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Certain basic postulates about physical observables yield the structure of thei r mathe­
matical r epresentation. Measure equations are contrasted with quantity equations, and 
measurem ent Ul1lts with abstract umts. The abstract vector spaces in which observables 
are r epresented comprise the core of dimensional analysis. 

Systems of equations, units, and dimensions are discussed alol1 rr with comments on 
rationalization. The problem of assigning a dimension to angie is discussed, and a new 
proposal offered. 

Phys ical systems and experimental situations are 
I quantitati vely described in terms of " 0 bservables ", 

entities which are subject to measurement. These 
entities are of various kinds, e.g., force, mass, charge. 
etc. Two entities are said to be of the same kind 
if they can be compared, i. e., if the question , Er<5.Ez?, 
is meaningful. For example, we can comptu'e one 
force with another to determine which is beger, but 
we cannot say whether a given distance is larger or 
smaller than a particular mass. 

The implication of the above remarks is that 
physical entities can be sOl·ted in Lo ordered c h ai ns, 
or one-dimensional sets, of like ell ti lies: 

91 <5. q2 <5. q3 . . . 

PI <5. P2 <5. P3 . . 

The entItlCS in a chain are aid to be of the same 
"kind" ; entities in different·, chains cannot be com­
pared, and are of different kinds. The common 
property of' entities in t he q-chain may conveniently 
be called "q-ness", for an iclen tifying label. 

Observables are not only subj ect to ordering in 
sets, but are also subject Lo measurement. Thus, 
we can experimentally determine a ratio between 
two entities in a given chain : 

"Q2 is x times as large as 9.1", 

The experimental procedures of physical science are 
based on the (arbitrary) choice of a particular sample 
of an entity as a measurement unit for entities of that 
kind. The general sample of that kind is then 
described by the statemrnt: 

"q is {q} times as large as q u" 

I where qu is a symbol for the particular sample chosen 
;. to be the measuremen t unit, and the number, {q}, J 

is called the value, or measure, of the sample, q. 
(In contrast, the Moll hardness scale is a familiar 
example of chain ordering without metric properties .) 

If tbe concept of an observable, g, has any "real­
ity", or is to have any quantitative usefulness, the 

1 Several types of brackets are used for special sym boIs. A liSt of tbese notations 
is appended to the text. 

entity q m~lst have a significance that is independent 
of our cholCe of measurement unit . The observable 
must be invariant to our mode of description. If we 
change our measurement unit from qUI to qU2' where 

then t he measure of any q, relative to quz' must 
satisfy 

where {g} I denotes the measure of the same sample 
of q relntive to qUI as measurement unit. 

'I'he experimental laws of physics are expr essible 
as proportions among measures of entities, such as 

{q} = k {p } {s}/{r}. 

Th~ proportionality constant, Je , depends upon the 
cholCe of measurement units for the various entities 
involved, and upon the configuration of the experi­
mental setup. It is customary to think of the 
measures on the right as relating to more "elemen­
tary" enLiLies, whose measurement units have 
already been chosen. The measurement unit of tbe 
"ne~v" entity q is then defined by assigning a con­
vement value to k for a standardized experimental 
situation. 

As we shall see later, a few measurement units can 
be arbitrarily chosen as a basis for a set of units. 
These basic units, together with assigned values for 
the k's in the fundamental equations, determine the 
remaining measurement units "germ ane" to the 
system . 

It should be noted that, during the development 
of a science, the faetor k includes t he effects of 
exp.erim e~tal variables that have either inadvertently 
or lI~tentlOn~lly been held co nstant. For example, 
the ll1teractlOll forces among current-carrying con­
ductors depend upon the fluid medium filling the 
laboratory. The permeability of air varies so little 
with normal environmental changes, that the effect 
of this variable would not appear in experiments 
leading to an initial formulation of Ampere's force 
law. 
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It should also be noted that there are hidden 
dependencies among the k's. For example, the in­
teraction force between two stationary charges, the 
interaction force between two current loops, and the 
relation between current and charge implied by the 
magnetic effect of a moving charge, are not inde­
pendent. The three k's involved satisfy a relation 
involving the speed of light in the medium in which 
the experiments are performed. The existence of a 
relation between a set of k's and the measure of some 
physical entity implies that at least one k contains a 
hidden reference to a physical entity not explicitly 
referred to in the experimental measure equations. 

There is a uniqueness postulfl,te in physics, usually 
not stated, that is relevant to the completeness of a 
law. "If {q} depends upon {p}, {s}, etc., then any 
entity whose measure depends upon the same varia­
bles in the same way, and upon no others, is an 
entity of the same kind as q." Any apparent viola­
tion of this postulate is an indication of hidden 
"variables" in the proportionality constants. These 
"variables" may be properties of nature which are 
beyond our power to change, such as the speed of 
light in vacuo. This constancy prevents the experi­
menter from including these variables in any particu­
lar law, and also allows the theoretician to distribute 
the effect of hidden variables in any convenient 
self-consistent manner. 

