Graphical Determination of Radio Ray Bending in an Exponential Atmosphere

C. F. Pappas, L. E. Vogler, and P. L. Rice

(August 11, 1960)

This paper presents a simple engineering method for calculating the amount of bending undergone by a radio ray passing through an exponential model atmosphere. For any initial takeoff angle and for values of the surface refractivity ranging from 200 to 450, the bending angle τ may be determined as a function of height above the earth's surface, using a few graphs and a few calculations. Indications of the accuracy of the method are given at the end of the paper.

1. Introduction

The course of a radiofrequency electromagnetic wave traveling through the atmosphere is altered by variations of the atmospheric index of refraction, n. These variations, due to changes in vapor pressure, air pressure and temperature, are extremely complex in detail; however, mathematical models of refraction can be constructed which represent an average picture of the variations. This paper considers an "exponential" model (the CRPL Exponential Reference Atmosphere [1]), in which the refractivity $(n-1) \times 10^6$ decreases exponentially with height, causing the radio wave to be bent away from its initial direction. The amount of bending is measured by the refraction angle, τ, and is important in such problems as the accurate determination by radar of the range and height of flying objects, the location of extra-terrestrial radio noise sources in radio astronomy, and the analysis of radio communication systems.

Mathematically, τ may be expressed in the following integral form [2,3]

$$\tau = - \cos \theta_0 \int_{s_0}^{r_0} (dn/n)(n_r/n_0)^2 - \cos^2 \theta_0^{1/2}$$

where n is the atmospheric index of refraction, n_0 is the value of n at the surface of the earth and r, r_0, and θ_0 are defined in figure 1. The CRPL Exponential Reference Atmosphere is characterized by an index of refraction of the form

$$n = 1 + (n_0 - 1)e^{-c_0 h}$$

where c_0 is the decay constant and h is the altitude above the surface of the earth. For this model atmosphere eq (1) is not integrable in closed form; it can be expanded in series, but the resulting expression is quite complicated for hand calculations. A numerical integration method has been used to compute values of τ by Bean and Thayer; these are listed in reference 1. This method is only practical through the use of a large scale computer.

It might be noted that when θ_0 is large τ may be calculated by a formula which is quite simple and very accurate [4]:

$$\tau = \left(\frac{n_0 - 1}{n_0} \right) \cot \theta_0 \left(1 - e^{-c_0 h} \right) \text{ (radians)}.$$ (2)

However, for small θ_0 no simple expression is available for calculations; thus, an engineering method was developed to provide a quick and practical means to obtain τ in this case. This method has the added advantage over the tables in ref [1] in that the N_s of τ is not limited to those listed.

![Figure 1. Geometry of radio-ray refraction.](image-url)
2. Calculation of τ_a

The approximation of τ is denoted by τ_a; the formula is given by

$$\tau_a = f(n_0) \cos \theta_0 q e^{B(n_0)} + pC$$

(3)

where the terms are explained as follows:

- $f(n_0) =$ the bending approximation in milliradians.
- $f(n_0) =$ read from figure 2 for a given N_s. If more accuracy is desired, this value can be computed by

$$f(n_0) = \left[\left(\frac{\pi}{2}\right)\left(\frac{n_0-1}{n_0}\right)(k-1)\right]^{1/2} \times 10^3.$$

- $n_0 =$ the index of refraction at the earth's surface.
- $k =$ the effective earth's radius factor.
- $N_s =$ the surface refractivity.
- $\theta_0 =$ the initial elevation angle expressed in milliradians.
- $h_m =$ the height above the surface of the earth in meters.
- $q =$ read from figure 3 for a given h_m and θ_0.
- $B =$ read from figure 4 or 5 for a given h_m and θ_0.
- $p =$ a correction factor for N_s, which is read from figure 6 for a given N_s.
- $C =$ a height correction factor which is obtained from figure 7 for a given h_m.

Two examples of the computation of τ_a are included to illustrate the use of the τ_a formula. One example is for an N_s of 252.9 and the second is an example using an N_s of 404.9 in which the pC correction factor has an effect.

