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Part 1. Information Theory and Coding
P. Elias*

Since 1957, there has been considerable progress in the theory of coding messages for
transmission over noisy channels. There have been three main directions of advance.
First, there has been work on the foundations of the theory. During this time American
mathematicians interested in probability have shown a serious interest in information
theory, since Feinstein’s work (now available in book form) [Feinstein, 1958a] and since
the interest shown by Kolmogorov and Khinchin. Second, a great deal of work has been
done on error-correcting block codes for noisy binary channels. This work has involved a
good deal of modern algebra, and some mathematical algebraists have been joining the
communications research workers in attacking these problems. Third, there has been con-
tinuing investigation of procedures in which input messages are coded and decoded sequen-
tially rather than in long blocks. This work and the work on binary block codes both have

significant practical implications for electrical communications.

1. Foundations

Shannon’s original demonstration of the noisy
channel coding theorem was an existence proof
[Shannon, 1949]. Given a channel of capacity C
bits per second and a rate of transmission R bits
per second, the transmitter sends sequences of N
channel input symbols.  The receiver receives
sequences of N channel output symbols and decides
which input sequence was transmitted, making this
decision incorrectly with probability 2.  What
Shannon showed was that for £ < O, P could be
made arbitrarily small by increasing N. The proof
was not constructive, and nothing quantitative
was said about how rapidly 7 decreased as a func-
tion of N for given R and (. Feinstein [1954; 1958a]
showed that P could be bounded by a decaying
exponential in N. His proof covered channels with
a simple kind of finite memory. While constructive
~in principle it could not be used in practice to con-
© struct a code with large N. In 1957, Shannon [1957]
gave a remarkably concise proof based on his
original random coding argument but more detailed
and precise, which also gave an exponential bound
to P as a function of N, and extended the proof to
channels with considerably more complex memory.
Blackwell, Breimann and Thomasian [1958] proved
- the existence theorem for channels with a finite-
state memory of a still more general kind. Wolfo-
witz [1960] and Feinstein [1959] have also proved
converse theorems—the weak converse being that
for ® > C, P cannot approach zero, and the strong
. converse being that for £ > €, P must approach 1.
The kind of technique used by Shannon [1957]
- can be extended to obtain upper and lower bounds
to the rate of exponential decay of P with N. Earlier
work on binary channels had shown that for a con-
- siderable range of R less than C the upper and lower
| bounds essentially agreed, and, best possible behavior
could be uniquely specified. Similar results have
been obtained by Shannon for more general channels.
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This work is not yet published, but the case of a
continuous channel with additive Gaussian noise
has been treated in detail [Shannon, C. E.; 1959].

The increasing interest of mathematicians in this
field is evidenced by an article by Wolfowitz [1958].
In general the results which the mathematicians
have obtained are firmer proofs under more general
circumstances of theorems whose general character
was not surprising to communications researchers.
However a recent paper [Blackwell, Breimann, and
Thomasian, 1959], has presented an interesting new
problem, defining capacity and proving a coding
theorem for a channel whose parameters are not
known precisely, but are constrained to lie in known
ranges. This work might be relevant to incomplete-
ly measured and time-varying radio channels. So
might a paper by Shannon [1958] on channels in
which the transmitter has side information available
about the state of a channel with memory: an exam-
ple would be the information obtained by measure-
ments of the propagation medium obtained,while
communicating.

2. Binary Channels

Starting with the earlier work of Hamming [1950]
and Slepian [1956a, 1956b], error-correcting block
codes for binary channels have been investigated
extensively. Peterson and Fontaine [1959] have
searched for best possible error-correcting codes of
short block length (up to 29), using a computer.
The number of codes grows so rapidly with block
length that it was necessary to use many equivalence
relations and shortcut tests to eliminate codes from
consideration early. A number of counterexamples
were found to common conjectures about optimum
codes.

The use of error-correcting codes in practice has
been limited by the difficulty of implementation, and
by the fact that in many applications of interest
the errors in the channel are not independent, but
occur in runs or bursts. In earlier work Huffman
[1956] had shown a coding and decoding procedure



for the Hamming code which was simple to imple-
ment, and Green and SanSoucie [1958] have shown an
easy implementation for a short multiple-error-
correcting code. Hagelbarger [1959] has described
codes which correct errors occurring in bursts whose
implementation is not too difficult, and Abramson
[1959] has described a highly efficient and easily
implemented set of codes with similar properties.

Work on codes of longer block length, which can
correct multiple errors, started with a decoding
procedure given by Reed [1954] some time ago for
the Reed-Muller family of codes. For really large
block lengths these codes are not efficient, but Perry
[1958] has built a coder and decoder for a Reed-
Muller code which has block length of 128 digits, 64
of which are information digits and 64 check digits.
This code can correct any set of 7 or fewer errors
among the group of 128 and the efficiency is quite
good. Using microsecond switching devices, the
units can keep up with millisecond binary digits.

Calabi and Haefeli [1959] have investigated in
detail the burst correcting properties of a family of
codes which has been introduced earlier for correc-
tion of independent errors [Elias, P.; 1954]. They
also discuss the implementation of these codes.

A new family of codes discovered by Bose and
Ray-Chaudhuri [1959, 1960] is much more efficient
than the Reed-Muller codes for larger block lengths.
Although in the limit of infinite block length these
codes may also have zero efficiency, at lengths of a
few thousands digits they are still quite good.
Peterson [1960] has discovered an economical way
to decode these codes. There is a great deal of cur-
rent work on finding more properties of these codes,
finding similar codes for channels which are sym-
metric but not binary, and so forth.

There has been a good deal of recent work on
cyclic codes, including some encouraging results on
step-by-step decoding due to Prange [1959]. Cyclic
codes are closely related to the sequences which can
be generated by shift registers with feedback con-
nections. Recent discussions of these sequences
have been given by Elspas [1959] and by Zierler
[1959]. A review of the recent algebraic work on
coding theory, including the Galois field theory
which enters in the Bose-Chaudhuri codes, will be
given by Peterson in a monograph to be published
shortly [Peterson, 1960]. Most of the results in
this area extend to channels which have an input
alphabet of symbols whoses number is not 2 but any
prime to any power, the channel still being complete-
ly symmetric in the way it makes its errors. Non-
binary channels have been investigated in their own
right by Lee [1958] and by Ulrich [1957].

The introduction of two thresholds rather than
one in a continuous channel introduces a null zone.
The transmitter sends a binary signal, but the re-
ceiver makes a ternary decision, not attempting to
guess the value of signals received in the null zone.
Introducing the null zone may increase channel
capacity, as shown by Bloom et al. [1957]. Tt also
has the valuable effect of reducing the amount of
computation required in decoding, since it is easier

to replace missing digits than to correct incorrect
ones. This is especially relevant for application to
channels with Rayleigh fading.

3. Sequential Decoding

Earlier work had shown that the block coding pro-
cedure could be modified (in the binary case) by con-
structing codes in a convolutional fashion, so that
the coding and decoding of each digit was of the same
character and involved the same delay [Elias, 1955].
The parameter which replaces block length in such an
argument is the delay between the receipt of a digit
and the attempt to decode it reliably. This simpli-
fied the coding but left the decoding procedure as
complicated as ever. However Wozencraft [1957]
has shown that a suitable sequential coding procedure
may be followed by a sequential decoding procedure
which reduces the average amount of decoding com-
putation immensely. Like the best of the long block
codes now in prospect, this procedure promises milli-
second communication with microsecond switching
circuitry in the decoder at very high reliability.
Unlike the block codes, however, Wozencraft’s pro-
cedure is statistical and not highly algebraic, and it
may be expected to generalize to other discrete
channels with no special symmetry properties. On
the other hand the computation remains reasonable
only for a range of 12 well below (.  Epstein [1958]
has studied a sequential decoding procedure for the
erasure channel, and work on more general channels
is under way.

4. Conclusions on Coding

The general conclusions of interest for applications
of error-correcting codes are two. First, there are
now several good small codes which correct bursts of
errors, which could be instrumented fairly easily for
use in situations in which a rate well below capacity
can be tolerated so that short codes may be used.
These may find early application in sending digital
data over telephone lines. Second, there are now
available several kinds of large block codes and
sequential codes which will permit very reliable
transmission over long distance scatter channels,
which can also be implemented. The cost of imple-
mentation is appreciable in these cases, but current
computer circuitry is fast enough to permit decoding
at transmission rates of the order of 1,000 binary
digits per second, coded in blocks or with sequential
constraints hundreds of digits in length, and the
alternative of more large antennas or greater trans-
mitter power are also expensive. It seems likely
that such systems will be in experimental use by the
next international URSI meeting in 1963.

5. Other Topics

Less progress has been made in the economical
coding of information sources. In part this is be-
cause such progress becomes work in speech analysis
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of television systems and not information theory as
such. However it might be worth noting that a
scheme for coding runs of constant intensity in tele-
vision has been demonstrated at full televison speed
by Schreiber [1958].

Arelation between the bandwidth and the duration
of a signal is imposed by the Heisenberg uncertainty
principle, whose applicability to time functions was
pointed out by Gabor many years ago. Kay and
* Silverman [1959] have examined this relationship
more carefully, and a form of the uncertainty prin-
ciple which places a lower bound on the sums of
entropies rather than on the products of second
moments is discussed by Leipnik [1960]. Stam [1959]
also discusses this entropic inequality and closely
related results.

The sampling theorem is closely related to these
questions. Linden and Abramson [1960] have given
a generalization which permits the closed form ex-
pression of a bandlimited function in terms of sam-
ples of the function and its first £ derivatives, taken
at time intervals (k1) times as far apart as is re-
quired for samples of the function value alone. This
extends earlier work by Jagerman and Fogel [1956].
Results bearing both on the uncertainty principle
and on approximate sampling theorems—i.e.,
theorems concerning functions which include all but
a fraction 6; of their energy in bandwidth W and all
but a fraction 6, of their energy in a time interval of
duration 7—are the subject of active current work.
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Part 2. Random Processes

P. Swerling*

Research on random processes in the period under
consideration may be conveniently summarized
under three main headings: statistical properties of
the output of nonlinear devices; estimation theory
for random processes; and representation theory for
random processes.

Under the first heading, the investigations concern
the statistical properties of the output of a nonlinear
device, or of a linear filter following a nonlinear
device, when the input is a random process having
prescribed statistics. These problems are of great
interest since this is a model for many types of
receivers. The period 1957 to 1960, continuing
earlier work, has seen the buildup of a large inventory
of results and of methods for attacking this class of
problems.

One of the most comprehensive approaches is
reported on in papers by Darling and Siegert [1957],
and by Siegert [1957, 1958]. These papers report on
work actually done earlier. The problem considered
is that of finding the (first order) probability distri-
bution function of the quantity

[ otatr) e,

where ¢ is a preseribed function and z(r) is a com-
ponent of a stationary mn-dimensional Markoff
process. Many problems in the category under
consideration are special cases of this. The approach
is via the characteristic function of the required
probability distribution;it is shown that this charac-
teristic function must satisfy two integral equations.
Under certain conditions, it can also be shown that
the characteristic function must satisfy two partial
differential equations.

Another type of problem in this category is the
investigation of the second or higher order proba-
bility distributions of the output, and particularly
of the autocorrelation function of the output or the
cross-correlation between two or more such outputs.
For example, Price [1958] gives a theorem which is
useful in deriving such auto- and cross-correlations
when the inputs are Gaussian. The theorem stated
can be used in many cases to calculate the quantity

n
R=Expected Value of{ 1 f;(z,) »>
=l

where (x,, . . ., ,) 1s a Gaussian vector and f; are
prescribed functions.

Many other papers, for example Leipnik [1958],
Pierce [1958], Kielson et al., [1959], Helstrom and
Isley [1959], McFadden [1959], Campbell{[1957], and
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Leipnik [1959],
results and using a number of different approaches.

Work has also continued on the problem of the -
distribution of zero crossings of Gaussian processes
[Helstrom, 1957, and Brown, 1959].

Under the heading of estimation theory for random
processes one might first mention the subject of
estimating the spectral density of stationary Gaus-
sian processes. Two references [Grenander and
Rosenblatt, 1957, and Blackman and Tukey, 1959]
summarize much work on this problem, a great deal
of which had been done previously (but not all of
which had been published previously). Blackman
and Tukey discuss two types of estimates of the
power spectrum, viz: estimation of the autocorrela-
tion function, multiplication by a prescribed function
of time called a “lag window,” followed by Fourier
transformation; or, passing the observed process
through a filter of specified transfer function and
calculating the average power of the output. They
derive expressions for the first and second moments
of such estimates, as well as of the cross-moments of
estimates of the spectral density at two different
frequencies. Grenander and Rosenblatt discuss
similar types of spectral estimates, emphasizing and
utilizing the fact that these as well as most other
useful estimates of spectral density are quadratic
forms in the observed data. They derive first and
second order moments, as well as asymptotic proba-
bility distributions for large observed samples, of
such estimates.

A recent paper of Grenander, Pollak, and Slepian
[1959] discusses the small sample case, relying heavily
on the fact that spectral density estimates are usu-
ally quadratic forms in the observed data.

In an interesting paper Slepian [1958] has dis-
cussed the following hypothesis-testing problem:
given an observed sample of a Gaussian random
process, known to be characterized by either one of
two prescribed power spectra, which power spectrum
does the process actually have? It turns out that in-
problems of this type, the measures induced by the
two alternative hypotheses may be singular with
respect to each other; in which case, it is possible to
decide between the alternatives with arbitrarily
small error probability, and with an arbitrarily small
sample. Slepian gives various sufficient conditions
for this. The power spectra satisfying his conditions |
are, moreover, standard types very frequently |
postulated. This emphasizes that the mathematical
model one chooses must be carefully chosen to be

appropriate to the problem one is trying to solve.

Another type of estimation problem for random
processes 1s considered by Swerling [1959].  Suppose
a prescribed waveform, depending on one or more
unknown parameters, is observed in additive Gaus--
sian noise having prescribed autocovariance function .
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and zero mean. KExpressions are derived for the
greatest lower bound for the variance of estimates
of the unknown parameters having prescribed bias.
These greatest lower bounds are found to coincide
in certain special cases with the variance, obtained
by Woodward, of maximum likelihood estimates of
the unknown parameters. Similar problems are
mvestigated in Middleton [1959].

In the field of representation theory for random
processes, work has continued on the subject of
representation of nonlinear operations on random
processes—especially for Gaussian processes. Papers
by Zadeh [1957] and Bose [1959] and a book by
Wiener [1958] deal with this problem. The approach
followed is, first, to express the initial random process
{z(t)} as a series

() =3t (1),

where {a,(t)} 1s a set of orthonormal functions over
the interval of definition of {z(t)}. If {z(@)} is
Gaussian, the wu, are Gaussian and, if «,(f) are
properly chosen, can be made independent. Any
linear or nonlinear functional of {z(f)} can then be
regarded as a function of w, . . ., w, . . ..
Second, one may choose a set of functions of the
variables %, which are orthonormal in the stochastic
sense as explained, for example, in Zaceh [1957]
with respect to the process {z(t)}. Then, nonlinear
functionals of {z(t)} may be expanded in a series of
the orthogonal functions of the variables u,.

Other research in the field of representation theory
has treated such subjects as:

Use of bi-orthonormal expansions [Leipnik, 1959],
envelopes of waveforms [Arens, 1957, and Dugundji,
1958], the sampling theorem and related topies
[Balakrishnan, 1957, and Lerner, 1959], and harmonic
analysis of multidimensional processes [Weiner and
Masani, 1957 and 1958].

Much of this work in representation theory pro-
vides useful tools for attacking the problems dis-
cussed under the first two headings above.
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Part 3. Pattern Recognition
Arthur Gill*

Pattern recognition, in its widest sense, cuts across many fields of engineering interest—
from character sensing to learning theory, and from machine translation to decision-making
techniques. Inasmuch as the problem of recognizing patterns is that of simulating human
thinking processes, it is also closely related to nonengineering fields such as physiology,
psychology, cryptology and linguistics. No attempt is made in this report to summarize
the developments in all these areas. Rather, pattern recognition developments are reported
only to the extent that they represent a direct contribution to the theory of information.
The enclosed bibliography is compiled primarily from engineering journals; consequently,
it will be found that the emphasis in this report is placed on the recognition of visual patterns,
rather than vocal, linguistic or other patterns, which are mainly covered in nonengineering
publications.

The reason for the acute engineering interest in visual patterns is the recent emergence
of the following two urgent problems: (a) How can redundancy be removed from television
pictures, so that video signals could be transmitted at a greatly reduced waveband; (b)
How can printed documents be read automatically, so that the most serious bottleneck—
the human typist or card puncher—could be eliminated from digital data-processing systems.
Although these two topics are treated separately in the literature, both represent different
aspects of the same general problem of pattern recognition. This problem may be divided,
somewhat artificially, into three phases: (1) Redundancy removal, (2) Recognition programs,
(3) Recognition system design. This division will be adopted in the following summary.
Since the boundaries between three phases are not well defined, the corresponding bibliography

classification should not be regarded as too rigorous.

3.1. Redundancy Removal

Both the compression of television bandwidth
and the design of character recognizers, require the
determination of the source redundancies, and the
establishment of secanning-coding schemes which
would minimize these redundancies. Considerable
work has been done in the past three years on the
“run-length” scheme, where lengths of pattern runs,
rather than values of individual cells, constitute the
transmitted information. [Capon, 1959; Michel,
1958; 1957]. The redundancies which may be
eliminated under this scheme were measured for
some sources of practical interest, and bounds were
found for the potential bandwidth saving [Deutsch,
1957; Powers and Staras, 1957; Schreiber and
Knapp, 1958]. Another scheme that was explored
is one in which scanning is confined to the minimal
set of cells necessary for recognition under noiseless
and noisy conditions [Gill, 1959]. Progress has
also been made in the techniques of measuring the
autocorrelation function of two-dimensional patterns
[Kovasznay and Arman, 1957].

3.2. Recognition Programs

Although the removal of redundancies from the
given patterns simplifies and accelerates their recog-
nition, the recognition itself is a result of a predeter-
mined series of decision rules—applied sequentially
or simultaneously—which is called ‘“‘a recognition
program.” The program invariably involves a set
of transformations performed on the unknown pat-
terns, followed by a comparison of the transformed
pattern with a precompiled library of reference
patterns. The size of the library and the length of

*Department of Electrical Engineering, University of California, Berkeley,
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the comparison process depend on the chosen set of
transformations. Thus far, no universal procedure
has been formulated for selecting a necessary or
sufficient transformation set for a given pattern
source; rather, each investigator uses intuitive or
heuristic arguments to propose such a set for the
specific source under investigation [Bledsoe and
Browning, 1959; Dimond, 1957]. The approach
which seems to be the most popular in the case of
character recognition, is the association of each
pattern with a distinct set of two-dimensional
features (“corner,” “intersection,” “arc,” ete.) which
can be abstracted from each pattern with the aid of
digital computers [Bomba, 1959; Kamentsky, 1959;
Unger, 1959]. The necessary set of concepts is,
again, presented heuristically. Similar situation
exists in recognition programs proposed for other
classes of patterns [Gold, 1959].

3.3. Recognition System Design

Once a set of transformations is selected for the
recognition program, a system has to be constructed
for executing the program. The intuitive basis on
which the program is constructed, forces most in-
vestigators to plan a flexible system, in which trans-
formations can be readily varied either manually or
automatically as more experience is gained on the
nature of the pattern source and the performance of
the program (the automatic method is closely re-
lated to problems concerning ‘“adaptive systems,”
which are not reviewed in this report). The majority
of all recognition systems built to date are found to
be still in the “learning” stage, serving as testing
grounds for the various schemes devised by the
respective investigators [Grenias et al., 1957 ; Kirsch
et al., 1957; Tersoff, 1957]. A byproduct of these
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circumstances are the so-called “pattern synthesis”
techniques, developed for simulating various pattern
sources for test purposes [Flores and Ragonese, 1958;
Grenias and Hill, 1957]. These techniques are also
applied to the design of optimal-style patterns,
where a limited degree of freedom may be exercised
over the construction of the source itself.

It seems that although a considerable progress
has been made in various areas of pattern recogni-
tion, it is still minute in comparison with the prob-
lems that still remain unresolved. The scanning-
coding techniques devised for transmitting visual
patterns compress the currently employed bandwidth
by at most a factor of 10, while a factor of a million
is required in order to approach the recognition
capacity of the human eye. Automatic reading of
relatively standardized characters is in a relatively
high development stage, but the mechanical recog-
nition of handwriting or speech are still practically
unfeasible. Further progress in this field seems to
lie in three directions: (a) Deeper analysis of the
redundancies inherent in the various classes of pat-
tern sources, (b) Formulation of procedures for
determining optimal sets of transformations required
for recognizing given sets of patterns, (¢) Simulation

of learning processes with digital computers. It is
hoped that the next three years will witness

significant contributions to these basic problems.
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Part 4. Detection Theory

Robert Price*

4.1. BRemarks

The period since the XII General Assembly has
seen a consolidation of the closely related concepts
of Wald, Woodward, Middleton, and Van Meter,
and Peterson, Birdsall, and Fox into a fairly unified
theory of detection, together with the successful
application of the theory to a variety of problems.
Through this approach, ‘optimal’ detector structures
for electronic systems can be synthesized provided
that the designer has a priori knowledge of the
governing statistics and error costs. At the same
time, older and more standard detection techniques
have continued to receive attention, the theoretical
results generally being stated in terms of proba-
bility-of-error or signal-to-noise ratio at the detector
output. If one must attribute the discovery of
any new, guiding principles to the preceding three-
year period, the most likely candidates would seem
to be found in those few studies which have sought
theories which can cope effectively with situations
in which @ priori knowledge is seriously lacking.

It appears that roughly half the effort of the past
three years has been devoted to specific detection
problems in radar and communications. In con-
temporary communications studies considerable heed
is paid to ‘optimum’ detection procedures, there
being less inclination to examine conventional,
suboptimum detectors than in the radar analyses.
The reason for this may be that the radar designer
faces considerably greater a priori uncertainty,
both with regard to the signal and the channel
through which it comes. By contrast, relatively
simpler channels have usually been assumed without
loss of realism in communications problems, while
the communications system designer also has more
direct control of the signal. The appropriate opti-
mum detectors for communications then turn out
to be rather elementary, and can at present be con-
structed with hardly more effort than suboptimum
devices require. In fact, the communications en-
vironment is generally ‘clean’ enough that much
recent work has been concerned with determining
good sets of transmitted signal waveforms, the use of
an optimum receiver being taken for granted.

The bulk of the remaining effort has dealt with
special topies in detection of quite general applica-
tion. Further study in sequential decision has been
made both theoretically and through Monte Carlo
computer experimentation, in the hope of achieving
significant speedup in detection over fixed-sample
operation. Greater understanding of the detection
of stochastic signals in noise has been sought for
applications in such fields as radio astronomy and

*Lincoln Laboratory, M.I.T., Lexington, Mass.
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in systems where rapidly fading channels are en-
countered. There has been some work on param-
eter estimation for a finite number of parameters,
a subject which is virtually inseparable from detec-
tion theory. Detection losses in nonlinear devices
have also received further examination.

Attempts to circumvent the a priori difficulty
represent only a small fraction of the output of the
past three years in detection analysis, but have
perhaps the most significance for future work.
Original attacks have been made through game
theory, comparison of experiments, nonparametric
techniques, dynamic programing, and inductive
probability. It is hoped that one or more of these
tools will prove effective in breaking new ground.

4.2. Papers

The following list of references has been drawn
largely from the American journals concerned with
statistical communication theory and information
theory, but also contains a few laboratory technical
reports. This selection omits papers on multiple
parameter estimation, and the estimation of signal
waveforms and impulse responses, since these
topics verge on filtering theory. Other closelyrelated
subjects which are not covered are classical studies
in hypothesis testing that do not refer to electronic
systems, investigations into ambiguity functions of
radar waveforms, and information-feedback sys-
tems.! The future pursuit of feedback studies may
well lead to wider interchanges in detection notions
between radar and communications,
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Part 5. Prediction and Filtering
L. A. Zadeh*

Much on the research on prediction and filtering conducted in the United States during
the period 1957-1960 was concerned essentially with various extensions of Wiener’s theory.
In particular, extensions involving nonstationary continuous time processes, vector-valued
processes, stationary and nonstationary discrete-time processes, nonGaussian processes,
incompletely specified processes, and nonlinear filters and predictors have received attention.

A new and very promising direction in prediction theory has been opened by the applica-
tion of Bellman’s dynamic programing to the determination of optimal adaptive filters and
predictors. Actually, the basic work of Bellman and Kalaba [1958, 1959, 1960] and its
extensions and applications by Freimer [1959], Aoki, Kalman, and Koepcke [1958], and
Merriam [1959] are not concerned with prediction and filtering as such. However, the
recent work of Kalman shows that, mathematically, there is a duality between the filtering
problem and the control problems considered by Bellman and Kalaba, and others. Thus,
these contributions are likely to have a considerable impact on the course of development of
the theory of filtering and prediction in the years ahead, and point toward an increasing
utilization of digital computers and the concepts and techniques of discrete-state systems
both in the design of predicting and filtering schemes and in their implementation.

During the past two years four books containing in aggregate a substantial amount of
material on prediction and filtering have been published. Davenport and Root [1958]
present a clear exposition of Wiener's theory and some of its extensions. Wiener [1958]
discusses orthogonal expansions of nonlinear functionals but stops short of applying them
to prediction problems. Bendat [1958] presents a general survey of linear prediction and
treats some special problems in considerable detail. Middleton [1960] contains a thorough
exposition of the classical prediction theory together with a theory of reception in which the
problems of prediction and filtering are formulated in the framework of decision theory.
The appendix of Middleton’s book includes an informative section on the solution of the
Wiener-Hopf equation and some of its variants.

A more detailed discussion of the contributions to filtering and predietion theory is

presented in the following pages.

separately.

5.1. Nonlinear Filtering

The contributions to nonlinear filtering and predic-
tion have centered largely on the fundamental work
of Wiener [1953] and its earlier extensions by Bose
[1956] and Barrett [1955]. A discernible trend in
research in this area is to consider special types of
processes for which optimal nonlinear filters assume
a simple form. A key work in this connection is
that of Barrett and Lampard [1955], in which the
class, A,' of all second order density functions ad-
mitting a diagonal representation of the form.

])(.171 % '1‘2; T) :])<.I?1)])(.I'2) ”2:01111,(7)07L(j'[71)6rz("’2) (1 )

is introduced. Here p(x,z5;7) denotes the second
order density of a stationary process {z(t)}, a,=x(t),
py=x(t+7), px) is the first order density, and
{0,(x)} is a family of polynomials with the ortho-
gonality property

fp (2)6,,(x)6,(x)dr=0,,,. (2)

In particular, Barrett and Lampard have shown that
Gaussian and Rayleigh processes are of this type,
with the 8, being Hermite and Laguerre polynomials,
respectively. Convergence and other aspects of the

*Department of Electrical Engineering, University of California, Berkeley,
alif.

1 In Barrett and Lampard’s definition of A, p(zi, z2; 7) is not assumed to be
symmetrical.
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For convenience, the subjects of nonlinear filtering, non-
stationary and discrete-time filtering, and miscellaneous contributions are dealt

with

Barrett-Lampard expansion were investigated by
Leipnik [1959], while necessary and sufficient condi-
tions under which P (z;,2,;7) can be expressed in the
form (1) have been given by J. L. Brown [1958].
Brown also studied [1957] a more general class of
densities for which the expansion (1) is nondiagonal
and the coefficients A,,,(r) are restricted by the
relation A,,(7)=d,a,(r), m=1, 2, ., the d,
being real constants.  As shown by Brown, processes
with densities of this type exhibit a number of in-
teresting properties.

One way in which the Barrett-Lampard expansion
can be used in nonlinear filtering was pointed out by
Zadeh [1957]. Specifically, assume that the second
order density of a process with zero mean can be
represented by (1), with the 6,(z) not necessarily
having the form of polynomials. Then, if an opti-
mal (minimum variance) filter is sought in the class
of filters admitting the representation

Fo=% [ Klet—)dr, 3)

=0 Jo

where the K,(r) are undetermined kernels, and the
desired output is written as

() =0>)

o
meM J— ®©

where M is a finite index set and the A#(7) are given
kernels, the determination of the A, () reduces to
the solution of a finite number of Wiener-Hopf

K;::(T)en["'(f_TH’/T: (4)



integral equations
J KIIL(T)‘4IH(’_T>([T:J K*(T>A4m(t_T)(lT, me 1‘1
0 —

, (5)
with K,=01if n=M.

Another type of process—for which the problem
of determining an optimal nonlinear predictor is
greatly simplified—was introduced by Nuttall [1958].
Specifically, Nuttall calls a process separable ? if
the conditional mean of z, given , can be represented
as

E{J&!Tl}:[<$2—#)]’(I2§7’[11)d12: (xy—mwp(r) (6)

where is the mean value of the process and p(r)
is its normalized autocorrelation function. Separa-
ble processes form a slightly broader class than that
defined by Brown [1957].

