JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematics and Mathematical Physics
Vol. 65B, No. 3, July-September 1961

Probability Inequalities of the Tchebychetf Type

I. Richard Savage'

(May 23, 1961)

Thirteen basic inequalities relating tail area probabilities to moments are stated. One-
tailed and multidimensional inequalities as well as the classical two-tailed, unidimensional
inequalities are presented. Sufficient detail is given for each inequality so that the material
can be used in handbook style without cross referencing or familiarity with the entire article.
Examples of uses of the inequalities, tables comparing the relative strengths of the inequal-
ities, and bibliographic data through 1960 are included.

I. Introduction

1. Background

The author originally prepared this survey and
bibliography of probability inequalities of the
Tchebycheff type, early in 1952, for convenient
reference within the Statistical Engineering Lab-
oratory of the National Bureau of Standards.
Copies of the bibliography and of the survey were
given limited circulation, within the Bureau and
among a few individual specialists in this area, in
April and June 1952, respectively, with a view to
revision for ultimate publication.

Shortly thereafter the author, in his capacity as
Associate Editor of the Journal of the American
Statistical Association, learned of the preparation by
H. J. Godwin, University College of Swansea, Wales,
of a much more comprehensive treatment of inequal-
ities of the Tchebycheff type, and gave his full
support to this undertaking, which resulted in a
definitive publication on the subject [Godwin (1955)].2

As the years have passed, however, many persons
who have had access to the present author’s original
survey have found it to be a far more convenient
source of directly applicable information for prac-
tical application than Godwin’s more comprehensive
paper. Consequently, in response to the urgings of
various professional colleagues, the author has
brought together and combined in the present paper
his 1952 survey and bibliography of probability
inequalities of the Tchebycheff type, with a few
additions and revisions necessitated by the passage
of time and the author’s increased knowledge of the
subject.

2. Scope and Organization

Tchebycheff inequalities give bounds for the prob-
ability of certain events. In particular they give

1 Harvard University, Cambridge, Mass., and the University of Minnesota,
Minneapolis, Minn.

2 Names followed by dates in parentheses refer to the bibliography at the end
of this paper.
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estimates for deviations from the mean in terms of
the moments.

A selected collection of Tchebycheff inequalities is
given. They have been selected for their diverse
nature and for their usefulness in applied and
theoretical work.

In section 1I the various inequalities are presented
with some notes on their uses and the conditions
under which they may be used. In several cases
more than one form of the inequality is presented in
order to make it easier to work with the inequality.
With each inequality the nature of the random vari-
able is specified; that is, it is indicated whether the
random variable is arbitrary, a sum, or some other
function. Other special conditions are stated, al-
ways including the dimension of the random vari-
ables, and the moments which are assumed to exist.

In section III, tables are given for finding the
particular probabilities associated with a specific
iequality. Tables are also given for determining
the required size of the variable parameters when a
particular probability is desired. These tables will
be found useful in choosing which of the inequalities
to use. Tables have not been prepared for some of
the inequalities which involve several parameters.

Several examples are given in section 1V showing
how some of these inequalities can be used. These
examples show various possible uses, but are by no
means exhaustive.

The bibliography in section V is as complete as
possible.  The books by Uspensky (1937) and
Fréchet (1950), and the paper by Godwin (1955) are
recommended as good surveys of the subject.

Tchebycheff inequalities are useful for working
with distributions whose functional form is un-
known. In many situations it is possible to avoid
the assumption that random variables are (say)
normally distributed. All that is needed for use of
these inequalities are good estimates of certain popu-
lation moments. Sometimes something is required
of the functional form of the density function of a
distribution. This is true for inequalities 9, 10, and
11a in the text. However, it is easy to verily



whether the necessary conditions are true for the
distributions that one is discussing.

In statistical work these inequalities have had
several uses. In working theoretical problems, it is
often necessary to use these inequalities, for in-
stance, in proving the weak law of large numbers for
binomial distributions. These inequalities are par-
ticularly useful for testing hypotheses and finding
confidence intervals for the mean of a distribution,
if one has some information about the other moments.
In industrial work, these inequalities have been used
to form “tolerance’ sets.

Usually one does not have the true values for all
of the parameters that are needed for using these
inequalities. But if one has upper bounds for the
parameters, that is for the moments, then one can
use these inequalities. If one has run a process many
times with the same type of material, then one
usually has a good idea of the variance, even if the
process mean has been shifted, so that in a sense one
often knows some of the moments, and in this way
one can test for the others.

Remember that a sample acts as a population;
therefore, once the moments have been computed
for a sample, all of these inequalities will be true for
that sample; that is, these inequalities will provide
bounds for the portion of the sample in various parts
of its range. To obtain lower bounds for the prob-
abilities in the tails of the distribution it is usually
necessary to assume that the random variables are

bounded.

Most of the inequalities presented are for the
univariate case. There are several papers that
discuss the multivariate case in much more detail;
in particular, see Camp (1948), Leser (1942), Pear-
son (1919), and Marshall and Olkin (1960a). Most
of the multivariate inequalities have been omitted
because they are quite complicated and hard to
apply. For each inequality presented here, the
dimension of the random variable is specified, and
this is a clue to deciding which one of the inequali-
ties is applicable to a specific problem.

Several of the inequalities given require special
assumptions on the shape of the involved distribu-
tions. All of these special assumptions require
that the distribution has an unique mode. Narumi
(1923) treated the opposite case, where the distribu-
tions have an unique minimum and increase as you
go away from it. This case did not seem to be as
important as the other and is omitted.

Winsten (1946) found inequalities that involve
the ranges for various sample sizes. These inequali-
ties will undoubtedly prove useful in the future;
but they are not entirely analogous to the Tcheby-
chefl inequalities and were omitted.

The Markov Inequality 1° contains many of the
other ones as special cases, which is a little surprising
since this is the simplest of all the inequalities.

3 Each inequality has been given a name, mostly for convenience. These
names do not necessarily reflect priority. It is hoped that the names do not
conflict with common usage.

This results from the fact that 1is true for any positive
random variable, X, that has a finite expected value.
In particular, 1a is derived from 1 by replacing X
by a sum of random variables. Inequality 2 is
obtained by replacing X by the square of the dif-
ference between a random variable and its expected
value. One can derive many of the other inequali-
ties in this manner.

In cases where the inequality is given only for the
random variable X minus its mean, there are also
inequalities for a sample average minus the expected
value of that average.

Most of the inequalities are stated in the form of
upper bounds for the probability that a random
variable is greater than or equal to some number.
There are opposite inequalities, lower bounds for the
probability that the random variable is less than the
same number. These are the same expressions,
with the inequality reversed within the probability
symbol (the “greater than or equal” symbol being
replaced by a “less than” symbol), and with the
right-hand side replaced by one minus the original
right-hand side.

