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Certain basic postulates about physical observables yield the structure of their mathe-

matical representation.
measurement, units with abstract units.

Measure equations are contrasted with quantity equations, and
The abstract vector spaces in which observables

are represented comprise the core of dimensional analysis.
Systems of equations, units, and dimensions are discussed, along with comments on

rationalization.
proposal offered.

Physical systems and experimental situations are
quantitatively described in terms of “observables”,
entities which are subject to measurement. These
entities are of various kinds, e.g., force, mass, charge,
ete. Two entities are said to be of the same kind
if they can be compared, i.e., if the question, £, </,?,
is meaningful. For example, we can compare one
force with another to determine which is larger, but
we cannot say whether a given distance is larger or
smaller than a particular mass.

The implication of the above remarks is that
physical entities can be sorted into ordered chains,
or one-dimensional sets, of like entities:
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The entities in a chain are said to be of the same
“kind”; entities in different chains cannot be com-
pared, and are of different kinds. The common
property of entities in the ¢g-chain may conveniently
be called “‘g-ness”, for an identifying label.

Observables are not only subject to ordering in
sets, but are also subject to measurement. Thus,
we can experimentally determine a ratio between
two entities in a given chain:

“qo 1s @ times as large as ¢;".

The experimental procedures of physical science are
based on the (arbitrary) choice of a particular sample
of an entity as a measurement unit for entities of that
kind. The general sample of that kind is then
described by the statement:

“gis {q} times as large as ¢,”

where ¢, is a symbol for the particular sample chosen
to be the measurement unit, and the number, {¢},
is called the value, or measure, of the sample, g.
(In contrast, the Moh hardness scale is a familiar
example of chain ordering without metric properties.)

If the concept of an observable, ¢, has any “‘real-
ity’’, or is to have any quantitative usefulness, the

2

1 Several types of brackets are used for special symbols. A list of these notations

is appended to the text.

The problem of assigning a dimension to angle is discussed, and a new

entity ¢ must have a significance that is independent
of our choice of measurement unit. The observable
must be invariant to our mode of description. If we
change our measurement unit from ¢, to ¢.,, where

Quy 15 a times as large as ¢,

then the measure of any ¢, relative to ¢, must
satisfy
{dhe={q}i/e

where {¢}; denotes the measure of the same sample
of ¢ relative to g, as measurement unit.

The experimental laws of physics are expressible
as proportions among measures of entities, such as

{qg}=k{p}{s}/{r}.

The proportionality constant, &, depends upon the
choice of measurement units for the various entities
involved, and upon the configuration of the experi-
mental setup. It is customary to think of the
measures on the right as relating to more “elemen-
tary’”’ entities, whose measurement units have
already been chosen. The measurement unit of the
“new’” entity ¢ is then defined by assigning a con-
venient value to k£ for a standardized experimental
situation.

As we shall see later, a few measurement units can
be arbitrarily chosen as a basis for a set of units.
These basic units, together with assigned values for
the £’s in the fundamental equations, determine the
remaining measurement units ‘‘germane’” to the
system.

It should be noted that, during the development
of a science, the factor £ includes the effects of
experimental variables that have either inadvertently
or intentionally been held constant. Ior example,
the interaction forces among current-carrying con-
ductors depend upon the fluid medium filling the
laboratory. The permeability of air varies so little
with normal environmental changes, that the effect
of this variable would not appear in experiments
leading to an initial formulation of Ampere’s force
law.
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It should also be noted that there are hidden
dependencies among the k’s. For example, the in-
teraction force between two stationary charges, the
interaction force between two current loops, and the
relation between current and charge implied by the
magnetic effect of a moving charge, are not inde-
pendent. The three k’s involved satisfy a relation
mvolving the speed of light in the medium in which
the experiments are performed. The existence of a
relation between a set of £’s and the measure of some
physical entity implies that at least one £ contains a
hidden reference to a physical entity not explicitly
referred to in the experimental measure equations.

There is a uniqueness postulate in physics, usually
not stated, that is relevant to the completeness of a
law. “If {¢} depends upon {p}, {s}, etc., then any
entity whose measure depends upon the same varia-
bles in the same way, and upon no others, is an
entity of the same kind as ¢.” Any apparent viola-
tion of this postulate is an indication of hidden
‘“variables” in the proportionality constants. These
“variables” may be properties of nature which are
beyond our power to change, such as the speed of
light in vacuo. This constancy prevents the experi-
menter from including these variables in any particu-
lar law, and also allows the theoretician to distribute
the effect of hidden variables in any convenient
self-consistent manner.