The development of physics as a science, rather 
than as a taxonomy of empirical relations, was due 
to the abstract representation of these relations by 
m athematical relations among mathematical ele­
ments, subject to manipulation by algebraic and 
differential processes. Maxwell wrote: 2 

" There are two methods of interpreting the equa­
tions relating to geometry and other concrete sciences. 

"We m ay r egard the symbols which occur in the 
equation as of themselves denoting lines, masses. 
times, &c.; or we may consider each symbol as 
denoting only the numerical value of the correspond­
ing quantity, the concrete unit to which it is referred 
being tacitly understood. 

"If we adopt the first method we shall often have 
difficulty in interpreting terms which make their 
appearance during the calculations. We shall there­
fore consider all the written symbols as mere numeri­
cal quantities, and therefore subject to all the opera­
tions of arithmetic during the process of calculation. 
But in the original equations and the final equations, 
in which every term has to be interpreted in a physi­
cal sense, we must convert every numerical expression 
into a concrete quantity by multiplying it by the 
unit of that kind of quantity." 

We next examine the basis of the representation 
of physical entities (concrete quantities) by mathe­
matical elements, and the structure of the associated 
mathematics. For simplicity, we shall consider all 
physical entities as scalars; vectors and tensors can 
be so described in terms of their components. 

Since samples of q can be chain-ordered. these 
samples can be represented by points in a one­
dimensional topological space. In addition, the 

2 Encyclopaedia Britannica, Ninth Edi t ion. VII, 241. 

measurability of observables implies that this is a 
metric space; and in particular, the measurability 
as a ratio to a measurement unit implies a one­
dimensional abstract vector space. We use the same 
symbol q to denote both a physical entity and its 
representative point in the vector space. In its 
latter role as a mathematical clement, the symbolic 
quantity q is often called a "physical quantity." 
(This is the reason I have been using the term "en­
tity" for the physical case, to distinguish between 
an "entity" and its representation by a "quantity".) 
The duality of the symbol q causes little difficulty; 
the ambiguity is usually resolved by the context. 
On the other hand, as we shall see later, substitution 
of a name for q can cause confusion, such as the use 
of "ampere" for the name of the measurement unit 
of current as well as for a mathematical element . 

The particular entity sample, qu, used jar a measure­
ment unit, will be represented by a point denoted by 
(q), the base or unit vector oj the space 1'n which the q 
entity is represented. The vector (q) is an abstract 
or symbolic unit, as contrasted with the more con- I 

crete measurement unit. Both abstract and meas­
urement units are often referred to as "units", with 
no modifier. Thus, to an experimenter, the unit of 
current is the ampere, and is specified by operational 
procedures, while to many theorists, the unit of 
current is also the ampere, but is defined to be a 
mathematical element! 

The relation between an entity sample and its 
measurement unit, ceq is {q} times as large as qu", is 
represented by the equation 

q= {q}(q). 

This is an equation relating points or vectors in the 
space of q-elements. Let [q] be a symbol for this 
q-space, the representation space for entities of the 
kind q. We can think of [q] as a symbol for the 
attribute of "q-ness" of the entity. (Later, [q] will 
also be called the "dimension" of q.) 

Generalization of Measure Equations 

If k contains no hidden "variables", the theo­
retician generalizes the experimenter's m easure 
equation, {q}=k {p }{ s }, to the abstract relation, 
q= kps, where q, p, and 8 are now mathematical 
elements in the [q], [p], and [s] spaces. The innocent 
looking "product", ps, is not yet defined. However, 
our postulate on the completeness of a physical law, 
in combination with the assumed relation between 
q, p, and 8, implies that the product operation has 
the following property: 

"The product of any point in [p] and any point in l 

[s] is a point in [q], and conversely , any point in [q] 
can be expressed as the product of some point in [p] I 

and some point in [s]." We can therefore define [q] 
to be the product of the spaces [p] and [s] : 

[q] = [p] [s]. 

Since the order of changing the p and s conditions in 
an experiment is immaterial, we can require the 
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above multiplication to be commutative: 

[q] = [p] [s]= [s] [p] = [ps] = [sp]. 

Note that we are not here defining the result [q] of 
the product operation, but are defining the product 
operation by its result . 

vVe can also define the less frequently needed sum 
of spaces to be a logical sum. Since [p] is the space 
of p-ness, i.e., the set of all possible values of p 
(collectively), [p] + [s] can be defined to be the set of 
all elements possessing p-ness plus the set of all 
elements possessing s-ness; i.e., the set of all clements 
possessing either p-ness or s-ness (or both). It 
foIl ws that . 

Also 

[p] + [p] + ... + [p] = [p] 

n[p] = [p] 

[n]= [m] = [l] ; the space of numbers, or 
"nUlueric space". 

[1 ] [p] = [p], since any clement of [1] multiplied by 
any element of [p] yield an element in [pl. 

The self-consistency of the experimental prop 01'­

tionalities of physics implies a unique multiplication 
table ior the various [q] , and in fact that the [q] form 
a group, with [1] as its identity element. 