As given, some of the inequalities are very weak,
for the right-hand sides may be greater than unity;
but a probability is always less than or equal to
unity, so the right-hand sides should be interpreted
as the minimum of the given expression and unity.

Most of these inequalities cannot be improved;
that is, the right-hand sides cannot be replaced by
smaller quantities. That is, usually the left-hand
side equals the right-hand side for some distribution
that satisfies the conditions under which the in-
equality holds. Of course this will only occur for
certain exceptional cases. If the exceptional case
is known to be impossible, there might be a better
inequality available [see Godwin (1955)].

In the following inequalities, unless otherwise
noted, X\ is any positive number. KX equals the
expected value of the random variable, and will be
denoted by u; if need be this will be given a subscript.
The expectation sign £ will be used to denote other
expected values depending on the argument that
follows it. That is, £(X-w)? will be the variance
and will be denoted by ¢*. The symbol P(A) means
the probability of the event A.

It gives me great pleasure to thank the staff of the
Statistical Engineering Laboratory of the National
Bureau of Standards for their encouragement during
the preparation of this manuscript. I am particu-
larly indebted to Joan R. Rosenblatt for her careful
reading and detailed comments on the penultimate
manuscript and to Lola S. Deming for her skillful
management in revising this manuseript for publi-
cation. Professor Ingram Olkin of the University
of Minnesota has been a guide in removing ob-
scurisms, in suggesting crucial changes to bring the
original manuscript up to date, and in the prepara-
tion of the final bibliography.
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II. Inequalities

1. Markov

X
P<72>\>§1/)\ (1)
P(X >N <up/A 1)

Random variable: X

Restrictions: X is non-negative, that is, ’(X<0)=0
Dimension: One

Moments: p=FEX

References: Cramér (1946), Fréchet (1937).

Notes:

1. This is a fundamental inequality from which
inequalities 1a, 2, 2a, 2b, 3, 5, 6, 7, 8, 13, and 13a
can be derived by picking X as a special function of
the random variables of interest.

2. In using this inequality, note that one needs
to know only one moment, or one is testing an hy-
pothesis about only one moment.

3. By itself this is a rather weak inequality, for
the probability is bounded by 1/X; this is of course
to be expected, since only one moment is being used
and therefore one has very little knowledge about
the involved distribution, or at least is only using
very little of this knowledge.

4. Equality holds in 1, with A\>>1, for the random
variable X which takes only the values zero and u},
with probabilities (A—1)/A and 1/\, respectively.
If A<1, the left-hand side of 1 is unity for the de-
generate random variable which is equal to u with
probability one. A similar argument shows that 1’
1s also a sharp inequality.

la. Markov
P<%(2)\>§1/>\ (1a)
P(ZX, / S A )<IA (1a%)
i=1 =1

Random variable:

A=057 2K,

=

Restrictions: Each X is non-negative.

Dimension: Each X, is one-dimensional, but actu-
ally the X, may be considered as one observation
on an n-dimensional random variable; i.e., the X;
may be dependent.

Moments: u,=FEX;

n
=20

References: Cramér (1946), Kréchet (1937).

Notes:

1. This inequality is formally the same as 1, but
shows how 1 can be used where the random variable
of interest is actusally the sum of several random
variables.

2. It is clear how this inequality is derived from
the first one, for it is the same as that one, except
that the random variable can be written in two ways,
that is, either as X or as a sum of X,.

2. Bienaymeé-Tchebycheff

P(|X—p[>Xe) <1/N 2)
P(X >N+ or X <u—no) <1/N 2/
P(| X—u|>N\) <o?/N 2")

Random variable: X
Restrictions: None
Dimension: One
Moments: o*=FEX—p)?

References: Cramér (1946), Fréchet (1937), Uspensky
(1937).

Notes:

1. This is the standard Tchebycheff inequality for
one random variable.

2. Now the probability is decreasing as 1/\,
which means that the probability of large deviations
from the mean becomes quite small. It is to be
noted that for the normal distribution and for large
\ this is actually a very poor estimate of the proba-
bility of large deviations, for there the probability of
a large deviation is smaller than e », but for
intermediate values this is not a bad approximation.

3. If one has a fairly good estimate of o, then this
inequality can be used for testing hypotheses about
the mean, and for finding confidence intervals for
the mean. In many industrial applications this
inequality is used for estimating how much of the
production will be near the mean of the process,
where one has a good idea of the variance.

2a. Bienaymé-Tchebycheff
Pn|X—p|>No) <1/N
P(|X—u|>\) <o?fnd2

(2a)
(2a%)

Random variable: fz% i X,
=

Restrictions: If 1577, then X, and X, are uncorre-
lated; that is, E(X,—EX,)(X,—EX,)=0
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Dimension: One
Moments: p=FEX,
d?=FE(X;—u)?

References: Cramér (1946), Fréchet (1937), Uspensky
(1937).

Notes:

1. This is one of the most useful of the Tcheby-
cheff inequalities. One can use this whenever he
has sample averages of identically and independently
distributed random wvariables.

2. This inequality gives the “square root of the
sample size” law. That is, [X—u| is of the order of
magnitude 1/yn in probability.

3. The uses of this inequality are much like those
of 2, but it can be used when working with sample
averages.

2b. Bienaymé-Tchebychetf

P (x—u=r0) <1/N2 (2b)
P(fX—urzms;“l 2 o @b’

n
Random variable: X=2>7 X,

i=1
Restrictions: None

Dimension: n

Moments: u,=EX;, u= 2") Wi
i=1
Uf;:E(Xf‘P«t) (1‘{:—#1)

n g
o?=27 2] 0y
i=1 j=1

Reference: Uspensky (1937).

Notes:

1. This is another form of the Tchebycheff in-
equality. In this case the random variables forming
the sum can have different variances and can
be correlated.

2. In the future, inequalities are presented only
for samples of one observation. The detailed treat-

no?

r i (Xt—ﬂf)2 Z)\2>S
=1

1

2\2—ng?

ments of the versions of 1 and 2 for sample sums
and sample averages can be modified to apply to
the other inequalities.

3. Another point of interest is that, although the
inequalities appear to require exact estimates of
certain moments before they can be used, it is pos-
sible to get similar inequalities by substituting upper
bounds for the moments that are involved. For
instance, in this inequality one might not actually
know the value of a, but from previous experience
he might know that it can not under any circum-
stances be greater than, say, ¢’. In this case, if one
uses ¢’ instead of o, then the inequality will not be
as good as the given one, but still may prove useful.
This technique can, with some care, be used for all
the inequalities.

3. Pearson
P(lX;,“}Z)\)SI/N 3)
P ([ X—u[ZNZB8/N 3"
P(IX u!>>\>_ B (3

Random variable: X
Restrictions: None
Dimension: One

Moments: u=FEX
?=FE(X—p)?
=FE|X—ul

References: Fréchet (1937), Narumi (1923), Pearson
(1919).