Among the many interesting properties of separa-
ble processes is the following prediction property.
Let s(t) be a signal mixed with additive noise. Then,
if {s(t)} is a separable process, the best estimate of
;‘)(H— 7) in terms of the best estimate of s(f) is given

s

st m)=s*)ps(7)H=usll—ps(@)]; (7)

where p,(7) and u, are the normalized autocorrelation
and the mean value of the signal process, and starred
quantities, represent optimal (minimum variance)
estimates. In the absence of noise, the explicit
formula for the best predictor in terms of s(¢) becomes

§*(t4-7)=5()ps(7) F-ms[1 — ps(7)]. (8)

Still another type of process for which the predic-
tion problem is manageable was considered by D. A.
George [1958]. Here the observed signal f(¢) i
assumed to be the output of an invertible nonlinear
system N preceded by an invertible linear system
L to which a white Gaussian signal w(t) is applied.
Thus, symbolically, f=NLxz and xr=L'N~'f. Then,
if an optlmal estlmate of f(t+ oc) is denoted b\'

f(t+ o), it is not difficult to find an operator H.
acting on the present and past values of z(t) such
that f(t+ oc)=H«[z(t)]. Once H« has been found,
f(t+ o) can be expressed in terms of the present and
past values of f(#) by the relation f(t+ oc)=H. L™
N7Y.

While some authors have sought to simplify the
prediction problem by considering processes with
special properties, others have turned to special types
of nonlinear operators. In particular, the work of
Bose [1956, 1959] was extended bv D. A. Chesler

[1958] to operators of the form F(TC,@,L) where F

n=1
denotes either a linear operator with memory, or a
nonlinear memoryless operator, or a more general
nonlinear operator possessing an inverse; the C, are

2 It should be noted that the term ‘‘separable process’ is used in the theory of
stochastic processes in an altogether different sense.
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adjustable constants, and the ¢, are nonlinear opera-
tors such that the expectation F{¢,(®)¢,(x)}=0 -
for msn, x being the input to the filter. As was
shown by Bose in the absence of F' the optimal value
of each C can be determined by measuring the mean-
square error as a function of, say, C; and assigning
to C; the value which minimizes the mean-square
error. This method is shown by Chesler to be appli-
cable also when F is a linear operator or a nonlinear
operator with no memory. The extension is less
straightforward when the only assumption on F is
that it possesses a realizable inverse.

In all the foregoing analyses the signal process is
assumed to be stationary. However, there are
many situations of practical interest in which an
appropriate representation for the signal is a series
of the form '

vs‘(t):il,amt), 9)

in which the ¢,(t) are known functions of time and
the a; are unknown constants or random variables.
In such cases, the problem of filtering or predicting
s(t) reduces to the estimation of the coefficients ;.
It was shown some time ago by Laning [1951]
that when (a) the noise if additive, stationary and
Gaussian, (b) the joint distribution of the «; is
known, and (¢) the loss function L(e) is nonnegative
and vanishes for e=0, optimal estimators for the «;
are memoryless nonlinear functions of linear com-
binations of values of the mmput over the interval of
observation. In a recent paper, similar results were
obtained by a different and more rigorous method by
Kallianpur [1959]. More specifically, for the case
where the interval of observation is [0, 7], and the
loss function is quadratic, Kallianpur derived explicit
expressions for the best estimate of s(t) at time
T+ T, in terms of n linear functionals of the form

T
f z(Op)dt, 1=1,2, . . ., n,
0

where z(t) is the sum of signal and noise, and the p,(¢)
are square integrable solutions of integral equations

7
f R(t—n)pu(r)dr=i(t)yi=1,2, .. .,m, (10)
0

in which R(7) is the correlation function of the
process.

More concrete results for the same general problem
were obtained by Middleton [1959] and Glaser and
Park [1958].  In particular, Middleton found explicit
expressions for minimum variance estimators of the
a; for the cases where (a) the «; are jointly normally
distributed, (b) the «; are independent and Rayleigh
distributed, (¢) the «; are independent and their
distributions are not symmetrical, (d) the «; are
independent and their distributions are symmetrical.-
Of these cases, only (a) and (d) yield linear estimators
for the «,.



The relation between maximum likelihood, mini-
mum variance and least squares estimates of the «;
was studied in earlier papers by Mann [1954] and
Mann and Moranda [1954]. A number of interesting
properties of minimum variance estimates of s(#)
and its derivatives for the case where the ¢,(t) are
polynomials in ¢ were found by I. Kanter [1958,
1959]. A central result of Kanter is that an optimal
weighting function for predicting the ;™ derivative
of n™ degree polynomial can be expressed uniquely
and simply in terms of optimal estimators of i™
derivatives of k™ degree polynomials, with £ ranging
between 7 and 7.

5.2. Filtering and Prediction of Nonstation-
ary, Discrete-Time, and Mixed Processes

As is well known [Miller, Zadeh, 1956], extensions
of Wiener’'s theory to nonstationary processes lead
to integral equations of the general form

*h
1 R(t, r)a(r)dr=g(t), a<t<b, (11)

a

in which R(t, 7) is the covariance function of the
observed process. Little can be done toward the
solution of this equation when £2(f, 7) is an arbitrary
covariance function. Thus, contributions to the
theory of prediction of nonstationary continuous
time processes consist essentially of methods of
solving (11) in special cases.

Along these lines, Shinbrot [1957] discussed the
solution of (11) for the case where F(t, 7) can be
expressed in the form

N
R(t, r)=>, a,(7)b,(1). (12)
n=1
Using Shinbrot’s methods, the solution of (11)

reduces to the solution of a system of differential
equations with time-varying coeflicients. There is
some advantage in such a reduction when one has
available a differential analyzer or an equivalent
machine. Similar results are vielded by a theory
due to Darlington [1958, 1959], in which many of
the concepts and techniques of time-invariant
networks are extended to time-varying networks.
As in the paper of Miller and Zadeh [1956], a key
assumption in these approaches is that the observed
process may be generated by acting on white noise
with a product of differential and inverse-differential
operators, or equivalently, with a lumped-parameter
linear time-varying network. Darlington’s paper
[1958] contains also a simplified technique for finding
a finite memory Wiener filter for stationary signal
and noise.

A special case for which explicit solution can be
found has been studied by Bendat [1957]. Here
the basic assumption is that the signal is of the form

s(t)=0 for <0, s(t)=>( a, cos nwt+b, sin nwt) for
T

t>0, where the «, and b, are random variables with
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known covariance matrices, while the covariance
function of the noise is of the form

R(tt;) =Ae P1i=12l cos v (1,—1y) for t;, t,>0

=0 for ,<0 or £,<<0. (13)
Closely related cases in which the prediction problem
can be solved completely are those in which the
nonstationarity of signal and noise processes is due
to a truncation (e.g., multiplying the signal and
noise by a step function) of stationary processes.
This is true also in the case of discrete-time processes,
as is demonstrated by several examples in Fried-
land’s [1958] extension of Wiener’s theory to non-
stationary sampled-data processes.

Several interesting results concerning the linear
prediction of filtering of stationary discrete-time
processes were described by Blum [1957a, 1958,
1957b]. In particular, Blum has developed recursive
formulas which express the estimate at time 7 in
terms of a finite number of past estimates and past
values of the observed process. This type of repre-
sentation is especially useful in connection with
so-called growing memory filters, i.e., filters which
act on the entire past of the input. Thus, if the
input sequence (starting at ¢=0) is denoted by
Ay AR . 2y, and the filter output at time n is

n

denoted by Z,, then Z, is expressible as Z,=>

r=:1
', X,, in which the ', depend on n. A shortcoming
of this representation is that as time advances the
(', have to be recomputed at each step and their
number grows with n. On the other hand, a recur-
sive relation (if it exists) is of the form

Zn=01Zn—1} + arZy— i+ bon+ by, 1t

+b,x (14)

n—e)
where a’s; b’s, k and ¢ are constants independent of
n and hence need not be recomputed. One compli-
cation in this approach to the problem is that in
order to start the recursion one must know initially
Zoy 2y« « oy Do

A somewhat related but more general approach
has been formulated recently by Kalman. Specifi-
cally, Kalman assumes that the observed process
is an n-dimensional vector process {y(f)} which is
generated by acting with a linear discrete-time
system on a white noise {u (¢)}: thus,

YO =P() x()

x(t+1)=G(t)x(®) +u(), (15)

where the bars denote vectors and 2(¢) and G(t) are
given time-varying matrices. (This assumption is
analogous to the usual one in the case of nonsta-
tionary continuous-time prediction, viz, that the
observed process can be generated by acting on
white noise with a time-varying network.) Kalman
shows that an optimal (minimum variance) estimate



of x(1) is given by the recursive relation

X+ D=[O)—ADOpOx* O+ AWMy @) (16)

where

AQ)=GO)ME)P )[PE)ME)P (t)] ! (17)

and M(1) is given by
M+1D)=[GO—AOPOIMBE )+ Q@) (18)

where G’ 1s the transpose of G and (¢) is the covari-
ance matrix (}(f);]"{u(f)u (t)}. The matrix M(t)
is the expectation of the matrix e(t)e (t), where €(?) is

the error at time £. In this formulation, to start the
recursion one must know z*(0) and AM(O). However,
in most cases the effect of the initial choices of 2*(0)
and M(0) will be insignificant by the time the system
reaches its steady state.

An interesting observation made by Kalman is
that the prediction problem as formulated by him is
dual to a problem in control theory in which the
objective is to find an input which minimizes a
quadratic loss function.

In additions to extensions of Wiener’s theory to
nonstationary continuous and discrete-time proc-
esses, extension to processes of mixed type were also
reported. In particular, Robbins [1959] solved the
mean-square optimization problem for the case where
the filter consists of a linear time-invariant system
followed by a sampler which is followed in turn by
another linear time-invariant system. Janos [19: )‘)]
gave a (mnplolo analysis of the case where a sta-
tionary signal is multiplied by a train of rectangular
pulses, vleldnw a periodic pulse-modulated time
series. The filter is assumed to be a time-invariant
linear network. The integral equation satisfied by
the impulsive response of the optimum filter is of the
Wiener-Hopf type, but a multiplying factor involving
trains of rectangular pulses complicates its solution.
A method of solution of this equation is given by
Janos for the infinite memory as well as the finite
memory case.

5.3. Miscellaneous Contributions

There are several not necessarily unimportant
problems in filtering and prediction which have re-
ceived relatively little attention during the period
under review. Contributions concerned with such
problems are discussed in this section.

It has long been recognized that the use of a quad-
ratic loss function imposes a serious limitation on the
applicability of Wiener’s theory. Under certain con-
ditions, however, optimality under the mean-square-
error criterion implies optimality under a wide class
of criteria. Such conditions have been found by
Benedict and Sondhi [1957], and, independently, by
Sherman [1958]. Thus, Benedict and Sondhi have
shown that in the case of a Gaussian process opti-
mality with respect to a loss function of the form

L=¢€, where e denotes the error, implies optimality
with respect to anvlos%lun(-tlonoftho form L_Z\e‘"

where n >0 but is not restricted to integral Valuos,
In Sherman’s result, L.=7(e) is an even function and
&> ¢ >0 implies f(ez) >f(e). More special cases in-
volving the design of optimal filters under nonmean-
square-error criteria have been considered by Bergen
[1957] and Wernikoff [1958]. A time-weighted mean-
square-error criterion which can be used to reduce the
settling time of an optimal linear filter was em-
ployed by Ule [1957].

An extension of Wiener’s theory to random para-
meter systems was described by Beutler [1958]. In
Beutler’s formulation, the signal and noise are as-
sumed to have passed through a time-invariant ran-
dom linear system before being available for applica-
tion to a filter or predictor. The linear system is
assumed to be characterized by a transfer function
H(w, v), in which v is a random parameter with a
known distribution. In effect, this amounts to
modifying the statistical characteristics of the
original signal and noise processes.

The multiple series prediction problem for the in-
finite memory case was considered by Hsieh and
Leondes [1959]. In their paper, Hsieh and Leondes
deseribe a simplified method of solving the simulta-
neous integral equations for the weighting functions.
Their technique is not applicable, however, to the
finite memory case.

The optimization of continuous-time filters and
predictors is frequently carried out by discretizing
time and then letting the interval between successive
samples approach zero. There are many published
papers in which limiting processes of this type are
used without adequate justification. A careful and
rigorous analysis of the problems involved in obtain-
ing optimum continuous-time linear estimates as

limits of discrete-time estimates was given by
Swerling [1958].
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Subcommission 6.2—Circuit Theory

Circuit Theory

Louis Weinberg*

In this paper a report is presented on the research in circuit theory in the United States

during the period 1957-1960.

The paper was prepared as a progress report for submission
to the XIII Triennial General Assembly of URSI, held in London in September 1960.

The

following subdivisions of circuit theory are treated:

. Introduection.

. Synthesis by pole-zero techniques.

Active systems.
Concluding remarks.

NSOt W=

. Topology or linear graphs, including associated matrix formulations.

. Realizability conditions and positive real matrices.
. Systems with time-varying and nonlinear reactances.

The discussion considers problems that have been solved in these areas as well as a
number of important problems for which answers are still not available.

1. Introduction

In the past decade the boundaries of circuit
theory ' have expanded explosively; as a result the
pu‘sont range of circuit-theory research is enormous.
It is thus manifestly unpossﬂ)lv to give a short ac-
count of this research in the United States for the
psst three years. This would be true even if the
“old” or more conventional definition? of ecircuit
theory were used; use of a “new’ or more encom-
passing definition * makes it hold a fortiori. The
best one can do is to offer a few examples to suggest
the vigor, pertinence, and extent of the present
research in circuit theory. For this purpose we have
chosen to concentrate on the following subdivisions
of circuit theory; (2) Topology or linear graphs,
including associated matrix formulations, (3) Syn-
thesis by pole-zero techniques, (4) Realizability con-
ditions and positive real matrices, (5) Systems with
time-varying and nonlinear reactances, and (6)
Active systems.

The above divisions are obviously overlapping.
We subdivide them in this way merely for conven-
ience of discussion and we shall not hesitate to point
out lllt(‘l'l'(‘l&thHS.

In addition, we omit from detailed consideration a
number of research areas that fall within the field of
cireuit theory and also overlap other fields. Among

*Hughes Research Laboratories, Malibu, Calif.

1 We use this term synonymously with network theory.

2 Such a definition was proposed by Professor B. D. H. Tellegen at the 1957
URSI General Assembly held at Boulder, Colo. He suggested that the following
definition be used to guide the deliberations of Subcommission 6.2:

Circuit theory is the theory of networks composed of black boxes character-
ized by relations between the currents and voltages at the terminals, which
relations contain only time as an independent variable, and contain neither space
nor temperature coordinates.

3 In the ensuing disenssion of Professor Tellegen’s definition it appeared that
many of the delegates of Subcommission 6.2 considered the definition too restricted.
An ad hoc group, of which the writer was a member, proposed the following
definition of circuit thoory in the wide sense:

Circuit theory is the theory of networks of black boxes which are character-
ized by relations between the \oltdg(-s currents, or other variables at their termi-
nals, and which are in general abstractions of ph\ sical components of electrical
systems.

There appears to be slight difference between the definitions as stated.
However, the discussion made clear that the proponents of the second definition
wished to include areas like sequential circuits and networks with probabilistic
elements (and in general such areas that overlapped the interests of Subcommis-

sion 6.1 on Communication and Information Theory), whereas those holding to
the first definition would exclude these areas.

them are: (a) contact networks and digital com-
puters; (b) data processing; (¢) noise theory; (d)
('quvntml circuits; (e) sy nthesis of distributed-
parameter systems; and (f) matched filters. How-
ever, we will not (om])letol\' neglect these areas, but
will lnloﬁv mention some of the outstanding work in
a few of them, though without a precise formulation
of the problem% It is (l('al th&t these subdivisions
of the circuit theory field, the research in data
processing, have great 1(‘1(‘\’&“((‘ to the problems of
interest to URSI, and it is recommended that some
provision be made for their detailed discussion in the
next triennial report.

It is difficult if not impossible to discuss the re-
search accomplishments of the past three years in
the United States without reference to much ante-
cedent work and to work done in other countries; we
see farther than our predecessors only by standing
on their shoulders, and it is thus essential to refer to
some of the accomplishments of the giants of former
days. The presentation given here should be con-
sidered more in the nature of a portrait rather than
a photograph.* We shall have to invoke the artist’s
privilege of emphasizing certain aspects of the sub-
ject to the exclusion of other aspects. To mix a
metaphor, in some respects, as is true for any at-
tempted summary of a vast subject, this report takes
on the character of a personal odyssey through the
present circuit-theory research in the United States.

Finally we hasten to point out that the references
are intended to be merely representative, not ex-
haustive. Because of the fact that parallel lines of
endeavor are going on at many research centers, al-
most an entirely different set of references could be
given to illustrate the identical discussion. TIf we
succeed in indicating the problems that have been
agitating research workers and in elucidating some
of those that have been solved and others that re-
main unsolved, we will have accomplished our
purpose.

4 The writer borrows this useful metaphor from his friend, Professor R. M.
Foster.

687



2. Combinatorial Topology or Linear
Graphs

The past decade has witnessed advances in circuit
theory that are expressed in different ways. Much
of what is being said about these advances becomes
merely a babel unless the circuit theorist is multi-
lingual. This should be interpreted in each of two
ways. First, the same problems are being consid-
ered by competent scientists in many countries of the
world. Second, different mathematical languages
are being used to attack and gain insight into these
problems. The use in circuit theory of the languages
of function theory and some elementary aspects of
matrix theory is fairly well established; new lan-
guages that have been introduced in the recent past
are the language of linear graphs, the language of
lattice theory, the language of vector spaces, and the
language of sophisticated matrix theory [Trans. IRE
1959b].  We discuss below the field of limear graphs
and associated matrix formulations of circuit-theory
problems.

Though the basic concepts of linear graphs and
their applications to network theory were introduced
by Kirchhoff himself [1847], it is only recently that
their great power for both analysis and synthesis has
been widely recognized. A large part of this recog-
nition stems from attempts to solve the synthesis
problem for networks without transformers. One
evidence of the intense and widespread interest in
this field is the issue of the IRE Transactions of the
PGCT that was devoted to this field [1958b]; another
is the number of letters and industrial publications
that treated this subject [Nerode and Shank, 1957,
Nakagawa, 1958; Weinberg, 1958¢; Kim, 1958;
Calabi, 1956; and Hatcher, 1958].

A good proportion of the publications on graph
theory are devoted almost exclusively to a reformu-
lation of Kirchhoff’s “Third and Fourth Laws,” by
which laws we mean his rules for writing down a
network function almost by inspection. Some, how-
ever, do give basically new material. Mason [1956;
1957], for example showed how to determine system
functions of active networks by topological rules.
This represents an important extension, since Kirch-
hoff’s techniques were restricted to the solution of
passive networks without transformers. There were
also a number of others who formulated topological
rules for solving active networks [Boisvert, 1958;
Coates, 1957; Mayeda, 1958b].

Mason’s graphs, it should be pointed out, differ
from Kirchhoft’s; Mason ecalls them signal-flow
graphs. 'These graphs are similar to the block dia-
grams used in system analysis; thus one difference
from Kirchhoft graphs is that the algebraic sum of
the signals at a node of a signal-flow graph is not
zero, and a second difference 1s that signals flow
along a branch in only one direction.

Two other problems that were solved are the
realization of a loop matrix or cut-set matrix by a
graph and the realization of a homogeneous poly-
nomial as the discriminant of a network. The first
problem is related to the still unsolved problem of

realizing a real matrix as the resistance or conduct-
ance matrix of an n-port network containing only
resistances and no ideal transformers [Slepian and
Weinberg, 1958b]. Indeed, it may also be said to
be a problem in any field where linear graphs are
applicable, e.g., information theory and linear pro-
graming [Elias et al., 1956; Dennis, 1958, 1959;
Jewell, 1958]. For a long time this problem was
unsolved ° and then as so often happens a number -
of solutions appeared almost simultaneously. Two
solutions were presented at the 1959 International
Symposium on Circuit and Information Theory.
One paper by Guillemin is motivated by problems
in network theory [Guillemin, 1959]; the second by
Loferen (of Sweden) is stated in terms of contact
networks and appears to be fairly simple to apply
[Loferen, 1959]. If we exclude the work of the
Russians, it is probably true that Gould was the
first to solve this problem [Gould, 1957, 1958];¢
his solution appears to be complicated in its appli-
cation. Subsequently Auslander and Trent gave an
alternative solution (1959).7

We have thus gone from poverty to an embar-
rassment of riches with regard to this problem; we
now have what could be considered a plethora of
solutions.® It 1s ecritically necessary at this point
to consolidate our advances. All these procedures
should be compared for their generality and ease
of application; their merits and advantages for solv-
ing different types of problems should be illustrated.
It would also be desirable that they be stated in a
common simple language so that their differences
and similarities become evident. Finally, if it is
possible, an everyday design procedure should be
formulated. Perhaps part of this task will be ac-
complished at the Fifth Midwest Symposium on Cir-
cuit Theory: Topology in Circuit Theory to be held
on May 8 and 9, 1961 at the University of Illinois.

The problem of realizing a specified homogeneous
polynomial that was mentioned above and the story
of one of its solutions illustrate the fact that the
pace at which we are finding solutions to problems
of long standing is an accelerating one. An exceed-
ingly difficult problem in the past [Foster, 1952]
was the determination of the necessary and sufficient
conditions for a homogeneous polynomial of n vari-
ables to be the discriminant of a realizable network—
that is, the determinant of the system matrix of
the loop or node equations. Some only partially
successful attacks ® on this problem were previously
made by Cohn [1950],Shannon and Hagelbarger [1956],
and Melvin [1956]. Dr. Campbell of BTL: had also
been interested in this problem around 1917, but he is

5 Perhaps it would be more accurate to state that the problem was not even
formulated, since an awareness of the problem became explicit only in the last
few years.

6 The Russians have written many papers on contact networks; the writer
believes there is a high probability that solutions to this and other “‘unsolved’”
problems are waiting to be exhumed from the Russian literature.

7In their paper Auslander and Trent [1959] give what could be considered
an abstract solution. They have subsequently written a paper (as yet unpub-
lished) that gives a constructive procedure for realizing the graph.

8 The reader should not assume that we have mentioned all the solutions.
There are, for examples, a solution by Harry Lee in his MIT master’s thesis
done under Professor Guillemin’s supervision, and a solution by W. Mayeda,
which he has submitted for publication to the Transactions PGCT.

¢ The writer is indebted to Professor R. M. Foster for this discussion of the
earlier attacks on the problem.
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not known to have reached anysignificant conclusions.
Only one necessary condition was put forth in the
three cited papers. If we let D be the homogene-
ous polynomial in the n variables 2, and further
let Dy be the partial derivative of D with respect
to Ry, then the expression (D,D,— DD, is the
square of a homogeneous function of the R, of degree
one less than D and with coefficients that may be —1
as well as +1. Cohn’s paper attempted to show
that this condition was also sufficient, but a counter-
example can demonstrate this to be impossible.

The problem was then mentioned by the writer
in a talk he gave at Princeton. Dr. F. Harary, who
was present at the talk, casually passed the problem
on (during the 1959 International Symposium on
Circuit and Information Theory) to Tom Crowley
of BTL, who was commentator for the session on
Switching Theory. Using the techniques of Lof-
gren’s paper, Crowley announced he had solved the
problem. Subsequently the writer discovered that
Mayeda had previously solved the problem [1958a].
It also appears that another solution has now been
given by Duffin [1959].

This is not the only instance of a problem’s being
solved at the Symposium. A different problem that
arises in linear programing [Heller and Tompkins,
1956; Hoffman and Kruskal, 1956] is the specifica-
tion of a set of necessary and sufficient conditions
on a real matrix for it to be a unimodular matrix,
where a unimodular matrix is defined as a rectangular
matrix all of whose subdeterminants (including each
element considered as a subdeterminant of order one
and also the determinant itself, if the matrix is
square) are equal to +1 or 0. This problem also
arises in network theory and in the theory of contact
networks, and generally in any discipline that can
be described in graph-theoretic terms; for example,
the incidence matrix introduced by Kirchhoff is a
unimodular matrix and so is the loop matrix based
on a fundamental set of loops. The writer men-
tioned that this problem was unsolved in chairing
the session on Graph and Matrix Theories; the
following day D. Anderson of the Hughes Aireraft
Company (who, it should be mentioned, had also
been introduced to this problem previously) indi-
cated he had a solution.!

The research mentioned above—that 1is, the
realization of a loop or cut-set matrix, the complete
characterization of the unimodular matrix, and the
realization of a homogenecous polynomial—are all
important in what the writer considers to be the
crucial network problem at the present time, namely,
the realization of networks containing no ideal trans-
formers. Distinguishing classes of networks with
regard to the inclusion or exclusion of ideal trans-
formers is a fundamental method of differentiation.
For example, it can be shown that the exclusion of
transformers makes the realization of the n-terminal
network a problem distinet from that of the n-port

10 Though the writer has a copy of the paper that Crowley wrote, he does not
believe it has yet been published. .

11 Again this solution has not yet been published but has been studied by the
writer.
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network, whereas when transformers are allowed a
solution to one class of problem also solves the other.
It is felt, furthermore, that solution of the problem
of realizing transformerless networks will throw light
on the problem of equivalent networks, and on how
to obtain them by linear transformations.

As Cederbaum [1958] points out, most of the syn-
thesis procedures for n-port networks use the artifice
of the ideal transformer to solve the realization prob-
lem; to use his apt simile, the ideal transformer has
been used like the deus ex machina of classical drama.
By a suitable arrangement of transformers one can
get combinations of voltages and currents which
otherwise would be impossible. It is clear that new
types of synthesis procedures are required; instead of
assuming the network configuration in advance, as is
done when we use one of the presently known pro-
cedures, the configuration will be derived from the
mathematical characterization of the network. The
resulting structure will probably be a complex inter-
connection of elements, a network in the true sense
of the word, rather than one of the known canonical
configurations. All of this indicates to the writer
that the concepts of linear graphs will become
increasingly important.

To mention one result for which no derivation is
known other than a graph-theoretic one, we have
the necessary condition that an impedance matrix
or an admittance matrix of a pure resistance n-port
must be a paramount matrix, where by a paramount
matrix we mean a real symmetric matrix each of
whose principal minors of order p(p=1, 2, )
is not less than the absolute value of any pth-order
minor built from the same rows. Tellegen [1952]
derived this result for a three-port by use of the
fact that the voltage ratio of a resistance network
cannot exceed unity; he also showed the condition
to be sufficient for a three-port. However, for an
n port with n >3, this method does not suffice and
Cederbaum [1958] was forced to use linear-graph
concepts for his derivation. These results and others
on dominant matrices for resistance networks are
summarized by Slepian and Weinberg [1958a].  The
latter authors also derive a sufficiency condition on
dominant residue matrices for two-element kind
networks; this result was subsequently useful in
the realization of active RC' networks [Kinariwala,
1959]. In the above we use the term dominant
matrix to mean a real symmetric matrix each of
whose main-diagonal elements is not less than the
sum of the absolute values of the elements in the
same Tow.

2.1. Future Research Activity and Evaluation

The writer feels that the problem of realizing an
n-port resistance network will be solved before the
next General Assembly; implicit in this solution there
will probably be a method for realizing RLC net-
works without transformers. This may appearto
be a rash prediction since it was way back in 1952
that Foster wrote [Foster, 1952], “There is room for
much further progress in the investigation of general
n-terminal pair networks, especially the delineation
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of just what can be done without ideal transformers,
without mutual inductance, or with only two kinds
of elements. Furthermore, even the theory of the
true 3-terminal network (without pairing of terminals)
for two kinds of elements (without mutual inductance
or ideal transformers) is almost wholly unknown.”
Today each of these problems is still unsolved.
However, we should recall that the problem of the
discriminant that Foster also mentions is now
solved. Furthermore, such men of the calibre of
Guillemin and Darlington are now looking at prob-
lems of this nature. Guillemin is using linear trans-
formations of matrices [1960a; b| as his method of
attack, whereas Darlington has informed the writer
in informal conversation that he was using vector
spaces in his analysis of the problem.

The topologl('nl approach (as presented mainly in
Cederbaum’s papers) is also a promising one and
should not be neglected. It has led to the brink of
a major breakthrough on this problem—e.g., the
statement of the paramountey condition on imped-
ance or admittance matrices of n ports containing no
transformers—and provides a formulation of the
problem in matrix terms that is elegant. Cederbaum
[1958] has shown that a necessary and sufficient con-
dition for a given symmetric nth-order matrix 7 to
be the impedance matrix of an RLC n port contain-
ing no real or ideal transformers is that it is a prin-
cipal submatrix of the inverse of the triple matrix
product BY,,B’, where Y, is a diagonal matrix whose
main-diagenal elements are a, bs, ¢/s with a, b, ¢ >0,
s is the complex variable s=o¢+4jw, B’ is the trans-
pose of B, and B satisfies the conditions for a cut-set
matrix corresponding to an adequate system of
node-pair voltages—that is, B can be realized as the
cut-set matrix of a graph by one of the procedures
mentioned previously. A necessary condition on B
1s that it be a unimodular matrix. A complete
statement of the necessaryv and sufficient condition
on B for it to be such a matrix is that there exists a
decompcesition of B of the form

B=KqQ

where ¢ is a reduced incidence matrix of the desired
connected network and A i1s a reduced incidence
matrix of the tree of node-pair voltages (that is, of
the tree that is formed by drawing a branch for each
voltage variable). An analogous condition can of
course be stated for the admittance matrix of an n
port.