In general, k may involve hidden "variables". 
The mathematical model must have internal consist­
ency, and to be useful , should satisfy a correspondence 
princ1'ple: The measure equation deduced from a 
symbolic equation is to be identical with the experi-
mental measure equation being modeled. The 
measure equation, {q} = k{p }{ s }, is generalized to 

q=(r )1cps 

where (r ) is a unit vector in an arbitrary space. 
Since q= {q }(q), etc., we immediately find the unit 
equation, 

(q)=(r>(p)(s), 

and the space relation, 

[q] = [r][p][s] 

The logical necessity for introducing various [r] 
spaces was not widely recognized until the MKSA 

I system of units became popular. The dimensional 
analysis procedures commonly used by MKSA 
advocates brought to light the hidden "variables" 
in the conventional proportionality constants . 

A constraint on k's, such as k1k2={ r }, is general­
ized to 

~ so that 
k1(r 1)1c2( r 2)=1'= {'I' } (1'), 

(r 1>(r Z)=(r) 
I 

is the corresponding constraint on the assignment of 
I both the spaces and the unit vectors of t he r's that 

are introduced for completeness of the theory. 
A set of symbolic units which makes the theoretical 

and experimental measure equations identical is 

called a "coherent" set. The absence of coefficients 
in the resulting unit equations shows that the 
coherent units form a group, with (1) as the identity. 
(1) is unity, considered as the unit vector of the space 
of numerics, [1]. This makes the set of symbolic 
units "coherent" with the set of corresponding 
spaces. A set of germane measurement units is 
represented by a set of coherent symbolic units. 

vVhen we treat physics from the symbolic, or 
quantity calculus, point of view, we consider the 
quantity equations as basic and the measure equa­
tions as derived. The quantity equations are 
therefore invariant to choice of uniLs. Thus 

even if the systems 1, 2, and 3, are different. For 
example: 

(Measure of force in newtons) times (newton) 
equals (measure of mass in pounds) times (pound) 
times (measure of acceleration in centimeters per 
second) times (cen Lim etm') divided by (econd 
squared) . 

This equation cannot be factored into 

{F h={ m h{ a Ja 

(F )I=(mMa)a 

If {m h= a{m L and {a }a= i3 {a }I' we have 

{F h (F)l = a!3{ m h {a h (m )2(a)3 

and the conventional measure equation, {F } 1 = 
{m}d a}l' yields 

(F )L = ai3(m )Z(a)3 

In fact. the invarianee of t he symbolic quantities 
m and a yields directly: 

and 

so that (F )I=(mMa)1 is a coherent unit equation. 
The above noncoherent units yield the measure 

equation 

In textbooks, the braces and subscripts are omitted 
and replaced by marginal notes: 

"E=-10- 8dcp/dt; E in volts , ¢ in maxwells." 

In any coherent set of units, the equation has the 
simple form 

E =-d¢/dt. 

To summarize, the product equations show the 
following: 

(1) q= 1cps defines the product of p and s 
(2) [q] = [p] [s] yields the multiplication table of 

the group of spaces or dimensions 
(3) (q)=(p ) (s), or its equivalent 

{q}=k {p }{ s }, yields the multiplication table 
for the group of coherent units. 
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Proportionality Constants 

We have seen that the theoretician must use k(r ), 
or an equivalent, where the experimenter uses a 
numeric k . The conventional way of including the 
hidden "variable" is to make k a nonnumeric. This 
is done by "correcting" the experimenter's equation 
to 

{q} ={k }{p }{s} 

and using the theoretical equations: 

q= kps 

(q)=(k)(p)(s). 

A given experimental law, such as Coulomb's Law 
for electric charges, 

{F } ex: { qd { q2 } I { r2 } 

is frequently subjected to different choices of pro­
portionality constant by different writers. To 
correlate all these choices, and make them yield the 
same meaning, requires interpreting them as the 
measure equations relevant to a single symbolic 
equation, with different choices of lllits. Thus 

yields 

and 

F = kqlq2lr2 

{F } {r2 } = {k } i { ql } i { q2 } i 

(F)(r)2=(k)i( q) ~ 

in the ith system of coherent units. We assume a 
common choice of units for F and r. Since the left 
hand sides of these equations are independent of i, 
the choice of unit system, the right hand sides must 
also be invariant with the choice. Therefore. 

which agrees with the direct interpretation, by an 
experimenter, of the change of proportionality con­
stant. But we also have k = {k L (k )t, which is 
invariant. so that the change of the unit of q implies 
a change of the (symbolic) unit of k. (Since (le) was 
introduced for theoretical convenience, we do not 
insist on the existence of a measurement unit, leu. 
corresponding to the symbolic unit (le ).) 

We can interpret the above as follows. The 
germane measurement unit of an entity (q) depends 
upon the choice of proportionality constant ({ k }) in 
the defining equation for the germane unit. If the 
symbolic quantity q is to have the same meaning in 
all cases, there must be a corresponding change in 
the unit of le, i.e., in the unit of some real or fictitious 
entity upon which k depends. 