The development of physics as a science, rather
than as a taxonomy of empirical relations, was due
to the abstract representation of these relations by
mathematical relations among mathematical ele-
ments, subject to manipulation by algebraic and
differential processes. Maxwell wrote:

“There are two methods of interpreting the equa-
tlons relating to geometry and other concrete sciences.

“We may regard the symbols which occur in the
equation as of themselves denoting lines, masses.
times, &c.; or we may consider each symbol as
denoting only the numerical value of the correspond-
ing quantity, the concrete unit to which it is referred
being tacitly understood.

“If we adopt the first method we shall often have
difficulty in interpreting terms which make their
appearance during the calculations. We shall there-
fore consider all the written symbols as mere numeri-
cal quantities, and therefore subject to all the opera-
tions of arithmetic during the process of calculation.
But in the original equations and the final equations,
in which every term has to be interpreted in a physi-
cal sense, we must convert every numerical expression
into a concrete quantity by multiplying it by the
unit of that kind of quantity.”

We next examine the basis of the representation
of physical entities (concrete quantities) by mathe-
matical elements, and the structure of the associated
mathematics. For simplicity, we shall consider all
physical entities as scalars; vectors and tensors can
beso described in terms of their components.

Since samples of ¢ can be chain-ordered, these
samples can be represented by points in a one-
dimensional topological space. In addition, the

2 Encyclopaedia Britannica, Ninth Edition, VII, 241,

measurability of observables implies that this is a
metric space; and in particular, the measurability
as a ratio to a measurement unit implies a one-
dimensional abstract vector space. We use the same
symbol ¢ to denote both a physical entity and its
representative point in the vector space. In its
latter role as a mathematical element, the symbolic
quantity ¢ is often called a ‘“‘physical quantity.”
(This is the reason I have been using the term “en-
tity”” for the physical case, to distinguish between
an “‘entity’ and 1ts representation by a “quantity”’.)
The duality of the symbol ¢ causes little difficulty;
the ambiguity is usually resolved by the context.
On the other hand, as we shall see later, substitution
of a name for ¢ can cause confusion, such as the use
of “ampere’” for the name of the measurement unit
of current as well as for a mathematical element.

The particular entity sample, q,, used for a measure-
ment unit, will be represented by a point denoted by
(@), the base or unit vector of the space in which the q
entity is represented. 'The vector (¢) is an abstract
or symbolic unit, as contrasted with the more con-
crete measurement unit. Both abstract and meas-
urement units are often referred to as “units”’, with
no modifier. Thus, to an experimenter, the unit of
current is the ampere, and is specified by operational
procedures, while to many theorists, the unit of
current, is also the ampere, but is defined to be a
mathematical element!

The relation between an entity sample and its
measurement unit, ‘¢ is {¢} times as large as ¢,”, is
represented by the equation

7=1{¢}(@-

This is an equation relating points or vectors in the
space of g-elements. Let [¢] be a symbol for this
¢-space, the representation space for entities of the
kind q. We can thlnl\ of [¢] as a symbol for the
attribute of “g-ness’” of the entity. (Later, [¢] will
also be called the “dimension’ of ¢.)

Generalization of Measure Equations

If £ contains no hidden ‘“variables”, the theo-
retician generalizes the experimenter’s measure
equation, {¢}=Fk{p}{s}, to the abstract relation,
g=kps, where ¢, p, and s are now mathematical
elements in the [q] [p], and [s] spaces. 'The innocent
looking “product’, ps, is not yet defined. However,
our postulate on the completeness of a physical law,
in combination with the assumed relation between
q, p, and s, implies that the product operation has
the following property:

“The product of any point in [p] and any point in
[s] is a point in [¢], and conversely, any point in [q]
can be expressed as the product of some point in [p] -
and some point in [s].”  We can therefore define [¢]
to be the product of the spaces [p] and [s]:

[g]=(p] [s].

Since the order of changing the p and s conditions in
an experiment is immaterial, we can require the
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above multiplication to be commutative:

[dl=[p] [s]=I[s] [p]=[ps]=I[sp]-

Note that we are not here defining the result [¢] of
the product operation, but are defining the product
operation by its result.