This necessary and sufficient condition differs
from those ordinarily given in synthesis, where suf-
ficiency is demonstrated by a synthesis procedure.2
Here no synthesis procedure exists because no method
is known for decomposing 7 into a principal sub-
matrix of the desired congruent transformation of a
diagonal matrix. Solution of this matrix problem
would be a contribution of the first magnitude.

12 For this reason it has been objected that such a form of necessary and suf-
ficient condition is not of great value, that it in effect merely restates the prob-
lem. The writer does not agree since the restatement of the problem allows
other mathematical artillery to be used in the solution. As an illustration of
the value we should note that it has led to a solution of the problem of realizing
a resistance n-port network that has only (n+1) terminals, Cederbaum [1957].

To make this statement apply to two-element kind

networks—e.g., to the RC case—we merely require
that the elements of Y,, be of the form a and bs.
m . & L .
I'o convert it to the problem of realizing a pure re-
sistance n port, we stipulate that the diagonal ele-
ments of },, be positive numbers. In this case the
elements of Z are of course no longer rational func-
tions of s but are real numbers.

Some necessary conditions on Z are known: Z
must be a symmetric positive real matrix; in addi-
tion, Z must be a paramount matrix for each value
of s in the range 0<s<Zw. However, a set of neces-
sary and sufficient conditions is not known even for
n=2, that is, the two-port network without trans-
formers; it is "also not known for the RC or LC case
with n=2.

For the case of the resistance network when the
n port is formed from the links pertaining to a tree,
Cederbaum [1959] has furnished a solution. For the
admittance case this represents a solution for the
resistance network when the n port network has
only (n+1) terminals. The solution consists of an
algorithm whereby the decomposition

2=BY, B’

if 1t is possible at all, can be carried out. Here we
note the problem is simpler in that Z is not required
to be a principal submatrix of the triple product but
is equal to it. However, Cederbaum’s techniques
may be suggestive in solving the more general
problem

It should also be mentioned that a similar formu-
lation as a triple matrix product is given by Bryant
[1959a]. He shows that the necessary and sufficient
condition for a real symmetric matrix Z to be the
impedance matrix of a resistive n port is that Z be
of the form

Z=S"ENS

where S’ is the transpose of S, S is a submatrix
of a reduced incidence matrix of a tree, and G is
a dominant matrix with nonpositive off-diagonal
elements. Again this should not be looked upon
as a mere restatement of the problem. It may
have an advantage over the Cederbaum formulation
in that G can be recognized by inspection; however,
the problem to be mentioned below of recognizing
G~! (the inverse of a dominant matrix with non-
positive off-diagonal elements) still remains. The
transformation matrix S can also be recognized by
inspection since the necessary and sufficient condi-
tions for a matrix to be the reduced incidence matrix
of a tree is that it be nonsingular, have elements +1
or 0, and in each column have at most two nonzero
elements, specifically, one 41 and one —1. Ceder-
baum’s transformation matrix, it should be recalled,
must be unimodular, a test for which is laborious;
and even if it is unimodular it may still not be
realizable by a graph. Of course, the unimodular
test may be omitted when this is convenient and
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the procedure for realizability as a graph may be
apphed directly. Bryant [1959b] considers additional
formulations for resistance networks in his doctorate
thesis.

We mention, finally, one more approach that
may vield useful insights for solving the problem
of realizing a resistive n-port network. We might
prefer to assume that the network possesses accessible
terminals rather than n ports—i.e., terminals paired
into ports or terminal pairs—or we might find it
convenient to switch between the two representa-
tions. There is a simple formula relating system
functions in one representation to system functions
in the other. This formula, which is given below,
is not so widely known as it should be; its first
appearance and proof in the literature are somewhat
in doubt, and it is continually being rediscovered.
One of the conceptual advantages of the 2n-terminal
network representation is that only driving-point
measurements need be made; these characterize
the n port uniquely. Thus an obvious necessary
condition on each measurement is that it is a non-
negative number.

Consider a resistance 7 port with an open-circuit
resistance matrix R=[R;]. Of course, since the
n port obeys reciprocity, of the n? driving-point
and transfer resistances only n(n-+41)/2 are inde-
pendent—that is, the matrix is symmetrical. Now
consider this network as a 2n-terminal network
with the terminals numbered from 1 to 2n, and with
the ports so numbered that port 1 comprises ter-
minals 1 and (n-+1), the assigned positive direction
being from terminal 1 to terminal (n-+1). In
general port £ will run from terminal £ to terminal
(n+k).

For the representation of the 2n-terminal network
let S, ; denote the measured driving-point impedance
between terminals 7 and k, all other terminals being
left free. Then we define S} =0, since this measure-
ment corresponds to both of the measuring leads
connected to the same terminal. It 1s elear that

)
Rix==Sk, ntr

The general formula for the elements of matrix
R is

l &
Il)ik:.)' [Si,n‘fﬁLksk,nf,—Si,k“Sn;.f,nq-]

which reduces to the previous formula when 7=#.
A simple proof of this formula that uses Kirchhofl’s
topological rules has been given by Professor Foster
in a private letter to the writer.

There are some other unsolved problems raised by
graph-theoretic considerations. For example, can 2
simple test for a paramount matrix be devised? A
direct test that follows from the definition is to check
the required conditions on each principal minor of
order p<n—1 and each of its correspording non-
principal minors. The evaluation of all possible
minors, however, can be laborious, and the question
naturally arises whether all minors must be tested.
In other words can a simplification be effected as,

for example, in the test for a positive definite matrix?
We recall that for an nth-order matrix to be positive
definite, 1t is necessary that all the principal minors
are positive; it is sufficient, however, to test only a
subset of » principal minors. It has been shown by
Slepian and Weinberg [1958] that we must test all
minors of order two. It can be shown, furthermore,
that not much can be done to shorten the work of
testing a matrix for its paramount character.'

Another matrix problem is the formulation of a
simple method for determining whether the inverse
of a nonsingular paramount matrix is a dominant
matrix with nonpositive off-diagonal terms. This
would then give a set of necessary and sufficient con-
ditions for the realization of a real matrix as the im-
pedance matrix of a (n-1)-terminal network contain-
ing only pure resistances. Also, with regard to a
dominant matrix, though we know that the condition
of dominance 1s sufficient for realization of a given
matrix as the admittance matrix of a resistive n port,
we still don’t know whether this is true for realization
as the impedance matrix.

A final problem may be mentioned for the para-
mount matrix. As indicated previously, it is known
that paramountey is sufficient for the realization of
an n port for n<3; though the writer conjectures
that it is not sufficient for n >3, this has never been
demonstrated. A method that has been suggested ™
for proving or disproving the sufficiency for n—=4 is
to consider the dominant admittance matrix

7 1 2 3
e 12 4 5
o 4 15 6

3 5 6 18

This is realizable by a general procedure [Slepian
and Weinberg, 1958a], but (as has been shown by
Cederbaum [1959]) not by a four-port with only five
terminals.  Now suppose that Y is reduced to the
irreducible ' paramount matrix

3 1 2 3

)7 o 1 5 4 -)

| 4 6 6
3 b) 6 53/7

Now the question is whether there exists any four-
port with Y, as its admittance matrix. It may be
worth while to investigate this particular case and
perhaps by the use of the possible geometrical con-
ficurations [Foster, 1932] for a four-port, the fact
that a nonplanar network has no dual, and by the

13 An example to illustrate that we cannot eliminate testing minors of order
n—1in an nth-order matrix was furnished the author in a private letter—ete. (See
letter).

14 This suggestion was made to the writer in a private letter from Professor
R. M. Foster.

15 By reducing a paramount matrix we remove main-diagonal elements without
destroying the paramountcy condition. Then the reduced matrix is inverted
and this reduction, if it is possible, is repeated. This yields shunt and series
elements in the corresponding network. When a matrix is reached for which
this is no longer possible since the paramountey condition will be violated by such
a step, this matrix i lled irreducible. A detailed discussion of the reduction
of a third-order matrix is given in chapter 8 of the author’s book, ‘‘Network
Analysis and Syntnesis,” to be published by the McGraw-Hill Book Co.
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process of complete induction, it can be demon-
strated that no such network exists and consequently
that paramountey is not sufficient.

Another irreducible paramount matrix suggested
by Foster is

3 2 1 3

2 3 2 3
) '2 ==

1 2 3 3

3 3 3 5

Does any four-port exist with Y, as its admittance
matrix? Not only can this example throw light on
the question of paramountey, but it may also furnish
an answer to an unresolved aspect of equivalent net-
works—specifically, do there exist matrices which
are admittance matrices of networks without trans-
formers but not impedance matrices, and vice versa?
We recall that any matrix realizable as an admittance
matrix can also be realized as an impedance matrix,
if ideal transformers are allowed; however, this is an
unanswered question for transformerless networks.
For the matrix given above as Y, there is a simple
network if this matrix of numbers is considered as an
impedance matrix, namely, a chain of five one-ohm
resistances, with the ports chosen as indicated in
figure 1.

E|

P<< ? Es

O << o
Eq

Ficure 1. Chain of five 1-ohm resistances realizing the given

impedance malrixr.

Some important analysis problems still remain with
regard to graph theory. We know that the driving-
point and transfer functions of an » port may be
expressed in terms of the independent driving-
point functions of the network considered as a 2n-
terminal network. Thus a simple method for
determining these driving-point functions is required.
This 1s known [Weinberg, 1958a] for those driving-
point functions measured across a branch of a
symmetrical graph; however, the problem of speci-
fying the driving-point function across two nodes not
connected by a branch is still unsolved. Solution of
this problem is important since it would permit
simple calculation of the currents and voltages of
large graphs used to simulate other physical systems.
For an indication of the extensive computations that
are presently required the reader is referred to
Branin’s paper [1959].

Another aspect of graph theory that should see
wider use in the future is Wang Algebra [Duffin,
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1959]. This appears to be ideally suited for the
application of digital computers to network investiga-
tions. One of the troublesome problems that
previously held up digital-computer research on
networks by use of graph-theory concepts is the
direct determination of all the trees of a network
without duplication [Hobbs, 1959; Mayeda, 1959];
a method has now been given by Fujisawa [1959].

It is felt that the applications of graph theory to
physical systems will increase rapidly in the next
few years. The rate of increase will depend on the
size of the cultural lag—that is, the length of time
before linear graphs is taught in the schools as a
routine tool of the engineer. In the past, network
theorists have assimilated mathematical disciplines
like function theory, matrix theory, and Laplace
transform theory, and have developed general
methods for analyzing exceedingly complex net-
works without becoming lost in a maze of detail.
Then these concepts and techniques that were
developed in network theory were recognized to be
of great value to the applied mathematician and
physicist [Mathews, 1959], irrespective of his field
of specialization. Network concepts such as imput-
output and others have even found their way into
a recent book on pure mathematics [Kaplan, 1958].
In addition to their use in exact sciences, the input-
output concept and the ubiquitous black box have
yielded rich rewards in such fields as biology and
economies [Leontief, 1959]. Thus network theorists
have insisted that their subject had a great deal to
offer other fields and hence that engineers and
physicists should learn the language of network
theory [Weinberg, 1960].

This situation may now be changing; the change
is illustrated by the field of graph theory. Graph-
theory applications are being made with great speed
in other engineering fields such as linear programing,
information theory, and switching circuits. It may
now become necessary for engineers and physicists
to use the common language of graph theory rather
than redefine the concepts in a manner appropriate
for their own specialty. Perhaps future teachers of
electrical engineering instead of stating Kirchhofl’s
current law in the old form that the algebraic sum
of the currents at a node i1s zero will teach the
equivalent linear-graph statement that the 1-chain /7
is orthogonal to the coboundary of each point of a
egraph G. 1In any case, however it is taught, we can
be fairly certain that graph theory will eventually
become as established as funection theory or matrix
theory in the educational background of the engineer
and physicist.

3. Synthesis by Pole-Zero Techniques

Though Darlington’s [1939] work was done about
20 years ago his techniques are still not being used
by the average engineer. Following the lead of
Grossman’s paper in early [1957], which attempted
to make Darlington’s results on elliptic function
filters more readily available, Henderson published
nomographs [1958], Weinberg published tables of
element values for Butterworth, Chebyshev and



Bessel-polynomial networks [Weinberg, 1957a; b; ¢],
and Henderson and Kautz presented a whole series
of graphs [1958] of the transient response of such
networks. The large demand for reprints of these
papers with the letters of comments attest to the
cultural lag between what is known about filter
theory by workers in this field and the methods
used to design filters by the engineers in the labora-
tory.

The research activity in this area for the past
three years has been devoted largely to an applica-
tion of the classical RLC synthesis techniques to
new types of systems and secondly to the extension of
svnthesis procedures to include rational functions
with nonreal coefficients.  We shall discuss these
two trends, mention a new synthesis procedure,
and then briefly consider the approximation problem.
Finally, we shall give a fairly thorough discussion of
the problem of finding explicit formulas for the
element values of ladder networks.

The design of crystal filters has generally been
treated by image-parameter techniques. Kosowsky
[1958] has extended these techniques in his treatment
of methods for realizing such filters. O’Meara
[1958a; b; ¢] in a series of papers has attempted to
show the value of modern synthesis techniques by
applying them to particular crystal-filter configura-
tions. With the increasing stress on transformation
techniques for achieving desired network configura-
tions [Saal and Ulbrich, 1958]—ec.g., the so-called
zig-zag filter—it 1s felt that general synthesis pro-
cedures for crystal filters may yet be formulated.

A new RLC synthesis procedure is that of Macnee
[1958]; this may be useful in frequency-multiplexing
problems. The network yielded by Macnee’s pro-
cedure has open-circuited inputs and paralleled
outputs. He thus realizes a set of transfer imped-
ances in contrast to Guillemin’s related procedure of
realizing a transfer admittance by means of ladder
networks paralleled at both ends.

Lewis applied RLC synthesis techniques to the
realization of pulsed networks [1958], whereas
Levenstein [1958] showed that the realization of
networks with linearly varying resistances—i.e., po-
tentiometer networks—was analogous to the RC
synthesis problem. This correspondence will prob-
ably be extended in the future and has already led
to the analysis of positive real functions of two
variables [Ozaki and Kasami, 1959].

Baum has made a significant contribution to the
design of narrow-band filters [1957; 1958a]. He has
extended the techniques of synthesis to apply to
-ational functions whose polynomials have nonreal
coefficients; this requires that he consider as addi-
tional types of elements in the low-pass domain
fictitious frequency-independent positive and nega-
tive reactances; when the transformation to the
band-pass domain is made, the networks become
physically realizable. Baum [1958b] has also shown
how to use fewer elements than in the Brune pro-
cedure in the realization of driving-point functions
with geometric symmetry, such as are obtained in
the low-pass to band-pass reactance transformation.

The application of RLC synthesis techniques to
transmission-line networks by means of Richards’
transformation was considered by Grayzel [1958].
A useful summary and extension of methods for
handling this problem are given by Welsh and Kuh
[1958].

In considering the approximation problem we find
that Kuh has presented an additional solution for
approximating the ideal delay function [1957]. The
solution, which is found by means of the potential
analogy, vields a tandem connection of a low-pass
ladder network and an all-pass bridged network.
It is more efficient than the maximally flat time
delay yielded by Bessel polynomials in the sense
that a wider bandwidth is achieved for a prescribed
number of singularities and time delay. However,
the Bessel-polynomial approximation is of course
much simpler.

Papoulis [1958] considered the approximation of a
magnitude characteristic and found the class of
polynomials that has the maximum cutoff rate
under the constraint of a monotonic response. Thus
his polynomials give a magnitude function that com-
bines the monotonic property of the Butterworth
polynomials and the optimum cutoff’ property of the
Chebyshev polynomials.  Again, as in the case of
Kuh’s approximation, some measure of simplicity is
lost: the Butterworth polynomials are much simpler
than the set of new polynomials.

We now come to the discussion of ladder networks
and explicit formulas for their element values. This
problem has tantalized research workers ever since
Norton [1931], who was the first to contribute to
this problem, derived the formulas for the element
values of ladder networks with a Butterworth char-
acteristic and with a resistance termination at only
one end. Bennett [1932] extended Norton’s work
by giving the formulas for the element values for
the maximally flat ladder that is terminated in
resistance at both ends.”® However, Bennett’s for-
mulas are restricted to the case of equal resistance
terminations.  About 20 vears later Beleviteh [1952
derived the formulas for the Chebyshev-polynomial
or equal-ripple ladder. Again, the formulas are not
general: Belevitch’s apply only to the matched
ladder network. Orchard [1953] then extended
Belevitch’s formulas to the open-circuited or short-
circuited Chebyshev ladder.

In 1954 a major breakthrough came when Green
[1954] provided a generalization of all the preceding
work; he discovered the formulas for ladders with a
Butterworth or Chebyshev characteristic and with
any ratio of resistance terminations. These formulas
did not solve the complete problem since they apply
only when the zeros of the reflection coeficient are
chosen to lie in one half-plane. Depending on the
choice of the zeros of the reflection coeflicient, a
number of other networks is possible. For a transfer
function whose denominator is of odd degree, Wein-

18 Bosse [1951] who appeared to be unaware of Bennett's work independently
solved the same problem. In addition, Bosse was the first to give complete
proof of the formulas. Bennett had his proof practically complete and Norton’s
analysis gave general formulas for 1st, 2nd, 3rd, ete., element of ladder for any
total number of elements without proving the general formula for the mth ele-
ment in n-element structure,
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berg [1957¢] solved the case of a symmetrical distribu-
tion of the zeros of the reflection coefficient —that
is, for zeros chosen to alternate in the left and right
half-planes.

These formulas have led the writer and others to
conclude that we are somehow “missing the boat”
on the ladder network. Though in a mathematical
sense the Darlington method 1s an elegant solution
to the general problem of realizing a lossless network
terminated in resistances, the computations seem
unusually complicated when applied to a simple
configuration like the ladder. The writer has felt
for a long time that the simplest methods of analyz-
ing and synthesizing a ladder are still to be found.
The discovery (and proof) by Indjoudjian [1954] of
formulas for the element values of an n-stage RC
amplifier have bolstered this feeling.

One of the disconcerting aspects of most of the
above results on the Chebyshev and Butterworth
ladders is that they were never rigorously proved,
although their correctness was universally accepted.
The formulas were derived by carrying out the
calculations in detail for cases of low degree and then
guessing the general result. An attempt to prove
the general case, in the hope that such a proof
would show how to solve related problems, resulted
only in a proof for the Butterworth case [Doyle,
1958]. As remarked by Doyle, his proof is a “ham-
mer-and-tongs’ one in that it gives no clue to the
reason for the amazing simplicity of the final formu-
las. It is thus not possible to extend the proof to
formulas for the Chebyshev case or for other zero
distributions of the reflection coefficient or finally,
to formulas for the elliptic-function filter.

The above was the state of knowledge on the ladder
network at the time of the last URSI General Assem-
bly in 1957. What followed reads almost like a
detective story. At a meeting of Sub-Commission
VI-2, the writer mentioned the significant problems
of finding formulas for the inverse Chebyshev and
the elliptic-function filters and in passing commented
that the formulas given by Green for the Chebyshev-
polynomial case had never been proved. One of the
participants in the discussion was Dr. H. Takahasi.
After the meeting the writer and Dr. Takahasi had
supper at which the latter casually mentioned that
he had derived and proved the formulas in 1951.
It must be admitted that the reaction of the writer
was disbelief; it was so hard to imagine this to be
true that he felt he hadn’t explained the problem
clearly to Dr. Takahasi. However, the ensuing con-
versation showed that Dr. Takahasi was aware of
all facets of the problem. He promised to send a
copy of his paper [Takahasi, 1951], and some time
later he did.

Thus one of the unexpected effects of this URSI
meeting of scientists from different countries is the
uncovering of Dr. Takahasi’s paper. This gives
another illustration (if any are needed) of the desir-
ability of more such international conferences.

In this paper Takahasi derives the formulas that
were later independently given by Green. The
wealth of new results, the elegance of the proof, and

the implications for future work are adequately
covered in the paper by Weinberg and Slepian [1960a]
based on Takahasi’s paper. Suffice it to say here
that it is literally incredible that these results could
have remained unknown to workers outside of Japan
(and, it may be added, to many Japanese also) for
so long a time. Perhaps the history of this problem
as presented here can make some small contribution
to eliminating a repetition of similar occurrences.
The amount of duplication in research and calculat-
ing effort that could have been eliminated and the
additional progress that could have been made in
this field by widespread knowledge of Takahasi’s
paper are incalculable.

3.1. Future Research Activity

Though some work has been done on therealization
of true RLC networks—that is, where the coupling
network contains resistance elements inserted in a
controlled manner—we are still in need of a general
synthesis procedure. The state of knowledge even
on the problem of incidental dissipation is not
complete. We still don’t know how to realize a
network where each inductor is not restricted to the
same dissipation factor. Perhaps graph theory may
be useful here; some work has already been done on
showing how equivalent ladder networks can be
derived by the use of graph theory [Simone, 1959].
The procedures of Darlington [1939] and Bader
[1942] apply to the case of nonuniform dissipation
where dq 1s the dissipation factor of the capacitors
and dp) is the dissipation factor of the inductors.
Darlington did not present his procedure in detail ;
as a result a generation of readers has probably had
difficulty in applying it. Desoer thus performs a
useful service in giving a clear interpretation of
Darlington’s procedure [1959]. When the network
is terminated at only one end, the problem is greatly
simplified. Geffe [1959] considered such a singly
loaded network whose reciprocal voltage ratio is
a polynomial and gave formulas for the coefficients
of the polynomial after predistortion; thus the need
for the Darlington or Bader procedure is eliminated
in this case.®s As is remarked by Bennett, in his
proof appended to Geffe’s letter, the fact that this
closed-form solution for the coeflicients is obtained
should not be taken to imply that the general case
can be treated similarly. However, further investi-
gation of a possible simplification of the doubly
loaded case would be worth while.

The writer also feels that formulas for the element
values should exist for the uniformly predistorted
Butterworth and Chebyshev cases. We know these
formulas when no dissipation is introduced. One’s
sense of propriety is outraged when he finds that
making a simple translation of thefrequency variably
forces him to carry out the computationally awk-
ward continued-fraction expansion. Nature 1is
generally not so perverse. After all, the poles of
the Butterworth and Chebyshev functions still lie

16a It might be added that Orchard maintains (in a letter to the Editor, Trans.

PGCT, June 1960) that direct calculation of the element values is simpler than
using the closed-form expression for the coefficients of the polynomial.
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on a circle and ellipse, respectively, except that the
figures are shifted to the right. Perhaps the deep
insights of Takahasi on the properties of the con-
tinued-fraction expansion for Butterworth and
Chebyshev functions should help in this problem as
well as in some of the other problems mentioned
below.

[t appears that there is no end to the closed-form

formulas that can be found for the Butterworth
and Chebyshev functions. For the Butterworth
transfer function given by
.
(K (jo)| e

the time delay T,=—dB/dw (where K(jw)=|K(jw)|
¢”) has been found to be

n—1 w2m
T sin (2m—+1)x/(2n)
e " m=0 77];20271

For the Chebyshev function given by

o sl 1

K= e

where 7, (w) 1s the Chebyshev polynomial of the
first kind (i.e., 7T, (w)=cos (n cos ! w)), the time
delay in closed form!' is

n—1 ("3,,,’@) S,i,!},h (2n—2m—1)¢,
€’ sin (2m—+1)w/(2n)

el
rlv :’m:(i ) g
“ 14272 (w)

In the above U/, (w) is the Chebyshev polynomial
of the second kind—i.e., U, (w)=sin (n-41)¢/sin ¢,
where w=cos ¢—and ¢, is the imaginary part of
¢ given by ¢,=1/n sinh™" 1/e. It should now not
be difficult to go further; perhaps the time delay
for the inverse Chebyshev may be found in closed
form, and even that of the elliptic-function filter.
One of the other problems where the insights of
Takahasi should be helpful is the determination of
formulas for the element values of an inverse
Chebyshev transfer function—that 1s, the function
obtained by a simple transformation of a Chebyshev-
polynomial function which yields a low-pass filter
with a maximally flat pass band and an equal-ripple
stop band. Again it should be possible to determine
the effect of the transformation on the formulas for
the element wvalues of the Chebyshev transfer
function. Of course, the inverse Chebyshev has
finite transmission zeros so that each arm of the
ladder network no longer consists of a single induct-
ance or capacitance, but the finite zeros are known
in closed form so that it should be a simple matter to
add proper resonating elements to an element given
by a formula. The difficulty that is introduced by
the steps of the continued-fraction expansion may
now be removed by the properties derived by

17 Both of these formulas for the time delay were sent to the writer in a private
letter from H. J. Orchard.

Takahasi. One should perhaps start with the
simplest ladder network, that is a ladder with a
resistance at only one end.

The problem of greatest moment with regard to the
derivation of formulas for the element values is the
ase of the elliptic-function filter—that is, the filter
with an optimum cutoff characteristic and equal
ripples in both the pass and stop bands. This
problem is exceedingly difficult,”® but well repays
long study. Discovery of the formulas could well
bring about a revolution in the applications of
modern filter theory. It is suggested that some of
the relationships presented by Helman [1955] may
be useful here since they relate the elliptic-function
filter to the Chebyshev filter (for which formulas are
known) without the introduction of elliptic functions.

Most of the above could be looked upon as an
attempt to achieve a general understanding of the
ladder network, one aspect of which is to answer the
question whether formulas for the element values can
be found when the reciprocal transfer function is a
polynomial many of whose properties are known
analytically. For example, can such formulas be
found for the transfer function with a maximally flat
time delay, that is, the function yielded by use of the
Bessel polynomials? The continued-fraction expan-
sion about the origin of the ratio of the even and odd
parts of the polynomial representing the reciprocal
transfer funection is simple, the rth coefficient of
1/s being given by 2r—1; perhaps a related fune-
tional form also exists for the coefficient of s in the
expansion about infinity. The transfer function
corresponding to the so-called synchronously tuned
ampliiier, treated by Indjoudjian [1954], should be
investigated for any insights it may offer. Indjoud-
jlan derived and proved formulas for the singly
loaded case; the doubly loaded case is thus still
unsolved.

Finally, formulas for the element values of the
network with a distribution of zeros of the reflection
coeflicient other than all in one half-plane are known
in only one case [Weinberg, 1957¢]; some effort will
probably be expended in determining the formulas
tor other zero distributions.

Perhaps future research in this area will demon-
strate that each type of function must be investi-
gated individually, that fortuitous circumstances
permitted the determination of the known formulas.
At any rate, it would be desirable to establish some
conclusion; such investigations will surely yield
insights valuable for further research in network
theory.

It appears that research on network functions
expressed as functions of fwo complex variables may
be accelerated in the next few years. Such func-
tions arise in many different investigations. An
analysis of the positive real functions of two var-
iables that arise in potentiometer circuits has already
been mentioned [Levenstein, 1958]. Reference to
Takahasi’s work will show that he makes elegant use
of the properties of symmetrical polynomials in two

15 One should be optimistic, however. In a private communication H. J.

Orchard writes that he believes he has found the formula for the first reactance of
the elliptic-function filter.
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variables. Furthermore, the functions describing
networks containing resistances, inductances, capaci-
tances, and transmission lines of commensurable
length are functions of two complex variables after a
substitution has been made to remove the exponen-
tial terms. Such functions also arise in control
theory when systems containing a transportation lag
(i.e., a pure time delay) are treated.” It has also
been suggested * that the realization of networks
containing inductors with unequal dissipation factors
might be attacked by the use of rational functions of
two variables.

The positive function introduced by Baum in his
theory of narrow-band filters, as contrasted with the
positive real function, will get further study and
application in network theory. Already Belevitch
[1959a] has used it to obtain what he feels to be ¢
more natural derivation of the Brune eycle.

Finally, the analysis and synthesis of nonlinear
networks will come in for increasing attention. A
start on this problem is represented by the treatment
of the piecewise linear case obtained by using net-
works of diodes and resistances; some work in this
area is that by Stern [1956] and Dennis [1959].

4. Realizability Conditions and Positive Real
Matrices

In the section on graph theory we discussed the
still unsolved problem of characterizing the second-
order impedance or admittance matrix of a grounded
RC quadripole. Some necessary conditions have
been derived using function theory rather than
oraph theory. It has been shown by Slepian and
Weinberg [1958b] that the order relationships that
hold for the numerator coeflicients of the z, before
cancellation of possible common factors—mamely,
that the coefficients of z,, must be positive and not
greater than the corresponding coefficients of z;; and
zo—must hold even after cancellation for the 2, or
the 7, in the case of a network with less than six
nodes; in other words, for such a network it is
impossible for both sets to violate the conditions.
These results have been extended in a doctorate
thesis by Olivares [1959]. Some additional results
have been obtained in other countries [Bryant, 1959;
Adams, 1958], but the general problem still remains
unsolved.

For the case when only a transfer function of the
RC three-terminal network is specified, some addi-
tional work has been done. Kuh [1958] has given
an alternative synthesis procedure, and Kuh and
Paige [1959] have determined the maximum possible
multiplier for the voltage ratio of an RC ladder
network.

