JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematics and Mathematical Physics
Vol. 64B, No. 1, January-March 1960

A Symmetric Continuous Poker Model
A.]J. Goldman and J. ]J. Stone'

(August 18, 1959)

Beginning with von Neumann, mathematicians concerned with the rational analysis of
conflict situations have realized that investigation of accurate or simplified versions of com-

mon card games leads to techniques
economic interest. In the present paper,

cated than the original von Neumann game is solved.
no raises are permitted.

an ante of 1 unit (@ >b>1);

strategy, which forbids bluffing on a low hand.

the von Neumann model.

1. Introduction

The technical literature of the mathematical theory
of games of strategy can be roughly subdivided into
(1) general papers, which deal with concepts, existence
theorems and computational methods relevant for
broad classes of games, and (i) specific papers, in
which the solutions of p(utl(,ular games are deter-
mined. Although many of the studies in the second

category have dealt with problems suggested by eco-
nomic or military conflicts, e.g. [1, Q] ,a substantial
fraction have dealt with accurate or simplified ver-
sions of common card games, the best known example
being von Neumann’s aumlysm of a simple poker
model ([3], sec. 19.4 to 19.10). Bridge and baccarat
have been treated [4, 5], but poker has remained the
favorite topic for these studies [3, 6 to 10], perhaps
because the poker models investigated have pre-
sented just the right degree of challenge (“not easy,
but not impossibly hard’) to the ingenuity of the
analyst. Of course the techniques and insights de-
veloped in these investigations are then u,pph( able to
situations of greater practical importance.

The present paper deals with a symmetric poker
game one stage more complicated than von
Neumann’s original model. The game is continuous
in the sense that the difficulties [6] due to the enor-
mous but finite number of possible hands have been
avoided by assuming (as von Neumann did)
infinite continuum of possible hands. The (more
difficult) asymmetric version has also been solved
by the authors; the results will appear elsewhere [17].

2. Description of the Game

The rules of the game are as follows. The two
players I and S first ante 1 unit. They then receive
independent random numbers (hands) from the in-
terval [0, 1]. Each player knows his own hand, but
not that of his opponent. The players act simul-
taneously, each either dropping, betting an additional

1 Present address, Stanford University. .
2 Ttalicized figures in brackets indicate the literature references at the end of

this paper.
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and insights applicable to situations of military or
a symmetric poker model one stage more compli-

There are two bet levels, a, b, and
The game has a unique optimal
The limiting case b=1 is shown to yield

b—1 units, or betting an additional ¢—1 units. If
both drop, then play ends and no payment is made.

It both bet b—1 units or both bet a—1 units, then
play ends and the player with the higher hand ® wins

the ante and bet of his opponent. If one player
bets @—1 units and the other bets b—1, then the
latter can either fold (in which case he loses his ante
and previous bet to his opponent) or see * by betting
an additional @—b units (in which case the pluyvr
with the higher hand wins the ante and previous
bet or bets 01 his opponent); in either case play ends.
Naturally we assume a>b>1.

Each plaLyvr has four courses of action for any given
hand. These are (1) to drop, (2) to bet b—1 units
with the intention of folding if the opponent bets
a—1 units, (3) to bet b-1 units with the intention
of seeing if the opponent bets a—1 units, and (4)
to bet a—1 units. FKigures 1 and 2 show the algebraic
payoff from player S to player I for any choices
of courses of action by the players.

A strategy (for either player) is a quadruple
r(z)={riz2)} (1=1,2,3,4) of functions defined for
0<z<1. Since r,z) represents the probability °
that the player will choose the ith course of action
when his hand is z, the restrictions

rd(2) 20,  11(2)+ra(2) +ra(2) +ri(2) =1
are imposed. The “smoothness” conditions on these

functions are (7) that they be inl('(rl able, (¢1) that
if (2 )>0 then, for any interval .J of which 2" is
an interior ° pomt,