It has earlier been mentioned that the experimental 
proportionality constant, {k }, depends upon the geo­
metrical configuration of the defining experiment. 
When k contains no hidden "variables" in the usual 
physical sense, we can interpret it tc contain a 
geometrical quantity, represented by some space [k]. 
The change of (k) associated with a change of {k } now 

implies a change of some geometric unit. For ex­
ample, the magnetizing force at the center of a 
current circle is 

!-I= lcIlr 

with the rationalized and nom ationalized measures 

{k },= 1/2 

{le }n= 2?T . 

If !-I and le are to have fL'(ed meanings, 

yielding 

{H } n(I-I>n= {!-I } r(!-I)r 

[k } n(le)n= [le } r(k)r 

(le)r _ {le } n-4 
(k)n-{ k }r - ?T. 

Coherence demands 

so that 

(I-1)n = (le)n(I)/(r) 

(!-I), = (k)r(I)/(r) 

(I-1)r = {H } n= (le)r = 4?T. 
(!-I)n {H }T (k)n 

The relation (k )T= 4?T(le )n suggests that le is a solid 
angle, measured in terms of spheres or steradians 
as units. 

P erucca 3.4 emphasized that t he factor 4?T appearing 
in nonrationalized equations of electromagnetism is . 
not a numeric, but the quantity 4?T steradians. 
Young 5 introduced a proportionality constant, S, 
representing the measure of a sphere, into various 
equations. 

This interpretation of rationalization is based on 
a fixed symbolic equation, with the measures ex­
pressed relative to rationalized or nonrationalized 
units. If, on the other hand, we consider ration ali- I 

zation to be a change of the symbolic equation, 

we have 

!-In= 27r Ilr 

!-Ir= II2r 

so that !-In and !-IT do not represent the same identical 
entity. If the factor 47r is interpreted as a geo­
metrical quantity, H n and !-Ir arc not strictly of the 
same kind (dimension). We can still satisfy the ex­
perimenter, and avoid paradoxes, by arbitrarily 
setting 

{!-In} = {!-I }n, {H r}= {!-I }r 'I 
so that the experimenter need not distinguish be- ' 
tween his rationalized measure of I-I and the measure 
of a new "rationalized !-I" . The problem will be 
discussed in detail in a later section. 

3 E. Perucca, Fusione dei sistemi lVIKSA razionalizzato e nOll razion alizzato, 
French version in La Ricerca SCientifica , p. 1931 (1959). 

4 E. Perucca, Solid angle in electromagnetism, rationalization, calculus of 
quantities, La Ricel'ca Scientifica 30, Suppl. 12, p. 2200/11 (1960). 

' Leo Young, Elcctrical units and dimensions, 'l'rans. AlEE 75, p. 767/71 (1957) 
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Units and Dimensions 
At any given stage in our kn~wled.g.e o~ phys~cs, 

we have n independent proportlOnahtlCs mvolvmg 
I N kinds of enti ty. The n proporLionalities imply 
I constants kJ ... kn . 

I " Te can choose kJ ... kn as arbitrary numbers, 
I and J'v-n arbitrary measureI~lent units (N-'[I: pr~t?,typ~ 
standards). These N -n umts are called baSIC , f01 

they serve as a basis of a unit system 'whose other 
I germane units are derived from these N -n. One of 

the problems of a standards laboratory, top echel?n, 
is to build experimental set-ups for the l'eallllatlOn 
of the derived emits. 

'I'Ve are ap t to think of the meter, kilogra~n, second, 
degree Kelvin, and candela as the only umts de.fined 
by prototype standa,rd s. The measurement umt for 
angle is , however, determined by a Pl'oto~ype stand­
ard: the circle. Surveyors define the CIrcle to be 
a realization of 360 uniLs of angle; seien tists define it 

I to be a realization of 21r uniLs. Similarly, solid angle 
can be measured in spheres, sterndians, or solid 
degrees. " . .. 

Note thflt we made N al'b ltm l'Y chOIces III all; 
n k's and N-n prototypes. These N choices can be 
split up differently. For example, we could choose 
prototype standards for the L~nits of curren t, :ToltalSc, 
and resistance, and deterDnne the proportIOnalIty 
constant in Ohm's Law esperimen tally. 

" Te not only have N arb itrary choices f~r our 
system of measuremen t units, buL also N chOIces of 
represen tatioll spaces. If the k1 • • •• k '7 arc e!losen 
to be numeric, then we have n umt cqu atwns, dllnen­
sional equations, or produ ct relat ions, amo~g N 
spaces. Hence, N-n spaces can be asslgnecl.arbltl:ltry 
names or dimensional symbols, and the chmensWl1s 
of the remaining n spaces expressed as produ cLs 
(including reciprocals ) of the independent N-n. The 
N -n independent dimen sions become the generators 
of the group of dimensions, and arc ~lso often ~alled 

I "basic". ("Bflsic", thro ughou t, refers Lo bell1g a 
> "base" rather than implying the possession of any 

"fundamen tal" nature. ) 
The quantity equation al?propriate to a give.n 

problem is deduced by apphcatLOn of. the n l?aslC 
laws, hence is a combination of the n baslC equatIOns. 
The answer space can readily be computed as an 
appropriate product of gener~tol:s. This i~ the :om­
mon algebra-checking applicatIOn of chmensIOnal 
w~~. .. 

