtain a more accurate
bearing than if one simply gazes at the display for
about 30 sec, because experience has shown that it
is almost impossible to average mentally over a
period of more than about 5 sec. Furthermore, the
scatter of the individual snap bearings ])10\1(10
additional information concerning the reliability of
the mean bearing. But if the transmitter is not
active for long enoug]l to take repeated observations,
or if the bearing is required so urgently that there
is not time to take and report the Tesults of several
snaps, then one can still use an objective classification
system based on other factors. Indeed both the
original Ross-Barfield system and the Brooke system
include means of assessing a variance when it is
impossible to obtain more than one snap.

The next task is to postulate a formula for the
variance as a function of these factors with a finite
number of unknown parameters.

It seems natural to write

transmitter from the

B=V 1Vt V,,

where B (for Brooke) denotes the total variance (i.e.,
the total mean square error if one proceeds as if all
errors had zero means).

V, denotes a component depending on radiofre-
quency and the DF station, representing instrumen-
tal and distant site errors,

Vi denotes a component depending on the distance
from the transmitter, representing lateral deviation
error, and V', denotes a component depending on
the qlmllt\' of the observed bes aring, and the type of
equipment and display used, representing wave in-

terference and polarization error, and also observa-
tional error due to imperfections in the DF operator.

We must still specify the forms of V,, V,, and V,
to reduce them to a finite number of parameters.
It may be helpful to consider each in turn with
reference to the existing Brooke system.

The Brooke system assumes that

Vi=a;+b,

where @; and b; are parameters estimated separately
for each DI station, and f denotes the fl(\qlu‘n(\'
band. The definition of these frequency bands is
being reconsidered. There is some evidence that
the variance is not very sensitive to radiofrequency
above about 9 Me/s. The following bands may
therefore prove appropriate.

f=1 for frequencies between 2.000 and 3.999 Mec/s,

=2 for frequencies between 4.000 and 8.999 Me/s,
f=3 for frequencies above 9.000 Me/s.

For the distance component, the Brooke

assumes that

system

Va=0.6/d? for d<_0.8,
V=1 for ()h<r/\. 3.5
V=3 for 3.5<d,

)

where d denotes distance from the transmitter to
the DF station, measured in thousands of kilometers.

For the quality component, the Brooke system
assumes that

— ‘ '.s"+' "ny
where

0 for swings between 0 and 8°,
1 for swings between 9 and 13°,
2 for swings between 14 and 18°,
4 for swings between 19 and 23°
=6 for swings between 24 and 37°,
=9 for swings over 38° or unme: lSlll'Od
andME=r2/7idn2s

where 7 is the number of snap bearings taken, 7 is
the range of these snaps, and d, 1s the average range
of n observations from a Gaussian population with
unit variance (tabulated by Tippett [1925]).

The theory underlying the use of these formulas is
that V, might be expected to give a valid estimate
of the variance of those components of error (due to
polarization errors and wave interference) that vary
rapidly. But in practice the operator cannot help
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being biased by the knowledge that all his snaps
refer to the same transmission. He will therefore
tend to make his observations more consistent than
they should be, and an additional variance compo-
nent must be introduced to allow for this. The
bias is likely to depend on the difficulty of the task
of taking a bearing, which is measured by the
average “swing”’.  For an aural null equipment the
swing is defined as the width of the arc about the
minimum over which there is a just detectable change
of signal. For any equipment with a visual display
it is defined as the angle through which the instan-
taneous value of the bearing moves during the time
taken to read its mean value for an individual snap.
There is of course no logical reason why the formula
for V should be the same for different types of
display, even though all the equipments have the
same antenna system. But the statistical analysis of
check bearings suggests that there is no important
difference in this respect between aural null, spinning
goniometer, and twin-channel c.r.d.f. displays.*

If only one snap is taken, increased values of V),
and V are used to compensate for the absence of
the V, term.

Different organizations may find it convenient to
estimate V, differently. This must depend on what
information the DF operator finds it convenient to
report. If he simply reports a letter classification
(A, B, C, or D), then one could put V,=0 for an A
class bearing, and estimate 3 constants, being the
values of V, for B, C, and D class bearings
respectively.

One might also use the signal strength as an
indicator ol bearing quality. This does not in fact
enter into the existing Brooke system.