Some recent work has been done on characterizing
networks containing negative elements in addition
to positive resistances, inductances, and capacitances.
A general theory for the synthesis of networks con-

19Tt should perhaps be pointed out that stability problems in this case can be
treated precisely by Pontryagin’s [1955] theorem. It appears that this is not
known to workers in feedback control theory since a search of many of the leading
books in this field reveals that complicated approximate techniques are used for

determining stability.
20 This suggestion was made to the writer by Prof. N. DeClaris.
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taining negative elements becomes more urgently
needed with the widespread use of the negative-
impedance converter and especially with the dis-
covery of the tunnel diode. A basic attempt at the
formulation of realizability conditions for such
networks is given in Bello’s doctorate thesis [Bello,
1959]. Some additional papers are scheduled for
presentation at the Polytechnic Institute of Brooklyn
Symposium  on  Active Networks and Feedback
Systems to be held in April 1960. Further dis-
cussion of the synthesis aspect of this problem is
given in the section on Active Systems.

The problem of characterizing the matrices of
passive n ports has received much attention. The
paper of Youla, Castriota, and Carlin [1959] uses
the scattering matrix and attempts to derive a
rigorous theory of linear, passive, time-invariant
networks on an axiomatic basis. Their discussion
is heavily mathematical, being replete with the
concepts of Hilbert space. The papers of Weinberg
and Slepian [1958; 1960b] use the impedance and
admittance characterizations and thus discuss the
positive real matrix. They give new realizability
conditions on different types of networks; in addi-
tion, they attempt to establish simple tests for
checking the realizability of specified matrices whose
elements are rational functions. One of the prop-
erties of their tests is the elimination of the usually
required step of solving for the roots of polynomials.
Some other work on the positive real function was
done by Seshu and Balabanian [1957]; they consider
transformations of a positive real rational function
that keep the positive real property invariant.

4.1. Future Research

Enough has been said in the graph-theory section
on the unsolved problems of finding necessary and
sufficient conditions for the realizability of trans-
formerless networks, where these conditions include
a synthesis procedure. We have only to add here
what should be obvious, namely, that the techniques
of function theory can be used to supplement those
of graph theory for answering these knotty problems,
and we mention one problem whose solution may
give significant insight. Then we discuss positive
real functions.

The problem on the RC grounded quadripole is
the proving or disproving of a conjecture made by
Darlington [1955].  He has stated his belief that the
series-parallel network constitutes a canonical sub-
class for the general three-terminal RC network—
that is, every second-order matrix realizable by an
RC grounded quadripole may be realized in series-
parallel form. Darlington has proposed the realiza-
tion of the following impedance matrix to test his
conjecture:

§2—s+1

i 24651

T
2s(s+1) s2—g+1

§2}6s-+41

Though this matrix satisfies all the known necessary
conditions on the impedance matrix of an RC
grounded network, no realization as a series-parallel



structure is possible and no other type of grounded
quadripole has yet been found [Olivares, 1959].
Olivares has stated his belief that the matrix is
unrealizable as a three-terminal network; however
the matrix is readily realizable as a symmetrical
lattice.

[t is inevitable that much research effort will be
devoted in the future to the positive real funection
and the positive real matrix. The definition that is
usually given [Weinberg and Slepian, 1960b] is satis-
factory provided we are dealing with matrices whose
elements are rational functions. However, the
concept of a positive real function is important enough
to be defined in general; such functions arise when-
ever passive systems are considered. For example,
the matrices treated by Wigner and von Neumann
[1954] are positive real matrices except for a trivial
rotation of the axes of the complex plane. The
authors show the necessary and sufficient conditions
on their matrices, but these are given in a non-
constructive form; in other words, no simple way of
testing these matrices is given. The question arises
whether tests can be devised for these matrices as
was previously done for matrices of lumped-param-
eter electrical networks [Weinberg and Slepian, 1958;
1960b).

A general definition of a positive real function
(PRE) is even needed # in electrical theory, for use
with distributed systems or with the limits of finite
lumped systems as the number of elements increases
without limit.  Under such circumstances for
example, the simple function /s should obviously be
PRF; here we see that the function is real only for s

real and nonnegative. Furthermore, with many
transcendental functions, the definition of the

function differs for s real and positive and of zero
angle from s real and positive and of angle 27.
Accordingly, Professor Foster proposes that the
fundamental definition of a positive real function be
expressed in terms of the argument of the complex
variable rather than in terms of a half-plane. The
proposed definition of a PRE F(z) is as follows:

(1)  F(z) is an analytic function of z for
—m/2<arg 2< /2

(i1) F'(z) is real tor arg z=—0

(1i1) Re[F(2)] >0 for
—m2<arg z<m/2

(iv) F(z) to be defined by analytic continuation
when possible beyond the sector in which
it is defined by (1)—(iii).

Remark 1. 'The restriction in (1) may possibly be
too strong, but at the present moment, the restriction
to analyticity seems to be the only feasible assump-
tion to make. Further study may be needed on
this point.

Remark 2. 1f the restriction i (i) were made
stronger, that is, Re[F(z)] >0, the only effect would
be to exclude the special case of #(2) being identically

21 For the remaining discussion on positive real functions the writer is indebted
to Professor R. M. Foster, who communicated these ideas in a private letter.

He writes that his ideas are tentative, but the whole note is so suggestive for
future research that it is used (with permission) in its entirety.
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zero.  From a certain point of view, this might be
an advantage, since then, in quite a number of
theorems, this particular case would not have to be
excluded by a special statement. On the other hand,
this would exclude the simple case of a short circuit
(if we were talking of impedances). On the other
hand, in normal mathematical procedure, we would
have automatically excluded the case corresponding
to /(z) identically infinite. This particular impasse
might perhaps be completely avoided if we defined
an entirely new sort of function W(z) corresponding
to

W(z) _@)=1

TF()+1
This corresponds to what is accomplished by using
the scattering matrix as opposed to either the short-
circuit admittance matrix or open-circuit impedance
matrix. More study with respect to this particular
point also seems desirable.

Remark 3. Note that nothing is postulated
explicitly concerning the behavior of the function on
the imaginary axis. For a study of this behavior
we depend entirely on analytic continuation from
the sector —7/2< arg z<x/2. Also note that we
do not include the suggestion of Richards that essen-
tial singularities on the imaginary axis be specifically
excluded.

Remark /. An example of a PRF:

=2

where —1<r<1. Interestingly enough, the physi-
ologists have investigated the electrical properties of
many different organic materials where the impe-
dance over a very wide frequency range is of the
form F;(z) with a constant value of » characterizing
ach particular kind of material, the actual numerical
values somewhere in the neighborhood of —0.7 for
the most part.

Remark 5. An example of a PRE with an essential
singularity at the origin:

Fa(2)=1—exp(—1/2).

That this function is PREF may readily be seen by
noting that

. . —z e Y
R( [[g(T-F?!/)]*l exp <_, +)/‘)> SO8 .l'z—*‘]/:

Hence the positive character when z is positive.

Remark 6. Another example of PRF with an
essential singularity at the origin which is not
isolated, being a cluster point of poles:

1 1 1 1

Fo(s)——— [ . el
3(2) l+2‘+2(1+2:)+4(1+4:‘)+8(1+H;‘)+
Here each component in the infinite series is itself a
PRF, and the series is seen to be absolutely and



uniformly convergent in the sector —m/2< arg
2< /2 since in that sector

1 1
N(+N) N
Remark 7. An example of a PRF with all poles

and zeros on the imaginary axis (i.e., i PRF to use
Richards’ notation [1947]:

Fi(z)=tanh z.

That this function is PRF may readily be seen by
noting that
e
> [Py (x4
Re [Fa(z+ay)]= (e cos 2y+ 1)+ (e¥ sin 2y)?

which is positive when x is positive.

Remark 8. An example of a PRF with a natural
barrier on the imaginary axis:

F;(z) =tanh .2+rts}—n—hf?‘?—}—

tanh 4z  tanh 8z
5 +

Here each component in the infinite series is itself a
PRF. That the series is absolutely convergent and
represents an analytic function in the sector — m/2<C
arg z< /2 is seen by the following consideration :

—2¢* cos 2y+1

4’+ 2¢¥ cos 2 +1

41_+_2p21_5’_1
— -1.1: 2(/”_’_1

| tanh (z+1y)|*=

and now assume that z is in the domain

0<r<uw
where 7 is some fixed positive number. Then
tanh N(z+y) (lnh Nz (‘tnh ]\r<@lj r
N N N N

l
Thus the function is well defined.
To show the existence of a barrier,
value of y of the form

:7r(2m +1)

on+1

consider any

where m 1s any integer, positive, negative, or zero,
and 7 is a positive integer. And then consider the
term in F;(z) which is

ta 1__111 _Z\ 2
N

where N=2" and for this particular value of 7.
ctnh Nz

The real part of this term is equal to — and

becomes positively infinite as x approaches zero
keeping ¥ at this same fixed value.

It is believed that these thoughts of Professor
Foster on positive real functions will stimulate
future research on this important problem.

5. Systems With Time-Varying and Non-
linear Reactances **

During the past three years networks containing
nonlinear rea(‘tnn((‘s have been used as amplifiers
these amplifiers have been called parametric ampli-

Siers.  The concept of sustained oscillations in
nonlinear systems is an old one, Lord Rayleigh

having described in 1877 the stability conditions
for a system excited at twice the frequency of the
unstable vibrations [Valdes, 1958]. Similar be-
havior was studied in connection with -electro-
mechanical systems. In addition, nonlinear reactive
modulators were used in radiotelephony before
1914. It wasn’t until 1957, however, that the
present-day flurry of activity on parametric ampli-
tiers started. At that time Suhl [1957] suggested
using the anomalous dispersion effect in ferrites
to make a variable-inductance parametric amplifier.
In the succeeding three yvears much literature and
many devices have appeared under the title of
parametric amplifier.  Most of the theoretical
works during this period, with a few notable excep-
tions, are reviews, rediscoveries, and adaptations of
theories already known. The device technology,
however, started from zero and made startling
advances. We do not discuss devices here since
this will be reported on by Commission VII.

The theoretical background for parametric ampli-
fiers can be divided into two fairly distinet categories.
The first is the energy-conversion properties of
nonlinear reactances, and the second 1s the circuit
theory of linear networks with periodic time-variant
parameters.

The fundamental energy-conversion property of
nonlinear reactances is characterized by a set of
energy relations known as the Manley-Rowe equa-
tions [1956].%

Manley and Rowe showed that when a nonlinear
capacitance imbedded in a linear fixed-parameter
network is excited by sources at two frequencies
wo and wi, the power flow P, , into the capacitance at
the wvarious combination fu*quonmos mwy+nw, 18
characterized by the equations

2 P

>t 3% Dime g

m=1 n=—ow Mw)+Nw,

© ©

P
NPrn

m=—o n=1 771w0+ nw,

22 The writer thanks Dr. B. J. Leon for his help in the preparation of this
section.

23 The so-called Manley-Rowe equations go back further than this paper.
They were contained in a paper by J. M. Manley, ‘“Some General Properties
of Magnetic Amplifiers,”” Proc. IRE, 39, 259 (1951); this paper was based on un-
published work done by Manley much earlier, at least going back to the late
1930’s.
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Many subsequent papers have appeared deriving
the Manley-Rowe equations in  various ways.
Manley and Rowe used a method of Fourier analysis.
Penfield [1959] used an energy-function approach.
From this he was able to extend the equations to
reactive n ports with £ noncommensurable exciting
frequencies. Haus [1958] showed that the \Ianh\\-
Rowe equations apply to the power « carried by an
electromagnetic field in a nonlinear lossless medium.

To see how the Manley-Rowe equations are applied
to a parametric amplifier problem, let us consider the
circuit of figure 2. For this circuit the powers
P, ., are zero ) for (m,n) #= (1,0), (0,1), (1, 1) because
the capacitance faces an open circuit at these fre-
quencies. Thus the Manley-Rowe equations become

r 1.0 P, -1
Wo W
P EE _+_1)ﬂ,l:r)

w«)'—wl W)

+ =0

Since there is no source at frequency w,—
must be negative (flowing out of the capacitance)
if at least one of the ”’s is nonzero. If wy<Zw,
Py, 1s also negative and energy is converted from the
frequency w, to both @, and wy—w,. With this con-
dition the “signal” at frequency o, is “amplified.”

)
Wy, It 1y—1

w,

JANTN

‘”°‘“’j

O

WHERE :
;g IS A NONLINEAR CAPACITANCE
00 FOR W# wj
IS A FILTER WHOSE IMPEDENCE IS |Z; WITH
Re[Z;]>O
g FOR W=wWj

wj 1S A STEADY - STATE

— SINUSOIDAL VOLTAGE AT FREQUENCY w;
Frcure 2. [Idealized parametric amplifier.

In general the Manley-Rowe equations give an
indication of feasibility for a particular amplifier with
sharply tuned filters, and, in addition, they give
quantitative information on the conversion -effi-
ciency. They do not give any information on the
possible gain and bandwidth for a particular circuit
model.

In order to get quantitative information about the
performance of a parameteric amplifier one must
analyze a complete ecircuit model. No general
theory exists for analyzing nonlinear circuits “of the
type used in parametric amplifiers. However, if the
excitation at one frequency, known as the pump, is
much larger than the other excitations called the

signal, a linear model characterize this small-signal
performance. The general class of circuit models
which characterize the small-signal performance of
parametric amplifiers are linear circuits with a few
periodic time-variant parameters imbedded in a
network of time-invariant parameters. The most

. complete proof of this statement is given by Duinker

[1958].  We shall refer to networks of this type as
linear parametric networks (I.PN).

The case of linear parametric networks with
limped elements (LLLPN) has been studied in great
detail. The time-domain equations that character-
ize these networks are linear differential equations
with periodic coefficients. Homogeneous equations
of this type have been discussed quite extensively
in the mathematical literature (Starzinskii, 1955;
McLachlan, 1947]. The techniques used on these
equations are so involved that they cannot con-
veniently be used to obtain the general transient and
steady-state solution to |nho1no(v(n(\ous equations.
It is the latter type of equation that is of interest for
the design of an amplifier.  Bolle [1955] pointed out
that when the excitation to an LLPN is a stes ady-
state sinusoid, one can write down the frequencies of
all the resulting currents and voltages. He dis-
cussed the case of one variable element and showed
that if the element were deseribed by a finite number
of sinusoids and if the network were such that all but
a finite number of the voltage and current terms
were zero, then the amplitudes of the nonzero voltages
and currents could be computed. Duinker [1958]
extended Bolle’s method to include more variable
elements, but he did not eliminate the two qualifving
conditions. Virtuallyall of the recent paperson LLPN
use Bolle’s method [Rowe, 1958; Heffner and Wade,
1958; Seidel and Hermann, 195 ‘)]

For the case of an LLPN with a single variable
element described by a finite number of sinusoids,
Desoer [1959] presented a method of steady-state
analysis.  His method, which is exact for these
circuits, consists of an algorithm l'()l' computing the
amplitudes of the voltages and currents in the same
manner as Bolle, but Desoer proved, in addition,
that the neglected terms do not have to be zero.
Desoer gave a bound for the error introduced by neg-
lecting the higher-frequency terms, and he showed
that this bound tends to zero as we increase the
number of terms used.

A more general method of analysis has been pre-
sented by Leon [1959; 1960 (in press)]. He showed
that the frequency-domain equations that character-
ize both the transient and steady-state behavior of
LLPN’s are linear difference equations with rational-
function coeflicients. The difference-equation ap-
proach yields exact computational techniques for
analyzing specific circuits. It also gives formal
solutions that can be discussed in general terms.
Although the two papers of Leon have answered a
lot of questions about the analysis of LI.PN’s, there
are many more to be solved before a synthesis proce-
dure for these networks can be formulated. The
second paper states many of these problems in detail
[Leon, in press].

699



For distributed LPN’s Tien and Suhl [1958] showed
that the approximations of Bolle’s method lead to a
pair of coupled equations similar to the equations
for traveling-wave tubes. This has led to a number
of devices of both the forward and backward travel-
ing-wave type. For iterative LLPN’s consisting
of a cascade of single variable-element circuits Currie
and Weglein ** of the Hughes Aireralt Company
have shown that Bolle’s method also leads to a pair
of coupled equations similar to traveling-wave tube
equations. A number of other analyses of distrib-
uted LPN’s has appeared [Roe and Boyd, 1959;
Bell and Wade, 1959; Kurowawa and Hamasaki,
1959; Pierce, 1959; and Shafer, 1959].

The theory of LPN’s is far from complete and
many interesting problems exist. A bigger problem
is that of obtaining a quantitative LPN approxima-
tion to a pumped nonlinear circuit. To find the
model, one must analyze the nonlinear circuit with
a single-frequency (pump) excitation. All solutions
to date have been very approximate and apply only
to very special cases.

6. Active Systems

It is well known that a passive finite lumped-
parameter network can achieve all the characteristics
of any stable active finite lumped-parameter network
except possibly for the gain; in other words, the
transfer function of the active network cannot be
more complicated than a rational function. Thus
figure 3 represents a possible realization of any active
transfer function, where the purpose of the amplifier
1s merely to supply gain.

PASSIVE
NETWORK

AMPLIFIER

Possible form for realization of any active
transfer function

Ficure 3.

It 1s useful to remember this fact; 1t saves our
chasing rainbows for the proverbial pot of gold.
We can add feedback loops within feedback loops al-
most ad infinitum (and often ad nauseam) ; alas, we still
cannot get more than a quotient of two polynomials
as the transfer function. Recognition of this fact
makes us determine precisely why we are using
feedback in a configuration—e.g., in the adaptive
systems to be discussed below; surely not for achiev-
ing a desired transfer function that has, for example,
a fast response. An open-loop configuration would
do as well. _

A similar simple characterization applies to an
active stable driving-point function. It can always
be realized by a passive driving-point funetion plus
a negative resistance, either in series or in parallel.
This is schematically illustrated in figure 4. Though

2 A paper on these results is being prepared.
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Frcure 4. Representation of an active driving-point function.
this is not suggested as a practical means for realizing
such a function, it is a feasible one.

We will not discuss systems such as those shown
in figure 3, where the active element furnishes only
gain (and perhaps isolation when a number of such
networks are cascaded as, for example, in a flat
staggered n-tuple amplifier). We will discuss two
classes of active networks. In the first class the ac-
tive element is used in a feedback configuration to
achieve some desired result that cannot be achieved
by a passive system upon which some restriction has
been placed.  Such a restriction may be the require-
ment of using no inductances in a network:; here feed-
back is used as a tool in the synthesis of an RC net-
work to achieve RLC characteristics. Another
restriction can be the specification of a fixed network
(called the plant) whose parameters vary in some
manner; this network is required to yield a specified
transfer function that is insensitive to the parameter
variations of the fixed svstem. This sensitivity
requirement necessitates the use of feedback: we
shall discuss this in the context of the research on
adaptive systems.

The second class of systems that we discuss in-
volves negative elements that have not been achieved
by a feedback circuit; more specifically, we consider
networks containing tunnel diodes.

6.1. Active RC Synthesis

The use of inductances at low frequencies intro-
duces many difficulties. Thus to achieve RLC
characteristics—e.g., complex poles close to the
imaginary axis—attempts have been made to use
only resistances and capacitances with an active
element to achieve a desired pole-zero pattern. The
first active RC synthesis in the literature is due ap-
parently to Fritzinger [1938] and Scott [1938]. The
principle of their method is shown by the signal-flow
diagram in figure 5; this approach is now often called
the classical method or the feedback method in dis-
tinguishing it from the approach that uses the

A

¥B

Signal-flow diagram of the classical method of
active RC network design.

Ficure 5.



/»u/ufurzmpw/an(( converter (N1C). The amplifier
gain A 1s assumed to be a constant independent of
frequency and g represents the transfer function of
the RC network in th(' feedback path. The poles
of K are the zeros of 14+ Ag; we can thus get com-
plex poles that cannot be ac hi(‘\'ul with the RC
network alone.  The assumption of idealized prop-
erties should be noted: the active element is ideal
with infinite input impedance, zero output impedance
and zero reverse transmission. This field of active

synthesis remained dormant for a long time—for
2ood reasons. The passive elements, namely, the

])()blll\(‘ resistance, the positive inductance, and the
positive capacitance, are rugged, long-lived and can
be designed to be quite stable with respect to ambient
conditions; networks containing tubes, on the con-
trary, are less rugged, bulkier than passive networks,
and have characteristics that may deteriorate for
any of a number of re: asons, among them being in-
sufficient eathode emission, the malmn of an active
parameter, or a change in the power-supply voltage.
The concept of a ll(‘(”lll\(‘ vlolnvnl or a negative
driving-point function is, as we've mentioned above,
useful in the synthesis of active circuits. It was
used by Merrill to design an NIC using vacuum
tubes [1951]. This, however, possessed the disad-
vantages of any other vacuum-tube circuit.

The advent of the junction transistor changed this
situation. It made possible a small, luggu(l long-
lived active package that can be used in an NIC to
give the (ll.u‘l(lmlstl(s of a negative driving-point
function over an operating range of lwaun(ws.
J. G. Linvill was the first to exploit the transistor in
the design of an NIC [Linvill, 1953, 1954]. This
brought the NIC into prominence as a tool for active
network synthesis.

Linvill achieved a transfer function whose poles
were not restricted to the negative real axis by the
use of RC networks and an NIC. The denominator
polynomial with unrestricted zeros was decomposed
mto the difference of two polynomials whose roots
are confined to the negative real axis; the subtraction
is achieved by the N.C. The zeros of the transfer
function were achieved by passive networks.

Kinariwala [1959] also used the NIC to achieve
RLC characteristics with RC networks. He showed
how to realize any driving-point impedance by
means of resistances, capacitances, and only one NIC'.
In his (Onhgumlmn the NIC could achive the sub-
traction required in both the numerator and the
denominator. Horowitz [1956] pursued a different
course in applying the NIC: he extended the classical
work of Brune, Darlington, and Dasher—i.e., synthe-
sis by means of a cascade connection of canonical
sections—to active RC synthesis. He didn’t, how-
ever, solve the general problem, since he realizes
onlv a positive real RC driving-point impedance in
order to achieve an associated transfer impedance
with unrestricted zeros; the network configuration
is that of active RC ladders. The general problem
of realizing a positive real RLC (lrlvlno -point func-
tion, or even going further, a driving- pomt function
that is not poslll\c real, by means of a cascade of
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canonical RC sections is still unsolved. 1In d(l(“(i()ll
Horowitz’s method does not show how to realize
large gain; achieving a large constant multiplier 's
often an important consideration.

Horowitz [1957, 1960 (in press)] also pursued
research on the classical method. Contrary to the
original attacks on this problem, where as we pointed
out ideal active elements were assumed, Horowitz
took into account the active-element parasitics and
found the limitations due to them.

6.2. Adaptive Systems

The past three years have seen a great deal of
activity in pl(mt— or process- .ulapln‘v systems.
Much of the motivation appears to be due to the
large and rapidly changing parameters of modern
supersonic aireraft and the resulting problems im-
posed on the autopilot.

Nearly all workers in this field have divided up
the problem into three phases:

(1) Identification of plant or process parameters

(2) Computation of required corrective action

(3) Modification of system parameters or of sig-
nals to achieve corrective action.

The differences in the research have been in the
methods used in one or more of these three phases.
In phase (1), the following methods have been used:

(a) correlation of noise input with plant output
to obtain the plant impulse response [Anderson
et al., 1958; Goodman and Hillsley, 1958];
sampling of plant input and output, and
solving the difference equations relating input
and output [Kalman, 1958; Mishkin and
Haddad, 1959].

(¢) construction of a model of the plant and using
the differences between the output of the plant
and its model to vary the parameters of the
model so as to minimize the differences [Mar-
golis and Leondes, 1959].

In general the resulting systems are nonlinear and

thereby difficult to (111.11.\*/‘0. Hence most of the
analysis has neglected the nonlinearities.  Even the
linear alhll\\ls comes forth with few basic conclu-
sions on the reasons for the adaptive systems. A
critique  on th('sv adaptive systems [Horowitz,
1960] implies that there has been a singular lack of
continuity between this research and fundamental
feedback theory. The workers give as motivation
for their work the problem of large parameter varia-
tions. Some suggest that ordinary time-invariant
linear feedback is unable to cope with large parameter
-ariations.  Horowitz feels this is not true. Others
suggest that ordinary feedback may be inadequate
because of noise or saturation limits [Staffin and
Truxal, 1958]; Horowitz feels this eriticism may often
be valid. It appears, however, that more analytic
work is needed in this area of research.

(b)

6.3. Tunnel-Diode Networks

Except for the active RC synthesis, the field of
active synthesis is largely unexplored; though some
problems have been solved, there does not exist a



body of synthesis procedures comparable to that
for passive networks. Some new approach is needed ;
it has often been felt by network theorists that the
development of a pure negative resistance might
stimulate such an approach. This is one reason why
the discovery of the tunnel diode is exciting [Som-
mers et al., 1959; Lesk et al., 1959].

Much of the work on linear amplifiers using tunnel
diodes has represented attempts to build a stable
single-stage amplifier [Sommers et al., 1959]. Ac-
cording to most discussions in the literature it appears
that the problems in the design of tunnel-diode am-
plifiers are how to achieve isolation in order to build
two-stage amplifiers and how to make the tunnel
diode wunilateral. The writer questions whether
these are the real problems. Perhaps the available
synthesis procedures for passive networks can be
adapted to the design of active networks.

What synthesis emphasizes is the realization of a
preseribed gain-bandwidth by essentially a single
process; or to be more specific, it attempts the exact
realization of a prescribed function of frequency—its
magnitude, its phase, and its constant multiplier.
This requires a change in philosophy from that being
used in present design; instead of worrying about
1solating the active device, one should attempt to
take advantage of its parameters in achieving a
desired frequency and gain characteristic. Instead
of bemoaning the fact that the tunnel diode is a two-
terminal device, one should take advantage of this:
our passive synthesis procedures employ two-terminal
elements.

One method of adaptation of a synthesis procedure
has been proposed by the writer [Weinberg, in
press]. It applies to the synthesis of tunnel-diode
networks, where the equivalent circuit is taken to
to be a parallel connection of the junction transition
capacitance and a negative resistance.

This technique is an adaptation of predistortion.
The use of the predistortion technique in reverse
may be useful for realizing active networks incor-
porating the new devices. Instead of substituting
s=p—d into the given system function, we sub-
stitute s=p-+d, where d is a positive constant,
s=o¢-+jw is the original complex variable, and p is
a new complex variable.

It is recalled that in ordinary predistortion the
pole of the given system function that is closest to
the j axis hmits the size of d that can be chosen.
In reverse predistortion, however, stability con-
siderations no longer limit the size of d, since poles
of the original function, instead of moving closer to
the j axis, move away from the axis. A number
of other advantages are obtained by this shift of
the critical frequencies to the left. For example,
nonminimum-phase functions can be made minimum
phase by choice of an appropriate value of d; thus
procedures that can be used only for minimum-
phase functions—Ilike Dasher’s procedure for the
realization of resistance-capacitance (RC) networks,
or even simple ladder networks—now become
applicable.

It is not true, however, that, since the shift is to
the left, there are no constraints on the value of d.

As shown in [Weinberg, 1958b], for a normalized
design d is the reciprocal of ); thus the value of the
¢} that can be achieved with the tunnel diode may
be a limiting factor for some applications. For a
negative-resistance device it is desirable that the
absolute value of ¢ be as small as possible; for
example, a small capacitance and a large absolute
value of negative conductance yield a high-quality
tunnel diode.

A most important effect of this procedure of
reverse predistortion is that the final network, which
will require negative resistances for its realization,
vields what could be called a flat gain. This gain
can be computed in a manner similar to that given
in the reference [Weinberg, 1958b] for computing
the flat loss.

A simple example illustrates the technique. In
this example the tunnel diodes, in effect, substitute
for an ideal transformer. The voltage ratio

E, H
K = :: TR
Ey (s+1)(s+3)

is realized by the network in figure 6 with H=15.
The maximum possible H for a passive network
without transformers is 3. Each of the RC parallel
networks within the dashed lines can be replaced by
a tunnel diode.

o—AAMN— —AA— E —0
| J_ I i i _|_ | 30!
1 5 -2 | €0 !
1 | 1 i
T T
o— T T T i ==
Frcure 6. Nelwork realizing the given RC wvoltage ratio.

(Values in ohms and farads.)

Nonuniform predistortion can also be used to
realize RLC networks containing tunnel diodes. In
addition, it appears possible to control the number
of tunnel diodes used in the design.

6.4. Future Research Activity

There are two approaches that have been explored
in active RC synthesis using feedback techniques.
One is the NIC approach exemplified by the work
of Linvill [1953] and Kinariwala [1959]. Here com-
plex poles that are unrealizable by RC networks and
zeros that are inconvenient to realize by such net-
works are achieved by polynomial subtraction. 'The
other approach, as carried forward by Horowitz
[1957, 1960 (in press)], is basically the classical
method; this is achieved by the addition of poly-
nomials. This classification is interesting from the
point of view of sensitivity. Because of the sub-
traction in the first approach the resulting sensitivity
of the filter to the active- and passive-element vari-
ations is very large. The optimum NIC synthesis
from the point of view of sensitivity to both active
and passive elements was found by Horowitz [1959.]
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The second class of procedures leads to considerably
less sensitivity to the active elements but sensitivity
to passive elements is of the same order of magnitude
as in the first class.  While the ultimate in sensitivity
in the first class has been solved,” in the second
class it has been achieved only for specific configura-
tions. Also no study has been made to determine
configurations which lead to minimum sensitivity
to passive-element variations. It should be men-
tioned, moreover, that this has not even been done
in passive network synthesis.