)

and finally 7 (i72) that

ri(t)dt >0,

fz [bry(t) —ary(t)]dt=0 on [(b—1)/b, (a—1)/a]
0

3 The possibility of equal hands has zero probability and so can be disregarded.

4 This possibility distinguishes our model from the case m=3 of the version
studied in part II of [6].

5 More precisely, r:(z) is a probability density function.

6 The words ‘““interior’” and *‘open’’ are to be understood relative to the interval

[0,1].
7 This very weak but ad hoc condition is precisely what is needed to prove
(b) and (¢) of lemma 8.



implies

bry(z)—ary(z)=0 on [(b—1)/b, (a—1)/a]

It is convenient to define, for any r(z),

1
R,:f ri(t)dL.
0

For any 7(2), Gi(z) will denote the expected payoft
to player R, using r(z), against a fixed hand z and a
fixed course of action 7 of his opponent. Thus the
expected payoff function of the game is given by

i fo OO (2.1)

The explicit formulas ® for the G(z) are readily
found from figures 1 and 2:

. S N
R\k 1 2 3 4 P\S 1 2 3 4
N N
I
110 —1 —1 —1 110 —1 —1 —1
211 b b —b 211 —b —b —b
311 b b a 3|1 —b —b —a
41 b a a 411 b —a —a
Ficure 1 Ficure 2

R has the higher hand. S has the higher hand.

G(5)= f ot + () +ra(0) Mt

+ f[rgm+r3(t>+m<t>1dt, (2.2)

Gy(2)— f [ () —bra(8) — bry(£) b (8)1de
+ f () b () L bra() b (01, (2.3)

G’S(z):J:[-rl(t)—brz(t)—brg(t)—ar4(t)]dt
+ f =y (0) b (6) - bro() +ars(O1dt,  (2.4)

Gul2)—= j [y () —bra(t) —ary(t) —ary(t)1d¢
+ f () —bra() Fary () +an(O1dt.  (2.5)

¢ Note that the Gi(2)’s are shown by these formulas to be continuous functions.
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3. Plan of Attack

It would not be very instructive simply to state
the solution of the game and demonstrate its correct-
ness. Instead, a slightly polished version of the
process actually used to solve the game will be pre-
sented. This 1s done in sections 4 and 5, in which
it is proved (subject to the plausible assumbtion
stated in sec. 4) that the only possible optimal strat-
egy is the one obeying the conditions (a) to (d) of
lemma 8, which deal with the behavior of the strat-
egy on three intervals [0,9), (¢,9"), and (¢’,1] which
might be thought of as the sets of low hands, inter-
mediate hands, and high hands. 1t is then relatively
easy to verify that this particular strategy is indeed
the unique optimal strategy; this is done m section 6,
primarily by inspection. of the expected payoft func-
tion (2.1). In section 7 the limiting case b=1 is
dealt with, and this game is found to have a unique
optimal strategy obtained ® by “passing to the limit”
in the optimal strategy for 6>1. The von Neumann
poker game of sections 19.4 to 19.10 of [3] is shown
to arise as a ‘reduced game’ from this limiting case.

In section 4 it is shown that r7;(z)=0 on [0,1] for
every optimal #(z). The points g, ¢’ are located, and
the unique optimal 7(2) is isolated in section 5. The
arguments of these sections are essentially all appli-
cations of the following domination criterion:

The strateqy r(z) is optimal only if the following is
true: For each z, i for which G(z) (as a function of 1)
does not assume its minimum, r;(z)=0.

The correctness of this criterion follows from the

smoothness condition (72) and the fact that »(z) is
optimal only if

K(@,r)=min K(rp,*).
]‘*

4. Elimination of One Course of Action

The elimination is effected as follows.

Lemva 1. For every optimal r(z), r3(z)=0 on
[0,1].

Otherwise, for some optimal 7(z), R;>0 and
r5(2)>>0 for some z>0. If 2’ is the least upper
bound of the set of all such z, then by (2.4) and (2.5)

G4(z’)—6’3(z’):—(a*b)lf3~2bfjr2(t)dt<0,

so that by continuity and the domination criterion
r5(2)=0 In a neighborhood of z’, contradicting the
definition of z’.
The following plausible assumption (which will
be verified in sec. 6) is now made:
Assumprion: For every optimal rv(2), r41)>>0
(and thus R>1).