We can also define the less frequently needed sum
of spaces to be a logical sum. Since [p] is the space
of p-ness, i.e., the set of all possible values of p
(collectively), [p]+[s] can be defined to be the set of
all elements possessing p-ness plus the set of all
elements possessing s-ness; i.e., the set of all elements
possessing either p-ness or s-mess (or both). It
follows that

[pl+Ip1+ . . . +pl=[p]

npl=[p]

[n]=[m]=[1]; the space of numbers, or
“numeric space’’.
Also

[1] [p]l=[p], since any element of [1] multiplied by
any element of [p] yields an element in [p].

The self-consistency of the experimental propor-
tionalities of physics implies a unique multiplication
table tor the various [¢], and in fact that the [¢] form
a group, with [1] as its identity element.

In general, & may involve hidden “wvariables”.
The mathematical model must have internal consist-
ency, and to be useful, should satisty a correspondence

[

principle: The measure equation deduced from a

symbolic equation is to be identical with the experi-

mental measure equation being modeled. The
measure equation, {¢}=Fk{p}{s}, 1s generalized to
q=(T)kps

where (I') is a unit vector in an arbitrary space.
Since ¢={q}(g), ete., we immediately find the unit

equation,
(@=(T)XpXs),

and the space relation,

[g]=[T](pls]

The logical necessity for introducing various [I]
spaces was not widely recognized until the MKSA
system of units became popular. The dimensional
analysis procedures commonly used by MKSA
advocates brought to light the hidden “variables”
in the conventional proportionality constants.

A constraint on k’s, such as kik,={r}, is general-

ized to

k(T )k To)=r={r}({r),
(T (To)=()

is the corresponding constraint on the assignment of
both the spaces and the unit vectors of the I's that
are introduced for completeness of the theory.

A set of symbolic units which makes the theoretical
and experimental measure equations identical is

so that

called a “coherent” set. The absence of coeflicients
in the resulting unit equations shows that the
coherent units form a group, with (1) as the identity.
(1) is unity, considered as the unit vector of the space
of numeries, [1]. This makes the set of symbolic
units “coherent” with the set of corresponding
spaces. A set of germane measurement units is
represented by a set of coherent symbolic units.
When we treat physics from the symbolic, or
quantity calculus, point of view, we consider the
quantity equations as basic and the measure equa-
tions as derived. The quantity equations are
therefore invariant to choice of units. Thus

{F}(Fh={m}s(m),{a}sa)s

even if the systems 1, 2, and 3, are different.
example:

For

(Measure of force in newtons) times (newton)
equals (measure of mass in pounds) times (pound)
times (measure of acceleration in centimeters per
second) times (centimeter) divided by (second
squared).

This equation cannot be factored into
{Flhi={m}:{a}s
(F)i=(m)(a)s
If {m},=a{m}, and {a};=p{a};, we have
{F}(F)yi=ap{m}{a}(m)a)s
and the conventional measure equation,
{m}{a},, yields
(F)h=aB(m)La)s

In fact, the invariance of the symbolic quantities
m and a yields directly:

(F=

and

(@), =p(a)s

so that ()= {(m){a), is a coherent unit equation.
The above noncoherent units yield the measure

equation ,
{F}1={m}s{a}s/oB.

In textbooks, the braces and subscripts are omitted
and replaced by marginal notes:

“E=—10"%¢/dt; I in volts, ¢ in maxwells.”

(m),=a({m),

In any coherent set of units, the equation has the
simple form
E=—dp/dt.

To summarize, the product equations show the
following :
(1) q=kps defines the product of p and s
(2) [gl=I[p] [s] yields the multiplication table of
the group of spaces or dimensions
(3) (@={(p) (s), or its equivalent
{q}=k{p}{s}, yields the multiplication table
for the group of coherent units.
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Proportionality Constants

We have seen that the theoretician must use (T,
or an equivalent, where the experimenter uses a
numeric k. The conventional way of including the
hidden “variable” is to make £ a nonnumeric. This
is done by “correcting” the experimenter’s equation

to
{g}={k}{p}{s}

and using the theoretical equations:

q=kps
(@=Ck)p)s)-

A given experimental law, such as Coulomb’s Law
for electric charges,

{F}oc{@}{@}/{r*}

is frequently subjected to different choices of pro-
portionality constant by different writers. To
correlate all these choices, and make them yield the
same meaning, requires interpreting them as the
measure equations relevant to a single symbolic
equation, with different choices of units. Thus

F=kaqq,/r?
{F} {7'2}:{k}i{91}i{§lz}i
(F)ry=k) {97

in the 7th system of coherent units. We assume a
common choice of units for /" and ». Since the left
hand sides of these equations are independent of 7,
the choice of unit system, the right hand sides must
also be invariant with the choice. Therefore,

{gla_ \/ ko

{q}b {k}a
which agrees with the direct interpretation, by an
experimenter, of the change of proportionality con-
stant. But we also have k={k}(k);,, which is
invariant, so that the change of the unit of ¢ implies
a change of the (symbolic) unit of k. (Since (k) was
introduced for theoretical convenience, we do not
insist on the existence of a measurement unit, k,,
corresponding to the symbolic unit (k).)