In the matter of extending modern network
synthesis to active RC systems, a significant re-
search problem is to apply the Brune and Darlington
methods to active RC realization of any input im-
pedance by means of a cascade of canonical sections.
This appears to be a very difficult problem.

With regard to active synthesis procedures using
negative elements, more study should be applied to
extending and applying the work of Bello [1959].
In addition, optimum tunnel-diode synthesis pro-
cedures with respect to gain-bandwidth and other
criteria will probably be worked out. An inevitable
problem that will arise when active synthesis
becomes practicable is the sensitivity problem.
Finally, it is desirable that an understanding of the
deceptively simple negative resistance become more
widespread ; for example, one sees again and again in
the literature the incorrect statement that a negative
resistence cannot be both open-circuit stable and
short-circuit stable.

Much basic work remains to be done in the theory
of adaptive systems. Up to now the mass effort has
been cn building systems. This is evident from the
references previously cited and a perusal of the Pro-
ceedings of the Symposium on Self Adaptive Flight
Control Systems, held at Wright Air Development
Center on January 13-14, 1959. To quote Lit.
Gregory of the Flight Control Laboratory, Wright
Air Development Center, which government organi-
zation sponsored and organized the Symposium
[Gregory, 1959]: “I think there is one general state-
ment we can make about most of our systems and
that is, they work; but why do they work? 1In the
futvre we intend to try to establish the basic funda-
mentals of why our systems work and how we can
analyze them better We intend to devote
more of our program to the development of the basic
fundamentals.” To this statement of future plans
one can only say: amen. If at least a small part of
government money used to support work in adaptive
systems is devoted to basic research in this area,
a firm analytical base will be placed under future
designs.

7. Concluding Remarks

To round out our discussion of circuit theory, we
make some brief comments on books, special issues
of journals, and Symposia devoted to areas of circuit
theory.

% . J. Orchard in a private communication to Dr. Horowitz shows an elegant

and simple mwethod of decomposing the polynomial; this method eliminates the
need of the nonlinear-equation approach used by Horowitz [1959].
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Previously the student of network synthesis was
forced to pick up much of his background in the field
by consulting old issues of journals. This unsatis-
factory situation no longer exists. The field of net-
work synthesis has now received a wealth of docu-
mentation in book form. This will undoubtedly
accelerate research in extensions of RLC' synthesis
techniques to active systems, to nonlinear systems,
and to analogous nonelectrical systems. The
driving-point problem is painstakingly treated at
some length by Tuttle’s book [1958], whereas
Balabanian [1958] has covered both driving-point
and transfer function synthesis. The book by Kuh
and Pedersen [1959] attempts to introduce synthesis
at the undergraduate level. These books, coupled
with those of Guillemin [1957] and Storer [1957] give
an adequate picture of many aspects of synthesis.
At least three of the above books not only collect
the significant material that could formerly be found
only in technical journals, but also contain previously
unpublished results or results published only as
theses.  Another significant event was the transla-
tion into English of Cauer’s [1958] important book;
this will serve as a reference and important scientific
document for many years to come. It appears that
there will be a continuing flow of books on the
subject, now that the tap has been opened. At
least two more are planned for the next year, one
by Van Valkenburg [1960] and the other by Weinberg
[in press]. Finally, another book that should be
mentioned in this connection is the one on control
systems edited by Truxal [1958]; this book contains
sections on signal-flow theory, network synthesis,
and sampled-data systems.

Of course, the circuit theorist will still require to
read the journals in order to keep up;in fact, he will
be hard put to it to keep his head above water even
in his own particular area of circuit theory. The
field is so fast-moving that no sooner is a new idea
broached than it receives a ecritical comment, an
extension, or a new application; an example was
previously cited on Baum’s introduction of the
positive function and Beleviteh’s applying it to the
realization of a Brune network. The problem of
bringing circuit theorists up to date in their com-
prehension and application of what is now known
has been a cause of some concern to the Adminis-
trative Committee of the PGCT. A number of
remedies has been proposed, one of them being the
sponsorship of Symposia and another being the
publication of special issues of the Transactions
PGCT.

Though one of the purposes of a special issue has
been tutorial, most of them have in large part con-
tained new material. The special issue on topology
has already been mentioned [IRE Trans., CT-5,
1958b]. Therehave also been such issues on sequential
circuits [IRE Trans., CT-6, 1959], active systems
[IRE Trans., CT-4, 1957], and modern filter design
techniques [IRE Trans., CT-5, 1958a]. Special issues
are planned on the applications of electronic com-
puters to network design and on nonlinear networks.
The latter 1ssue had Dr. B. van der Pol as Guest




Editor until his untimely death; it will be published
as a memorial to the late distinguished scientist.

In the past three vears the Transactions PGCT
has consolidated its position as the foremost network-
theory journal in the country. Under Dr. W. R.
Bennett, who took over the Editor’s job from Dr.
W. H. Huggins, the Transactions has continued to
publish the outstanding papers on the circuit-theory
research that is being done in the U.S. The journal
has also attracted such papers from all over the world.

The International Symposium on Cireuit and
Information Theory held at UCLA in June 1959,
has been previously noted [TRE Trans., CT-6, 1959b].
In addition, an important International Sympo-
sium on the Theory of Switching was held at Harvard
University on April 2-5, 1957 [Vols. XXIX and
XXX, Harvard University Press, 1959]. This
Symposium included three Russian papers, one of
which summarizes the research on relay networks
in the U.S.S.R. and gives an interesting chart com-
paring the numbers of articles on switching theory
published in various countries [Gavrilov, 1959].
There is also a paper by Belevitch that attempts to
bridge the gap between the theory of contact net-
works and RLC network theory by taking account
of equations of current flow in contact networks
[Belevitch, 1959b].

Finally, a special Transactions issue on matched
(or conjugate) filters is being planned by the Profes-
sional Group on Information Theory [IRE Trans.,
PGIT, 1960]. This area appears to be one where
sophisticated network design techniques are urgently
needed. The TW (time-bandwidth) product for a
signal or its matched filter arises in this theory; it
is a most important parameter since in general a
better signal requires a larger T'W product. Not
much has been done at the present time to realize
matched filters with TW products greater than
several hundred. Achieving products an order of
magnitude larger by practical networks represents
one of the unsolved network-theory problems.
Detailed statements of the other problems in this
field are given in the special issue of the Transac-
tions PGIT.
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Subcommission 6.3 —Antennas and Wavaguides

Part 1. Diffraction and Scattering

L. B. Felsen and K. M. Siegel

The borderline of the diffraction and scattering tield both with other fieldr of interest in
Commission 6 and also with those of other Commissions is no longer well-defined. In order
to effect a delineation, we have excluded from this report all aspects of diffraction and scatter-
ing pertaining to areas of investigation which are covered more properly under separate
reports. For example, scattering from discontinuities in surface waveguides is expected to
be covered in Wait’s report on surface waves, while the vast area of multiple scattering and
scattering by rough surfaces will be described separately by Twersky (Commission 6.3).
We have also omitted any discussion of diffraction and scattering problems involving plasma
media. The field of plasma physics and one of its subdivisions; namely, the transmission,
scattering, and absorption of electromagnetic waves by high, low, and medium density
plasmas, would appear to warrant a separate subcommission with joint membership be-
tween Commissions 3, 6, and 7. Most previous interest in plasmas has been in purely
ionospheric effects and the interactions of electromagnetic waves with the ionosphere, as
covered by Commission 3. However, when one considers the interaction of electromagnetic
fields with plasmas caused, for example, by the motion of a high-speed vehicle through the
atmosphere, problems arise which are of basic interest to the activities covered by Com-
mission 6.3. The plasma field is growing so quickly that it would seem desirable to form
at the next General Assembly a new subcommission to deal with those plasma problems of
interest to several commissions.

This report will concern itself with high-frequency diffraction (involving obstacles with
dimensions large compared to the wavelength), Rayleigh scattering (obstacle dimensions
small compared to the wavelength), and scattering in the resonance region (obstacle dimen-
sions comparable to the wavelength). Moreover, we mention those areas which we feel
will receive attention during the next three years. The list of references appended to this
report, while not presumed to be complete, is certainly representative of the current activities
in the electromagnetic diffraction and scattering field in the U.S.A. through December 1959.
In addition to work mentioned specifically in the body of the report we have also appended
references which contain material either related to topies discussed in the text or of some-
what broader interest in diffraction theory. Additional references are to be found in recent
books by Wait [1959a] and King and Wu [1959], with the latter devoted primarily to a sum-
mary of research activities in electromagnetic diffraction and secattering at Harvard Uni-
versity.

Primary emphasis in this report is placed on recent theoretical developments, and
selected pertinent experimental results are mentioned only in conjunction with verification
of certain theoretical predictions discussed in the text. The authors are well aware of the
excellent experimental programs under the direction of P. Blacksmith at Air Force Cambridge
Research Center, R. Kell and J. Lotsof at Cornell Aeronautical Laboratory, E. Kennaugh
and L. Peters at Ohio State University, S. Silver and D. Angelakos at the University of
California, Berkeley, R. King and H. Schmitt at Harvard University, and R. Hiatt at the
University of Michigan. There are, of course, significant measurement programs going on
at many of the major corporations. In this regard the work at Radiation Incorporated,
Melbourne, Florida, should be particularly mentioned.

1. High-Frequency Diffraction

As in the preceding period, the work carried out
on diffraction problems during the past 30 months
:an be grouped into two broad categories: (1) The
solution of canonical problems, and (2) the investi-
gation of general approximate methods of solution.
By canonical problems we mean those for which
exact formal mathematical solutions can be found;
the asymptotic investigation of these results in the
short-wavelength limit yields the rigorous asymptotic
behavior of the solution. Because of the requirement
of rigorous mathematical solutions, canonical prob-
lems usually involve simple configurations whose

‘component surfaces are describable by a single
coordinate in a given coordinate system.

In contrast, the aim in studying general approxi-
mate methods of solution is to provide asymptotic
expressions for the scattering by objects of relatively
arbitrary shape. In the limit of short wavelengths
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the scattering from such objects appears to arise
primarily from the vicinity of certain stationary
points on its surface (at least, if the object is impene-
trable). The configuration in the vicinity of these
points can frequently be approximated by a canonical
one, as for example, a sphere, wedge, cylinder, ete.,
and the total scattering can then be computed by a
systematic procedure combining the effects of the
rarious canonical contributions. Thus, a study of
canonical problems is indispensable for an accurate
analysis of relatively arbitrary structures. More-
over, solutions of canonical problems often provide
the means for checking the results of a more general
approximate procedure. It is desirable in this con-
nection to seek an interpretation of the asymptotic
solution for a canonical problem in terms of simple
physically meaningful contributions, such as geo-
metrical optics, diffraction and transition effects, with
the latter arising in the vicinity of geometric optical
boundaries.



1.1. Canonical Problems '

A number of results became available during the
past 30 months for the problem of diffraction by a
wedge whose sides have a nonzero surface impedance.
In a cylindrical coordinate representation, in terms
of which this configuration is analvzed most nat-
urally, a constant nonzero surface impedance leads
to a mixed boundary condition at the wedge faces so
that the usual method of separation of variables
no longer applies. Following a procedure employed
previously by Peters [1950] in connection with a
study of water waves on a sloping beach, Senior
[1959a] obtained a rigorous solution for the two-
dimensional problem of diffraction by a homogeneous
imperfectly conducting wedge of arbitrary angle.
The method of solution is rather complicated but
contains certain features which seem to indicate the
feasibility of solving the wedge problem by a gen-
eralized Wiener-Hopf technique. For the special
ase of a right-angle wedge, Senior shows that the
generally very complicated formal result reduces to
a simple expression. Karp [1959a] and Karp and
Karal [1958] employed an entirely different technique
to solve the right-angle wedge problem for both
line-source and plane-wave excitation by introducing
an auxiliary problem which removes the coupling of
the boundary conditions at the wedge faces. They
have also employed a modification of this technigue
in a simple method of evaluating the diffracted far
fields for a dissipative wedge with interior angle
w2, =12 [Karal and Karp, 1959a]. Apart
from treating the dissipative case, Karal and Karp
also considered right-angle wedge configurations, one
or both faces of which have a constant surface
reactance which allows the propagation of a surface
wave, and they have calculated the amplitude of
excitation of the surface wave? [Karal and Karp,
1959 a; b]. Considered in the asymptotic limit of
short wavelengths, the results of Senior and Karal
and Karp vield the expected decomposition of the
far field into geometrical optics, diffracted (due to
the presence of the edge), and, possibly surface wave
contributions. The complications arising in this
class of problems when an electromagnetic wave is
incident obliquely have also been emphasized by
the above authors [Senior, 1959b; Karal and Karp
1958].

Concerning lossless wedges, a summary of solu-
tions for scalar steady-state and pulse excitations has
been presented by Oberhettinger [1958]. Results for
diffraction of pulses by a perfectly conducting wedge
and by a half-plane situated on the interface between
two semi-infinite dielectric media have also been ob-
tained by Papadopoulos [1959].

As regards the numerical evaluation of the scatter-
ing from an absorbing half-plane, the formal solu-
tions available in the literature have been suitable
only for small values of surface impedance. Uti-

! Although this section emphasizes the short-wavelength behavior, any formal
canonical solutions apply for all wavelengths.

2 The reader is also referred to their forthcoming N.Y.U., Inst. Math. Sci.
Rept., Scattering of a surface wave by a discontinuity in surface reactance on a
right-angled wedge.

lizing previous work of Fock and Gruenberg [1944],
Marcinkowski [1959] has obtained a comparatively
simple far-field representation from which an evalua-
tion for arbitrary impedance values can be carried
out conveniently. He presents numerical calcula-
tions for the diffracted fields of a lossy half-plane
which absorbs completely a plane wave meident at a
specified angle.

Although generally mixed, the boundary conditions
at the wedge faces may be uncoupled in a eylindrical
coordinate representation if one chooses a surface
impedance (or admittance, depending on polariza-
tion) which varies linearly with distance from the
edge. This problem was solved for arbitrary wedge
angles and two-dimensional excitation via the sepa-
ration-of-variables technique by Felsen [1959a] who
showed that if the variable impedance is reactive,
the surface can support a new type of surface wave
which decays exponentially away from the surface
along a circular arc centered at the wedge apex. Fel-
sen [1958] also carried out a high-frequency asymp-
totic evaluation of the plane wave scattering by such
a wedge and found that the solution is interpretable
in terms of geometrical optics and edge diffracted
contributions which exhibit an explicit dependence
on the rate of variation of the surface impedance.
For the case where the wedge degenerates into a
half-plane, Shmoys [1959] has employed a separation-
of-variables analysis due to Lamb [1945] utilizing
both rectangular and parabolic eyvlinder coordinates
to obtain the solution for diffraction by a half-plane
with a rather specialized impedance variation differ-
ing from the linear variation mentioned above. He
has carried out an asymptotic evaluation yielding
geometrical optics and diffraction effects.

Concerning diffraction by a perfectly conducting
semi-infinite cone, Felsen [1959b] has obtained the
expected decomposition of the rigorous far-field solu-
tion due to a radiating ring source concentric with
the cone axis into geometrical optics, diffraction and
transition effects. Explicit formulas are given for
the geometrical optics and transition contributions,
while the angular distribution of the diffracted field
arising from the presence of the cone tip is repre-
sented in terms of a canonical integral (which can be
evaluated approximately) [Felsen, 1957a]. Felsen
[1959a] has also analyzed the two-dimensional azi-
muthally symmetric problem of scattering by a cone
with a linearly varying surface impedance and has
obtained results analogous to those described above
for the similar wedge configuration.

The problem of diffraction of a scalar plane wave
by a large circular aperture in an infinite plane screen
was investigated by Levine and Wu [1957] via an
integral equation technique. By approximating the
kernel of the integral equation for the aperture in a
manner which highlights the straightedge-like be-.
havior of the aperture rim in the high-frequency
limit, they solved the resulting integral equation and
obtained the first few terms of an asymptotic expan-
sion for the scattering cross section of the aperture in
inverse fractional powers of ka, where k is the free-
space wave number and @ the aperture radius. They
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also present a physical interpretation of the various
contributions to the scattering cross section as arising
from simply and multiply diffracted geometrical rays.
An analogous procedure was employed by Wu and
Seshadri ® for the electromagnetic problem involving
a vector plane wave, and by Wu [1958] and Tang
[1959] for the plane-wave and cylindrical-wave scat-
tering, respectively, by an infinite slit.

The diffraction ploblems listed above give rise to
asymptotic field solutions which contain geometrical
optics, transition and either edge- or tip-diffraction

effects. A considerable effort has also been expended
on configurations which exhibit surface curvature.
Suitable canonical structures in this category are
the (two-dimensional) circular and elliptic eylinder
and the (three-dimensional) sphere and spheroid.
Emphasis has been placed on the extension and
solidification of the approximate theory introduced
by Fock [1946]. Wetzel,' Logan,® Goodrich [1958]
and Wait [1959a] have reformulated the problems of
diffraction by a perfectly conducting cylinder or
sphere in a manner which involves directly the

:;anonical’” functions introduced by Fock and which
permits the simple asymptotic evaluation of the
field on the dark side of the obstacle surface, includ-
ing the transition region surrounding lhv light-
shadow boundary. Deep in the shadow, the solu-
tion can be expressed in terms of the customary
contributions from the ‘“creeping” waves which
appear to be launched at the shadow boundary,
propagate along the obstacle surface into the shadow
region with an (‘\ponvntmll\' decaying amplitude, and

radiate energy away from the obstacle surface
during their progress. In the transition region one

employs the functions tabulated by Fock. Wait
and Conda [1958a] have applied this technique also to
formulate the scattering by imperfectly conducting
cvlinders and spheres and have tabulated the values
of the Fock functions for this case. They treat
problems with observation points situated either on
the obstacle or near the light-shadow boundary off
the obstacle surface. For the latter case they have
exhibited a correction factor to be added to the
approximate result obtained from Kirchhoff' theory

[Wait and Conda, 1959b]. For wave propagation
between two concentric spheres, Wait [1959a] has
also studied the influence of transition regions

(caustics), nd has calculated and plotted the cor-
rection factors to be applied to the usual geometrical
optics representations in and near the caustics.
The problem of the propagation around the earth of
an electromagnetic pulse produced by a vertical
dipole source has been analyzed by Levy and Keller
[1958]. They evaluate the distortion of the pulse
shape as a function of distance and material con-
stants.

A useful technique for obtaining directly alterna-
tive representations for the solution of separable

3 8. R. Seshadri and T. T. Wu, High-frequency diffraction of electromagnetic
waves by a circular aperture in an infinite planv conducting screen, presented at
URSI meeting at Penn. State Univ., Oct.

¢ This mwsngatl(m carried out m\t prior to Ihv end of the time period covered
by this report, is described in detail in King and Wu (1959).

5 N. A. Logan, Fresnel diffraction by convex surfaces,
meeting, Washington, D.C., May 1959.

presented at URSI
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diffraction problems is the method of characteristic
Green’s functions discussed by Marcuvitz [1951]
and Felsen [1957b]. A refinement of this technique
through the use of the Laplace transform has been
carried out by Ritt [1958] and has been applied by
Kazarinoff and Ritt [1959] to obtain alternative
representations of the solution for the scattering of
a scalar plane wave by a perfectly reflecting prolate
spheroid. They have also obtained in this manner
the two-dimensional Green’s function for a perfectly
reflecting elliptic cylinder [Ritt and Kazarinoff,
1959] and have evaluated the far field scattered in
the forward direction due to an incident plane wave.
The elliptic eylinder problem was also investigated
via the conventional separation-of-variables tech-
nique by Levy [1958]. Upon expanding the exact
solution asymptotically for small wavelengths, Levy
found that the field solution on the dark side of the
obstacle admits of an interpretation in term: of
“creeping waves’ which are launched at the shadow
boundary and progress into the shadow region with
an ('\ponvntlall\ decreasing amplitude (an identical
result is inferred from the solution of Kazarinoff and
Ritt which corrects a different interpretation pre-
sented by Ritt [1958]). The amplitude and phase
variation of the creeping waves is in agreement with
that predicted by the approximate lhvm\ of Keller
[1958; Keller and Levy, 1959a, ¢] for convex surfaces
with variable curvature. Keller and Levy [1959b]
have also investigated the spheroid problem and have
obtained asymptotic results whose interpretatio is
analogous to the above. By a different procedure
imvolving Fourier integral techniques, Clemmow
[1959a] obtained integral expressions for the scat-
tered field, and for the total scattering cross section,
of a circular cylinder. Although the results ob-
tained are not new, several novel aspects are con-
tained in this application of Fourier techni ues
[Clemmow, 1959b]. Clemmow also derived an
infinite Legendre integral transform defined over an
infinite domain of the sngular variable and has
analyzed thereby the problem of diffraction by a
sphere [Clemmow, 1959¢].

The above-mentioned smooth objects are defined
by single-coordinate surfaces in various separable
coordinate systems, with surface conditions such that
the associated diffraction problems can be analyzed

rigorously by separation-of-variables procedures.
For mnonseparable configurations no comparable

methods of solution are available. However, if the
surface conditions on an object depart only slightly
from separable ones, one can employ perturbation
methods involving a small parameter which exhibits
the deviation from the separable case. Such a pro-
cedure was employed by Clemmow and Weston
[1959] in the approximate analysis of the plane wave
scattering by a slightly noncircular, perfectly reflect-
ing cylinder. For a sinusoidal deviation from a cir-
cular periphery, they obtained a solution to the first
order in the perturbation parameter (amplitude of
the deviation) and verified, from an asymptotic eval-



uation of the case where the impedance varies slowly
over an interval of a wavelength, that the associated
creeping waves around the cylinder have a decay
rate which agrees with that predicted by Keller [1958)]
for objects of arbitrary surface curvature. In the
luminated region the field can be constructed ac-
cording to geometric optics. A perturbation method
was also applied by Felsen and Marcinkowski
[Felsen, 1959b] to the somewhat similar problem of
diffraction by a circular eylinder with a surface im-
pedance which varies shghtly (and sinusoidally)
around the periphery. A general study of diffraction
by noncircular cylinders was carried out by Wu and
by Wu and Seshadri.®

The structures considered so far have been im-
penetrable. Comparatively little has been done dur-
mg the past 30 months on large homogeneous pene-
trable objects such as dielectric cylinders, spheres,
etc. Work in this area has been carried out by
Kodis [1959] who has studied alternative field repre-
sentations for the scattering by a dielectric-coated
cylinder and has obtained a formulation in terms of
the perfectly conducting cylinder result plus correc-
tion terms. A somewhat greater activity has been
in evidence on problems of diffraction by certain in-
homogeneous structures, and by homogeneous im-
penetrable objects imbedded in an inhomogeneous
medium. Concerning the former, Karp” has ob-
tained the (two-dimensional) solution for the re-
flected and transmitted waves caused by a plane
wave incident nose-on on a certain curved, variable
dielectric medium which occupies the region between
two confocal parabolic cylinders. The variation in
dielectric constant is selected so as to permit a solu-
tion by a separation-of-variables technique. Levy
and Keller [1959] have analyzed the scalar problem
of diffraction by a sphere with a radially varying re-
fractive index. Flammer [1958] has calculated the
electromagnetic field caused by a source at infinity
in a medium whose dielectric constant varies like
14 (¢/r), e=constant, r=radial distance, and has ob-
tained an asymptotic representation of the formal
solution for large values of 7. Diffraction by planar
objects imbedded in a linearly stratified medium and
by eylindrical objects imbedded in a cylindrically
stratified medium was studied by Seckler and Keller
[1959] who obtained asymptotic solutions by the
WKB method. As expected these solutions were
found to be interpretable in terms of geometrical
optics and diffracted ray contributions. For a cer-
tain monotonic refractive index variation along a
rectilinear coordinate, Felsen [1959¢] has obtained
exact solutions (and high-frequency asymptotic rep-
resentations) for the diffraction of line source fields
by various two-dimensional impenetrable objects in-
cluding cylinders, wedges, half-planes, strips, etc.
These formal solutions are obtained by showing the
equivalence between a class of two-dimensional dif-
fraction problems in a certain variable medium and
a class of axially symmetrie three-dimensional diffrac-
tion problems.

% This work is deseribed in the monograph by King and Wu (1959).

7 8. N. Karp, Reflection and transmission by a class of curved dielectric layers
presented at URSI meeting, Washington, D.C., Apr. 1958.

1.2. Approximate Theories

As predicted in the last Assembly Report, the two
most actively investigated approximate theories are
those due to Fock [1946] and Keller [1958]. While
the theory of Fock and its extensions are concerned
only with diffraction by smooth convex bodies,
Keller’s geometrical theory of diffraction has also
been applied to objects with edge and tip singu-
larities [Keller, 1959; Siegel, 1958] and to diffraction
by objects imbedded in variable media [Seckler and
Keller, 1959]. In the original formulation of his
theory, Fock was concerned with the behavior of
the diffracted fields near the light-shadow boundary
on the surface of a smooth, convex, perfectly con-
ducting body. His solution for the field on the dark
side of the body near the light-shadow boundary
involves certain functions, now called “Fock func-
tions,” which contain for their distance parameter
not the actual path length from the shadow boundary
on the body to the observation point, but rather the
projection of that path length onto the light-shadow
boundary behind the object. While the difference
between these distances is small for observation
points near the shadow boundary, it may be appre-
ciable for locations of observation points deep in the
shadow. Keller suggested that the correct distance
parameter is the actual path length on the object as
measured along the geodesic and has proposed how
to calculate the amplitude and phase of a wave
“creeping’ along the surface of the object. Goodrich
[1958] has analyzed by this modified procedure the
fields diffracted into the shadow region of a perfectly
conducting cone. He applied his results to the recip-
rocal problem of radiation into the shadow region
from an infinitesimal slot on a cone, and thence to
the radiation from a slot array. The good agree-
ment between the calculated results and measure-
ments taken at the Hughes Aireraft Company
[Goodrich, et al., 1959] serves as a confirmation of the
ralidity of the procedures of Fock and Keller * for a
configuration for which exact asymptotic solutions
are not as yet available.

Because of its characterization of high-frequency
diffraction effects in terms of various classes of geo-
metric optical and diffracted rays, Keller’s geomet-
rical theory of diffraction highlights in a physically
significant and systematic manner the mechanism of
diffraction by a composite object. If the complete
scattering properties of the various canonical con-
stituents of the object, such as edges, corners, surface
curvature, ete., are known (these can generally not
be obtained from the geometrical theory) then the
total scattered field at any point is obtained, accord-
ing to Keller, by adding the contributions from the
various geometrie optical and diffracted rays passing
through this point. The theory has been confirmed
for a variety of simple canonical configurations, and
also for some nonelementary structures, at least as
far as the first-order contributions to the scattered

8 Concerning diffraction by convex objects, it seems proper to credit Fock
with the analysis of the transition range b(‘]mvi()y and Keller with the formu-
lation of the field behavior in the dark-shadow region.
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field are concerned (singly diffracted ray contribu-
tions). Concerning higher order effects arising from
the contributions of multiple diffracted rays, a dis-
crepancy in some higher order terms was noted, for
the case of scattering by a large circular aperture,
between the scattering cross section computed by
Keller [1958a] and that obtained by Levine and Wu
[1957] from an asymptotic analysis based on the
rigorous integral equation for the problem. This
difficulty has now been resolved by Keller [Karp and
Keller, 1959] through the use of a canonical solution
[Buchal and Keller, 1959] for the high-frequency
diffraction by a curved edge, in contrast to the single
straight-edge result employed originally by Keller.
However, this example would seem to demonstrate
that a simple “local”” analysis of diffraction problems **
while straightforward for the determination of dom-
inant effects, must be applied with great care for the
evaluation of higher order effects associated with
more general configurations. Moreover, the appli-
cation of a “local” analysis to scattering by objects
with variable surface properties is restricted to vari-
ations which are gradual in an interval of a wave-
length. For rapidly varying surface conditions, the
local analysis inherent in Keller’s theory must be
modified and requires the solution of a new canonical
problem [Felsen, 1959b; Shmoys, 1959].

As mentioned above, Keller has made some very
significant extensions and systematizations of dif-
fracted ray theory and its application to the anal-
vsis of diffraction by objects of relatively arbitrary
shape, and has thereby illuminated the basic mech-
anism of diffraction processes. However, approxi-
mate solutions for simple composite objects have
been constructed by quasi-optical techniques for
some time. The treatment of diffraction by a wide
slit in terms of multiple scattering from two isolated
half-planes, for example, can be considered classical.
More recently, Siegel [1958] has obtained by quasi-
optic considerations an approximate solution for the
axial plane wave back-scattering due to a finite
cone. The same problem was analyzed subse-
quently by Keller [1959] by a purely geometric
treatment. (Due to the occurrence of algebraic
errors in the course of both analyses, the solutions
presented by Siegel [1958] and by Keller ¢ are incor-
rect and differ from each other. Corrected ver-
sions of these results, in agreement, are now avail-
able [Keller, 1959; Siegel, Goodrich and Weston,
1959]°%)  Karp [1959] and Karp and Zitron [1959]
have employed a self-consistent field method in the
analysis of the scattering by an aperture and by
isolated cylinders, respectively. In this method,
which can be applied to several simple obstacles or
to a simple composite object, each scattering ele-
ment is excited by the incident field plus the scat-

fa By a ‘“‘local’’ analysis, the field along a diffracted ray is determined by the
surface properties of the scattering object ‘‘at’’ the point of emergence of the ray.