¢ This is not quite the case for the asymmetric version see’ 11].



5. Derivation of the Necessary Conditions

Since application of the domination criterion
requires examining the signs of the pairwise differ-
ences of the G;(z2)’s, the formulas for these differences

(based on (2.2) to (2.5) and the condition ry(z) =0
on [0,1]) w 111 first be given:
(}2(:)—(}1(3):(b—1)—I)Ia’l—'zbj;zf'z(r)<lt (5.1)
(;3(;)—Gl<;):blrg+a1.>.4—1—2bJ;'r2(z></r
-2(1.]:“(1)(11 (5.2)
Go(2) — Ga(2) = (a—b) Ri—2a J:u(olu (5.3)
Gu(z)— Gu(2) = — 1 — b R (LI:Q—‘.Z(IJI/‘_‘(1)1/1 (5.4)
1.(2) — Ga(2) — —2b R+ (a—b) 1fr~_>1;J:r2(r>(u
—-2(LJ:7'4(t)(1t (5.5)
Go(2)— () — —2b Ryt QbJ;:r:(t)dt (5.6)

The first four of these continuous functions are
clearly monotone nonincreasing. The following
table 1 defines the maximal open intervals in w hich
these functions are positive (+), zero (0), and
negative (—). For each interval in the (+) and (—)
columns, the result of applying the domination
critcrion is given. Inspection of (5.1) to (5.4)
reveals conditions on the intervals in the (0) column

10 Of course lemma 1 renders superfluous the appearance of rz(z) =0 in the table.

which are given below the interval. A question
mark means that the interval may (so far as is
known at the moment) be vacuous or degenerate
to a single point; the condition written below such
an interval is to apply only if the interval is non-
degenerate.

The next three lemmas yield the
and R for optimal »(2)

values of Ry, I,
(lemma 1 shows that /2;=0).

Lisvmva 2. For every optimal r(z2):
(a) G,(0)— G (0)=(b—1)—bR,>0.
(b) G(0)— G (0)=—1—bRy+al<0.
If (a) were false, then the monotonicity of

{?2(.:)—(}1(,3') and the domination ecriterion would
imply £7;=0, so that (a) would be true. If (b) were
false, then since G4(1)—G(1)<0 one would have

Gy(2)— Gy(2) =0

for some 2" in (0,1); by (5.10) 7,(2)=0 on [0,z
by (5.4)

); SO

Gi(0)— G (0)=G,(2")—Gy(2')=0

and (b) would be true.

Leymva 3. For every optimal r(z):

(a) 7(0)— G, (0)=(b—1)—bR,=0.
(b) G (0)—Gy(0)=—1—bR,+aR,=0.
If Gy(1)—Gi(1)>0. then the monotonicity of

Gy(2)— Gy (2) and the domination criterion would
imply 72,=0, so that on the one hand the initial
assumption would read

(b—1)—bR, >0,

Difference o (0) ! (—)
oo | pen | war | e
G —Gie) ,[?(’)“)_)ﬂ : E{)@; - ll((q;)l i] .
[N e 69
-6 | )E? (gﬂv 7 7(3“:(;4__15 —,,l((ngilo N o
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and on the other hand R,—=1—R, (by lemma 1,
using R,=0). Combining these statements yields
R >1/b, which together with (5.4) and R.=0 yields

G4(0) — G1(0) = —1+aR >0,

contradicting (b) of lemma 2. Thus Gy(1) — G,(1) <0,
which together with (a) of lemma 2 implies that

Gz(Z,) —Gl(Z,) =)

for some z’ in [0,1]. By (5.7) 72(2)=0 on [0,2); so

by (5.1),

3=

G2(0) — Gi(0) = Go(z") — G1 (2') =0,

and (a) is proved. If (b) were false, then by (b) of
lemma 2, the monotonicity of Gi(2)—G\(2), and the
domination criterion, we would have [;=0, con-
tradicting (a).