Notes:

1. In order to use this inequality, an absolute
moment of the random variable is required.

2. If several absolute moments are available and
one needs an inequality for a particular \, then use
that moment that makes the right-hand side of 3’ the
smallest for that particular X. Thus, for instance,
3" should be compared to 2: for large values of \ it
may provide a smaller bound.

4. Birnbaum, Raymond, and Zuckerman

If » is an even integer,
if N<ne?

7 2
if no?< x?g%" (3++5)

2
LX (1-—4)\2> i (3+\/5)<>\2



If n is an odd integer,

1 if \2<ng?
1)02 . 2 P
P(i(X— })2>)\2>< Z—V(f’f%——i"lw if no2§)\2§%(37&+1—}—~/5n2+6n+5)
= i M) Z >
2 2__ 4 2
%—@Tl—)-;-z if % (BnH14+EntHent5) <x

n

Random variable: > (X;—u,)?

i=1
Restrictions: The X /s are independently distributed
with common variance.

Dimension: n

Moments: u,=FEX;
o*=E(X;—u,)?

Reference: Birnbaum, Raymond, and Zuckerman
(1947).

Notes:

1. This inequality is an upper bound on the prob-
ability of the sample point falling outside of a hyper-
sphere centered at the population mean. Birnbaum,
Raymond, and Zuckerman (1947) also gives bounds
for hyper-ellipses.

2. The application of this inequality to bombing
and other aiming problems is obvious.

3. This inequality is multidimensional in that the
probability of a multidimensional set is bounded.
The random variables, however, are assumed to be
independent. Inequality 5 is multidimensional in
both senses, e.g., the probability of falling in a rec-
tangle is bounded and the random variables are in-
dependent.

4. Asn becomes large, the results for odd and even
integers n approach each other.

5. Berge
P (eithor K=l ) o ‘XQ—M'Z’DSi‘/—lz——pQ
o1 a2 A
()
P <nmx{ ‘Xl_p'll’ ]Xz—‘#zl }2)‘>S 1+\/1_PZ
o1 02 N
(5")
2 ([Xl—mlzkm or ]Xz“‘ﬂzlz)\zﬁ)
1
<oy NNV =808 (67)

Random variable: X=(Xi, X))

Restrictions: None

Dimension: T'wo

Moments: u; =F£X,
o = E(X—p,)?
012:E<X1_‘#1) (Xz—#2>

013

ag10y

References: Berge (1938), Lal (1955), Olkin and
Pratt (1958), Whittle (1958b).

Notes:

1. This inequality bounds the probability of falling
outside of a rectangle centered at the means for a
bivariate sample.

2. This inequality uses the dependence between
the random variables, and therefore, in order to
apply this inequality one needs actually to have
some knowledge about the correlation.

3. The right-hand side of this inequality is a
decreasing function of the correlation. Thus, the
most impressive results are obtained when the cor-
relation is one. Even when the random variables
are independent (zero correlation) the right-hand
side is 2/ which is not quite as strong as could be
obtained from 2 but still useful.

4. Marshall and Olkin (1960a) found a “one-sided”’
version of this inequality and its extension to p
dimensions.

6. Guttman
P[(X— e S 2\/2("2_1) <1/Ne
Wr=g—q3 77 nn—1) |— / (6)
A>1
S,

Random variable: 4?:-i—'lb
7

Restrictions: X; are identically and independently
distributed

Dimension: One
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Moments: u=FKX,
o*=E(X—u)?
and define

si=1 s (x,—X»
n =1

References: Guttman (1948b), Midzuno (1950).
Note:

Inequality 6 is applicable whenever 2a can be
used, however, 6 takes more computing than 2a
does, and that is its only disadvantage. If we com-
pare these two inequalities, they differ only in the
quantity on the right of the inequality sign within
the probability statement. For 6 that quantity is
a random variable, and it is not for 2a. The ex-
pected size of this random variable is much smaller
than that of the quantity that occurs in 2a, and
therefore with probability ncar one it is a better
inequality to use than 2a.

7. Kolmogorov

P(T>aoN) <1/N (7)
Random variable: Sf:i‘, (X,—uy);1=12,...,n
j=1
Let T=max [|Si], ..., [S, ... [S.[]
1<i<n

Restrictions: X; and X independent
Dimension: One

Moments: p,=EX;
=3 E(X,—u)?
i=1

References: Fréchet (1937), Kolmogoroff (1928),
Marshall (1960), Uspensky (1937).

Note:

This inequality can be used whenever 2a is appli-
cable. A typical use of this inequality is in the
extreme-value situations. For instance, if one is
putting together an assembly one might ask what
is the probability that the cumulative error ever
exceeds a certain quantity, and this inequality would
give the answer.

8. Cantelli
o? :
PX—p=A= R if <0 (8)
a? .
2 I_UT_J‘__)\-Z if )\ZO

Random variable: X

Restrictions: None

Dimension: One
Moments: uy=FEX
?*=F(X—pu)?

References: Cantelli (1928), Cramér (1946), Uspensky
(1937).

Notes:

1. This 1inequality is applicable whenever in-
equality 2a can be used.

2. In this case one is interested in one-sided al-
ternatives; that is, one wishes to detect large posi-
tive deviations from the mean. This occurs, for
instance, whenever one is using one-sided confidence
intervals or one-sided test regions.

3. The derivation of this inequality essentially
depends on the Schwartz inequality.

4. Comparisons of “one-sided” and “two-sided’”’
alternatives for certain convex sets are obtained by
Marshall and Olkin (1960b).

9. Gauss (Camp-Meidell)

p
| I—A for k§3:=1.1547
\“3 \"3
P(| X—py| 2M) <
4 2
— for \>— 9
Lo forr2 2 )
- 4 1452 . ,
P(|X—pu Z)\U)Sg‘m if A >s (9")

Random variable: X

Restrictions: X has a density function with one
mode, u,

Dimension: One
Moments: uy =FEX

o’ =E(X—p)?
=0+ (u—po)*
o — M= Mo

a
References: Cramér (1946), Fréchet (1937), Gauss
(1880), Narumi (1923).

Notes:

1. This inequality requires the same knowedge of
moments as does inequality 2; but it is also necessary
to know the mode of the distribution. For a sym-
metric distribution, of course, the mode is the same
as the mean.

2. For a symmetric unimodal distribution, this is a
better inequality than 2, since the bound in 2 is here
multiplied by 4/9. The inequality 9’ has a par-
ticularly simple form when s=0. Indeed, for any
unimodal distribution such that a bound for s is
known, this inequality is better than 2 for suf-
ficiently large values of A.

3. If this decreasing property actually is true,
then this is a better inequality to use than 2, for it
essentially multiplies the bound by 4/9.

4. This inequality in the form 9 is a special case of
inequality 10’.
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10. Narumi, Gauss (Camp-Meidell)

.
<1 ’"+1(1 b>>\1fo<>\< il

- +1

P(| X—uol >M/r,) LR (10)
X—wol M) | Sl 7SAS

ey

Syrifb<

.