9J. B. Keller, Diffraction by a finite cone, presented at URSI meeting
Washington, D.C., Apr. 1958.

%a For a detailed discussion and comparison of results, see K. M. Siegel, The
resonance region, to be published in Proc. URSI X1IIth Gen. Assembly.
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tered far fields from all the other elements. The
amplitudes of the various scattered fields are then
determined in a self-consistent manner. Results so
obtained have been compared and agree with those
available from other less direct analyses. It is also
pertinent to mention in this context the work of
Wu and Levine [1958] on the evaluation of the scat-
tering cross section of a row of circular cylinders.

There is not need to dwell in detail at this time
on the applications of the classical “Kirchhoff”” or
“physical optics” procedure to the calculation of
high-frequency diffraction effects. A discussion of
results obtained recently by this method was given
by Siegel [1958] in a talk presented at the last Gen-
eral Assembly Meeting. A summary of this tech-
nique and its application to an analysis of the scat-
tering by the tip of a perfectly conducting cone has
been given by Goodrich et al. [1959]. Briefly, in
the Kirchhoff procedure one assumes that the induced
currents at a given point on a (perfectly conducting)
body are the same as those excited on an infinite
perfectly conducting plane tangent to the object at
that point (i.e., the obstacle currents have a strength
equal to twice that of the tangential component of
the incident magnetic field). The scattered field is
then computed as that arising from the radiation
due to these known currents. In the asymptotic
evaluation of the Kirchhofl integrals in the limit of
short wavelengths, the major contribution to the
scattered fields arises from certain stationary points
on the object and admits an interpretation of the
result in terms of geometrical opties and diffracted
ray effects.  The diffracted wave amplitudes com-
puted in this manner will differ in general from those
obtained by more rigorous techniques. A modifica-
tion of the Kirchhoff procedure was employed
recently with good results by Shkarofsky et al. [1958].

The Kirchhoff procedure can be refined by assum-
ing in the vicinity of a stationary point not the
physical optics currents but the rigorous current
distribution appropriate to a canonical configuration
which has the same local geometry. For example,
to compute the scattering from the base of a finite
cone, one can employ for the local current distribu-
tion near the curved edge the known currents for
a perfectly conducting wedge. The resulting asymp-
totic evaluation should then yield the same result
as would be obtained more directly by Keller’s geo-
metrical theory of diffraction. On the other hand,
the Kirchhoff procedure can provide information
about the field behavior in geometric optical transi-
tion regions which cannot be directly inferred from
Keller’s theory. In addition, a Kirchhoff analysis
can yield approximate results for scatterer configura-
tions whose canonical constituents have not been
fully explored.

The Kirchhoff approach to determining the scat-
tering properties of very complex shapes as, for
example, of aireraft at small wavelengths, involves,
in essence, a formulation in terms of physical optics
currents. It is then important to use random phase



between the different contributors [Crispin, Good-
rich, and Siegel, 1959]. This is especially true for
mass-produced shapes such as aircraft and automo-
biles which never emerge exactly the same. For a
very complicated shape like an aireraft, geometrical
optics would actually be all that is required, since
corrections due to edge contributions would make
little change in the results.

To summarize the utility of the various approxi-
mate techniques, we note that either the Keller or
Kirchhoff procedure should certainly be used in pref-
erence to simple geometrical optics for scattering
problems wherein the main contributions arise from
edges and corners. In these situations the geo-
metrical opties result vanishes but the actual contri-
bution can be quite large. When the solutions for
the canonical configurations which comprise the
object are available and exist in simple form, then
Keller’s technique is more accurate and is to be pre-
ferred over the Kirchhoff procedure. A typical
example is again the finite cone. On the other hand,
for problems which involve complicated shapes made
up of many simple shapes, or for structures whose
:anonical constituents have not been investigated,
the Kirchhoff procedure is more appropriate.  More-
over, as pointed out before, Keller’s theory does not
directly vield information about the field behavior
in caustic, focal, and transition regions.

Summary

Results of analyses of high-frequency scattering
problems during the past 30 months involving im-
penetrable objects with homogeneous, or certain
inhomogeneous, surface conditions have served
generally to confirm the previously proposed exten-
sions of Fock theory and also the interpretation and
evaluation of diffraction phenomena via Keller’s
geometrical theory of diffraction, thereby strengthen-
ing the understanding of the mechanism of high-
frequency scattering processes for such objects.

A number of new canonical diffraction problems
have been solved. Results have been obtained for
wedge-shaped surfaces whose surface impedance is
constant and may have a reactive component which
can support a surface wave. Other problems in-
volve such configurations as perfectly reflecting
cones, elliptic eylinders, spheroids, and imperfectly
conducting cylinders and spheres. In addition to
these constant impedance configurations, a variety
of problems involving variable surface impedances or
penetrable variable media have been treated. As-
ymptotic evaluations in the short-wavelength range
have led to representations which can be interpreted
in terms of geometrical optics, diffraction, and tran-
sition effects.

2. Rayleigh Scattering
Although no new canonical problems of diffrac-

tion at long wavelengths seem to have been solved
during the past 30 months, novel integral equation

712

formulations for the scalar problem of diffraction by
circular disks and apertures have received attention.
Heins and MacCamy have treated the disk [Heins
and MacCamy, 1959] while Bazer and Brown have
considered the Babinet-equivalent problem of the
aperture [Bazer and Brown, 1959]. Both studies
depart from an integral equation formulation of
Jones [1956]; the earlier work of Heins and MacCamy
[1958] is also to be cited in this connection. Siegel
and Senior'® have shown how higher order terms in
the asymptotic expansion of the scattering amplitude
for perfectly conducting bodies of certain selected
shapes can be constructed at long wavelengths by an
algebraic technique which is relatively straightfor-
ward. This is in contrast to other methods which
require the solution of differential equations for the
evaluation of higher order terms. Concerning ap-
proximate theories, Siegel [1958] discussed in some
detail at the last General Assembly approximate
procedures for the evaluation of diffraction effects in
the Rayleigh region. One of his results implies that
the scattering cross section of an axially illuminated
body of revolution is independent of its detailed
shape. This behavior has been verified experimen-
tally for a finite cone by Hiatt [Brysk, Hiatt, et al.,
1959].  Later Hiatt found the same scattering cross
section for nose-on and rear-on illumination.'' A
study of the extent of the Rayleigh region in terms
of the ratio of wavelength to maximum object di-
mensions was also carried out [Brysk, Hiatt, et al.,
1959] and detailed experimental confirmation was
obtained by Keys and Primich [1959].

3. The Resonance Region

Although good progress has been made recently
toward the solidification of the understanding of
diffraction processes in the high and Jow frequency
ranges, many questions remain concerning the
scattering in the resonance region by certain specially
shaped objects whose maximum dimension is com-
parable to the wavelength. This is true despite the
fact that for other simple shapes (such as a sphere),
the inclusion of higher order quasi-optic diffraction
contributions yields good agreement with exact
calculation even for values of ka ~ 1, where k is the
free-space wave number and @ is the sphere radius.
[t is to be hoped that increased attention will be
paid in the future to this interesting electromagnetic
region from both the theoretical and experimental

standpoints.
Concerning contributions during the past 30
months, Weston [1959] has solved exactly the

problem of a pulse which is reflected by a perfectly
conducting sphere. He has obtained the solution
for the resonance region and has also investigated
the high and low frequency behavior of the tail of

10 K. M. Siegel and T. B. A. Senior, The asymptotic expansion of electromag-
netic scattering functions at long wavelengths, presented at the URSI-Toronto
Svmp., Univ. of Toronto, June 1959.

11 R, E. Hiatt, K. M. Siegel and H. Weil, The ineffectiveness of absorbing
objects illuminated by long wavelength radar, submitted to Proc. IRE.



the returned pulse as a function of sphere size and
pulse length. It is found that a considerable amount
of pulse lengthening can take place in the resonance
region. Olte and Silver have obtained experimental
results for the radar cross section of spheroids and
cones in the resonance region [Olte and Silver, 1959].
The experimental work of Keys and Primich [1959]
on finite cones should also be cited as well as the
experimental work on cones by August and Angelakos
[1959]. It might also be of interest in this connec-
tion to call attention to the recent work of Belkina
[1957] on the radiation characteristics of prolate

- spheroids.

4. Future Activities

Concerning high-frequency scattering it appears
certain that the extended theory of Fock and
Keller’s geometrical theory of diffraction will be
applied to shapes of increased complexity. It is to
be expected that the emphasis both m rigorous
solutions and in the application of Keller's geo-
metrical theory will be placed on the construction
of higher order corrections (multiply diffracted ray
contributions) to the asymptotic representations

' of the scattered field. Scattering by impenetrable
s objects with variable surface properties and by

penetrable homogeneous or inhomogeneous objects
18 also likely to receive further attention.

At present, there is little evidence to expect any
marked increase in activity on the study of diffrac-
tion phenomena in the Rayleigh and resonance
regions, per se, although unanswered questions still
remain. However, it is to be hoped that the avail-
ability of higher order diffraction contributions, as
mentioned above, permitting an approach to the
resonance region from the high-frequency end, will
aid in the clarification of scattering phenomena in

this frequency range.

One of the new problems likely to receive some

Cattention during the next 3 years concerns the

effect of model dimensions and the need for repro-
ducing exact dimensions by precise modeling theory.
Results in this area are of direct interest for electro-
magnetic modeling experiments for the determina-
tion of the effective mechanical tolerances required
to obtain a desired scattering behavior. (The topic
of surface roughness related thereto is covered
separately in the report by Twersky as noted in
the Introduction.) In this connection one can expect
increased efforts to be devoted to the study of non-
linear modeling techniques [Belyea, Low, and Siegel,
1959] which hold promise of ramoving some of the
basic stumbling blocks associated with laboratory

cexperiments designed on a linear modeling basis.

There is Jittle doubt that problems involving the
interaction of electromagnetic fields with anisotropic
media, such as plasmas and the radiation from, or
scattering by, objects embedded in a plasma medium
or surrounded by a plasma sheath will receive a
great deal of attention. However, as previously
suggested, work in the plasma area should really
‘be covered under a separate report.
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Part 2. On Multiple Scattering of Waves

V. Twersky !

1. Purpose

The purpose of this report is to survey some of the
recent analytical work on scattering of waves by
many objects. It attempts to cover certain aspects
of scattering by fixed configurations and by random
distributions which have been dealt with in the U.S.
literature in classical physies, applied mathematics,
engineering, and chemistry. General analytical pro-
cedures and treatments based on distinct scatterers
(as opposed to those dealing with perturbed con-
tinuous media) are emphasized.

Inasmuch as no analogous previous reports on
multiple scattering are available, the literature survey
1s prefaced by (and interlarded with) background and
introductory material intended to indicate the roots
of current activity, to introduce special terms, and
to delineate the restricted viewpoint and coverage of
this report. This Jast consideration is an essential
one since the survey is quite limited: no attempt is
" made to cover the large number of physical phe-
nomena which involve multiple scattering (or even
to list the larger number of labels by which they are
referenced in the hiterature) or to discuss the variety
of analytical and heuristic procedures used in their
treatment.

2. General Considerations

The essential features of a scattering problem are
the effects arising when a given obstacle, or collection
of obstacles, is placed in the path of a specified wave.
We assume that we are dealing with a source whose
field “when isolated” is known, and seek the redistri-
bution of radiation arising from the presence of
obstacles. Physically speaking, in electromagnetics,
the “primary wave’” induces charges and currents in
the obstacles, and these in turn give rise to the
“secondary waves” that constitute the “scattered
field.”

If we restrict consideration to continuous wave
excitation and fixed scatterers whose location,
orientation, ete. are not affected by the applied field,
then we formulate the problem analytically as seeking
a solution of appropriate wave equations, subject to
prescribed boundary conditions at the objects, and
subject to conditions at large distances from the
region containing the objects. The wave equations
describe local properties of the media in question;
the boundary conditions take account of the physical
characteristics, shapes, and sizes of the objects; and
the conditions at infinity specify the forms of both
incident and scattered components of the solution.
We may be interested in the field arising from a
particular object, or from some configuration of

1 Sylvania Electronic Defense Laboratories, Mountain View, Calif.

objects of specified shapes, ete., or in the average
field and energy flux to be expected for some sta-
tistical distribution of configurations, shapes, ete.
The “single body” wave problem as it is usually
formulated corresponds to the limiting case of a
practical situation involving one source of radiation
and one fixed obstacle, such that the effects of the
scattered radiation on the source, extraneous re-
flections from other objects in the environment,
etc., have been minimized. In general, such simple
limiting cases lead to unsolvable integral equations.
In a few special cases, for which the surface of a
homogeneous scatterer coincides with one or more
complete coordinate surfaces in one of the systems
in which the wave equations are separable, solutions
are obtained as infinite series of more or less tabulated
special functions. Simple closed-form solutions in
terms of elementary functions are rarer still. How-
ever, through analytical approximations valid for
restricted values of the parameters, and through
heuristic procedures motivated by the insight ob-
tained in more elementary problems, one can now
obtain explicit results which are adequate to describe
many principal phenomena of physical interest.
Although this subject is far from closed,? it is con-
venient in considering multiple scattering, to assume
that solutions for the component scatterers when
isolated are known, and that they may be regarded
as “parameters’” in the more general problem.
Thus one seeks representations for scattering by
many objects in which the effects of the component
scatterers are ‘“‘separated” from the effects of the
particular configuration (or statistical distribution of
configurations) in the sense that the forms of the re-
sults are to hold independently of the type of scatter-
ers involved. Of course, such representations can
usually be obtained in the range of parameters where
a single scattering approximation is valid, i.e., in
which the results for a distribution of identical
scatterers reduce to that for an isolated object
times an ‘“‘array factor”. We discount this range
from the start, and seek in general a functional rela-
tion for the many-body solution in terms of a single-
body function. Thus if one can treat a particular
spatial configuration (or statistical distribution of
configurations) explicitly, and independently of the
component scatterers, then the results for specific
isolated objects, for particular ranges of the param-
eters, ete., can be inserted for detailed applications.
The above, in first regarding the single-body prob-
lem as a limiting case of that of many bodies, and
then regarding the distribution as composed of
objects whose solutions when isolated are known,
has emphasized the view to be taken in the following.

2 Recent activity on scattering by isolated objects is surveyed by L. B, Felsen
and K. M. Siegel in a companion report to URSI.
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Related treatments of distributions of distinet ob-
jects start essentially with Poisson’s [1821; 1823]
molecular model of magnetic induction, and its appli-
cation to dielectrics by Faraday [1839], Kelvin [1845],
Mossotti [1847], and Clausius [1897]; the work of
Maxwell [1873a] on the “bulk resistivity” (essentially
the reciprocal of the dielectric constant) of a distri-
bution of resistive spheres in a medium of different
resistivity, and on the permeability of a distribution
of perfectly conducting spheres [Maxwell, 1873b];
the work of Lorentz [1880] and Lorenz [1880] on the
index of refraction; and Rayleigh’s [1892] investiga-
tion of scattering by rectangular arrays of parallel
cylinders and spheres. These treatments were re-
stricted to low frequencies, special scatterers, and
limiting distributions; they range analytically from
the intuitive development of Faraday to Rayleigh’s
detailed analysis of “packing effects” in terms of
the ratio of scatterer size and spacing.

More generally, a formal representation for the
solution of any given configuration of arbitrary
scatterers (a configuration specified by a set of
position vectors to reference points on the objects,
and the scatterers specified by their shapes and
boundary (onditionq) may be obtained as follows:
We apply Green’s theorem to the free-space Green’s
function and to the required unknown solution in
the region external to all scatterers, and thereby
represent the scattered field as an integral over some
surface inclosing the region. Contracting the surface
and breaking it up into individual portions inclosing
a single object, leads to a representation of the total
scattered field as a sum of surface integrals; it is the
terms of this sum (the integrals over the surfaces of
the individual scatterers) that we identify as the
“elementary scattered waves”. Then imposing the
boundary conditions at each object leads to a de-
terminate set of coupled integral equations for the
fields on all scatterers, and could these values be
obtained explicitly, the total field in space would
follow on integration.

This analytical procedure, or similaronesapplicable
for relatively arbitrary scatterers, was used both for
general considerations and specific applications by
Ekstein [1951; 1953], Ignatowsky [1914a], Karp
[1953], Lax [1952], Millar [1960], Row [1955], Storer
and Sevick [1954], and Twersky [1956a, 1957a,
1958a, 1959a, 1959b]. An analogous procedure
leading to sets of algebraic equations for the sepa-
rable ploblemsof mlntmn configurations of circular
cylinders was used by Zaviska [1913], Ignatowsky
[1914a], Row [1955], and Twersky [1953a, 1953b,
1954]; similarly Kasterin’s [1897] formalism for the
scalar problem of a periodic array of spheres holds
for all wavelengths and for any of the usual boundary
conditions. lhu%, for example, for circular eylinders
and homogeneous boundary conditions, the Green’s
functions procedure yields N coupled integral equa-
tions for the surface fields (or for their normal
derivatives, or for linear combinations of fields and
derivatives); equivalently, separation of variables
yields an N fold infinite set of algebraic equations
for the scattering coefficients.

There are essentially three different analytica
procedures which may be used to obtain a represen-
tation taking into account the effects of multiple
scattering, or the coupling of the radiation fields of
the objects: One may seek to solve the boundary
value problem for the “compound body’’; one may
use a self-consistent procedure based on the known
response of the isolated elements (the single-scat-
tered results) such that each object is considered as
excited by the primary wave plus the resultant of
the initially unknown total scattered fields of the
other objects; or one may use an iterative procedure
corresponding to the ‘“‘successive scatterings’ of the -
primary field. In the successive scattering ap-
proach, which is essentially an iterated form of the
self-consistent one, each object is initially regarded as
excited solely by the primary field and radiating in
consequence its “first order of scattering’; next in
response to the sum of the first orders of the others,
each scatters its “second order,” ete. The second
and third methods differ essentially from the first in
that they isolate the single-body solutions implicit
in the problem. Thus they enable us to exploit
known single-body results, or to seek them inde-
pendently of the configuration (either analytically,
or by direct measurement).

The class of many-body problems for which one
may obtain a solution for the compound body is small;
it comprises periodic arrays whose essential param-
eter is a simple sinusoid (e.g., the sinusoidal profile of
areflection grating treated by Rayleigh [1907a], or the
sinusoidal refractive index of a medium considered
by Brageg [1915] and Laue [1931]). More generally,
however, one must consider “multiple scattering”
by an infinite set of such sinusoids, i.e., by the com-
ponents of the complete “spectral representation”
(Fourier series or Fourier integral) of the appropriate
parameters of the collection of scatterers. Thus,
for example, Rayleigh [1907a] represented the grating
of arbitrary periodic profile as a Fourier series;
Laue [1931] represented the crystal of arbitrary
periodic index as a ‘“triple” Fourier series; Rice
[1951] represented the randomly perturbed planar
rough surface as a double Fourier integral; and Hoff-
man [1959] represented a medium whose index was
a slowly varying random function of position by a
triple integral. The Fourier representations treat
the spectral components of the parameters of the
distribution as the “individual scatterers’”; they
lead to rapidly convergent approximations for values
of the parameters such that the field arises essentially
from one sinusoid (e.g., Bragg reflections in a erystal),
or when the parameters are only slightly perturbed
from those of a uniform region (e.g., slightly rough

plane).
A large variety of heuristic, self-consistent pro-
cedures (starting with those of Mossotti [1847],

Clausius [1897], and Maxwell [1873]) have been ap-
plied to determine the macroscopic parameters of
the coherent field for distributions of scatterers.
Analytical self-consistent procedures for periodic
structures are illustrated by Rayleigh’s [1892] work
on lattices of cylinders and spheres, Ignatowsky’s
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[1914a] treatment of the grating of arbitrary cylin-
ders, and Ewald’s [1917] analysis of the lattice of
dipoles.  Anologous procedures to treat the coherent
field in sparse random distributions were used by
Born [1933] for dipoles, and by Foldy [1947] for
monopoles; dense distributions of dipoles were

ated by Brown [1950] (static case) and by Mazur
and Mandel [1956].

The successive orders of scattering approach (dis-
cussed by Heaviside [1893]) was used by Reiche [1916]
(who also gave a self-consistent treatment) to derive
the coherent field for a slab region of randomly dis-
tributed dipoles. Twersky [1950a] obtained a cri-
terion for the range of validity of Schaefer and
Reiche’s [1911] single-scattering treatment of the
grating of circular cylinders, and constructed a series
solution for an arbitrary configuration, and series
and closed form approximations for two cylinders
and gratings [Twersky, 1952a, 1952b, 1952¢]. Sim-
11(111\ Yvon [1937, 1935], Kirkwood [103(»], and Jan-
sen and Mazur [1955] averaged the scattering series
for dipoles to treat the dielectric constants of dense
gases.

The papers mentioned above serve to illustrate
approaches for treating many-body scattering prob-
lems. Additional work will be cited in the sections
on particular configurations. Thus we reserve dis-
cussion of essentially particle scattering procedures
based on transport equations until the topic of “in-
coherent scattering’ arises in its appropriate context.

The above also serves to indicate the main lines
we follow. Thus we do not consider “multiple
scattering treatments of single-body problems” in
the following sections. However, since we men-
tioned single-body treatments of many scatterers, it
may be appropriate to sketch the “inverse” situation.
Thus a finite scatterer with sharp edges may be
treated by exploiting Sommerfeld’s and Macdonald’s
solution for the field on the semi-infinite wedge.
For ex xample, an infinite eylinder having a l[mnoular
cross section with sides large (()mpawd to wave-
length may be regarded as a collection of three

“infinite  wedge edges” plus specularly reflecting
planes. As a first approximation, each of the three

edges may be treated as excited sol(l\ by the plane
wave; then the “coupling effects” of the “single
scattered edge waves” on each other may be de-
veloped in terms of higher order scattering processes
(by regarding each edge as excited by the asymptotic
forms of the waves leaving the other two in response
to the primary excitation, ete.). More directly, the
infinite wedge result may be used in a self-consistent
procedure which treats each edge of the finite wedge
as excited by the incident wave and by two cylin-
drical edge waves of initially unknown amplitude.
The solution for the degenerate case of the wedge of
zero angle (i.e., the half-plane) was first used by
. Schwartzchild [1902] to construct the series solution
and a single scattering approximation for a wide
aperture in an infinite plane screen, and higher order
scattering of the edge waves was recently treated by
Clemmow [1956], Karp and Russek [1956], and Keller
[1958, 1957]. Similarly, Braunbek, Clemmow, Kel-

ler, and Levine treated the wide cireular aperture by
dssummtr that the edge field was approximately that
on a half- plane loc 111\ coincident with the edge of
the aperture, and Keller, and Siegel used the infinite
wedge result to approximate the local field on the
curved edge of the base of a finite cone; these treat-
ments range from ‘“‘single scattering” appm\inm-
tions, to Keller’s detailed consider ation of the “mul-
tiple scattered” edge rays. (th'lvn(('s vo these
papers, and to dlldl()(r(ms treatments of scattering by
isolated objects are given in Felsen’s and Siegel’s
URSI report, Diffraction and Secattering.)

Breakdown of the Many-Bedy Problems

In the preceding paragraphs, we more or less
jumped into the literature in order to associate this
general topic with such familiar names as Poisson,
Faraday, Maxwell, Rayleigh, Lorentz, ete. Then,
papers were cited to illustrate different procedures for
taking into account the effects of multiple scattering.
Since a representative selection of methods was in-
sured at the expense of a systematic presentation of
problems having physical interest, we now mention
classes of problems; citations to the literature are
reserved for the following sections.

We distinguish two categories of multiple scatter-

ing problems: In one, we deal with a fixed con-
figuration; and in the other, with a statistical

ensemble, or distribution of configurations. This
breakdown is primarily for convenience; it serves to
single out the well-defined boundary value problems
of several scatterers, as well as the periodie structures
for which a large variety of special analytical tech-
niques are available. However, subsequently, we
regard the fixed configuration as a limiting case of a
general distribution.

Fixed configurations: Several two-body situations,
general collections of N-bodies, and periodic arrays,
have been treated in some detail.  Explicit solutions
for N-bodies have been derived for planar scatterers
(e.g., infinite slabs, discontinuities on transmission
lines, ete.). Explicit approximations (series and
closed forms) have been obtained for completely
bounded scatterers in ranges where, (1) the wave-
length is large compared to the scatterer’s size, and
the spacing 1s arbitrary, and (2) for arbitrary bodies
and spacing large compared to wavelength; here
the literature ranges from meson-deuteron sc 111('1'ing
in quantum mechanics to coupling effects between
transmitting antennas and scatterers arising in
“single body”” microwave measurements.

The literature of scattering by periodic arrays
covers diffraction gratings, planar lattices, dielectric
constants, indices of refraction, crystal analysis,
“artificial dielectries”, obstacles in rectangular wave-
guides, as well as the analogous antenna arrays
Single periodic layers, gratings, etc., are of interest
in connection with their use as spectrum analyzers,
polarizers, open-mesh reflectors, ete.; and the analy-
sis of se atloung by three- dimensional arr ays facili-
tates studies ranging from the exploration of crystal
structure by X-rays to the design of practical micro-
wave components.
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In general, the field of an infinite periodic struc-
ture consists of an infinite number of discrete plane
waves; some are propagating (e.g., the usual spectral
orders of a grating), and the rest are exponentially
damped normal to the face planes. Analytically,
one seeks to relate the amplitudes of the propagating
modes of the transmitted and reflected fields to the
spacings of the array, and to the single scattering
characteristics of its elements. (The Fraunhofer
form for a finite array is more or less a “blurred”
version of the set of propagating modes.)

To a large extent, the general problems of three
dimensional periodic arrays hinge on the solution
for a single planar lattice; once the results for the
isolated component planes are known, one can use
difference equations, matrix algebra, group theoretic
procedures, and other equivalent “multimode trans-
mission line’” approaches to treat the crystal. Be-
cause of this (as well as because of its intrinsic
interest) the planar lattice has merited special con-
sideration. Special attention has also been given
to the essentially one-propagating-mode situations
which arise when the spacings parallel to the face
planes are small compared to wavelength (artificial
dielectrics, obstacles in waveguides), or when the
Bragg conditions are fulfilled.

Statistical distributions: The other large class of
many-body problems deals with statistical distribu-
tions of scatterers. Such problems are basic in the
use of scattering and propagation measurements as
a diagnostic tool in discovering the fundamental
properties of matter, and in various practical prob-
lems related to the transmission of information via
radiation. The special distribution corresponding
(more or less) to that of an “ideal gas” of elastic
objects has received most extensive consideration,
and some progress has been made in treating the
“packing effects” in “dense gasses” and “liquid
state”” distributions.

The previously mentioned formal representation
for the field scattered by an arbitrary fixed config-
uration may be applied to treat scattering by statis-
tical distributions. One introduces an ensemble of
configurations defined by an appropriate distribution
function (giving the probability of occurrence of the
component configurations) and seeks the expectation
value of the field by averaging over all variables
(positions of scatterers, scatterer sizes, etc.). One
may attempt to first solve or approximate the original
integral equations (e.g., by, an iterative procedure),
and then introduce the ‘‘statistics’’; or one may
average the formal solution for a single configuration
over the specified ensemble, and then attempt to
solve the resultant set of equations. Similarly one
averages the corresponding representations for the
power density (and energy flux) over the ensemble,
and obtains equations for the “coherent component”
(essentially the absolute square of the average wave
function), and for the “incoherent” or fluctuation
scattering. Although not even the simplest of such
problems has been treated rigorously by these
procedures, useful approximations have been ob-
tained for various ranges of parameters. (See
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Foldy’s [1947] basic paper for a detailed introduction,
and for a discussion of the relevance of such averages
to quantities obtained by measurement.)

We may regard the periodic configuration and the
ideal gas, as special cases of a general “liquid state”
distribution. Thus in terms of appropriate distribu-
tion functions we may start with the limiting case
of an ideal gas, and introduce “local order” in the
distribution of a scatterer’s neighbors to model some
of the characteristics of dense gases and liquids of
elastic particles. Proceeding to the limit of an
appropriate parameter (essentially ‘“‘compressing”
the distribution) yields results corresponding to a
periodic array.

The intensity pattern for the liquid lies “between”
those of a gas and crystal. If we visualize a narrow
beam incident on a slab region of a distribution of
identical objects, then for the gas case we obtain
coherent transmitted and reflected beams and a
“background” of incoherent scattering (more or less
resembling the single-scattered intensity pattern of a
component object). As the ratio of average to min-
imum separation of scatterers is decreased (a mini-
mum in general greater than the scatterer’s size,
and, say, of the order of several wavelengths) and
the liquid state approached, the incoherent scatter-
ing becomes peaked at angles in the vicinity of those
corresponding to the propagating modes of the
periodic limit. With increasing local order, these
additional “beams” becomes better defined, and
finally go over to the propagating modes of the
appropriate crystal.

Alternatively, instead of dealing with ensemble
averages of configurations of distinct scatterers, one
may seek to model statistically inhomogeneous
regions by means of an appropriately perturbed
continuum. Approximations for the coherent field
may be specified in terms of the index of refraction,
and corresponding approximations for the intensity
depend on the autocorrelation of the values of the
index at two different points. Representative papers
are cited in subsequent sections.