Lvmma 4. For every optomal r(z):

(a) Ri=(b—1)/b.
(b) = (a—b)/b(a+D).
() R,=2/(a+b).

This follows from lemma 3 and the corollary
2 +Ra+Ry=1 of lemma 1.

Next the points ¢, ¢/ will be located, and the
behavior of an optimal r(z) ou [0,9), (¢,¢") and
(¢’, 1] determined.

Lemma 5. For every optimal r(z):

(a)  g=g=g=0b—1)/b.
(b) wlE=1 on [0,9).
(c) )= on (g,1].

By (5.5) and lemma 4,
Ga(2)—Go(2) —2b J Zrz(t)dt—zaj rd(t)dt (5.11)
0 0

If g2<g', then by (5.7) and (5.10) one has r,(2)=1
on (g, ¢%), n(z)=1 on [0, ¢), and r,(z)=0 on
[0, %), so that the last equation yields

Gy(g'h) — Gy (gt) >0;

continuity and the domination criterion show that
r(2)=0 in a neighborhood of ¢*!, but (5.4) and (b)
of lemma 3 show that this contradicts the definition
of ¢*'. An entirely similar argument refutes the pos-
sibility ¢<g¢%, and so g% =g¢%. By (5.7) and (5.10)
we have 7 (z)=1 on [0, ¢%) and 7(2)=0 on (g%, 1],
so that ¢2'=R,; an application of (a) of lemma 4
completes the proof.
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Lieyma 6. For ecery optimal r(z):
(e gE=Tgt—(a—="1)/q}
(b) ry(2)=1 on (¢, 1]

Note first that 7,(z)=1 on (¢°3, 1] since (1) r2(z)=0 !
on (g%, 1] by (5.9), (i1) 7,(2)=0 on (g, 1] by lemma 5,
and (1i1) ¢<< ¢ because Gs(g)— Gx(g) >0 by (5.3) and
the fact (see (5.10)) that r4(z)=0o0n [0, g). It follows
that

D)

» 32
Jg*m(z’)dt»&(1—,(1?):]&:2/(«1—,#1)).
0
The definition of ¢%? together with (5.3) shows that

J

and combining the last equations yields the asserted
value of ¢%2.

.gi2r4(t)dt: (@—b) Ry/2a= (a—b)/a(a+0b), (5.12)

0

~

Lievmya 7. For every optimal r(2),

Gi(2)—Gy(2)=0  only, g']

Since 7,(2)=0 on (¢’, 1], (5.11) and (5.12) imply
Gi(g')—Galg’) =2bR;— (a—b)R=0,

where the last equality follows from lemma 3. Let
z* be a point at which Gy (z2)— G,(2) attains its maxi-
mum M on [¢g,9']; the last equation shows that A/> 0.
If M >0, then by continuity and the domination eri-
terton one has 7,(2)=0 (and thus 7r(z)=1, since
r(2)=0 on (g,1]) on some interval (z*2"); by (5.5)
Gy(2)— Gy(2) 1s strietly increasing on (z*,2”), which
contradicts the definition of z* unless z*=g¢’, n
which case M=0 by the last equation. Thus M=0;
an entirely similar argument shows that the mini-
mum value of Gy(z)—G.(2) on [g,9'] 1s m=0, and so
the lemma is proved.

The completion and summary of the preceding
material is as follows.

Lemma 8. Let g=0b—1)/b and ¢'=(a—1)/a. If
the assumption at the end of section 7 is correct, then
the only possible optimal strategy is the strategy defined

by
(@) (=1 on [0,9).
(b)  n(2)=a/(a+b) on (g,9").
(¢)  r(2)=b/(a+b) on (g,9").
d) (=1 on (g,1].

From lemma 1, lemma 5, and lemma 6 one has (a),
(d), and also
r2(2) +ry(2)=1

on (¢,9”). (5.13)



From lemma 7, (5.5), and lemma 4 one has

on (g.9),

j|myo;nmawufo
0

which by smoothness condition (7i7) (see section 2)
implies

bry(z) —ary(2)=0 on (9,9");

this and (5.13) imply (b) and (¢).