We can interpret the above as follows. The
germane measurement unit of an entity (¢) depends
upon the choice of proportionality constant ({/£}) in
the defining equation for the germane unit. If the
symbolic quantity ¢ is to have the same meaning in
all cases, there must be a corresponding change in
the unit of £, i.e., in the unit of some real or fictitious
entity upon which £ depends.

It has earlier been mentioned that the experimental
proportionality constant, {£}, depends upon the geo-
metrical configuration of the defining experiment.
When k contains no hidden “variables” in the usual
physical sense, we can interpret it tc contain a
geometrical quantity, represented by some space [k].
The change of (k) associated with a change of {£} now

vields

and

implies a change of some geometric unit. For ex-
ample, the magnetizing force at the center of a
current circle is

=Tl

with the rationalized and noniationalized measures

{k}r:1/2
{k},=2m.

If H and  are to have fixed meanings,

{H}(H),={H}(H),
{k}ulleyw= {k} ()

®),  {kba
By (k)

Coherence demands

(H)w= () D)/(r)
(H),=(k){D)/(r)

(D, _{H}u_ (0, _,
i, Yy, B,

The relation (k),=4w(k), suggests that & is a solid
angle, measured in terms of spheres or steradians
as units.

Perucca ** emphasized that the factor 47 appearing
in nonrationalized equations of electromagnetism is
not a numeric, but the quantity 4= steradians.
Young ° introduced a proportionality constant, S,
representing the measure of a sphere, into various
equations.

yielding

so that

This interpretation of rationalization is based on |

a fized symbolic equation, with the measures ex-
pressed relative to rationalized or nonrationalized
units. 1f, on the other hand, we consider rationali-
zation to be a change of the symbolic equation,

=217

JEL= B
we have

H,—4rH,

so that H, and H, do not represent the same identical
entity.
metrical quantity, /7, and I, are not strictly of the
same kind (dimension). We can still satisfy the ex-

If the factor 4= is interpreted as a geo-

perimenter, and avoid paradoxes, by arbitrarily

setting
{Ha}={H},, {H,}={H]},

so that the experimenter need not distinguish be--

tween his rationalized measure of 7 and the measure
of a new ‘rationalized H”. The problem will be
discussed in detail in a later section.

3 E. Perucca, Fusione dei sistemi MKSA razionalizzato e ncn razionalizzato,
French version in La Ricerca Scientifica, p. 1931 (1959).

4 E. Perucca, Solid angle in electromagnetism, rationalization, calculus of
quantities, La Ricerca Scientifica 30, Suppl. 12, p. 2200/11 (1960).

5 Leo Young, Electrical units and dimensions, Trans. AIEE 75, p. 767/71 (1957)
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Units and Dimensions

At any given stage in our knowledge of physics,
we have n independent proportionalities involving
N kinds of entity. The n proportionalities imply
constants &y . . . ky.

We can choose 7, k, as arbitrary numbers,
and N-n arbitrary measurement units (N-n prototype
standards). These N-n units are called “basic”, for
they serve as a basis of a unit system whose other
germane units are derived from these N-n. One of
the problems of a standards laboratory, top echelon,
is to build experimental set-ups for the realization
of the derived units.

We are apt to think of the meter, kilogram, second,
degree Kelvin, and candela as the only units defined
by prototype standards. The measurement unit for
angle is, however, determined by a prototype stand-
ard: the circle. Surveyors define the circle to be
a realization of 360 units of angle; scientists define it
to be a realization of 27 units. Similarly, solid angle
can be measured in spheres, steradians, or solid
degrees.

Note that we made N arbitrary choices in all;
n k’s and N-n prototypes. These N choices can be
split up differently. For example, we could choose
prototype standards for the units of current, voltage,
and resistance, and determine the proportionality
constant in Ohm’s Law experimentally.