3. Survey
3.1. Fixed Configurations of N Scatterers

The static limits for two parallel circular cylinders,
a grating of N parallel cylinders, two parallel co-
planer strips, and two spheres, are conveniently
found in Wendt’s [1958] recent review article. He
has many references to the recent literature, and a
bibliography of texts going back to Maxwell’s.
Other static problems of interest include Maxwell’s
[1873¢] treatments of stratified conductors (/N slabs
with characteristics alternating as ABAB . . .), and
composite dielectries (N slabs ABC . . .).

Silver [1949] discusses coupling between trans-
mitter and receiver antennas from a multiple
scattering point of view. King [1956] treats a
variety of problems involving coupling between two
linear antennas (parallel, colinear, perpendicular),



between N parallel linear antennas, between three
parallel antennas at the vertices of an equilateral
triangle, between four at the corners of a square, ete.

Redheffer gives the solution for se: thmmo by
two parallel slabs of arbitrary physical ])(u(um'tvrs‘
[Redheffer in \I(mttromuv, 1947], and an elegant
analytical discussion of N arbitrary parallel slabs
[Rodhvﬁ(-l 1950, 1954]; for N slabs (arbitrary spac-
ings, and arbitrary reflection and transmission
coeflicients of the isolated slabs) he uses group
theory, abstract multiplication, as well as conven-
tional matrices, and difference equations. A detailed
systematic successive scattering treatment for N
arbitrary parallel slabs is given by Marcus [1946].
Their cloqo(l form solutions for N identical equally
spaced slabs were obtained originally by Darwin
[1914] in his basic paper on the scattering of X-rays
by ecrystals. Redheffer [1956] also gives an exact
treatment of “limit-periodic dielectric media’ (the
limit for N-»>o of N identical inhomogeneous
slabs of thickness 1/N), and Bazer [1959] considers
the conditions for which an arbitrary configuration
of N identical slabs may be analytically approxi-
mated by an appropriate continuum.

The above papers on collections of planar scatterers
are but a few among the many to be found in the
literature; see Hartree [1929], Luneberg [1947a, b],
Lurye [l%l] Russek [1951], Keller [1953], Keller
and” Keller [1951], Schelkunoff [1951], Bremmer
{1951], Landauer [1951], and Kay [1958]. The
limiting case of the arbitrary stratified region is
that of an inhomogeneous medium: recent work
includes that of Kay [1955], Kay and Moses [1956,
1955a, 1955b, 1905(‘ 1957], Saxon []‘)()7‘ 1959],
Schiff [1956], Saxon and Schiff [1957], Seckler and
Keller [1959], and Hall [1958]. Ad(htu)n,ll references
to the recent literature and discussions of procedures
for treating such problems are given in Bremmer’s
{1958] Handbuch review of radio wave propagation;
and in the same volume (Electric Fields and Waves),
King’s [1958] review of electric circuits, and the
review of Borgnis and Papas [1958] on wn(‘mn(l(‘
include germane transmission line pm((‘(lmoq for
treating collections of planar scatterers.

Turning to arbitrary collections of arbitrary,
parallel circular cylinders, the separations of v: ariables
procedure of Zaviska [1913] Ignatowsky [1914a],
Row [1955], and Twersky [19.)3(1] gives infinite sets
of linear (ngebrmc equations which relate the
multiple scattered coefficients of a cylinder to known
single scattered values and to Hankel functions of
the spacings. A Neumann iteration of these “self-
consistent”” equations leads to the “orders of
scattering”” series whose successive terms involve
higher products of single scattered coefficients;
Twersky [1952a] also obtained this series by
successive application of the boundary conditions.

For radii small compared to wavelength, Zaviska
[1913] gives closed form approximations for two and
three (equally spaced, coplanar) cylinders, such that
E is parallel to their axes (henceforth £ parallel),
and the direction of propagation is perpendicular to
the plane of their axes (henceforth £ perpendicular);

for this polarization, he also considers two cylinders
and k parallel (i.e., £, k, and the axes all coplanar).
In these approximations, the isolated scatterers are
treated essentially as monopoles (isotropic scatterers),
and all orders of scattering are taken into account;
e.g., Zaviska’s multiple scattered coefficients for one
of the two identical cylinders for £ parallel and &
perpendicular may be written as A=a/(1—akl),
where a is the single-scattered value, and H=FH, (kb)
(1]1(* “configuration factor”) equals the zeroth order

Hankel function of spacing b and wavenumber F£.
[This elementary multiple scattering solution (in fact,
the most elementary) serves to illustrate the termi-
nology used previously. Thus the “self-consistent”
equation leading to the closed form may be written
A=a-+aH, (kb) A: the first term on the right is the
response of the cylinder to the incident plane wave
(the single scattered value @), and the second is its
response to the field of its neighbor (i.e., to a cylin-
drical wave of strength A originating from a source
at distance b). Iterating the self-consistent equation,
or expanding the closed form, gives the “orders of
scattering” series A=a-+a*H-+a*H? . . ., which one
would obtain directly from considerations of succes-
sive scattering processes. Also note that the single
scattered coeflicient a is essentially a “parameter”
of the multiple scattered value A: the closed form
holds for one element of all symmetrically excited
pairs of identical monopoles.  (Differences between
results for various pairs arise from different single
scattered coeflicients; e.g., for perfect conductors in
two dimensions, the circle involves the logarithm of
the radius, and the ellipse, of the arithmetical mean of
the major and minor axes.)] Zaviska [1913] also con-
siders two identical cylinders for /2 perpendicular
and k& perpendicular and gives the first two orders
of scattering for the 1110110[)010 and dipole terms. He
also shows that if two arbitrary sized ecylinders are
in each other’s far fields, then the problem reduces
essentially to that of one cylinder excited by two
plane waves (the incident wave, and a wave traveling
in the plane of the axes); however, he fails to notice
that this can be v\plmtod to obtain closed forms.

Twersky [1952b, ¢] obtains closed forms for several
cases by retaining only the largest terms involving
the separation b in each or der of scattering; e.g.,
a generalization of the above A for two different
isotropic scatterers (not necessarily cylindrical) for
arbitrary angle of incidence; closed forms for two
scatterers with radii and spacing small compared to
wave length; closed forms for two arbitrary cylinders
each in the far field of the other (call this “far-mul-
tiple-scattering”), and an analogous result that
holds for N equispaced coplanar (vlmdms (a finite
grating) when end effects are neglected. He also
.1pp11(' an image technique to these results to con-
sider the analogous multiple scattering problems for
semicylindrical protuberances on a trmun(l plane;
he shows that for £ parallel, there are no far-mul-
tiple-scattering contributions for an arbitrary con-
figuration of arbitrary semicylindrical protllbomncos
and derives the first nonvanishing terms for special
cases.
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Row [1955] applies his general results to two iden-
tical perfect conductors for £ parallel and k perpen-
dicular. He obtains numerical values by several
methods (including truncating the system of alge-
braic equations, and a diagonal approximation of
their matrix). Comparisons with experiments are
made for several wavelengths less than or equal to
the diameter, for fixed spacing and a varying field
point, and vice versa. In particular, he finds de-
tailed agreement for a truncation procedure which
keeps as many multiple scattered coefficients as
single scattered coefficients called for by the
analogous isolated cylinder problem.

Storer and Sevick [1954] apply the variational
procedure of Levine and Schwinger to their integral
representation for N scatterers, and obtain a sta-
tionary form for the far-field scattering amplitude.
They specialize their results to treat two finite
identical, parallel circular cylinders (radius small
compared to spacing and to length) for £ parallel.
Using a “shifted cosine” trial function, they find
good agreement between theory and experiment
for backscattering and £ perpendicular to half-wave
and full-wavelength scatterers. Minkowski and Cas-
sedy [1956] use the analogous procedure to treat
the case of colinear cylinders.

Karp [1959] gives a general discussion of the
integral representation for N arbitrary scatterers,
and considers the conditions for convergence of the
orders of scattering series. Subject to far-multiple-
scattering, the integral representation for an arbi-
trary configuration of N arbitrary cylinders yields
N simultaneous equations for the multiple scattered
amplitudes in terms of their single scattered values;
in particular, Karp [1959] gives the closed form for
two arbitrary cylinders (the generalization of a result
in Twersky’s [1952b] result for two circular eylinders).

As discussed by Twersky [1952b], the closed forms
that hold for far-multiple-scattering retain only the
largest terms in kb >>">1 of each order or scattering.
Thus the series in powers of 1/4/kb obtained on
expanding the closed form for the multiple scattering
amplitude is not the rigorous expansion of the
function. Zitron and Karp [1959] show that for
two cylinders, the ‘“far-multiple-scattering, orders
of scattering” series is correct in its three leading
terms (i.e., to 1/kb), and obtain the next term of the
series for two arbitrary cylinders: in distinction to
the leading terms, which involve only the far-field
scattering amplitudes of the isolated cylinders (say
1), the new term also involves derivatives of f.  They
specialize their result to the case of arbitrary circular
cylinders, and show it agrees to appropriate order
with the result obtained on approximating the
complete series derived by separation of variables
in Twersky [1952a]. They also obtain the cor-
responding number of terms of the analogous series
arising for the scalar problems of two arbitrary
scatterers in three dimensions.

Wu and Levine [1958] consider a row of large
circular eylinders for £ parallel, and obtain multiple-
scattering corrections to the geometrical optics
value of the total scattering cross section.

720

Millar [1960] considers the N simultaneous integral
equations obtained for the two cases of F parallel
and /£ perpendicular to a row of perfectly conducting
cylinders of arbitrary shape. For elliptic cylinders
with major axis small compared to wavelength, and
arbitrary separation, he reduces the integral equa-
tions to linear algebraic equations (using a procedure
similar to Bouwkamp’s for the single strip). Hor
two cylinders and £ parallel, his closed form ap-
proximations for the multiple-scattered coefficients
are identical with the forms for two arbitrary iso-
tropic scatterers given in Twersky [1952b]. His
plots of the real and imaginary parts of one coefficient
as a function of kb, for three directions of incidence
(k perpendicular, and & parallel, say, from the right,
and from the left) show the effects of multiple
scattering and ‘“shielding.”

The scattering of waves by two objects has also
been recently considered in the literature of quantum
mechanics. Thus Brueckner’s [1953] closed form
for the impulse approximation for S-state scattering
from a two-body system, is a result for two monopoles
in three dimensions (identical with the form for two
1sotropic scatterers given in Twersky [1952b]); and
his result for P-state meson scattering, is that for
the scalar problem of two dipoles in three dimensions.
Representative related papers are those of Watson
[1953], Takeda and Watson [1955], Brueckner
[1955], and Drell and Verlet [1955]. More complex
systems are discussed by Gerjuoy [1958], and in
the proceedings of the recent Grenoble lecture series
on many-body problems edited by Dewitt [1959].

3.2. Infinite Planar Lattices

Here we begin with the more general treatments,
and then consider special procedures.

As is well known, the field of an infinite grating of
arbitrary identical cylinders excited by a mono-
chromatic plane wave consists of an infinite discrete
set of plane waves; some of these waves are “propa-
gating modes” (the usual spectral orders) and these
carry energy in specific directions determined by the
wavelength, the spacing, and the angle of incidence;
the remaining are ‘“‘surface waves” (or “evanescent
modes’) which are exponentially damped normal
to the plane of the grating. The existence of these
waves follows directly from the periodicity of the
structure; i.e., the field must be representable as a
Fourier series, and this has been the starting point
of most rigorous approaches to the problem. But
this is merely the starting point: it is the amplitudes
of these waves which must be determined. Thus
Rayleigh [1907a] represents the mode amplitudes
in terms of an algebraic set of equations involving
the Fourier components of the grating’s profile,
and Ignatowsky [1914a] expresses them in terms of
an integral equation for the current distribution
on one element; and most expansion procedures
in the literature are based on one of these two
classic representations. However, alternative repre-
sentations prove more tractable when strong coupling



oceurs.  Thus Twersky [1956a] starts with the set
of multiple scattering surface integrals for the
elements of the array, and proceeding initially in
analogy with Ewald’s [1917] treatment of a lattice

of dipoles, derives a “mixed representation.” The
mode amplitudes are expressed in terms of the
multiple scattered amplitude of a cylinder in the

grating, and specified through a new functional
equation involving its smtrlo scattered value (as
the mmhomogeneous term, ‘md in the kernel of the
operator). Dlﬂvunglmm bolhIgnato“sl\\' 1ntvoml
equation and Rayleigh’s “sum equation” (1.0.,
the set of algebraic equations), the operator in
the new equation equals an integral minus the
analogous sum (a relatively rapidly convergent
representation). The new formulaism is applied
[Twersky, 1956a, 1957b] to treat the grating reso-
nances 1nvost|g1tvd experimentally l)\' Wood and
Strong; and the enhancement of one spectral order,
or the diminution of another, as well as other
““anomalies” with respect to single scattering theory,
are interpreted in terms of surface wave coupling
between the propagating spectral orders.  Multiple
scattering effects are significant for such resonances
(which for normal incidence occur when the grating
spacing is nearly an integral number of wavelengths),
for near grazing inc l(lon( e, and for relatively (loxle

packed scatterers; for other situations, the multiple-
s('ntt('r(‘(l unplllll(lv reduces to its sm(rlo scattered

ralue (the inhomogeneous term of the equation).
Twersky [1958b] applies the general theory to circular
cylinders (and obtains, for example, simple explicit
results for the “packing effects” at low [requencies up
to multipoles of order 2°), and Burke and Twersky
[1960] apply it to elliptic cylinders. Analysis of
such gr dtmg problems is facilitated by Ignatowsky’s
[1‘)141)] elementary function representations for the
Schlomileh series that arise for normal incidence,
and by the analogous forms for the more general
series arising for arbitrary angle of incidence derived
by Twersky [1958¢].

The procedure discussed above is one of the
few multiple scattering treatments of a grating of
general elements which expresses the field in terms
of the behavior of the elements when isolated. The
first of this kind was Ignatowsky’s [1914a]. In addi-
tion, the variational procedure discussed by Mar-
cuvitz [1951], and applied to circular and elliptical
elements with spacing and cross-sectional dimen-
sions small compared to wavelength, is also quite
general.  Another initially general procedure is
Karp’s [1955], which was :1])])11(\([ by Karp and Rad-
low [1956] to grating resonances subject to “far-
multiple-scattering” (i.e., each scatterer in the far
field of all others).

The principal anomalies with the single scattering
approximation for the grating (an approximation
obtained originally by Schwerd [1835]) indicated
by the experiments of Wood [1902], Ingersoll
[1921], Strong [1936], Palmer [1952], and others,
are the “resonances” mentioned previously. With
reference to these, Rayleigh [1907a] treats a per-
fectly condncting gratmg, and finds that his repre-
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sentation of the perpendicular polarized amplitudes
diverges if there is a grazing mode. Fano [1938]
considers the same range for a grating of finite
conductivity. Artmann_ [1942] begins with Ray-
leigh’s model (Fourier series expansion of the pm[llv),
l)ut derives an alternative, convergent series repre-
sentation for mnear grazing modes. Artmann’s
expressions for the maxima correspond to the max-
ima of the usual Wood anomalies; and although he
does not consider the associated minima (lying be-
tween the Rayleigh wavelength and the maxima),
these may also be treated using this model.  Fano
[1938] also presents a general expression (suggested
by a quantum mechanical analogy) which can be
adjusted to describe the mmn.llu\s, and he 1s the
first to stress the role of the surface waves. Karp
and Radlow [1956], and Lippmann and Oppenheim
[1942] consider the anomalies, and a relatively de-
tailed discussion is given by Twersky [1956a, 1957b,
1958b].

A perhaps more intuitive approach may also be
applied to consider the grating anomalies. ’l‘hus
Twersky [1952¢] gives an ‘“‘orders of scattering”
treatment of the anomalies for a finite grating
(perfectly conducting semicylinders on a plane, end-
effects neglected): the extrema are interpreted as
occurring at wavelengths which optimally fulfill the
conditions that each order of scattering is a maxi-
mum, and that successive orders are either in or out
of phase. Here a suggestion made by Wood [1902],
and originally elaborated by Artmann [1942], i
developed into a “vibration curve” method based on
a discrete analog of the Fresnel integral [Russek and
Twersky, 1953].

The method of images provides a convenient
means for obtaining solutions for reflection gratings
from results for unal(wous transmission problems.
The first treatments of the reflection grating based
on this approach originally took into account single

cattering [Twersky, 1950a, b, ¢], and then analogous
multlpl(‘ scattering results ||\\'<-|\l\v 1956a, 1957b,
1958b] were obtained. The image technique itself
(for wave problems) was first used by Rayleigh
[1907b], who applies the results for a perfectly con-
ducting cylinder with radius small compared to
\\nwel(\ngth to obtain the analogous functions for
a semicylinder on a perfectly conducting plane.

In addition to papers mentioned al)ovo, there are
a large number of treatments of transmission gratings
of specific scatterers: For example, strips are treated
by Vainshtein [1955], Heins [1954], an(l Miles [1949];
circles are treated by Shmoys [1951], Shmoys and
Sollfu‘y [1952], and Reiche [1953]; and fine wires are

ated by Wessel [1939], Honerjager [1948] and
anz [1949]. Fine wires, closely spaced, are also
treated by Lamb [1945], and Gans [1920] (both giving
incorrect results for polarization porpon(h(ulm to
the axis—see Twersky [1958b] for details), and by
Lewin [1951], and Marcuvitz [1951]. The most
detailed treatment of circular cylinders appears to
be that of Twersky [1958b], which also gives com-
parisons with previous work.

Additional treatments of gratings inclued those of

721



Voigt [1911] (who extended Rayleigh’s [1907a)
procedure to a lossy interface), Tai [1948], Lippmann
[1953], Meecham [1957, 1956a, b], Snow [1956],
Primich [1957], Heaps [1957], Proud [1957], Parker
[1957], Theissing and Caplan [1956], Hatcher and
Rohrbaugh [1958, 1956], Palmer [1956], Rohrbaugh
and others [1958] Wait [1958, 1955, 1959], Senior
[1959], and Felsen [1959].

As for other two-dimensional planar lattices,
Marcuvitz [1956] has given a general formulation for
the planar lattice of arbitrary scatterers in terms of
the periodicity factors of the array, and in terms of
the amplitude of one element. Low frequency results
for planar lattices of spheres, disks, etc., have been
derived in connection with artificial dielectrics, and
in connection with the related problems of obstacles
in rectangular waveguides: see the recent review by
Cohn [1960] for the literature of the first, and the
texts by Marcuvitz [1951], and Lewin [1951] and
others for the second. General scattering theorems
for such structures are given by Schwinger, Dicke
[1948], Redheffer [1950], Friedrichs [1949], and
Twersky [1956b].

Additional papers dealing with planar periodic
arrays are cited in recent reviews by Harvey [1959]
and by Lysanov [1958].

3.3. Planar Random Distributions

As in the previous section, we begin with the most
general treatment of the problem; this minimizes
repetition.

a. Sparse Distribution (Two-Dimensional ''Rare Gas'’)

The scattering of a plane wave by a planar random
distribution of arbitrary objects may be treated by
averaging the set of multiple-scattering surface in-
tegrals for one configuration over an appropriate
distribution. In particular, for identical scatterers
whose average separation is large compared to their
minimum separation, we may assume that the one-
particle and two-particle distribution functions are
constant (as for a rare gas).

For such sparse planar distributions of arbitrary
scatterers, Twersky [1957a, 1955], using a procedure
analogous to Foldy’s [1947], shows that the coherent
scattered field consists of two plane waves—one in
the direction of mecidence, and one in the direction
of specular reflection (with respect to the plane of
the distribution). The amplitudes of these waves
are proportional to corresponding values of the
average multiple scattering amplitude of a scatterer
fixed in the distribution; i.e., to the response of one
fixed object to the incident field plus the fields of all
other objects averaged over the configurations these
other objects may assume. The average with one
fixed scatterer is given [Twersky, 1957a] by an inte-
gral relation whose kernel involves the same function
averaged with two scatterers held fixed ; approximat-
ing one by the other (as first done explicitly for a
volume of monopoles by Foldy [1947], and as done
“instinctively” in earlier less analytical treatments of
dielectric constants, etc.) leads to a simple expression
for the unknown amplitudes in terms of their single-
scattered values. (The validity of this approxima-

tion requires that the number of scatterers be large;
see Foldy [1947] for discussion, and Bazer [1959] for
an analytical treatment of the one-dimensional case.)

To this approximation, the total excitation of a
scatter within the distribution is proportional to the
average of the coherent transmitted and reflected
plane waves; and since the response of an isolated
scatter to a plane wave is known, one obtains two
algebraic equations which can be solved directly.
This gives simple expressions for the multiple-
scattered amplitudes in terms of their presumably
known single-scattered values. The final transmis-
sion and reflection coefficients take into account the
major effects of coherent multiple scattering; in
particular, whereas theirsingle-scattered values would
become infinite as grazing incidence is approached,
the total scattered field approaches the negative of
the incident wave (which merely means that only
surface wave, or inhomogeneous plane wave, solu-
tions exist in the limit), i.e., the coherent field of the
distribution becomes that of a perfect reflector.

The value for the multiple scattering amplitude
obtained by taking into account the coherent effects
is also used [Twersky, 1957a, 1955] in the corre-
sponding incoherent scattering (i.e., excitations aris-
ing from multiple incoherent scattering are neg-
lected) ; this leads to an approximation for the total
scattered field which explcitly fulfills the energy
theorem. Thus, the final results (expressed solely
in terms of the known single scattered amplitude,
the number of scatterers per unit area, the angles of
incidence and observation, and the wavelength)
state simply that the average power reflected, trans-
mitted, absorbed, and scattered by the area of dis-
tribution illuminated by unit area of incident wave
is equal to the incident power density.

The multiple-scattering amplitude of the “random
sereen’” (for the case of scatterers symmetrical to
the plane of the distribution) is also imaged
[Twersky, 1957a, 1955] to obtain the corresponding
function for the analogous distribution of arbitrary
protuberances on a ground plane; this amplitude
gives directly the reflection coefficients and differ-
ential scattering cross sections per unit area for a
relatively general model of “rough surfaces”. It is
shown that for such surfaces the coherent field ful-
fills an ‘“impedance boundary condition” on the
plane of the distribution (i.e., the scalar field is
proportional to its normal derivative, or, equiva-
lently, the tangential component of £ is proportional
to the tangential component of ), and the imped-
ance is expressed simply in terms of the scattering
amplitude of an isolated protuberance. For both
“yertical”” and “horizontal” polarizations, the ratios
of reflected to incident fields approach minus one as
grazing incidence is approached; the corresponding
coherent intensity reflection coefficients approach
unity, and the incoherent backscattering cross sec-
tions approach zero. More explicitly, for arbitrary
protuberances on a ground plane, if the “horizon
angle” (or grazing angle) approaches zero, then the
reflection coefficients approach unity linearly and the
backscattering for polarization perpendicular/or par-
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allel to the plane of incidence vanishes like the
fourth/or second power of the angle respectively.

This model for reflection and scattering from rough
surfaces appears to be the only one whic h treats both
coherent and incoherent scattering phenomena in
parallel, and which relates them explicitly to each
other through the energy principle. Theorems are
derived to show that the sum of average powers
coherently reflected, in(ohor(‘ntl\’ scattered, and ab-
sorbed by the area of distribution “illuminated” by
unit area of incident wave equals the incident
power density; and (using a general theorem for an
isolated protuberance [IW(‘IS]\V 1954b]), it is shown
that the forms for reflection coeflicient and scatter-
ing cross section (in terms of single scatterer results)
explicitly fulfill the required theorems. Illustrative
examples are obtained by specializing the general
results to arbitrary hemispheres, and semicylinders,
and (“{])11(11 dpp]()\nndtmns in terms of (\lomont.uy
functions are given for scatterers very small or very
large (()lll])d](‘(l to wavelength [Twersky, 1957a,
955].

The above model is a generalization of the one
introduced by Rayleigh [1907b] to consider inco-
herent scattering from a striated surface; his paper
gives a single-scattering treatment based on the
field of a fine semicylindrical protuberance. Ray-
leigh’s work was initially extended to obtain single-
scattered coherent and incoherent intensities for dis-
tributions of small semicylinders and hemispheres
[Twersky, 1950a, b, ¢, 1953¢], and of large semi-
cylinders [Twersky, 1952d); then multiple-scatter-
ing effects for separations large compared to wave-
length were taken into account for semicylinders
[Twersky, 1953a, d]. These special scatterers are
considered as illustrations in the more general treat-
ment mentioned previously [Twersky, 195 72, 1955].

The phase of the coherent reflected wave for the
special case of small hemispheres on a plane is also
considered by Biot [1958]. Neglecting incoherent
scattering, Biot [1957] considers a monopole source,
and Wait [1959] a dipole source exciting small hemi-
spheres on a ground plane. In particular, Wait [1959]
considers surface wave effects for lossy bosses and
shows that the first approximation for the coherent
effects may be described by a plane having an induc-
tive surface reactance; he also considers the analo-
gous problems for a curved eround plane, and for
parallel (plane, and curved) guides.

A variety of other models for random screens and
rough surfaces exist in the literature. However, it
is not the purpose of the report to consider these
topics, except as they relate to multiple-scattering
problems of distinct objects. The reader is referred
to the works of Rice [1951], Booker, Rateliffe, and
Shinn [1950], Beckman [1957], Miles [1954], Magnus
[1952], Schouten and De Hoop [1957], Ament [1956],
Hoffman [1955], Liysanov [1958], Senior and Siegel
[1959] Beard, }\dtL and Spetner [1956], Beard (m(l

Katz []957], bpotnm [1958], LaCasce and Ta-
markin [1956], LaCasce [1958], Berning [1957],
Meecham  [1956], Helps [1956], Parker [1956],

Jones and Barton [1958], Katzin [1957], Pollak [1958].

Additional papers are cited by Liysanov [1958] and
by Twersky [1957a].
b. General Statistical Distribution

The grating and the mndom screen of ;u'bilrm'y
(\llll(l(‘lb are essentially the “crystalline’” and “rare
gas” limits of a one-dimensional “liquid” of perfectly
elastic scatterers. To treat this general statistical
distribution, Zernike and Prins [1927] take the one-
particle distribution to be constant and use proba-
bility considerations to derive a pair distribution
function; the pair-function is expressed essentially
in terms of an “elbow room parameter” (L) equal
to the ratio of average to minimum separation of
scatterer centers, a minimum generally greater
than a scatterer’s width. They obtain a single
scattering approximation for a large number of
scatterers on a line, and show numerically that for

L—1, both pair-function and intensity become
sharpl\* peaked; and that for Z>1, both become

(Their basic paper introduces
the now standard “inversion procedure” used in
X-ray scattering by liquids. Inverting a corre-
sponding approximation for the three-dimensional
case, enables one to construct approximations for
the “radial distribution function” m terms of scat-
tered intensity measurements; see Gingrich’s [1943]
review.)

Twersky [1959b] considers the scattering of waves
by a one-dimensional liquid of coplanar, parallel,
arbitrary cylinders; he obtains a continuous transi-
tional formalism from the rare gas limit [Twersky,
1957a] to the periodic one [Twersky, 1956al. The
analysis 1s based on a Poisson one-particle distri-
bution function, and on a more convergent trans-
form of the pair-function introduced by Zernike
and Prins [1927].  Representing the field of one
configuration as a sum of surface integrals, and
averaging over the distribution, gives an integral
relation between the average fields with one and
two particles held fixed; equating these to each other
vields an integral equation m\nl\m(' the known
(Ilstlll)ulmn functions and the [)l(‘\lllll.l])l\ known

scattering amplitude of an isolated cylinder. The
absolute square of the average field specifies the
“coherent intensity.” A corresponding approxima-
tion is constructed for the “incoherent” differential
scattering cross section by taking the average field
with one scatterer held fixed as the excitation of a
scatterer within the distribution.

The total average intensity for this distribution
depends critically on L, the relative “elbow room”
per scatterer. As L-—1, the “local order’ increases:
in the limit, it is shown [Twersky, 1959b] that the
one and two particle distributions go over to 8
functions, and that the scattered field reduces to
the solution for the grating of equispaced arbitrary
elements [Twersky, 1956a]. For this “crystalline”

sase, the field is all coherent and consists of the
transmitted and reflected propagating spectral orders
plus the infinite set of evanescent surface waves.
At the other limit L— o the local order disappears;
the distribution fun(lmns become constants, and
the results reduce to those of the analogous “rare

relatively smooth.
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[Twersky, 1957a]. For this case, the coherent
field consists of the directly transmitted and specu-
larly reflected plane waves, and the differential cross
section is relatively smoothly varying (as determined
by choice of scatterers). The coherent field for the
general case of the “liquid” (of infinite “length’)
has the same form as for the gas, but the incoherent
intensity is more or less a smudged version of the
intensity pattern for the periodic case: it is peaked
in the vicinity of the parameters corresponding to
the noncentral spectral orders of the grating, and
these maxima broaden and decrease away from the
directly transmitted and specular directions.

The results for scatterers symmetrical to the plane
of the distribution are also imaged [Twersky, 1959b]
to obtain corresponding functions for the general
striated surface of arbitrary protuberances on a
ground plane. Applications are given to illustrate
multiple-seattering effects in certain resonance
phenomena (“near-grating” anomalies), in the be-
havior near grazing incidence, and in the effects of
packing for small scatterers.