Choosino' all k's to be numenc often dIscards 
informatio~ . The q-ness, or kind; of a quantity 
uniquely determines its representatl(~n space, but If 
too many spaces are all called numenc, the converse 
is no longer true, and a dimensional label does not 
uniq uely iden tify the kind of q uan tity. For example, 

~ torque and energy arc usually gIven a. c~mn:on 
dimension label, with a trivial attempt at dlstmctlOn 
by discriminating between "I.oot pounds~' and "poun.d 
feet". This is esthetically dIstasteful, smce torque IS 
work per unit angle. The confusion arises from 
assio-nin 0- [0] = [1], either for "convenience" or beca,use 
Ma~welf (loc. cit.) referred to "all quantities es~en­
tially numerical, such as exponents and exponentIals, 

logarithms, angles, and circula r and ell iptic fU~1c~ 
tions . .. "; MaAlvpll, however, also saId (loc. CIt.) 
"By knowing the dimensi.on s of an~ quantity we are 
a ble at once to deduce ItS numerIcal yalue as ex­
pressed in terms of one system of units from its 
numerical value as given in terms of another system." 

Langhaar 6 has paraphrase~l tbis: "They are a co~e 
for telling us how the numencal 'Value oj a quant~ty 
'changes when the basic units of measurement are 
subjected to prescribed changes ." And later (p . t?) 

"The unit of temperature may be aSSIgned ll1de­
pendently of the uni ts of Lhe enLities ~f mechanics. 
Consequently, t he symbol [TJ / dCllotmg tempera­
ture, is regarded as ol1e of the fundnment~l dimCl~­
sions. The dimension of an arbltrary vanable Z IS 
denoted by [z]. . .. " 

Since the measure of an angle depends upon the 
choice of unit (e.g., degree or radi,tn), and the ehoice 
of unit is independent of the choices made for the 
other basic units, we conclude that "angle" is not 
"essentially numerical" , but tJl at the climensi?l1s ,rO] 
and [Q] of plane angle and sohel angle are orchnanly 
suppressed or ignored. . . 

In appendi.,\,: 2, it is shown Lhat [0)2 = [1], [sm 0] = [0], 
[cos 0] = [1], so that [0] = [1] is an allo:v3:ble assign­
ment, but on~ which is unduly restnctive. :More 
generally, [0] IS a square root o.f [1], n.ot further 
desc.ribable. This is analogous to i = - 1 In complex 
numbers, and i 2 = j2 = le2 = - 1 in quatern~ons . . The 
Gibbs' scalar and vector products carry dImenSIOnal 
implications 

so that 

while 

so that 

and since 

[·] = [cos 0] = [1] 

[ X ] = [sin 0] = [ 0] 

W = F · d yields [W] = [FJ[d] 

T = d X F yields [T] = [dJ[O][F] 

[T] = [WJ[O] 

[0)2 = [1], [T] = [W]/ [O] 

which agrees with our verbal description of torque as 
work per unit angle. . . 

After we assign {kd ... {le n}, determmmg the 
germane measurement units, we still have arbitrary 
choices for [k l ] ... [k n] . We can make these 
explicitly, or impliei~ly ?y an al'bit~'ary choice of [q] 
for the "new" quantIty m an equatIOn. 

For example the force between two current cle­
ments in vacuo 'is conventionally considered to be 8,9 

dF= r m IJ2 dS2X ((~ S I X r) 
41r r 

The (arbiLrary) choice of { r m} = 41r 10- 7 defmcs the 
measurement unit of current in terms of those of 
force and distance. Classically, [r m] is assigned to 
be [1] in the electromagnetic system of units and 

6 H enry L. Langham', Dimens ional Analysis aod 'rheory of M odels, p. 5 
(John Wiley & Sons, 1959). 

7 The reference uses f) for temperature; I have changed this to avoid confUSion 
with angle in this discussion. . 

S "Conventionally" because it violates Newton 's Thit:d L.8W when apphed to 
incomplete Circuits, but not when applied to complete C1rcw ts, 

~ 'rhe symbol, r m , is tho "magnetic constant", often denoted by 1-'0. 
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dimensions, yielding [I) = [mJi /2 [l)1 /2 [t) - I. But if we 
do not assign a space to r m , we can assign an arbi­
t rary space to I , yielding: 10 

[F] [m] [l ] 
[r m] = [IF = [I )2 [t )2 

This is the customary procedure associated with the 
MKSA sys tem of units. There are four basic 
symbolic units (meter , kilogram, second, ampere) 
associated with four basic dimensions, or gen erator 
spaces, but there are still only t hree basic measure­
ment units . The measurement unit of current 
(ampere) is defined as a derived unit by assigning 
a measure to r m' This illustrates the confusion 
arising from the use of the word " unit" without a 
modifier; the (measurement) unit of current is a 
derived unit , but the (symbolic) unit of curren t is a 
b asic unit. E ven worse is the substitution in the 
above of the name of a unit. The ampere (meas­
urement unit) is derived ; the ampere (symbolic unit) 
is basic! 