We not only have N arbitrary choices for our
system of measurement units, but also N choices of
representation spaces. [If the f, .k, are chosen
to be numeric, then we have n unit equations, dimen-
sional ('quallons or product relations, among N
spaces. Hence, N-n spaces can be : 1s.~.1gnod arbitrary
names or dimensional symbols, and the dimensions
of the remaining 7z spaces expressed as products
(including reciprocals) of the independent N-n. The
N-n independent dimensions become the generators
of the group of dimensions, and are also often called
“basic’”’.  (“Basic”, throughout, refers to being a
“base” rather than implying the possession of any
“fundamental” nature.)

The quantity equation appropriate to a given
problem is deduced by application of the n basic
laws, hence is a combination of the n basic equations.
The answer space can readily be computed as an
appropriate product of generators. This is the com-
mon algebra-checking application of dimensional
analysis.

Choosing all £'s to be numeric often discards
information. The g¢-ness, or kind, of a quantity
uniquely determines its representation space, but if
too many spaces are all called numeric, the converse
is no longer true, and a dimensional label does not
uniquely identify the kind of quantity. For example,
torque and energy are usually given a common
dimension label, with a trivial attempt at distinetion
by discriminating between “foot pounds’ and “pound
feet””. This is esthetically distasteful, since torque is
work per unit angle. The confusion arisos from
assigning [0]=[1], elthor for ¢ conwmonce " or because
\LL\W(‘H (loc. cit.) referred to ‘‘all quantities essen-
tially numerical, such as exponents and exponentials,
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logarithms, angles, and circular and elliptic fune-
tions . . .”; Maxwell, however, also said (loc. cit.)
“By knowing the dimensions of any quantity we are
able at once to deduce its numerical value as ex-
pressed in terms of one system of units from its
numerical value as given in terms of another system.”

Langhaar ¢ has paraphrased this: “They are a code

Sfor telling us how the numerical value of a quantity

changes when the basic wnits of measurement are
subjected to preseribed changes.”  And later (p. 6)

“The unit of temperature may be assigned inde-
pendently of the units of the entities of mechanics.
Consequently, the symbol [77,” denoting tempera-
ture, is regarded as one of the fundamental dimen-
sions. The dimension of an arbitrary variable z is
denoted by [z]. 7

Since the measure of an angle depends upon the
choice of unit (e.g., degree or ulmn), and the choice
of unit is independent of the choices made for the
other basic units, we conclude that “angle” is not
“essentially numerical”; but that the dimensions [6]
and [Q] of plane angle and solid angle are ordinarily
suppressed or ignored.

In appendix 2, it is shown that [6]*=[1], [sin 6]=[6],
[cos O]=[1], so that [(]=[1] is an allowable assign-
ment, but one which is unduly restrictive. More

generally, [0] 1s a square root of [1], not further
describable. ’I‘hls 18 :umlogous to 72=—1 in complex
numbers, and ?—=—1 in quaternions. The

Gibbs’ scalar md vo( ctor products carry dimensional
implications
[1=lcos A1=[1]

[X]=Isin 0]=I[0]

W=F - d yiclds [W]=[F][d]
T=dXF yields [T]=[d][0][F]
[T]=[W][6]

[0=[1], [TT=[W]/[6]

which agrees with our verbal description of torque as
work per unit angle.

After we assign {k,} {k,}, determining the
germane measurement units, we still have arbitrary
choices for [k [k,]). We can make these
explicitly, or implicitly by an arbitrary choice of [¢]
for the “new” quantity in an equation.

For example, the force between two current ele-
ments in vacuo is conventionally considered to be % ¢

ds, X (ds; X )

7)3

The (arbitrary) choice of {I',,}=47r 1077 defines the
measurement unit of current in terms of those of
force and distance. Classically, [T,] is assigned to
be [1] in the electromagnetic system of units and

so that
while

so that

and since

IF—— ”Illo

6 Henry L. Langhaar, Dimensional Analysis and Theory of Models, p. 5
(John Wiley & Sons, 1959).

7 The reference uses 9 for temperature; I have changed this to avoid confusion
with angle in this discussion.

8 “Conventionally’” because it violates Newton’s Third Law when
incomplete circuits, but not when applied to complete circuits.

9 The symbol, I'n, is the “magnetic constant”, often denoted by uo.
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dimensions, yielding [I]1=[m]"? [[]'2 [t]"'. But if we

do not assign a space to I',, we can assign an arbi-

trary space to 7, yielding: '
[F]

[m][7]
L1

This is the customary procedure associated with the
MKSA system of units. There are four basic
symbolie units (meter, kilogram, second, ampere)
associated with four basic dimensions, or generator
spaces, but there are still only three basic measure-
ment units. The measurement unit of current
(ampere) is defined as a derived unit by assigning
a measure to I',. This illustrates the confusion
arising from the use of the word “unit” without a
modifier; the (measurement) unit of current is a
derived unit, but the (symbolic) unit of current is a
basic unit. Even worse is the substitution in the
above of the name of a unit. The ampere (meas-
urement unit) is derived; the ampere (symbolic unit)
is basic!