Having defined the form of the bearing classifica-
tion system, one must estimate the parameters.
One can get preliminary estimates of these from
physical theory and from the values used in existing
systems, but these estimates must be corrected (or
confirmed) using data obtained by the DF organiza-
tion in question. These data may be either genuine
operational data or check bearing data where the
true positions of the transmitters are known to the
analyst.

As far as | know, no serious attempt has yet been
made to estimate variances {rom operational data
when the true positions of the transmitters are
unknown. The use of such data poses the funda-

4 There is a small point of some statistical interest about the estimation of V.
Elementary theory suggests that 4 V7, is an unbiased estimator of the standard
deviation of errors varving randomly from snap to snap, for a given value of this
standard deviation. But this does not prove that+ V7, provides the best estimate
of this standard deviation, given the range r. Indeed one might expect that a
better estimate would be obtained by attaching some weight to the estimate
obtained from the long-term average value of this standard deviation—thereby
making the used estimate less dependent on r. After holding forth on these lines
to my colleagues on more than one occasion, I eventually persuaded them to do a
detailed analysis of the check bearing data to investigate this point. They
found that, if anything, the variance component V, should be made more de-
pendent on r. It has been suggested that this is because the dividing factor
d,? is too large because the error distribution is not normal. (And indeed even
from a normal population a smaller dividing factor isrequired to give an unbiased
estimate of the variance as opposed to the standard deviation.) But I prefer to
regard this as suggesting that the range has additional value as an indicator of the
quality of the bearing. More light could be thrown on this point by an analysis
of the individual snap observations, but it is of little operational importance.

mental difficulty that one has to lean rather heavily
on the assumption that the bearing errors are uncor-
related. If one is prepared to accept this assump-
tion, then it is fairly easy to estimate the absolute
values of the variances of a set of DF stations il we
know their relative variances. For in this case we
:an determine the true Best Point Estimate;i.e., the
hypothetical position of the transmitter minimizing
the sum of squares of the bearing errors divided by
their variances. We can then use the fact that Gf
the error distributions are normal with zero mean)
the minimum value of this sum is distributed as x?
with 7-2 degrees of freedom, where n is the number
of DF stations contributing to a task. In particular,
the mean value of this sum is n-2.?

In practice the relative variances are unlikely to
be known. The problem then becomes considerably
more comwplicated. It is discussed in a companion
paper, Beale [1961].

It is much easier to estimate variances from check
bearings, provided satisfactory check bearings can be
obtained.

Check bearings may be used both to verify that
the equipment is functioning properly and to indicate
the probable accuracy of the DF station on opera-
tional tasks. A check bearing program to check the
equipment does not need to be controlled nearly as
sarefully as a check bearing program to estimate
accuracy. Bowen [1955] writes

“The use of check bearings on known transmitters in
establishing the performance of a high-frequency direction-
finder is a widely accepted technique. It has been found,
however, that two problems present themselves:

(a) There is difficulty in arranging a programme in which
the radio frequencies, ranges, azimuths, propagation paths,
transmitter powers and other parameters are adequately
sampled and distributed similarly to those which will define
the normal task of the direction finder.

(b) Unless great care is taken to hide the identity of the
transmission from the operator, both as regards its true
bearing and its identity with previous transmissions, con-
siderable operator bias will occur.

“The methods by which these problems are overcome will
generally be peculiar to the task with which the d.f. organi-
zation is concerned. It may be that (a) will require the
deliberate setting-up of a transmitting system, although care-
ful selection of known trans mitters may obviate this; (b) can
be overcome either by careful organization of the way in
which check-bearing tasks are fed to the operator, or by a
system of random scale displacements at the direction-finder.”

Even if one fails to overcome these problems
completely, it would seem unreasonable to use this
as an excuse for not introducing an objective classi-
fication system. Indeed the results from an objec-
tive system should be very much better than those
derived from overall station performances based
on such data—since the system will give some
rational method of extrapolating to conditions met
only rarely in the check bearing program.

The statistical problems involved in estimating
variance components from check bearings are dis-
cussed in the next section.

& Provided, as will usually be the case, that the quantity N¢ introduced by
Beale [1960] is small.
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6. Estimating Variance Components From
Check Bearing Data

The fundamental statistical problem in this work
can be expressed as follows:

Given n independent observations, each from a
normal population with zero mean, such that the
ith observation z; has a variance

P
Bi=2 a0y, (6.1)
i=1

where the a;; are all known but some at least of the
v; are unknown, estimate the unknown ;.