Any proportionality constant appropriat e to an 
experiment in vacuo can be thought of as a property 
of space. This interpretation is frequently em­
ployed when the phenomenon involves "action at a 
distance" and the proportionality constant depends 
upon the intervening medium. Thus, in Amper e's 
force law, the proportionality constant is customarily 
factored into two t erms, /-Lr m, where /-L is a numeric 
(unity for vacuum) representing the differences 
among media. By virtue of a field interpretation of 
action at a distance, JL is thought of as a measure of 
the permeability of the medium to the field. H ence, 
we find the usage: 

JL is r elative permeability 
/-Lr m is "absolute" perm eability 
r m is the permeability of space. 

The term " permeability of space" implies a property 
of nature, experimentally determinable, but r m is 
arbitrarily assignable! The measm e, { r m}, defines 
the measurement unit of curren t. The only prop­
erty of space involved is represented by the "hidden 
variable" , speed of light , which occurs in t he con­
straining relation between two otherwise arbitrary 
proport ionality factors: 11 c2r.r m = 1. . 

It is just as logical to interpret the constan t, R, in 
the ideal gas law, 

pV= RT 

as a proper ty of space. Elementary t hermody­
namics shows us that ·for any ideal gas . R = Cll-C., 
the difference between the specific heat at constant 
pressure and that at constant volume. E xperi­
mentally , R: is determined by a sequence of measure­
ments of p V jT at lower and lower gas densit ies, 
finally extr apolated to zero density! Does t his not 
yield (Cp- C.) of a vacuum? 

!O If we consider the 4,.. in the denominator to he a solid an gle, 

[r ]=[F] [n] . 
m [11' 

The elect ric CO Llstant, r " is olten denoted by ' 0' 

The constan t {R } could have been arbitrarily 
assigned. thereby defining the measurement unit of I 

temperature. For reasons of convenience, however , 
th e unit of temperature was chosen as basic (deter­
mined by a prototype standard), leaving { R } as a 
constant to be measured . 

Ra tionaliza tion 

Coulomb's Law is not a good star t ing point for a 1 

discussion of rationalization, despite the intriguing 
occurrence of 41Tr2. The introduction of 41T into the 
denominator is compensated by changes of r . and r m 1 

to keep force unaffected. 
We start instead with the electromagnetic equa­

tions relevant to the proportionalities : 

P H·dAo::I 

pD.d uo:: q. 

In particular, the m agnetostatic' field of a current 
loop can be expressed in t erms of a scalar potential : 

where Q is the solid angle sub tended,' at the point of 
interest, by the curren t loop. It is convenient to 
write 

and 

Q 
rf>=-kI S 

H - kJ 'VQ - S (1) 

wh ere S represen ts the complete solid angle sur­
rounding a point, i.e., the solid angle sub tended by 
any closed surface at any interior point. 

The multivalucd nature of the solid angle Q, along 
any contour linking the loop , yields 

and therefore 

pH.d A= kJ . (2) 

,Ve also have the geometric relation (see appen­
dix 2) , 

{ clQ} 0:: { clA } / { 1'2 } 

which implies t he quan tity equat ion 

clQ = r ndA/r2 

without prejudice as to the unit or dimension of Q . 
H ence, t he angle sub tended by the loop is 

Q= rnfr . ~cla 
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leading to 

and 

(3) 

The customary rationalized equations of the form 
(1), (2 ), and (3) require, respectively-

so that 

{~} =%7r 
{k}=l 

{k~a } =}~7r 

{kT} = 1 
{S T}= 47r 

{ f a}T= 1. 

The customary nonrationalized equations require 

{~} = l 
{k } = 471" 

{k~a } = l 
so that 

Thus in both cases, solid angle is measured in stera­
dians: {S }= 471" , implies S = 471" (s tr), and f a is a unit 
vector for accommodaLing dimensions. 

As pointed out by Perucca 3\ the most suitable 
interpretation of {le n} = 47r is le = 471" (str)=S, or (by 
eq (2)), 

Ij we could interpret {kT }= l as {S }BPheres, then 
we could identify HT with H n , using a change of 
solid angle unit to explain the relation {H n} = 47r 
{H r } . This is Young's interpretation 5 of the effect 
of rationalization on the coherent unit of solid angle, 
and would resolve the argument as to whether quan­
tities or units are changed by rationalization,12 in 
favor of the "practical" viewpoint. Unfortunately 
for this viewpoint , we have already found that 
{S T} = 471" for consistency. If the rationalized form 

of (2), ~HT. dX=I, is to be taken as a quantity 

equation, [k]= [l], and (1 ) becomes 

H = J\1 Q = J\1Q 
T S 47r (str) 

'" See footnotes on p. 230. 
J2 F. B. Silsbee, Does rationalizatioll change units?, Elec. Eng. 76, 296/9 (1957). 

again yielding the P erucca interpretation of the 471" 
factor . 