Any proportionality constant appropriate to an
experiment in vacuo can be thought of as a property
of space. This interpretation is frequently em-
ployed when the phenomenon involves “action at a
distance” and the proportionality constant depends
upon the intervening medium. Thus, in Ampere’s
force law, the proportionality constant is customarily
factored into two terms, ul',, where u is a numeric
(unity for vacuum) representing the differences
among media. By virtue of a field interpretation of
action at a distance, u is thought of as a measure of
the permeability of the medium to the field. Hence,
we find the usage:

p 1s relative permeability
ul', 1s “absolute” permeability
I',, is the permeability of space.

The term “permeability of space’” implies a property
of nature, experimentally determinable, but T, is
arbitrarily assignable! The measure, {T,,}, defines
the measurement unit of current. The only prop-
erty of space involved is represented by the ‘‘hidden
variable”, speed of light, which occurs in the con-
straining relation between two otherwise arbitrary
proportionality factors: ! ¢*I.T,=1.

It is just as logical to interpret the constant, I, in

the ideal gas law,

pV=RT

as a property of space. Elementary thermody-
namics shows us that for any ideal gas, R=0C,—C,,
the difference between the specific heat at constant
pressure and that at constant volume. Experi-
mentally, 1 is determined by a sequence of measure-
ments of pV/7T at lower and lower gas densities,
finally extrapolated to zero density! Does this not
yield (C,—(C,) of a vacuum?

10 If we consider the 4 in the denominator to be a solid angle,

[F] [2]
[ "

The electric constant, I'y, is often denoted by €

[m]=

The constant {R} could have been arbitrarily
assigned, thereby defining the measurement unit of ¢
temperature. For reasons of convenience, however,
the unit of temperature was chosen as basic (deter-
mined by a prototype standard), leaving {R} as a
constant to be measured.

Rationalization

Coulomb’s Law is not a good starting point for a
discussion of rationalization, despite the intriguing
occurrence of 4772,  The introduction of 47 into the
denominator is compensated by changes of T', and T,
to keep force unaffected.

We start instead with the electromagnetic equa-
tions relevant to the proportionalities:

In particular, the magnetostatic field of a current
loop can be expressed in terms of a scalar potential :

dpoclQ

where Q is the solid angle subtended, at the point of
interest, by the current loop. It is convenient to

write
Q
o=—kI S
and
VQ
I8 l==/k/l g (1)

where S represents the complete solid angle sur-
rounding a point, i.e., the solid angle subtended by
any closed surface at any interior point.

The multivalued nature of the solid angle 2, along
any contour linking the loop, yields

? VQ-dAN=S
and therefore

Sﬁﬂ.dxzu ()

We also have the geometric relation (see appen-
dix 2),
{dQ} oc{dA}/{r?}
which implies the quantity equation
dQ == FQdA/T2

without prejudice as to the unit or dimension of Q.
Hence, the angle subtended by the loop is

r-nda
Q= rgf =
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leading to

VQ:I‘Q(ﬁ r>:3a’l

and
H

kIT dl
=~S_"§r>:3 ; (3)

The customary rationalized equations of the form
(1), (2), and (3) require, respectively -

so that
{kr} =
{S,}=4r
=11,

The customary nonrationalized equations require

r-&\
—~ ol
I

kTq
{S !
so that
{k,}=4m
{Sn}=4r
{1 =1L,

Thus in both cases, solid angle is measured in stera-
dians: {S}=4m, implies S=4r (str), and I'g is a unit
vector for accommodating dimensions.

As pointed out by Perucca®*; the most suitable
interpretation of {k,}=4x is k=4r (str)=S, or (by
eq (2)),

?H,Z-(ZA:SI

If we could interpret {k,}=1 as {S}epneres, then
we could identify H, with H,, using a change of
solid angle unit to explain the relation {H,}=4r
{H,}. This is Young’s interpretation® of the effect
of rationalization on the coherent unit of solid angle,
and would resolve the argument as to whether quan-
tities or units are changed by rationalization,' in
favor of the “practical’” viewpoint. Unfortunately
for this viewpoint, we have already found that
{S,}=4r for consistency. If the rationalized form

of (2),

equation, [k]=[1], and (1) becomes

H,.-d\=1, 1s to be taken as a quantity

IvVQ IVQ
==& G

345 See footnotes on p. 230.
12 F, B. Silsbee, Does rationalization change units?, Elec. Eng. 76, 296/9 (1957).

again yielding the Perucca interpretation of the 4
factor.