6. Proof That the Conditions Are Necessary
and Sufficient for Optimality

In this section the notation 7(z) is resevved for the
particular strategy described in lemma 8, while arbi-
trary strategies are denoted r*(z).

LeMMa 9.

Kro¥)=min K(rp*) if and only if
rE(2) obeys r*

(a) wl(E) =0 on [0,g).
(b) AlE)=mrz)=0 on (g.9").
(¢) #HE)=mE)=0 on (g’,1].

The K(r,r*) of (2.1) is first written as the sum of
these integrals:

J

fﬁuﬂu%mmmr(

;')
(

0

[G1(2)+7E(2) (Go(2) — G, (2)) +75(2) (G3(2)
—G,(2)+rE(2) (Gi(2) —Gi(2)) ]dz=.

(2

2(2)) +7%(2) (Ga(2)
) +75(2) (G4(2) — Ga(2)) Jdz.

.
T2

’HQ@”ﬂMQM—QMHﬁmmﬁ)
' —G(2) +75(2) (Ga(2) — Gu(2)) |d2.

It is easily verified that r(2) has the properties
deseribed in lemma 4, and since 73(2)=0 on [0,1],
r(z) obeys (5.1)-—(5.6). Using these facts, one finds
that on [0,g) the coefficients of 7%(2) and 7§(z) in the
first integral vanish, while that of 7%(2) is positive.
Hence 7§(z) minimizes the first integral if and only
if it satisfies (a). Similarly, 7§(z) minimizes the
second integral if and only if it satisfies (b), and
minimizes the third integral if and only if it satisfies

(c).

<

r(

Since 7(z) obeys (a) to (¢) of lemma 9,

THEOREM. ) 18 the unique optimal strateqy.

K(r)=min K(rr*)
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which (since the game is symmetric) implies that
7(2z) 1s optimal.  Thus any optimal 7§(z) must satisfy

K@ r§)=min K(r,r*)

and thus, by lemma 1 and (¢) of lemma 9, must
satisfy 7§(1)=1. Hence the assumption at the end
of section 4 is correct, and so, by lemma 8, r(2) 1s
the only optimal strategy.

7. Discussion of a Limiting Case

The limiting case b=1 will now be briefly discussed.
(Recall that 6>1 previously.) It is easily verified
that the rvesults of the previous sections remain
valid (many of the proofs can be considerably simpli-
fied), so that the game with =1 has a unique opti-
mal strategy which is obtained from that for b >1
(i.e., from (a) to (d) of lemma 8) by setting h—1.
Since g=0 for b—1, the unique optimal strategy
is given by

(a) ro(2)=a/(a+1) on [0,(a1)/a).
(b) r2)=1/(a+1) on [0,(a—1)/a)
(¢) )= 1l on ((a—1)/a,1].
Upon changing
player R, player S, r,, rs, 7y a

to player 1, player 2, ps, po, p1, a/b
respectively, one finds that this strategy is precisely
the unique optimal strategy of the continuous von
Neumann poker game discussed in sections 19.4
to 19.10 of [3]. To explain this, note that (2.2) and
(2.3), with b=1, vield

o) — Gr(2) = — Ry —2 j [ra(0) 7y (1) 1 <O
0

for all strategies »(z), which on the one hand shows
that the first course of action is dominated, and on
the other hand yields a quick proof! that r,(z)=0
on [0,1] for all optimal »(z). Thus, without loss of
optimal strategies, the game can be “‘reduced” by
“striking out” the first course of action for both
players.  This reduced game is easily scen to be
identical with the von Neumann game, except for
some changes of language and a multiplicative factor
b in the expected payofl function. Thus the von
Neumann game appears as a reduced form of the
limiting case b= 1 of the game solved in this paper.

11 If r1(2') >0 for some 2/, then R;>>0; the formula and the domination eriterion
vield r1(z)=0 for all z, a contradiction.
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