Comparing the rationalized and nonrationalized 
quantity equations, we see that 

is the quantity change inLerpretation of rationaliza­
tion. Since (Q)= (stl') in both systems, there is no 
ambiguity in taking measures of this relation, finding 

In both systems, eq (3) requires insertion of the 
unit vector f a as a factor , if this equation is to be 
considered a quantity equation. There are three 
choices: 

(a) Consider both form of eq (3) as measure 
equations only, 

(b) Insert r a explicitly in writing these equations, 
or 

(c) Require [fn]= [l] . 
Choice (c) makes [Q] = [A] / [lj2 = [8], so that solid 
angle and plane angle have the same dimension and 
unit , i. e., solid angle is measured in ordinary radians, 
or else solid radians and plane radians are both 
numenc. 

The parallel analysis of 

\1 . D= lcp 

J \1. DdT = kq= PD. dO" 

D=le~nJ p\1 G) dT 

yields the same conclusions throughout, and the 
r esults are compatible with the Maxwell equation 
for \1 X H. 

The dimensional conclusions arc : 

[HT ] = [J] /[l] 

[HnJ= [Q] [IJ/ [lJ 
[DTJ= [q] /[A] = [qJ / [8J [IF 
[DnJ=[ Q] [qJ/ [8J [l)2= [f nJ [qJ /[l )2 

I wish to thank F. B. Silsbee for many stimulating 
and valuable discussions. 

q 

! qj 

[q] 

( q) 
(name of 

unit) 
qu 

Notation 

A ITlathematico-physical quantity, or the corre­
sponding physical entity. 

The numerical measure of q. If a particulal· uni t 
system is involved, it is indicated b y a subscript 
outside t he bracket. 

The abstract vector sp aee of the quantity q; also, 
the "dimension" of q. 

The element of [q] chosen as a unit vector. 
A particular symbolic unit chosen for (q), e.g . 

(radian). 
The measurement unit of the entity q. 
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Appendix 1 

T he meaning of (p )(s) cannot b e directly in ter­
preted in terms of experimental conditions. 

Consider 
E =(1/2)mv2 

(E )=(m)(v)2 

The unit equation does not imply th at a unit m ass 
moving a t unit velocity possesses unit en ergy. 
R ealizations of m easurem en t units are inferred from 
measure equations. A system possesses or exhibits 
the m easuremen t unit of en ergy, E u, when {E } = 1. 
N ow 

{E } = {m }{v P/2 

so th at Eu is realized by a unit m ass movlllg a t a 
speed which is ~2 times as big as Vu , or by a m ass 
twice as big as mu, moving at Vu . 

Appendix 2 

L et us choose the r adian as th e coherent unit of 
angle, so that th e familiar measure equations 

82 84 

cos 8= 1- 2!+41- . . . 

. 83 85 

sm 8= 8- 3!+5!- .. . 

can be adop ted, without ch ange, as quantity equa­
t ions . Then 

cos 8= 1 { 8 };~8)2+ . .. 

sin 8= {8}(8)- { 8 };~8)3+ .. . 

( { 8 }32!(8)2+ . . . ) = {8} (8) 1 

For each right h and side to represent an element in 
a single space, rather than in a mixt ure of spaces, 
we must have 

[8]2= [1]. 

This implies tha t any variable x such tha t its space 
[x] satisfies [x)2 = [1] is an allowable argument for the 
trigonometric functions. Thus, sin {8} is also 
defined by the infinite series. 

Since (8)coherent= (radian ), (r adian )2=( l) . If we 
choose a n oncoh eren t unit. say, 

(8)=a (radian)13 

then 

and 

13 "(radian)" is not a parentheti ca l reference to units, bu t the mathematical 
element "radian" . 

This y ields 

sin 8=(8) (a{81 _
a3{8P+ ) 

a f 3! .. . 

=.(8) sin a {8}=(8) sin {8}ract 
a a 

so that 

{sin 8}(sin)=(8) sin {8}ract / a = (r adian ) sin {8}rad 

where (sin) is the unit vector in the space where sines 
ar e r epresen ted . 

It follows that [sin] = [8], and if a given space is 
to h ave a unique unit vector , (sin)=(8). For 
coherence, the symbolic uuit of sine is t he radian. 

The consequences of [8] ~[1] are inter esting. The 
vector ar ea of a parallelogram is fl X f2, and the 
yolume of a parallelopipecl is fl X r2 . f3' These 
yield 

[Area] = [l J2[8] 

[VoluLlle] = [l ]3[8] 

which appear odd, but are compatible with the 
Gauss Divergen ce Theorem : 

and Stokes' Theorem: 

Solid angle is often defined in terms of spherical 
ar ea by 

or its equivalent 
dQ = sin 8 dO cU 

With [Area] = [l)2[O]. and [sin 8] = [0], [0)2 = [1], these 
formulations agree dimensionally and yield (Q) 
=(8)= (r adian ). The lack of distinction b etween 
"solid angle" and " plane angle" is an alogous to the 
lack of distinction between " plane angle" and 
"num~ric" when d8= dl /r is used as a quanti ty 
equatlOn . 