R

- — (1+7.)1/71 —(1+ )1 1/r

P(IX—po| > M) (10"

r - —0 r
S(m) (x) lf(1+r)1_1/7§)‘

Random variable: X

Restrictions: X has a density function f(z), and
f(x) has an unique maximum in the interval
(to—b, wo+0) at we and b>0. Use (10) if b is
finite, and (10’) if b is infinite.

Dimension: One

Moments: (v,)"=E|X— |

References: Fréchet (1937), Narumi (1923).
Notes:

1. In 10 and 10" the absolute moments about the
mode are used rather than the absolute moments
about the mean. For unimodal symmetric distribu-
tions that is not a restriction.

2. For many of the common distributions b will
be infinity and 10" can be used in preference to 10.
In applications, however, one might only be sure of
the behavior of the density function near the mode
and thus 10 is required.

3. Actually, in most cases one would probably use
mequality 9, which is a special case of these in-
equalities; this is why 1t has been given by itself.

11. Peek

=0 yN2>6

P X~ 20) < g gns

(11)

Random variable: X
Restrictions: None
Dimension: One
Moments: p=FEX

=E(X—p)?
y=FE|X— |
o=v/o
Reference: Peek (1933).

Notes
This inequality is much like inequality 2, except
that here one needs to know », the mean deviation.
If one has this additional infor matlon this may be a
better inequality to use.
2. This 1s a special case of inequality 12.

1la. Peek
4 1—6%
P(|X—u|>No )<9 PE (11a)

Random variable: X

Restrictions: X has a density function whose only
mode is its mean

Dimension: One

Moments: u=FEX
P =E(X—py
v=E|X—y
0=v/o
Reference: Peek (1933).
Note:

This is an improvement over 9 for relatively large
\, but can only be used if one has an estimate of the
mean deviation. For a particular value of \, this
should be compared with 9 and with 12.

12. Cantelli

BZT
B;

BZr_Br 627'
< r
S8y Tm—p g =

Random variable: X

P(x—u20<  ifv<Pr

(12)

Restrictions: None

Dimension: One

Moments: u= Ex\
Bor= E|X— I-L
B,—]L X—ul

References: Cantelli (1910), Fréchet (1937), Peek
(1933).

Notes:

1. Of course in this case one needs information
about two moments.

2. The first part of 12 is equivalent to 3’;
larger values of X\, 12 is better than 3
required two moments are known.

for
4 When the

13. Bemstein

u|2N) <27 BN
X:EXl

Restrictions: X; and X are independent

P(X—

Random variable:

(13)

Dimension: One

Moments: u,=FX,, =021,
ol=FE (Xi—#i)2, =30
28! C¢~2 .
E|X—uw|*< 782 for all integers s and

2
some constant C'(C>0).

References: Curtiss (1950), Craig (1933), Fréchet
(1937), Uspensky (1937).
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Notes:

1. This is a very nice inequality in the sense that
the bound goes to zero very rapidly as \ increases.

2. The one difficulty in applying this inequality is
that essentially one has to know at least an upper
bound for every moment of each distribution in-
volved. The next inequality treats a useful par-
ticular case.

13a. Bernstein

P(|X—p[2N) <27 (™) (13a)

Random variable: X=X,

Restrictions: P(|X;—u|>m)=0, X, and X, are in-
dependent (75£7). The maximum deviation of a
random variable X, from its mean ux; will not
exceed m, with probability one.

Dimension: One

Moments; u,=EX, _== 1
02=FE(X,—u)?, C="0r

References: Fréchet (1937), Uspensky (1937).

Note:

Each X; has a distribution which does not allow
deviations greater than m from p,. This condition
also bounds all of the central moments.

13b. Bernstein

P (| X—p|>oN) e (13b)

Random variable: X=X,

Restrictions: X;, X; are independent (z7j); X, is
symmetrical about w;; i.e., K(X;—u)* =0 (r=0,
1,2,...)

Dimension: One
Moments: pu;=FEX;, u=2u;

X—uyr<(Z)
E( i—,u'i) = 5)
A=E(X—w)*, =30}

Reference: Uspensky (1937).

Note:

This form of the Bernstein inequality places many
restrictions on the underlying distributions through
their moments. The normal distribution does satisty
these conditions.

!
(2'? - (r an integer)

r

III. Tables

Essentially tables 1 and 2 are inverses of each
other, column by column. The first table answers
the question: How large is the probability associated
with a specific “deviation’” A? The second table
gives the ‘‘deviation” associated with specific
probabilities P.

P(X—u>N)<0.10,

TaBLE 1. Probability associated with deviation N
N\ o
\.Probability i 2 3 4 5 6 7
\associated
N\ with
1 1 1 4 4\41 1 )
A \\ by be N oN? 5N | 14N | e
Xy
1.0 1.000 | 1.000 | 1. 000 0. 444 0. 4096 0. 5000 0. 607
L5 0.667 | 0.444 | 0.19754| .198 . 0809 . 3077 . 325
2.0 . 500 .250 | . 0625 111 . 0256 . 2000 . 135
2.5 . 400 . 160 0256 071 .0105— L1379 . 044
3.0 .333 | .111 0123 049 . 0050 . 1000 .011
3.5 . 286 . 082 0067 036 . 0027 .0755— . 002
4.0 . 250 .062 | . 0039 028 . 0016 . 0588 . 000
4.5 .222 | 049 . 0024 022 . 0010 . 0471
5.0 . 200 . 040 . 0016 018 . 0007 .0385—
5.5 .182 .033 . 0011 015— . 0005— . 0320
6.0 .167 .028 | . 0008 012 . 0003 . 0270 A
6.5 . 154 .024 0006 011 . 0002 . 0231 . 000
TaBLE 2. Deviation associated with probability P
N\ o
N Deviation 1 2 3 4 5 6 7
\associated
N
N 1 1 1 2 4 T | o L
P - s o1 /4 = E D1/4 — 0 ¢—
\\ P 1/P Pt 3\/? 5P/t -1 gsP
N
0.99 1.0101 | 1.0050 | 1.0025 | 0.6700 [0.802 | 0.1005— 0.1418
.95 1.0526 | 1.0260 | 1.0129 | .6840 | .810 . 2293 . 3202
.90 1.1111 | 1.0541 | 1.0267 | .7027 | .821 . 3333 . 4590
.75 1.3333 | 1.1547 | 1.0746 | . 7698 | . 860 L5773 . 7585
.50 2 1.4142 | 1.1892 | .9428 | .951 | 1 1.1774
.25 4 2 1.4142 | 1.3333 |1.131 | 1.7321 1. 6651
.10 10 3.1623 | 1.7783 | 2.1082 (1.423 | 3 2.1460
.05 20 4,4721 | 2.1147 | 2.9814 |1.692 | 4.3589 2.4477
.01 100 10 3.1623 | 6.6667 (2.530 | 9.9499 3.0348
.001 1000 31. 6228 | 5.6234 |21.0818 (4. 500 |31.6070 3.7169

An example is now given showing how to use these
tables. Suppose one has a sample of nine inde-
pendent observations from a distribution whose
variance is four units squared. (1) What is an
upper bound for the probability that the sample
average is more than one unit larger than the popu-
lation mean? (2) How far above the population
mean could the ninety percent point of the distri-
bution of sample means be? (3) If one knew the
population had an unique mode at its mean, could
these results be improved? Answer: For questions
(1) and (2) one needs inequality 8, and for (3) one
needs 9’.