Example 1. (Calculation of τ_a with $N_s \leq 344.5$)

- Given: $N_s = 252.9$
- $\theta_0 = 40$ milliradians
- $h_m = 500$ meters

- Find: $\tau_a = f(n_0) \cos \theta_0 q e^{B(n_0)} + pC$

$$f(n_0) = 10.06$$
$$\cos \theta_0 = .99920$$
$$q = .0385$$
$$B = .00077$$
$$p = 0$$
$$pC = 0$$

$$e^{Bf(n_0)} + pC = 1.0077$$

$$\tau_a = .39 \text{ milliradians}$$

$$\tau = .38 \text{ milliradians}^2$$

Example 2. (Calculation of τ_a with $N_s > 344.5$)

- Given: $N_s = 404.9$
- $\theta_0 = 200$ milliradians
- $h_m = 30$ meters

- Find: $\tau_a = f(n_0) \cos \theta_0 q e^{B(n_0)} + pC$

$$f(n_0) = 24.70$$
$$\cos \theta_0 = .98007$$
$$q = .00472$$
$$B = .00117$$

Obtained by numerical integration.

Figure 2. $f(n_0)$ versus N_s.
Figure 3. q versus h_m.

2 Obtained by numerical integration.

176
3. Derivation of τ_a formula

By plotting τ versus h for many different values of θ_0 and n_0, it was decided that the simplest form that could be assumed for τ to obtain the accuracy desired was

$$\tau = f(n_0) \cos \theta_0 e^{A + Bf(n_0)}$$ \hspace{1cm} (4)

The range of N_e considered lies between 200 and 450 since values outside this range rarely occur in actual practice.

Using two values of N_e, 200 and 344.5, and τ's obtained by the numerical integration procedure of ref [1], a least squares fit of

\[\begin{array}{ll}
Bf(n_0) &= .0289 \\
p &= .30 \\
C &= -.125 \\
pC &= -.0375 \\
F(n_0) + pC &= -.0086 \\
\tau_a &= .0113 \text{ milliradians} \\
\tau &= .0113 \text{ milliradians}^2
\end{array}\]
\[\ln \left(\frac{\tau}{f(n_0) \cos \theta_0} \right) \]

was made to obtain values of \(A \) and \(B \) for a given \(h_m \) and \(\theta_0 \).

Values of \(e^A \), denoted by \(q \), were computed and graphed for \(h_m \) and given \(\theta_0 \) (see fig. 3). The \(B \) values were also plotted versus \(h_m \) for given \(\theta_0 \) (see figs. 4 and 5). It may be noted that \(q \) and \(B \) are not graphed for height values less than 10 m; at the upper range of height, a limit for \(q \) and \(B \) is approached and reached for a given \(\theta_0 \).

Using the \(A \) and \(B \) values it was found that for an \(N_s \) greater than 344.5 a correction factor was needed to modify \(q e^{B(n_0)} \) (or \(e^{A+B(n_0)} \)) so that the \(\ln (\tau/f(n_0) \cos \theta_0) \) and, consequently, the \(\tau \) error were within an acceptable range. The height correction \(C \) was obtained from the difference between \(\ln (\tau/f(n_0) \cos \theta_0) \) and \(q e^{B(n_0)} \) for an \(N_s \) of 450 and plotted for graphical use (see fig. 7). Through further calculations and comparisons the relationship of \(N_s \) to the height correction \(C \) was determined for \(N_s \) greater than 344.5, and less than 450. This relationship was the basis for the \(N_s \) correction \(p \) which was plotted versus \(N_s \) (see fig. 6). Inclusion of this additional correction element results in an expression \(q e^{B(n_0)+pC} \) for an \(N_s \) greater than 344.5. Since \(p \) equals zero when \(N_s \) is less than or equal to 344.5,

\[\tau_a = f(n_0) \cos \theta_0 \quad q e^{B(n_0)+pC} \]

becomes the general form for the simplified calculation of \(\tau \).