Comparing the rationalized and nonrationalized
quantity equations, we see that

H,=8SH,=4x (str) H,

is the quantity change interpretation of rationaliza-
tion. Since ()= (str) in both systems, there is no
ambiguity in taking measures of this relation, finding

{H,}=4x{H,).

In both systems, eq (3) requires insertion of the
unit vector I'p as a factor, if this equation is to be
considered a quantity equation. There are three
choices:

(a) Consider both forms of eq (3) as measure
equations only,

(b) Insert I'q explicitly in writing these equations,
or

(¢) Require [Tg]=[1].

Choice (¢) makes [Q]=[A]/[l]*=[6], so that solid
angle and plane angle have the same dimension and
unit, i.e., solid angle is measured in ordinary radians,
or else solid radians and plane radians are both
numeric.

The parallel analysis of

V.-D=kp

J v. DdT:kq:Sﬁn e
kT 1
p-tie f oV <7~> dr

yields the same conclusions throughout, and the
results are compatible with the Maxwell equation

for v < H.
The dimensional conclusions are:

[H,]=[11/l!]

(H,]=[e])/11]
[(D:]=[gl/[Al=[gl/l6] [{]*
[D,]=[2][ql/(6] [1}P=[Te] [¢)/[{1*

I wish to thank F. B. Silsbee for many stimulating
and valuable discussions.

Notation
q A mathematico-physical quantity, or the corre-
sponding physical entity.
{q} The numerical measure of ¢q. If a particular unit

system is involved, it is indicated by a subscript
outside the bracket.

[q] The abstract vector space of the quantity ¢; also,
the “dimension’ of q.
(q) The element of [¢] chosen as a unit vector.
(name of A particular symbolic unit chosen for (g), e.g.
unit) (radian).
Qu The measurement unit of the entity q.
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Appendix 1

The meaning of (p)(s) cannot be directly inter-
preted in terms of experimental conditions.

Consider

E=(1/2) mv?
(E)=(m)@)*

The unit equation does not imply that a unit mass
moving at unit velocity possesses unit energy.
Realizations of measurement units are inferred from

measure equations. A system possesses or exhibits
the measurement unit of energy, £,, when {E£}=1.

Now
{E}={m}{v}?2

so that F, is realized by a unit mass moving at a
speed which is 4/2 times as big as »,, or by a mass
twice as big as m,, moving at v,,.

Appendix 2

Let us choose the radian as the coherent unit of
angle, so that the familiar measure equations

0
cos = l_ﬂ_*_ﬂ_
5

. 6 0
sin 020—3—!—}-5—

can be adopted, without change, as quantity equa-

tions. Then
cos0=1—{0}22,<0>2+
sin 6= {6} (g)— 101 Wiy,

2 2
=00 (1-12 % )
For each right hand side to represent an element in
a single space, rather than in a mixture of spaces,
we must have

[0]P=(1].

This implies that any variable 2 such that its space
[2] satisfies [#]*=[1] is an allowable argument for the
trigonometric functions. Thus, sin {8} is also
defined by the infinite series.

Since  {(0)conerent—= (radian), (radian)?=(1).
choose a noncoherent unit, say,

If we

{#)=« (radian)®®
then
(o=
and
a{g} - {0} rad

18 ““(radian)”’ is not a parenthetical reference to units, but the mathematical
element ‘“‘radian’’.

This yields

sin 02%(04{ ! 3;?} + >

E% sin {6} = (6 >Slll {6} raa

so that

{sin 0}(sin)={(0) sin {0} q/a= (radian) sin {0} .4
where (sin) 1s the unit vector in the space where sines
are represented.

It follows that [sin]=[6], and if a given space is
to have a unique unit vector, (sin)=(4). For
coherence, the symbolic unit of sine is the radian.

The consequences of []#[1] are interesting. The
vector area of a parallelogram is r; X 1y, and the
volume of a parallelopiped is r; X ro - r;.  These
vield

[Area]=[l]*6]

[Volumel]=[l]*[6]

which appear odd, but are compatible with the
Gauss Divergence Theorem:

fv : VdT:qSV-da

Theorem :

fVXV-dozCﬁV-d)\

Solid angle is often defined in terms of spherical
area by

and Stokes’

dQ=dA/r*
or its equivalent
dQ=sin 6 df d¢

With [Area]=[/]*[6] - and [sin 6]=[6], [0]*=[1], these
formulations agree dimensionally and 31dd ()
={(0)=(radian). The lack of distinction between
“solid angle” and ‘“‘plane angle” is analogous to the
lack of distinction between ‘“plane angle” and
“numeric”’ when df=dl/r is used as a quantity
equation.