To answer question (1), determine an upper bound
for P(X—u=1) using the second part of 8, since
A=1>0. Since 8 is given for a random variable X
with variance o%, and the present question involves
the average of n=9 observations from a distribution
with o%=4, we use the variance of X, 02=4/9, in
inequality 8. Thus,

2

X— _ox 1

The value of this bound is found in column (6) of
table 1 for A=3/2=1.5, which shows 1/(1\?
=0.3077.

To answer question (2), determine the smallest
value of N\ for which
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again using the second part of 8, The required value
of \ satisfies

ox
U%+)\2—O.10
or
S
14+N/o%

The smallest value of /o which satisfies inequality
8 is found in column (6) of table 2 for =0.10, which
shows N ex=3, whence A\=30x=2.

To answer questlon (3), the two previous questions
are treated again using 1nequ‘1hty 9’. This makes
use of the additional mformation that the distribu-
tion is unimodal with its mode u, at the mean (s=0
in 9’). On the other hand, 9’ is a two-sided in-
equality. The first step is to evaluate an upper
bound for

P(X— X<u/>1)

using 9" with Nex=1, that is with A=3/2. This is
found in column (4) of table 1, which shows 4/9\°
=0.198. This is a smaller upper bound than the one
obtained from 8.

The second part of (3) is to find the smallest value
of X\ for which

P(|X<u/>)\)<0.10.
This value is given by

4 _1_
9 (\om)?

and from column (4) of table 2 for P=0.10 1s
found to be N/og=2.1082 or A\=1.41. This is better
(smaller) than the value obtained by use of 8.

Thus for this problem it seems better to use in-
equality 9’ than 8.

These tables will facilitate choosing which inequal-
ity to use when several are available, by comparing
the associated probabilities (deviations) with the de-
viation (probability) of interest, thus making it pos-
sible to choose the inequality that gives the smallest
probability (deviation) for the problem at hand.

The columns of the tables are associated with the
inequalities as follows:

=0.10.

Column Inequalities
1 (1), (1a), (1a")
2 (2),(2), (2a), (2b), (6), (7)

3 (3 with r=4)
4 (9
5 (10’ for r —4)
6 (8 for o*
7 (13 for 2cr +2eA=2; 13a for 2¢* +—m>\* ; 13b)
IV. Examples
Faoample (1). Assuming that all soldiers are

between 60 and 78 inches tall, what is the probability
that the average height of 500 soldiers is more than

1 inch away from the average height of all soldiers?
Solution: Although the population is finite, it is
safe to assume that the measurements in the sample
are independent. The largest possible variance
occurs if half the soldiers have height 60 inches, and
half have height 78 inches, in which case the vari-
ance is 81 inches squared. First apply inequality
2a’. Here A=1 inch, ¢*=81 inches squared, and

2
n=>500. Thus the answer is %2%20.]62. One
can also apply inequality 13a. Here A=500 inches,

a*=500>.81 inches, and m=18 inches. The prob-
ability is 0.11; and thus for this example inequality
13 gives more precise results than 2.

Lxample (2). In the course of deposit and with-
drawal transactions, such as money in a bank, or
radioactive material in a hospital, one often wishes
to control the absolute error. That is, in a sequence
of, say, 100 transactions (a day’s activity) one does
not want one’s books to differ from one’s assets, at

any time, by more than some fixed amount, say
1,000 units. Assume that the variance due to

errors of measuring and of counting for each trans-
action is 400 units squared (this value being obtained
by previous experience). The question then nat-
urally arises: what is an upper bound for the prob-
ability of having an accumulated error of more than
1,000 units at any time during the day?

Solution: Inequality 7 is suited for this problem.
Here n=100, ¢=20, and +noA=1,000. Thus

O O A =125 = i0A TBinstead

710200 200

of 100 transactions there had been 400, then n=400,

— 1,000 1,000
=92 - — =l =D =25 ¢ .
0=20, VnoA=1,000, N=gt0=="0"=2.5; and th

1
6.25

=0.161.

. . . 1
resulting probabilty is at most <—‘;—; =
2.5

Frample (3). From previous experience assume
that the correlation between two variables (height
and weight, rainfall and crop yield) i1s at least 0.8.
If a sample of 25 is made on this bivariate distri-
bution, what is an upper bound for the deviations
from the population means that will not be exceeded
more than 10 percent of the time, where deviations
are measured in standard units?
Solution: Here one can use inequality 5.
must solve the following equation:

First one

1+ 41— 004 14+/0.36
0.10= I
1406 1.6
o TN 6: \=
A 01 01 16; A=4.
Thus
(“ﬂ“’>4 “]>4><01
oy
or
p (= “f> or =kl ><01
oy ay
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Thus both sample means will be within 0.80
standard units of their respective population means
with probability at least 0.9.
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Torsional resonance vibrations of uniform bars of square
cross section, W. E. Tefft and S. Spinner, J. Research NBS
65A (Phys. and Chem.) No. 3, 167 (May—June 1961) 75 cents.

Relations by which the shear modulus may be computed from
the fundamental and overtones of the torsional resonance
frequencies of square bars have been established empirically.

The results are analyzed in terms of a proportionality factor,
R, defined by the equation

_(2UnY
G_< d )ple

R is found to increase with increasing cross section to length
ratio. Also, the overtones are less than integral multiples of
the fundamental by an amount which increases with increas-
ing cross section to length ratio.

Crystallization of bulk polymers with chain folding: theory of
growth of lamellar spherulites, J. D. Hoffman and J. L.
Lauritizen, Jr. J. Research NBS 65A (Phys. and Chem.)
No. 4, 297 (July—August 1961) 75 cents.

A systematic study of the problem of spherulitic growth in
linear polymers in bulk has been carried out. A calculation
of the radial growth of polymer spherulites is given for four
models. These concern growth where the surface nuclei thav
control the rate are (1) bundlelike and coherent; (2) chain
folded and coherent; (3) chain folded and noncoherent; and
(4) bundlelike and noncoherent. The required modifications
of nucleation theory are given. Then the radial growth rate
laws are derived for each model, and the type of “spherulite”
that would be formed discussed.