4. Accuracy of \(\tau_a \) Method

In checking out the simplified calculation method various \(\tau_a \) were compared with values of the CRPL exponential reference atmosphere \(\tau \) for the same \(h_m \) and \(\theta_0 \). Of the values computed \(\tau_a \) showed the smallest absolute error at the lower heights and smaller \(N_s \). The largest errors calculated for \(N_s \) of 450, the maximum absolute error being 0.53 milliradians, with a maximum relative error of 6.8 percent.

Below is a table of computed values which gives indication of the range of absolute and percent error for several values of \(N_s \). It will be noted that error values for an \(N_s \) of 200 and 344.5 were not included in this list since these values of \(N_s \) were used for the least squares fit and were considered to have less error than the \(N_s \) listed.

Only error values for \(\tau_a \) greater than 1.0 milliradian were (arbitrarily) included in table 1. For \(\tau_a \) less than 1.0 milliradian the absolute error is quite low, but the percent error can be high since \(\tau_a \) is so small. This can give a somewhat distorted picture since a small \(\tau_a \) may have an error of only 0.0001 milliradian and still be in error by greater than 3 percent.

Table 1: Range of Error for \(\tau_a > 1.0 \) milliradian

<table>
<thead>
<tr>
<th>(N_s)</th>
<th>Range of absolute error</th>
<th>Range of percent error</th>
</tr>
</thead>
<tbody>
<tr>
<td>252.9</td>
<td>0.0006 to 0.0739</td>
<td>0.01% to 2.11%</td>
</tr>
<tr>
<td>333.0</td>
<td>0 to 0.1918</td>
<td>0 to 1.91%</td>
</tr>
<tr>
<td>377.2</td>
<td>0.013 to 0.1567</td>
<td>0.01% to 1.56%</td>
</tr>
<tr>
<td>401.9</td>
<td>0 to 0.2539</td>
<td>0 to 1.86%</td>
</tr>
<tr>
<td>450.0</td>
<td>0.0024 to 5533</td>
<td>0.22% to 6.79%</td>
</tr>
</tbody>
</table>

5. Explanation of Symbols

\(B \) = figures 4 and 5.

\(C \) = height correction factor; figure 7,

\(c_e \) = decay constant; see ref [1],

\(f(n_0) \) = figure 2,

\(\frac{\pi}{2} \left(\frac{n_0-1}{n_0} \right) (k-1) \times 10^3 \)

\(h \) = altitude above the surface of the earth,

\(h_m \) = altitude above the surface of the earth in meters,

\(k \) = effective earth’s radius factor

\(n = \frac{n_0}{n_0 - r_0} \frac{1}{n_0 - 1} \)

\(n \) = atmospheric index of refraction

\(1 + (n_0 - 1) e^{-e_{CRPL} \cdot \text{Exponential Reference Atmosphere}} \)

\(n_0 \) = index of refraction at the earth’s surface

\(n(h = 0) \)

\(N_s \) = surface refractivity

\((n_0 - 1) \times 10^6 \)

\(p \) = \(N_s \) correction factor; figure 6,

\(\phi \) = angle at center of the earth (see fig. 1)

\(\phi = \theta + \tau - \theta_0 \)

\(q \) = figure 3,

\(r \) = radial distance from the center of the earth,

\(r_0 \) = distance from the center to the surface of the earth,

\(\tau = \text{bending} \)

\(= -\cos \theta_0 \int_{n_0}^{n_1} \frac{dn}{n} \left[\frac{\left(\frac{nr}{n_r} \right)^2 - \cos^2 \theta_0}{n_r^2} \right]^{-1/2} \)

\(\tau_a = \text{bending approximation in milliradians,} \)

\(= f(n_0) \cos \theta_0 \quad q \quad e^{B(n_0)+pC} \)

\(\theta \) = local elevation angle

\(= \cos^{-1} \left(\frac{n_r \tau_a \cos \theta_0}{n_r} \right) \)

\(\theta_0 \) = initial elevation or takeoff angle.
6. References

(Paper 65D2–116)