Before showing how to solve this problem, I
should perhaps indicate its relevance. The quantity
z; represents the actual error in the ith bearing
observation, B; represents its assumed variance, and
the v, represent the parameters in the classification
system. For example, suppose that we have a
simple model with one component that can be
assumed known, and unknown components depend-
ing on the radiofrequency and quality, assumed to
depend on 4 parameters, such that

Vi=o1+fos,
where f denotes {requency band, either 1, 2 or 3, and
V,=ws if the swing <'8°,
V,=wv4 if the swing >8°.

Now suppose that the first few check bearings
have the following characteristics:

) Known Vari-  Frequency
Bearing No. ance Component — Band Swing
1 6 1 3°,
2 3 2 13°,
3 5 3 7

ete.
Then, if we write formally »;=1, (6.1) is satisfied
with
an=1, ap=1, ay=1, 014=0, a5=6,

0621:1, 0’-22:2, 0523:0, a24:1, Qs =3,

e — e — —
0(31—1, 0132———3, (133“1, 0634—0, 035=—9,

o . ey

the parameters to be estimated being 1, vy, v3, and 2.

We assume that our bearing errors are measured
ni degrees. Variances are therefore measured in
degrees squared.

Now B, is intended to represent the mean value
of 2%, so it seems natural to try to minimize the sum
of squares of the deviations of the z? from the corre-
sponding B;. But we must remember that the ex-
pected magnitudes of these deviations depend on
the variances of the 27. In fact if z; is normally
distributed the variance of 22 is 2B%. It therefore

580999—61——5

seems reasonable to try to minimize

gw,(x%—w, 6.2)

where the weights w; are regarded as constants but
where their numerical values are given by
w;=1/B% (6.3)

Differentiating (6.2) with respect to »;, regarding
w; as constant, we have, using (6.1)

iwia”(w%—l;i):o7 (6.4)
i=1

for each j such that v, is to be estimated.

In particular if for some j, «;; is always either
0 or 1, the corresponding equation from (6.4)
becomes

2w, (x}—B,)=0,

where 2! denotes summation over all observations
such that a;;=1.

The problem is therefore to find estimates o, for
the unknown »; satisfying (6.1), (6.3) and (6.4).
This will have to be done iteratively. Choose trial
estimates for the »;, compute the corresponding
values of B; from (6.1), and hence compute the
weights w; from (6.3), substitute these values of
w; in (6.4) and hence estimate new values of the »,.°
The whole cycle can be repeated if necessary, but
it should be remembered that small (relative) errors
in the w; will be of little significance.

It can easily be shown that these estimates are in
fact maximum likelihood estimates for the »;. The
above derivation is less rigorous but seems more
intuitive.”

One important proviso should be made. It is
undesirable to have weights for individual bearings
of the same order of magnitude as the sum of the
weights for all other bearings put together. In the
analyses for the Brooke system, this is avoided by
putting w;=1% whenever B;<y/2. So the used
version of (6.3) reads

w;=min (34, 1/B%).

It is of interest to consider the probable ac-
curacy of the final variance estimates. It is easy
to find the variance of an individual component,
say vy, if we assume that all the other components are
known exactly, and also that each w; equals the
reciprocal of the square of the true variance of the

$ In practice it may be more convenient to improve the estimates of the param-
eters referring to one variance component, say Vy, assuming that the others
have their present trial values. This reduces the number of equations that have
to be solved simultaneously. .

7 Some statisticians may point out that for this problem the method of maxi-
mum likelihood gives an ‘‘inadmissible’’ estimator, since it may produce negative
variance components. With a fair-sized sample this is unlikely to happen; but,
if it does, one must replace the negative component by some more plausible value
and re-estimate the other components accordingly.
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corresponding #;. For (6.4) then becomes

n P
2 Wiy <w%—2 aijT’j): 0,
i=1 =1
so that the estimate 95 of v, is given by
z 2
z;k:,ZE /wiaﬂc(xi_zlz @ 07) [ZW0d.
i= J#=

Now var 2?=28? and w;=1/B?, so

var @k—z a”“) 232/<Z a“‘)

=)

22/ Z’wia%k. (65)
If a=0o0r 1 for all 4, (6.5) reduces to
var #x=2/Zw;, (6.6)

where Z, denotes summation over those check
bearings for which a;=1, i.e., for which the given
variance component is relevant.