The model with chain folded and coherent growth nuclei
leads to a typical lamellar spherulite. The properties of the
individual chain folded lamellae that form the spherulite are
predicted, including the change of step height with growth
temperature, melting behavior, and the behavior on recrystal-
lization. (Chain folded lamellae may also occur in specimens
that are not obviously spherulitic.) Under certain conditions,
the noncoherent model with chain folds can lead to a modified
lamellar spherulite. None of the bundlelike models will lead
to a typical lamellar spherulite, though a spherical micro-
crystalline objeet might be formed. It is concluded that
lamellar spherulites consist largely of chain folded structures.

The factors that could cause chain folded crystals to appear in
profusion in bulk polymers are discussed. The case of
homogeneous initiation is considered first. Homogeneous
initiation of chain folded nuelei in bulk will prevail if the end
surface free energy of the bundlelike nucleus exceeds that of
the folded. It is shown that the end surface free energy of the
bundlelike nucleus, as calculated with a density gradient
model, will be larger than had been supposed previously. It
is therefore considered to be theoretically possible that the
end surface free energy of the bundlelike nucleus may in some
cases exceed that of the folded nuecleus. Attention is given
to the possibility that folded structures appear in large num-
bers because cumulative strain or large chain ends prevent the
growth of bundlelike nuclei to large size, even when the latter
type of nucleus is energetically favored when small. Heter-
ogeneous initiation of folded structures is then considered.

Other topies include: (1) conditions that might lead to non-
lamellar or nonspherulitic erystallization in bulk; (2) the
origin of the twist that is frequently exhibited by the lamellae
in spherulites; (3) the transitions that may sometimes occur
in the radial growth rate law; and (4) interlamellar links.

Comparison between mode theory and ray theory of VLF
propagation, H. Volland, .J. Research NBS 65D (Radio Prop.)
No. 4, 357 (July—August 1961) 75 cents.

It is shown that the field strength according to mode theory
and ray theory in the VLF band are derivable from the same
expression of the original vector potential, and the result
of one theory is the analytic continuation of the other one
in another range of convergence. In fact, both ranges of
convergence overlap. Estimates of these ranges are made
and an example shows that within this overlapping region
(between distances of 300 and 2000 km) both theories give
the same result. Using this fact calculations of frequency
spectra are possible which in the case of a white noise show
some similar features to measured frequency spectra of
lightning discharges.

On the validity of some approximations to the Appleton-
Hartree formula, K. Davies and G. A. M. King, .J. Research
NBS 65D (Radio Prop.) No. 4, 323 (July—August 1961) 75

cenls.

The validity of some commonly used quasi-transverse and
quasi-longitudinal approximations to the Appleton magneto-
ionic formula is considered. Using the dipole approximation
for the earth’s magnetic field the various approximations for
refractive index are compared with the values computed
from the complete formula for various geomagnetic latitudes
and a frequency of 2.0 megacycles per second. It is found
that certain approximations become very poor only a short
distance from where they are exact and so care must be taken
in their use. Itisshown that a choice of two suitable approxi-
mations yields refractive indices of sufficient accuracy for
alli geomagnetic latitudes. Certain approximations to the
group refractive indices are also considered.

The minima of cyclic sums, K. Goldberg, J. London Math. Soc.
35, 262-264 (1960).

Given a complex valued function in m variables, defined on
a set S, the (average) cyelic sum of this function is defined
for n >m variables. Letting M, be the minimum absolute
value of this eyclic sum over S, it is proved that lim M, =
g.l.b. M,. n—w

An analysis of the accumulated error in a hierarchy of
calibrations, E. L. Crow, IRFE Trans. Instrumentation I-9
No. 2, 105-114 (Sept. 1960).

Calibrations of many types are performed in a hierarchy of
calibration laboratories fanning out from a national standard.
Often the statement is made that the accuracy of each echelon
of the hierarchy should be 10 times the accuracy of the
immediately following echelon. The validity of such state-
ments is examined by deriving formulas for the total error
accumulated over the entire sequence when systematic and
random errors may occur in each echelon, and by determining
how a given total error may be achieved at minimum total
cost under reasonable assumptions for the form of the
cost-error functions.

Generating functions for formal power series in non-commut-
ing variables, K. Goldberg, Proc. Am. Math. Soc. 11, No. 6,
988-991 (Dec. 1960).

Generating functions in commuting variables are defined for
formal power series in non-commuting variables. The effect
on these generating functions of transformations on the non-
commuting variables is determined. Application is made to
the case of log f(x)g(y).
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Tests for regression coefficients when errors are correlated,
M. 1\)/1 Siddiqui, Ann. Math. Stat. 31, No. 4, 929-938 (Dec.
1960).

In a previous paper the covariances of least-squares estimates
of regression coefficients and the expected value of the estimate
of residual variance were investigated when the errors are
assumed to be correlated. In this paper we will investigate
the distribution of the usual test statistics for regression
coefficients under the same assumptions.

On the nature of the crystal field approximation, C. M.
Herzfeld and H. Goldberg, J. Chem. Phys. 34, No. 2, 643-651
(Feb. 1961).

A new method is developed for the treatment of molecular
interactions, and is applied to a system consisting of a hydro-
gen atom in a 2p state and a hydrogen molecule in the ground
state. The interaction of these two species is calculated
using ordinary crystal field theory and also the new method.
A comparison of the results shows some of the shortcomings of
the conventional crystal field theory, and provides corrections
to it. The new method consists of (1) expanding all electron
terms of the total Hamiltonian for the system which involve
interactions between the atom and the ion, thus transforming
the interaction Hamiltonian into sums of products of one-
electron operators, and (2) of using properly antisymmetrized
wave functions made up of products of atom and molecule
eigenfunctions. The calculations show the effect of the neg-
lect of overlap and exchange in ordinary crystal field theory.

List of Titles

Journal of Research 65A (Phys. and Chem.) No. 3 (May—
June 1961) 75 cents.

International practical temperature scale of 1948. Text
revision of 1960. H. F. Stimson.

Evaluation of the NBS unit of resistance based on a com-
putable capacitor. R. D. Cutkosky.

Wavelengths and intensities in the first spectrum of bromine,
2000 to 13000 A. J. L. Tech and C. H. Corliss.

Torsional resonance vibrations of uniform bars of square cross
section.  W. K. Tefft and S. Spinner. (See above ab-
stract.)

Infrared studies of aragonite, calcite, and vaterite type

structures in the borates, carbonates, and nitrates. C. E.
Weir and E. R. Lippincott.
Dielectric properties of polyamides: polyhexamethylene

adipamide and polyhexamethylene sebacamide. A. J.
Curtis.

Heat of formation of calecium aluminate monocarbonate at
25 °C. H. A. Berman and E. S. Newman.

Thermodynamic constants for association of isomeric chloro-
benzoic and toluic acids with 1,3-diphenylguanidine in
benzene. M. M. Davis and H. B. Hetzer.