IV.e can a void. all r eference to area b y considering 
afinlte acu tesohd angle bound ed b y p lan es (fig. 1) . 
At each edge, th e dihedral angle can b e expressed in 
terms of its supplemen t , T t , t he "turn ing angle" of 
the n ormal t o th e edge. It is r eadily shown (in terms 
of th e excess of a spherical triangle) t hat the meas­
ure of the solid angle is proportional t o the amoun t 
by which L T j fails to b e a complete t urn : 

i 

{Q h emlsPh eres= {U. P. T .} cIrcles 

wh ere U .P.T. is th e " uncomplet ed par t of on e turn". 
?,he general conven tion for relating solid angle 

nmts t o the corresponding plan e anglo units is t hat 
the measure of a hemisphere in solid un its is t he same 
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FI GURE 1 

as the measme of a circle in plane units , e.g., a 
hemisphere is 271' steradians or 360 solid degrees. 
T hus for any unit of plane angle, we define the 
germane unit of solid angle through 

I {n }SOIld6={U.P .T· }Plane6 
This implies 

n U.P.T. 
( n) , ------w>:-

And therefore 

But the right hand side is invariant to unit choice, 
therefore (n)i=rn(O)i with r n invariant to unit 
choice. For coherence, {r n} = 1, and rn becomes 
a unit vector whose only role is to distinguish 
between solid angle and plane angle. 

As shown before, the usual rationalized elecLro­
magnetic equations are convenienLly interpreted by 
letting r n= 1. with no dimensional distinction be­
tween solid angle and plane angle. This feature is 
built into the mathematics by using dn = dA/r2 • 

The geometrical definition of sine and cosine as 
length ratios associated with a right triangle ofi'ms 
a dimensional paradox. It is, however, easily resolved 
by realizing that we are dealing with a special case 
of the law of sines: 

II l2 l3 
sin 01 sin O2 sin 03 

This equ ation places no restriction on [sin]. The 
paradox comes from setting sin 71'/2=(1), rather than 
sin 71'/2 = (sin) = (0). 

It is also interesting to note that ejO is not only 
two-dimensional in the sense of having both real and 

~ imaginary parts, but is also two-dimensional as 
l having components in two spaces : 

ej6=cos 0+ j sin 0 

[cos 0] = [1] 

[sin 0]=[0] . 

This is an illustration of the fact that equations used 
in physics need not be dimensionally homogeneous, 
when terms arise from the use of an artifice. The 
form ej6 does not actually occm in physics; it is 
introduced with the convention that its real part 
alone (or its imaginary part alone) represents a 
variable of interest. Nonartificial exponentials, such 
as e- W / k T , have numeric exponents. 

The turning-angle approach to solid angle leads to 
a formula for the solid angle sub tended at a point by 
an arbitrary closed space curve: 

rh r X r' . r" 
n= 271'-yr (r X r' ) . (r X r ') ds 

where r' = dr/ds, and ds is any parameter of progres­
sion around the curve. 

Appendix 3 

It is interesLing Lo noLe the relation between 
"Lurns" and "radians". AlLhough one complete 
turn is equivalent to 271' radians, i.e., any closed 
plane curve subtends 271' radians at fLny internal 
point, the concept of "Lurn" is topological and not 
meLric. The nWl1ber or complete passes around any 
closcd path is independent of our concept of angle. 
But as soon as we try Lo measure fracLional turns, 
we must define a metric concept for the interpola,tion 
and this involves defining a unit 1'01' measuring the 
angle or a parLial turn. We must also specify Lhe 
10caLion or Lbe point around which we are considering 
the partial turn. 

Consider a circular path around a long straight 
line, as in Lhe circuiLttl litw derivation of the magnetic 
field neal' a long straight curreJlt-can',v'ing conducLor. 
This turn "obviously" involves 271' mclians. If, 
however, \\-e consider a llonpln,llnr closed curve, we 
realize that there are points on the wire for which 

PclO> 271'; the plane angle concept is not really 

applicable. 
In electromagnetic theory, complete encirclemenLs 

(linkage) and enclosures are involved in the basic 
co ncepts and equations. Resolution of total effects 
into partial effects associated wiLh plane angles and 
solid angles leads to paradoxcs, as in the conven tional 
force law [or current elemenLs. 

If "turn" is topological and not metric, it should 
not appear as a dimension 01' unit. Thus "ampere­
turn pel' meter" is a hybrid Lerm; "ampere per 
meter" should suffiee. The illclusion of "turn" in 
th is uni t for H is also redundant, since linkage 
relations and cUl'l'enL paLhs ca nno t have fractional 
LUl'l1s; flll ) ' linkage of n. paLh wiLh X ampere-turns is 
simply a linkage with X ampcres. 

(P aper 65B4- 60) 
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