We can avoid all reference to area by considering
a finite acute solid angle bounded by planes (fig. 1).
At each edge, the dihedral angle can be expressed in
terms of its supplement, 7; the “turning angle” of
the normal to the edge. It is readily shown (in terms
of the excess of a spherical triangle) that the meas-
ure of the solid angle is proportional to the amount
by which 27; fails to be a complete turn:

{Q}hemispheres {U P T }clrcles

where U.P.T. is the “uncompleted part of one turn”.

The general convention for relating solid angle
units to the corresponding plane angle units is that
the measure of a hemisphere in solid units is the same
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Ficure 1

as the measure of a circle in plane units, e.g., a
hemisphere is 27 steradians or 360 solid degrees.
Thus for any unit of plane angle, we define the
germane unit of solid angle through

{ Q}solld 06— {LTP'F }planc 0
This implies

&ZU.P‘T‘

(@ (O
And therefore

@, 9

6, U.P.T.

But the right hand side is invariant to unit choice,
therefore (Q);=Tg(f); with Tg invariant to unit
choice. For coherence, {T'q}=1, and Ty becomes
a unit vector whose only role is to distinguish
between solid angle and plane angle.

As shown before, the usual rationalized electro-
magnetic equations are conveniently interpreted by
letting To=1, with no dimensional distinction be-
tween solid angle and plane angle. This feature is
built into the mathematics by using dQ=dA/r?.

The geometrical definition of sine and cosine as
length ratios associated with a right triangle offers
a dimensional paradox. It is, however, easily resolved
by realizing that we are dealing with a special case
of the law of sines:

L ls ly

sin 6; sin 6, sin 6,

This equation places no restriction on [sin]. The
paradox comes from setting sin 7/2=(1), rather than
sin 7/2=(sin)={(8).

It is also interesting to note that ¢’ is not only
two-dimensional in the sense of having both real and
imaginary parts, but is also two-dimensional as
having components in two spaces:

e?=cos 04 7sin 6
[cos 0]=[1]
[sin ]=[6].

606580—61——2

This is an illustration of the fact that equations used
in physics need not be dimensionally homogeneous,
when terms arise from the use of an artifice. The
form ¢ does not actually occur in physics; it is
introduced with the convention that its real part
alone (or its imaginary part alone) represents a
variable of interest. Nonartificial exponentials, such
as e~ “* have numeric exponents.

The turning-angle approach to solid angle leads to
a formula for the solid angle subtended at a point by
an arbitrary closed space curve:

I'Xl" .’

e
Y X)X

ds

where 7’ =dr/ds, and ds is any parameter of progres-
sion around the curve.

Appendix 2

It is interesting to note the relation between
“turns” and ‘“radians”. Although one complete
turn is equivalent to 27 radians, i.e., any closed
plane curve subtends 27 radians at any internal
point, the concept of “turn’ is topological and not
metric. The number of complete passes around any
closed path is independent of our concept of angle.
But as soon as we try to measure fractional turns,
we must define a metric concept for the interpolation
and this involves defining a unit for measuring the
angle of a partial turn. We must also specify the
location of the point around which we are considering
the partial turn.

Consider a circular path around a long straight
line, as in the circuital law derivation of the magnetic
field near a long straight current-carrying conductor.
This turn “obviously” involves 2z radians. If,
however, we consider a nonplanar closed curve, we
realize that there are points on the wire for which

Sﬁ(l€>27r; the plane angle concept is not really

applicable.

In electromagnetic theory, complete encirclements
(linkage) and enclosures are involved in the basic
concepts and equations. Resolution of total effects
into partial effects associated with plane angles and
solid angles leads to paradoxes, as in the conventional
force law for current elements.

If “turn” is topological and not metrice, it should
not appear as a dimension or unit. Thus “ampere-
turn per meter” is a hybrid term; “ampere per
meter” should suffice. The inclusion of “turn” in
this unit for /I is also redundant, since linkage
relations and current paths cannot have fractional
turns; any linkage of a path with X ampere-turns is
simply a linkage with X amperes.

(Paper 65B4-60)
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