Errors in estimating the weights w; and also
errors in the other variance components, will not
normally have a major effect on the variance of
Pz On the other hand the fact that the observa-
tions may not be strictly independent, and that the
error distribution may not be strictly normal, may
have a considerable effect on the validity of these
formulas. Our experience suggests that, presumably
because of these causes, formulas (6.5) and (6.6)
underestimate the variances of the %, by a factor of
about 2. The formulas

var d;~4/Zwad, or var d,~4/Zaw;,

are therefore recommended in practice.

There is one pecularity about these variance
component estimates that one should be aware of,
although it does not affect the operation of the system
in any way. There is a degree of indeterminacy
about the system in that a constant can be sub-
tracted from all values of, say, V,; and added to all
values of, say, V, without altering any of the Brooke
variances. 'The only restriction is that none of the
variance components can ever be negative. Our
practice is to put the minimum values of V,; and V,
equal to zero, and to put the “unattached variance”
into V,. This is purely for operational convenience.
In fact we believe that the minimum value of the
effect of lateral deviation, which is represented by
V4, 1s about 1° squared, as indicated in section 5
above.

We have now considered the estimation of variance
components in the first instance.

The other vital element in an objective bearing
classification system is a method of keeping the
system up-to-date. For routine corrections to be
timely and not unduly subject to sampling fluctua-
tions, the corrections should be based on as simple a
statistical model as possible. We therefore assume
that all variances of bearings taken at a particular
station are underestimated by a constant small
amount. The best estimate of this amount is then
approximately

Zw; (#i—Bi)/[Zw,,

where summation extends over all bearings taken
at this station. This quantity is called the “‘apparent
correction”’, short for ‘“apparent Brooke variance
correction”’, and its variance is approximately 4/Zw;.
If we wait until Zw,>20, the variance of the
apparent correction is less than about 0.2, so the
correction is unlikely to be in error by as much as
one unit. Nevertheless the apparent correction is
rounded down in absolute value to the nearest unit,
since some weight should be given to the fact that—
if the system has been running for some time—
previous data suggested that no correction was
necessary.

In practice thls works as follows. For each check
be‘xrmg the ‘“‘weight” w, and the ‘indicator”
w;(x}—B;) are recorded and these are summed for
all check bearings taken in a month at each station.
These data are mspected and combined with those
for enough previous months to make Zw;> 20 for the
station in question. Then Zw,(z}— B;)/Zw;, rounded
down in absolute value to the nearest unit, is added
to all values of V, for this station; i.e., to the value
of a; in the formula Vi=a;+by.

After any adjustment to the value of a; the
monthly totals of Zw;(x}—B;) must obviously be
reduced by Zw;, mult‘iplied by the addition to a;
before they are combined with subsequent monthly
totals to decide whether further changes should be
made. But it should never be necessary to re-
compute the B; and w; for individual bearings.

In practice our estimated variance components are
not subject to frequent oscillations.

In addition to these routine adjustments to the
overall variances for each station, it is important
that the other variance components should be re-
viewed from time to time, by computing apparent
corrections from the formula Zw;(@}—B;) /2w, with
summation extending over all check bearings asso-
ciated with a particular value of the component
under review. The desirability of introducing fur-
ther terms into the expression for the variance can
be tested in the same way.

This may be as good a place as any to mention
the problems of systematic errors and wild bearings.
Many DF stations exhibit small systematic errors
in their bearings. These have been studied for some
time, but corrections to allow for them are not ap-
plied because the physical basis of the errors is not
understood. 1If the systematic error is ignored, one
is acting as if the error distribution had mean zero.
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and the Brooke variance is really an estimate of the
mean square error.

DEF stations are apt to produce a certain number
of wild bearings that are a long way off the true
bearing, and which one hopes to be able to reject
in plotting by their inconsistency with the other
bearings. Obviously one does not want to include
these in one’s check bearing data for the determina-
tion of variances. But the problem is, how large
must the error be before one 1s justified in rejecting
the bearing as wild on the grounds that it would
probably be recognized as such even when the true
target position was unknown? This is not an easy
problem. The proper answer presumably depends
on the variance of nonwild observations, and on the
number, location, and accuracy of the other DF
stations in the organization working on the same
tasks. The rejection of bearing errors greater than
10 or 15° may often be reasonable.

Although it has fallen to me to present this account
of the Brooke system, I hope T have made it clear
that most of the credit belongs elsewhere. 1 have
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been able to refer to some of the relevant work by
Messrs. Ross, Brooke, and Bowen; but many people
have contributed in various ways—notably those
who organize the check bearing program, and collate
and analyze the data.
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