Heats of combustion and formation of trimethylborane,
triethylborane, and tri-n-butylborane. W. H. Johnson,
M. V. Kilday, and E. J. Prosen.

Pyrolysis of linear copolymers of ethylene and propylene.
S. Straus and L. A. Wall.

Pyrolysis of fluorocarbon polymers. 1. A. Wall and S. Straus.

Preparation of fluoro- and bromofluoroaryl compounds by
copyrolysis of bromofluoroalkanes. L. A. Wall, J. E.
Fearn, W. J. Pummer, and R. E. Lowry.

Thermal stability of polydivinylbenzene and of copolymers
of styrene with divinylbenzene and with tribinylbenzene.
S. Straus and S. L. Madorsky.

Conformations of the pyranoid sugars. IV. Infrared
absorption spectra of some fully acetylated pyranoses. R.
Stuart Tipson and H. S. Isbell.

A standard for the measurement of the pH of blood and other
physiological media. V. E. Bower, M. Paabo, and R. G.
Bates.

Journal of Research 65A (Phys. and Chem.) No. 4 (July-
August 1961) 75 cents.

Electrical properties and kinetics of electrode reactions. R.
J. Brodd.

Effect of hydrostatic pressure upon the relaxation of bire-
fiigence in amorphous solids. R. M. Waxler and L. H.
Adams.

Vapor pressures of platinum, iridium, and rhodium. R. F.
Hampson, Jr., and R. F. Walker.

Crystallization of bulk polymers with chain folding: theory of
growth of lamellar spherulites. J. D. Hoffman and J. I.
Lauritzen, Jr. (See above abstract.)

Phase equilibrium relations in the binary system barium
oxide-niobium pentoxide. R. S. Roth and J. L. Waring.

Solid state reactions involving oxides of trivalent cations.
S. J. Schneider, R. S. Roth, and J. L. Waring.

Gamma irradiation of fluorocarbon polymers. R. E. Florin
and L. A. Wall.

Inhibition of diffusion flames of methyl bromide and tri-
fluoromethyl bromide applied to the fuel and oxygen sides
of the reaction zone. K. C. Creitz.

Journal of Research 65C (Engr. and Instr.) No. 3 (July—
September 1961) 70 cents.

Prediction of symptoms of cavitation. R. B. Jacobs.

Heating and cooling of air flowing through an underground
tunnel. B. A. Peavy.

Stress-corrosion cracking of the AZ31B magnesium alloy.
H. L. Logan.

Coatings formed on steel by cathodic protection and their
evaluation by polarization measurements. W.J. Schwerdt-
feger and R. J. Manuele.

Calibration of inductance standards in the Maxwell-Wien
bridge circuit. T. L. Zapf.

Calibration of loop antennas at VLF. A. G. Jean, H. E.
Taggart, and J. R. Wait.

Location of the plane of best average definition with low
contrast resolution patterns. F. E. Washer and W. P.
Tayman.

Influence of temperature and relative humidity on the photo-
graphic response to Co% gamma radiation. M. Ehrlich.

Journal of Research 65D (Radio Prop.) No. 4 (July—August

1961) 75 cents.

Almost fifty years of URSI. J. H. Dellinger.

Power density requirements for airglow excitation by gyro-
waves. V. A. Bailey.

On the validity of some approximations to the Appleton-
Hartree formula. K. Davies and G. A. M. King. (See
above abstract.)

Amplitude and angular scintillations of the radio source
Cygnus-A observed at Boulder, Colorado. R. S. Lawrence,
J. L. Jespersen, and R. C. Lamb.

Digital methods for the extraction of phase and amplitude
information from a modulated signal. R. S. Lawrence,
J. L. Jespersen, and R. C. Lamb.

Comparison between mode theory and ray theory of VLF

propagation. H. Volland. (See above abstract.)
Antenna coupling error in direction finders. C. W. Harrison,
Jr

The electrically short antenna as a probe for measuring free
electron densities and collision frequenciesin an ionized region.
R. W. P. King, C. W. Harrison, Jr., and D. H. Denton, Jr.

Effect of multiple atmospheric inversions on tropospheric
radio propagation. F. H. Northover.

A few observations of the perturbations in the phase of the
low-frequency ground wave. J. M. Ross and J. E. Kirch.

Smooth earth diffraction calculations for horizontal polariza-
tion. L. E. Vogler.

On the theory of mixed-path ground-wave propagation on a
spherical earth. J. R. Wait.

Atomic energy levels in crystals, J. L. Prather, NBS Mono. 19
(1961) 60 cents.

A spectrophotometric atlas of the spectrum of CH from
3000A to 5000A, A. M. Bass and H. P. Broida, NBS Mono.
24 (1961) 20 cents.

Development of high-temperature strain gages, J. W. Pitts
and D. G. Moore, NBS Mono. 26 (1961) 20 cents.

Bibliography of temperature measurement—January 1953 to
June 1960, C. Halpern and R. J. Moffat, NBS Mono. 27
(1961) 15 cents.

Corrected optical pyrometer readings, D. E. Poland, J. W.
Green, and J. L. Margrave, NBS Mono. 30 (1961) 55 cents.
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Measurement of absorbed dose of neutrons, and of mixtures
of neutrons and gamma rays, NBS Handb. H75 (1961)
35 cents.

Medical X-ray protection up to three million volts, NBS
Handb. H76 (1961) 25 cents.

Precision measurement and calibration, S. F. Booth: Elec-
tricity and electronics, NBS Handb. 77, Vol. I (1961) $6.00;
Heat and mechanies, Vol. IT (1961) $6.75; Optics, metrol-
ogy, and radiation, Vol. ITT (1961) $7.00.

Units of weight and measure (United States customary and
metric) definitions and tables of equivalents, L. V. Judson,
NBS Mise. Publ. 233 (1960) 40 cents.

Quarterly radio noise data, September, October, November
1960, W. Q. Crichlow, R. T. Disney and M. A. Jenkins,
NBS TN18-8 (PB151377-8) (1961) $1.75.

A survey of computer programs for chemical information
searching, E. C. Marden and H. R. Koller, NBS TNS85
(PB161586) (1961) $2.25.

Prolonged space-wave fadeouts in tropospheric propagation,
A. P. Barsis and M. E. Johnson, NBS TN88 (PB161589)
(1961) $2.00.

Normal approximation to the chi-square and non-central F
probability functions, N. C. Severo and M. Zelen, Biome-
trika 47, No. 3 & 4, 411-416 (1960).

Microtechnique for the infrared study of solids, diamonds, and
sapphires as cell materials, E. R. Lippincott, F. E. Welsh,
and C. E. Weir, Anal. Chem. 33, 137-143 (Jan. 1961).

Definitions relating to metals and metalworking, M. R.
Meyerson and S. J. Rosenberg, Am. Soc. Metals Handb. 1,
1-41 (1961).

Stress-rupture tests at 1350° F on type 304 stainless steel,
W. D. Jenkins, W. A. Willard, and W. J. Youden, ASTM
Bull. 1, No. 2, 104-108 (Feb. 1961)

Techniques in calorimetry. I. A noble-metfal thermocouple
for differential use, K. D. West, Rev. Sci. Inst. 31, No. §,
896-897 (Aug. 1960).

Paratellurite, a new mineral from Mexico, G. Switzer and
H. E. Swanson, Am. Mineralogist 45, 1272 (Nov.-Dec.
1960).

Evaluation of micrometer and microscopical methods for
for measuring thickness of floor coverings, E. IHorowitz,
J. Mandel, R. J. Capott, and T. H. Boone, ASTM Bull. 1,
No. 2, 99-102 (Feb. 1961).

Electrodeposition of metals from nonaqueous media,
A. Brenner, Chapter on Electrodeposition, Encyclopedia
Chem. Tech. 2d Suppl., 315-324 (Jan. 1961).

The nature, cause, and effect of porosity of electrodeposits VI.
Note on a magnetic method of detecting corrosion currents,
F. Ogburn and W. H. Roberts, Plating 48, No. 2, 168-169
(Feb. 1961).

The height of maximum luminosity in an auroral are, F. E.
Roach, J. G. Moore, . C. Bruner, Jr., H. Cronin, and
S. M. Silverman, J. Geophys. Research 64, No. 11, 3575~
3580 (Nov. 1960).

Physical metallurgy and mechanical properties of materials:
Ductility and the strength of metallic structures, J. M.
Frankland, J. Eng. Mech. Div. Proc. Am. Soc. Civil Eng.
86, No. EM 6, 45-52 (Dec. 1960).

Cryogenic impurity adsorption from hydrogen, M. J. Hiza,
Chem. Engr. Progress 55, No. 10, 68-71 (Oct. 1960).

Nomenclature for standards of radioactivity, A. G. McNish,
Intern. J. Appl. Radiation and Isotopes 8, 145-146 (Jan.
1960).

Lithium, M. R. Meyerson, Am. Soc. for Metals Handbook 1,
1213 (1961).

Tensile eryostat for the temperature range 4° to 300° Kelvin,
R. M. MecClintock and K. A. Warren, ASTM Bull. 1.
No. 2, 95-98 (Feb. 1961).

Standards and testing, the key to quality, B. E. Foster,
Eng. Bull.,, Purdue Univ. XLIV, No. 6, 54-62 (Nov. 1960).

A radio-frequency permittimeter, R. C. Powell and A. L.
Rasmussen, IRE Trans. Instrumentation I-9, No. 2,
179-184 (Sept. 1960).

Subgroups of the modular group and sums of squares, M.
Newman, Am, J. Math. 82, No. 4, 761-778 (Oct. 1960).

Phase equilibria in the system cadmium oxide-niobium
oxide, R. S. Roth, J. Am. Ceram. Soc. 44, No. 1, 49-50
(Jan. 1961).

Redetermination of the choromium and nickel solvuses in
the chromium-nickel system, C. J. Bechtoldt and H. C.
Vacher, Trans. Metallurgical Soc., Am. Inst. Mining
Engrs. 221, 14-18 (Feb. 1961).

A modulated subcarrier technique of measuring microwave
phase shifts, G. E. Schafer, IRE Trans. Instrumentation
I-9, No. 2, 217-219 (Sept. 1960).

Hydrogen-bonding in calcium-deficient hydroxyapatites,
A. S. Posner, J. M. Stutman, and E. R. Lippincott, Nature
188, No. 4749, 486-487 (Nov. 1960).

Hydrogen sulfide precipitation of the elements from 0.2-0.5
normal hydrochloric acid, J. I. Hoffman, Chemist Analyst
50, No. 1, 30 (Mar. 1961).

Dialectric constant and diaelectric loss of TiO, (Rutile) at
low frequencies, R. A. Parker and J. H. Wasilik, Phys.
Rev. 120, No. 5, 1631-1637 (Dec. 1960).

Application of the method of polarized orbitals to the scatter-
ing of electrons from hydrogen, A. Temkin and J. C.
Lamkin, Phys, Rev. 121, No. 3, 788-794 (Feb. 1961).

A recommended standard resistor-noise test system, G. T.
Conrad, Jr., N. Newman and A. P. Stansbury, IRE Trans.
Component Parts CP-7, No. 3, 71-88 (Sept. 1960).

On the absorption spectrum of CF, and its vibrational analy-
sis, D. E. Mann and B. A. Thrush, J. Chem. Phys. 33, No.
6, 1732-1734 (Dec. 1960).

A transfer instrument for the intercomparison of microwave
power meters, G. F. Engen, IRE Trans. Instrumentation
1-9, No. 2, 202-208 (Sept. 1960).

Standards and measurements of microwave surface imped-
ance, skin depth, conductivity and Q, H. E. Bussey,
IRE Trans. Instrumentation I-9, No. 2, 171-175 (Sept.
1960).

Plating gun bores, V. A. Lamb and J. P. Young, Ordnance
XLV, No. 245, 725-727 (Mar.—Apr. 1961).

Integrated starlight over the sky, F. E. Roach and L. R.
Megill, Astrophys. J. 133, No. 1, 228-242 (Jan. 1961).

Low temperature static seals using elastomers and plastics,
D. H. Weitzel. R. F. Robbins, G. R. Bopp, and W. R.
Bjorklund, Rev. Sci. Inst. 31, No. 12, 1350-1351 (Dec.
1960).

Electrodeposition of metals from nonaqueous media, A.
Brenner, Encyclopedia of Chemical Technology, 2d
Suppl., 315-324 (Interscience Encyclopedia 1960).

FM and SSB radiotelephone tests on a VHE ionospheric
scatter link during multipath conditions, J. W. Koch, W. B.
Harding and R. J. Jansen, IRE Trans. Commun. Systems
CS-8, No. 3, 183-186 (Sept. 1960).

Propagation of error in a chain of standards, A. G. McNish
and J. M. Cameron, IRE Trans. Instrumentation I-9,
No. 2, 101-104 (Sept. 1960).

Absolute measurement of temperatures of microwave noise
sources, A. J. Estin, C. L. Trembath, J. S. Wells, and
W. C. Daywitt, IRE Trans. Instrumentation 1-9, No. 2,
209-213 (Sept. 1960).

Electron scattering in high magnetic field, A. H. Kahn,
Phys. Rev. 119, No. 4, 1189-1192 (Aug. 1960).

Measurement of reflections and losses of waveguide joints
and connectors using microwave reflectometer techniques,
R. W. Beatty, G. F. Engen, and W. J. Anson, IRE Trans.
Instrumentation I-9, No. 2, 219-226 (Sept. 1960).

Microwave spectrum of cis—difluoroethylene, V. W. Laurie,
J. Chem. Phys. 34, No. 1, (Jan. 1961).
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