3.4. Periodic Volume Distributions

The main lines for treating scattering of X-rays by
crystals follow the works of Ewald [1917], Darwin
[1914], Br: agg [1915], and Laue [1931]. Ewald [1917]
obtains a multiple-scattering solution for the lattice
of dipoles. Laue [1931, 1935] works with a Fourier
series representation for a general periodic index of
refraction. Darwin [1914] uses a single-scattering
approximation for the fields of the planar ldttl(‘(\
parallel to the interface of a semi-infinite lattice, and
takes into account multiple scattering between
planes. He introduces the “transmission line” pro-

cedure for treating such problems; and, for the

situation (onespon(hnu to Brage [1913] and Laue
[1913] resonances, Darwin’s 1914 paper gives the
assocliated pair of (ouplvd difference equations, since
rediscovered many times in connection with one-
mode propagation in periodically loaded lines, guides,
and artificial dielectrics.  Prins [1930] applies Dar-
win’s procedure to take into account absorption.

Liaue’s procedure is applied by Kohler [1933] to
treat the one-mode case for the bounded periodically
perturbed medium, and Mayer [1928] and Lamla

[1939] consider the case of three strong modes.
Essentially Darwin’s procedure (but taking into

account some multiple-scattering effects in the com-
ponent planes) is used by Twersky [1954a] to treat
the lattice of circular cylinders; and the general case
is treated by this means by Marcuvitz [190()] whose
results are applied to special problems by Barone and
Schneider [1956].

A broad, relatively elementary survey of analytical
techniques for treating scattering by periodic struc-
tures (methods introduced for scattering of X-rays
by crystals) is given by James [1950], and some
additional results are included in Partington’s [1951]
comprehensive treatise on physical chemistry (par-
ticularly vol. 3). Fourier methods for treating
scattering (of anything) by periodic structures are
reviewed by Slater [1958].
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The lattice of spheres is treated by separating
rariables in the static limit by Rayleigh [1892], and
for arbitrary wavelengths, by Kasterin [1897], and
by Morse [1956]. Various approximations also exist
in the literature of artificial dielectrics, a subject
whose modern aspects start essentially with the
work of Kock [1948]. The literature to 1952 is
surveyed in Brown’s [1953] monograph on micro-
wave lenses, to 1957 in Cohn’s [1960] review chapter
of the Antenna Engineering Handbook, and to 1958

1 Harvey’s [1959] survey article on optical tech-
mques at microwave frequencies. Recent papers in
the U.S. literature include those of Lippmann and
Oppenheim [1954], Storer [1952], Jones, Morita,
and Cohn [1956], Morita and Cohn [1956], Collin
[1959], Ward, Puro, and Bowie [1956], Kaprielian
[1956a, 1956b, 1956¢], Cohn [1956], and Hickman,
Risty, and Stewart [1957].

3.5. Random Volume Distributions

The earliest analytical treatment of the scattering
of waves by random distributions of objects (01'
potentials) 1s essentially Rayleigh’s theory of the
color of the sky [Rayleigh, 1899]. The subject has
since received much attention in the literature, but
much of the work has been heuristic.

Foldy’s [1947] treatment of scattering by mono-
poles serves as a model for those seeking to treat
more arbitrary scatterers. Thus Lax [1952], and
Twersky [1958a, 1959a] give different generalizations
for the coherent field. Foldy’s self-consistent treat-
ment of monopoles is extended essentially three
different ways to obtain the propagation coefficient
(say K) of the coherent field for a random distribution
of relatively arbitrary scatterers excited by a wave
having propagation coefficient k. Each procedure
expresses /X in terms of an isolated object’s scattering
amplitude, say f; but Twersky [1958a] uses f(k—k),
the amplitude of the object in free space; Lax [1952]
uses f(K—K), the amplitude in the new medium
associated with the coherent field; and later Twersky
[1959a] uses f(K—k), the amplitude of an object
excited in A-space but radiating into k-space.
Twersky [1958d] obtains f(K—k) by introducing a
new class of single-body scattering problems, in
which the source and radiated terms of the solution
satisfy different wave equations. [This type of
scatterer may be more palatable if its limiting form
for a monopole is recognized in the usual volume
integral representation for the field scattered by a
constant potential k2— K2 i.e., in the integral whose
kernel comprises a monopole (the free #k-space
Green’s function) weighted by the local field: since
the local field travels in K-space, these monopoles
radiating into k-space are elementary forms of the
“schizoid scatterer”” characterized by f(K—k).]

The new formalism is applied [Twersky, 1959a]
to a slab region of large tenous scatterers, and simple
explicit forms are obtained for the coherent and in-
coherent intensities, and for the average phase.
Theoretical results are compared with a series of
detailed experiments by Beard and Twersky [1958,



1960a, 1960b] on a large scale dynamical model of
a “compressible gas” of spheres. Measurements
were made from a relatively rare gas (average sepa-
ration of centers 10 times scatterer diameter) to
practically a “liquid state’” case (average separation
about one-eighth larger than diameter). [Here the
“molecules” were 1%4-in. styrofoam spheres and the
measurements were made with Y%-em radiation; a
system of blowers and turbulence-creating wedges
produced the distribution, and the required statis-
tical functions were measured separately by optical
methods.] The recent computed and measured
intensities are in accord over the full range investi-
gated.

The three extensions [Lax, 1952; Twersky, 1958a,
1959a] of Foldy’s [1947] procedure are among the
more recent extensions of Rayleigh’s original model.
For a volume distribution of small scatterers, Ray-
leigh [1899] gives a leading term approximation in-
volving f(k—Fk). Other results for wave scattering
in terms of forms of f(k——k) appropriate for special
objects, are given in Reiche [1916] (slab region of
dipoles), Urick and Ament [1949] (slab of small
spheres), and Twersky [1953b] (slab region of cyl-
inders). Similarly, expansions in terms of f(k—k)
are used in the work on dense distributions of dipoles
by Yvon [1937], Kirkwood [1936], Brown [1950],
Mazur and Mandel [1956], Green [1952], Jansen and
Mazur [1955], Jansen [1955], Fixman [1955], Born
and Green [1946], and Green [1957]; these papers
are particularly noteworthy for their care with the
probabilistic aspects of the problem. Alternative
approaches, still based on well-defined elementary
scatterers, are discussed by Onsager [1936], Bottcher
[1952], De Loor [1956], and others.

Brief, relatively comprehensive, introductions to
various aspects of the subjects involved in the above,
and additional references, are given in several articles
of the Handbook of Physies edited by Condon and
Odishaw [1958]: see “Dielectrics” by von Hippel;
“Molecular Optics” by Condon; “Principles of Sta-
tistical Mechanies and Kinetic Theory of Gases,”
and “Vibrations of Crystal Lattices and Thermo-
dynamic Properties of a Solid” by Montroll; and
“The Equations of State and Transport Properties
of Gases and Liquids” by Bird, Hirschfelder, and
Curtiss. A detailed review of the literature of di-
electrics is given by Partington [1951-1955], vol. 4
and 5. See also Frenkel [1956], Debye [1945],
Hartshorn and Saxton [1958], Van Vleck [1932],
Von Hippel [1954], and, in particular, the excellent
recent review by Brown [1956]. Fournet [1957]
gives the latest review on the structure of liquids;
and the recent article by Montroll and Ward [1958]
on the statistical mechanines of interacting particles,
and the references it gives to the classical statistics
literature, indicate the more fundamental models of
matter now under study.

Much work on multiple scattering of incoherent
radiation has been done from essentially a particle
scattering viewpoint. Instead of the wave equation,
one works with the Boltzman integro-differential
equation for transport processes. See Hopf [1934],
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Chandrasekhar [1950], Case [1957], Woolley and
Stibbs [1953], Fano, Spencer, and Berger [1959], and
Goldstein [1959] for fundamentals, applications,
and reviews of computational procedures.

An alternative approach to problems of scattering
and propagation in random media is to work with a
perturbed continuum-—see papers of Einstein [1910],
Smoluchowski [1908], Pekeris [1947], Debye [1954],
Booker and Gordon [1950], Villars and Weisskopf
[1954], Silverman [1957, 1958], Staras [1955], Wheelon
[1957], the scatter-propagation issue of the Proceed-
ings of the IRE [1959], Bremmer’s Handbuch article
[1958], and the recent review of tropospheric propa-
gation by Staras and Wheelon [1959]. References
to the literature of physical chemistry involving
this approach are cited by Fishman [1957] and
Stacey [1956].

Recent papers on the topic of this section include
Booker [1956], Kraichman [1956], Chu and Churchill
[1956, 1955], Gordon [1958], Zink and Delsasso [1958],
Skydrzyk [1957], Silverman [1956, 1957, 1958],
Stein [1958], Phillips [1959], Smith [1956], Zweig
[1956], Buckingham [1956], Buckingham and Stephen
[1957], Yvon [1958], Prins and Prins [1957], Longuet-
Higgins and Pople [1956], Goldstein and Michalik
[1955], Fixman [1955], Jefferies [1955], Megaw [1957],
Peterlin [1957], Nakagaki and Heller [1956], Steven-
son [1957], Richards [1955], Sekera [1957], Richards
[1956], Ament [1952], Meeron [1960], Digest of
Literature of Dielectrics, Conference on Electrical
Insulation, National Academy of Sciences—National
Research Council, Vols. 20, 21,22 [1956, 1957, 1958].

Additional categories of phenomena involving
“multiple scattering”, and additional references
(particularly to the literature of quantum mechanics),
are given by Lax [1951, 1952].
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Part 3. Antennas 1957-59

R. W. Bickmore® and R. C. Hansen**

Developments in antenna theory during 1957 to 1959 are summarized, with emphasis on
the definitive papers. Work of U.S. authors published in United States and English lan-
guage foreign journals is included. The survey is divided into four sections: Broadband
antennas, dynamic antennas, large aperture antennas, and small aperture antennas. Surface
wave antennas are not included in this paper.

Major progress has been made in the broadband antenna field with the appearance of
log-periodic structures and unidirectional spirals. Pattern bandwidths of 10:1 have been
achieved with the former.

Newest in the field are the developments arising from application of communication
theory to antennas, treating the antenna as a spatial filter. Developments include: Ex-
change of bandwidth for aperture size or density, time modulation of certain antenna param-
eters to obtain multiple simultaneous modes of operation or to obtain enhanced perform-
ance, and time processing of multiple antenna outputs to obtain increased resolution or
decreased array density. Thus the antenna is in general a multiterminal time varying
(dynamic) device which must be considered as an integral part of the system.

Important advances in large antennas include: Application of array and electronie
scanning techniques to conical geometries; electronically scanned two-dimensional arrays
using frequency shift or ferrite phase shifters; use of unequal spacing between elements in
an array to obtain depressed secondary responses and to utilize lower array density; annual
slot arrays consisting of annuli of half-wave slots, with the advantage of a simple mechanical
structure; a UHFE dipole array coupled electromagnetically to a two-wire transmission line;
focusing and control of radiation in the Fresnel region; determination of the constituents of

antenna noise temperature.

Another important accomplishment has been the evaluation of HF aircraft antennas
considering pattern, efficiency, and bandwidth.

1. Introduction

The three-year period between the 12th and 13th
General Assemblies has seen substantial progress in
many of the fields recommended for study in the
“Resolutions and Recommendations” of the URSI
Proceedings. In addition to surveying these topics,
this report endeavors to cover those aspects of an-
tenna research and development which are of pri-
mary interest to URSI and on which significant
progress has been made.

The progress in the U.S.A. during 1957, 1958, and
1959 on antennas is broken down into the following
topics: Broadband antennas; dynamic antennas,
including data processing arrays and modulated
antennas; large aperture antennas, including radio
astronomy, array, and scanning antennas; and small
aperture antennas, including those for space vehicles.
Surface and leaky wave antennas and scattering and
diffraction are covered in separate reports. The sur-
vey 1s based mainly on the definitive papers and re-
ports in the field with a bibliography of supporting
developments, and is not a catalog of all antenna
papers. All important U.S. journals have been
covered, but only papers with U.S. authors are in-
cluded herein. In addition, papers by U.S. authors
in certain English language foreign journals have
been included, along with unclassified technical
reports from major antenna establishments in the
United States.

*American Systems, Inc., Los Angeles,” Calif.
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2. Broadband Antennas

Introduction. The term “broadband antenna,”
by definition, denotes an antenna having essentially
constant pattern characteristics, as well as input
standing wave ratio, over at least an octave of fre-
quencies and usually several octaves. Intrinsic in
this definition is the assumption that the efficiency
of the antenna remains above some specific value,
for efficiency is as pertinent a characteristic of
broadband antennas as impedance and directivity.
Often the term “broadband antenna’ also carries a
connotation of ommidirectionality, since it is an
order of magnitude more difficult to design a broad-
band array of broadband elements than the broad-
band element alone. Thus, as is evident from
Proceedings of the 12th General Assembly, early
work tended to concentrate on the easier of the two
problems; namely, single element broadband an-
tennas of limited directivity. It is encouraging to
note that some headway is being made on the
problem of more directive broadband antennas.

Spiral antennas. The infinite equiangular spiral
antenna is a device which is specified entirely by
angles and is obviously frequency independent in its
ideal state. Rumsey [1957] has reviewed frequency
independent antennas of which the plane spiral and
conical spiral represent particularly useful specializa-
tions. These antennas have been investigated on a
continuing basis during the past three vears primarily

**Space Tech. Labs., Inc., Los Angeles, Calif.



by Rumsey ! and Dyson [1959a]. The necessity of
having an antenna of finite size, of course, requires
the specification of at least one length. Thus there
is a rather definite “cut-oft”” frequency below which
the antenna functions either with very low efficiency
or not at all. The effective size of the antenna at
higher frequencies is apparently bounded quite
effectively by radiation damping, since excellent
pattern constancy is obtained (as well as low standing
wave ratio) over bandwidths of 20 or 30 to 1.

Dyson [1959b] has also shown that by extending
the planar equiangular spiral into a conical spiral,
the usual disadvantage of bidirectional radiation
can be effectively overcome. Using this technique,
bandwidths of the order of 12 to 1 have been obtained
with 20 or 30 to 1 probable in the future. If flush
mounting is required, some sacrifice in bandwidth or
efficiency is necessary, at least with the current state
of the art.

Log periodic antennas.  The previous section dealt
with circularly polarized radiating elements which
are, theoretically, made independent of frequency
through the application of the “angle concept”
and the “self-complementary principle.””  The prac-
tical antenna, however, is frequency sensitive by
virtue of the inability to construct an ideal model.
If one starts with a mathematical model which is
not quite frequency independent, the practical
approximation can sometimes produce results super-
ior to those of the practical approximation to the
theoretically perfect antenna. Such a device is the
log periodic antenna which is defined as a radiator
having characteristics which vary periodically as the
logarithm of the frequency [DuHamel, Isbell, 1957].
The basic log periodic antenna can be obtained by a
simple modification of the angular antenna and the
result is a predominantly linearly polarized antenna
(although circularly polarized versions are available)
having reduced end effects caused by the necessary
finite size.

While there are an unlimited variety of log
periodic antenna configurations, the class which has
received the greatest amount of attention is the self-
complementary “bow-tie” structure having tooth-
like discontinuities along its radial edges. DuHamel
and Isbell [1957] and DuHamel and Ore [1958] have
obtained bandwidths of over 10 to 1 with such an-
tennas, and in addition have found that the beam-
width could be controlled over a considerable range
by varying the periodicity of the teeth. In general,
however, the latter effect is also accompanied by a
change in the low frequency ‘“cut-off” wavelength.
DuHamel and Berry [1958, 1959] have started
investigation of several other designs including
three dimensional versions and trapezoidal toothed
structures which have promise for antennas of
higher gain.

High gain broadband antennas. 'T'wo approaches
to highly directive broadband antennas have recently
been used. These are expansion of the effective
aperture size of conventional antennas and the form-
ing of a broadband array of broadband elements.

1 Cheo, }-{u—n;(*y, and Welch, A solution to the equiangular spiral antenna
problem, paper presented at the 1959 Fall IRE-URSI Meeting, San Diego, Calif.

An example of the use of a resonance mechanism to
control the effective aperture is the “Pin Wall Horn’”
of Parker and Anderson [1957] wherein two walls of
a horn radiator are serrated with rectangular holes
of ever increasing size as one proceeds from the
throat to the mouth. Constant patterns in both
principal planes have been obtained over a 4 to 1
bandwidth.

DuHamel and Ore [1959] and Isbell [1959] have
shown that the effective aperture of a log periodic
antenna can be increased by optical magniication.
Log periodic feeds were constructed for paraboloidal
reflectors, giving bandwidths between 10 and 20 to 1
and a VSWR of 2. Gains up to 30 db were obtained .

DuHamel and Berry [1958] have also investigated
arrays of log periodic antennas of trapezoidal type
which have gains of 15 to 20 db. These arrays are
ingeniously designed so that the element spacing is
given in terms of angles rather than distances. As
a result, excellent patterns and VSWR of the order
of 2 are obtained over a bandwidth approaching 10
to 1. The typical very narrow bandwidth of an
array of many elements has been greatly exceeded
by MecCoy et al. [1958]; they have obtained a 35-
percent bandwidth with a linear array of 80 wave-
guide horns with corporate feed structure. Sidelobe
ratios near 25 db and VSWR of the order of 1.3 are
maintained throughout the band (S-band). Hybrid
junctions are not used for power division, hence the
efficiency is high.

It 1s encouraging to see that someone has finally
realized the advantages of an array of unequally
spaced elements. D. D. King [1959] has shown
analytically that a linear array, capable of being
steered +90° with respect to broadside over a 2 to 1
frequency band, can be designed to maintain its
collimate characteristics with no sidelobe higher
than —7 db. Also, fewer elements are needed than
with an array of equally spaced elements.

Summary. In reviewing the progress represented
by the above mentioned reports, several conclusions
seem evident. In spite of some recent attempts, a
satisfactory theory describing the operation of the
newer types of broadband antennas is still lacking.
At the moment 1t is impossible to choose between
the infinite number of theoretical broadband con-
figurations except from a constructional viewpoint.

The most important area for further work, how-
ever, would appear to be in really broadband, elec-
trically scannable, two dimensional arrays for such
applications as radio astronomy and space communi-
cations.
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3. Dynamic Antennas

[ntroduction. The past three years have seen a
modest but concerted effort tlnouulmut the country
to adapt many of the successful t((]llll(]ll(‘h of circuit
theory to antenna design. Of particular interest
have been attempts to incorporate the concepts and
formulations of communications theory to the anal-
vsis of antenna performance.  Under this philosophy
an antenna is considered to be a spatial filter whose
characteristics are completely defined in terms of a
transfer function which is identical in form to that
used in conventional circuit theory. The objective
of the communication theory approach is to optimize
the transfer function in terms of criteria which are
determined on the basis of the operating antenna
environment. For example, terms are introduced
such as the “fidelity defect,” which is a root mean
square measure of the ability of a mapping or scan-
ning antenna to provide an output signal which is
an accurate reproduction of the target distribution.
Unfortunately, many of the error criteria which are
based on circuit theory concepts are not pertinent
in applications to antenna design. The “fidelity
defect” as an illustration is much too restrictive in
some cases since it doesn’t weigh the parameters
which are important in system operation. As a
result, the fundamental system concepts are often
lost sight of because of the mathematical formulation.
There is an urgent need, then, to reformulate the
communication theory concepts in a way that takes
into account the inherently different characteristics
of antennas and their associated systems. TIn addi-
tion, care should be taken to keep from utilizing
communication theory techniques in areas where
conventional methods are clearer and simpler.

In addition to the use of communication theory as
a tool in the rating of antenna performance, the basic
concepts have been utilized to achieve new operating
techniques which are capable of considerably improv-
ing the information gathering efficiency of an antenna
system. This achievement has come about through
the recognition that the antenna, viewed as a spatial
filter, may be made nonstationary by the process of
time modulation of the transfer function, in such a
way that a direct correlation is obtained between
spatially dependent and time dependent signals.
More accurately, a series of orthogonal time depend-
ent signals is generated, each one of which is modu-

lated in accordance with a different spatial pattern.
Time domain processing of these signals then pro-
duces a multitude of spatial patterns which can be
used in the conventional way. These techniques
result in a considerably greater quantity of spatial
information than would be obtained with conven-
tional antenna operation, and it is felt that future
antenna systems will place a greater reliance on these
techniques.

Unfortunately, in reporting on this exciting new
field of antenna theory, the authors must be content
with giving merely a blanket acknowledgement to a
substantial amount of work done in connection with

rarious military projects which, obviously, is un-
available as reference material.
Communication theory applied to antennas.  One of

the earliest attempts to utilize the concepts of com-
munication theory in the analysis of antenna per-
formance was by White [1957]. The objective of
this work was the determination of the fundamental
limits on the information available from antenna
systems.  White demonstrated that an antenna (a
linear array in partic ular) viewed as a spatial filter
has a bandwidth which is determined by the aperture
extent and that, therefore, it will reproduce only a
finite number of the space harmonics wplvsvnlmg a
desired spatial pattern. By the same reasoning, in
a two-way radar situation, the received voltage (7(0)
will not exactly reproduce the target distribution #(6)
because of the finite spatial bandwidth of the antenna
system. Thus from a basic standpoint, the antenna
resolution is limited by the highest space harmonic
within the bandwidth of the spatial filter; this band-
width is in turn determined by the aperture size.
It should be pointed out, as White has neglected to
mention, that antenna resolution can be increased
theoretically without limit, by the use of supergain
techniques.  This is (‘(llll\'dl( nt to artificially increas-
ing the space bandwidth of the antenna by producing
additional spatial harmonics which contribute large
amounts of reactive power. — Although this technique
is of little practical value for well- known re: 1sons, it
is of interest with respect to the concept of h[)(\ll.ll
filtering.  Additionally, this well-known limitation
on antenna resolution may be overcome by the use
of correlation type processing of the antenna signals.
For radar operation, White points out that improved
resolution may be accomplished by correlating the
signal returns with any a priori information that is
available about the target distribution. In other
applications, such as radio astronomy, the interfer-
ometer antenna structures are utilized in conjunction
with correlation processing to achieve high resolution
with low gain. Unfortunately, in addition to their
low-gain characteristics, interferometric-correlation
schemes are unreliable in radar operation because of
the three-dimensional type of target distribution
which permits the possibility of false correlations.
Raabe [1958] has also considered the antenna as
a spatial filter, and he has utilized this concept in a
discussion of antenna pattern synthesis. His ideas
are based on the recognition that the finite spatial
bandwidth of an antenna limits the highest harmonic
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variation which can be contained in the radiation
pattern. It is thus proposed that the bandwidth
limited pattern be utilized as the desired waveform
rather than the pattern of infinite harmonic content.
The sampling theorem is then used to determine
the optimum sample characteristics; the samples
are taken as properly spaced ‘“sinc” beams which
are weighted according to the desired waveform.
The spectrum represented by these samples is then
said to be matched to the filter (antenna) charac-
teristics, and the desired waveform is reproduced.
This technique is very similar to Woodward’s
method of synthesis and Raabe presents an analysis
of the similiarity. Unfortunately, detailed numerical
examples of actual synthesized patterns are not
presented for comparison. Nevertheless, Raabe’s
ideas are fundamentally correct and represent an
interesting application of communication theory
to one of the more familiar aspects of antenna theory.
Two attempts to utilize the communication
theory concepts of processing and filtering in the
actual design of antennas for special application
have been reported by Anderson [1958] and Dausin
et al. [1959]. Essentially, Anderson considers a
displaced-phase-center antenna with correlation type
processing to reduce platform and scanning noise
in airborne moving target radar. The work of
Dausin, et al., deserves a more detailed discussion
since it presents concepts which have not been
mentioned previously. In this work, the spatial
frequency bandwidth (and hence the angular reso-
lution) of an antenna system is shown to depend
not only on the aperture extent but also on the time
frequency bandwidth of the received signal. This
is not too strange, however, since the aperture
extent is only uniquely defined in terms of wave-
lengths and, hence, the signal bandwidth should
play a part in determining the spatial filter charac-
teristics.  The major conclusion from this work,
then, is that signal bandwidth can be utilized in
place of aperture size or density of sources to produce
equivalent radiation patterns. Operationally, this
is achieved by summing the autocorrelated spectral
outputs from each element, weighted according to
a given aperture illumination. Formulas are derived
which permit the determination of the required
aperture and source distribution for a given signal
bandwidth characteristic. An illustrative example
of this technique is presented in which a 10-percent
signal bandwidth is sufficient to produce a normal
200-clement pattern from a 66-element array—
a 65-percent reduction in the number of elements!
Obviously, the same percentage reduction will not
hold for arrays with a few number of elements.
Time domain antennas.  Shanks and Bickmore
[1959] have presented an excellent tutorial discussion
of the use of time modulation techniques in advanced
antenna design. The basic concept introduced in
this presentation is that of periodic time modulation
of selected antenna parameters to improve the
operating characteristics of an antenna system.
This modulation technique produces a correlation
between spatial information and time dependent

signals which permits time-domain processing to
provide increased spatial information. Not only
does this concept provide improved pattern control,
as in sidelobe suppression, but it also indicates new
operating techniques which are shown to have appli-
cation to electronic seanning and multipattern
operations.  In addition, Shanks and Bickmore
consider possible physical configurations which are
capable of producing this type of operation and
present some of the system problems of detection
and processing which must be studied. Finally, an
elementary experimental demonstration of the basic
concepts is reported.

In an elaboration of the above work, Shanks ? has
discussed in detail the application of time modulation
techniques to electronic scanning. 1t is shown that
with the proper aperture modulation applied to a
linear array, a series of directive-beam patterns is
generated, and that the information from each may
be separated by time domain processing of the
received signals. The required aperture excitation is
equivalent to a coherent pulse, of length much
shorter than the antenna length, sweeping across
the aperture. In practice this is achieved by on-off
devices which are switched progressively. This
technique promises to overcome many of the disad-
vantages which are normally associated with the
conventional control devices used in electronic
scanning operations.

The concept of modulated antennas has been
utilized in a more restricted sense by other researchers
in the field. Drane [1959] has applied periodic
modulation to the relative phases of a multiple
antenna system to achieve improved resolution. In
particular, he considers a system comprising a num-
ber of 2-element interferometers alined colinearly
with a single linear array; the overall length of this
system is many times the length of the single linear
array. When the output signals from each inter-
ferometer are phase modulated and added (in a
nonlinear detector) to the array output, simple time
domain processing produces a pattern having no
angle ambiguities and a resolution which is equiv-
alent to that obtained from a continuous linear
array with a length of the entire system. Drane
also demonstrates that correlation type devices can
be used in place of modulation and time domain
processing to achieve the same type of results. 1In
this case, a direct multiplication of the various
element outputs is performed and this allows the
addition of as many interferometer elements as
desired. The major advantages in Drane’s type of
system is the large saving in the number of elements
which are required to achieve a given angular
resolution. However, two disadvantages are ap-
parent which limit the range of application of this
technique. First, the system is inherently low-gain,
thereby restricting its use to applications such as
radio astronomy, where long integration times can
be used. Secondly, the system is unilateral because
of the processing methods which are used.

2 H. E. Shanks, A new technique for electronic scanning, paper presented at
1959 URSI Fall Meeting, San Diego, Calif.
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Bracewell * has presented an interesting review of
switched interferometer techniques which have long
been used in the field of radio astronomy. This
presentation was largely an attempt to provide
better physical understanding among antenna people
of the concepts which are common in the astronomy
field. Of particular interest is his graphical method
of constructing a spectral sensitivity diagram for
interferometer-type structures.  This technique pro-
vides a simple method of visualizing the effectiveness
of these systems.

A study of correlation techniques in antenna pat-
tern control has been reported by Band and Walsh *
in what is actually a companion paper to Drane’s
work. No new operating principles are introduced,
but rather a desecription of several practical correla-
tion and multiplication devices is presented. The
work of Band and Walsh represents the first known
effort to develop correlation devices which are
specifically suited for the special signal output
characteristics found in antenna applications; other
work is by Smythe.?

Summary. Based on the above survey of the past
three years of work in the field of dynamic antennas,
it may be concluded that antennas are acquiring a
“new look.” The conventional concepts of antennas
are gradually being pushed aside to make way for the
new philosophy of integrated antenna systems.
Whereas the processes of correlation, filtering, and
integration have in the past been associated with
systems design, these same ideas are now rightfully
within the province of the antenna art. This new
philosophy has important implications to antenna
people, in that they can no longer rely on supporting
personnel for systems inputs, but must adopt an
integrated antenna-systems approach to their prob-
lems.
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4. Large Aperture Antennas

Radio astronomy and large antennas. Emberson
and Ashton [1958] have reviewed in detail the design
of a 140-ft paraboloidal antenna for the telescope
program of the National Radio Astronomy Observa-

3 R. N. Bracewell, Switched interferometers, paper presented at 1959 URSI
I‘Jll Meeting, San Dnego Calif.
4 H. E. Band, and J. E. Walsh, Correlation techniques dp]lll(‘d to antenna
pattern conmol, paper presented at 1959 URSI Fall Meeting, San Diego, Calif.
5J. B. Smythe and S. Weisbrod, Utilization of space frequency filters in an-

tory; the paper presages the design of a 600-ft dish.
Another large radio telescope antenna is the fixed
standing parabolic reflector and tiltable flat sheet
reflector which has been designed by Kraus [1958].
This antenna allows elevation scanning through tilt-
ing of the sheet reflector on an K.-W. axis and
azimuth scanning through primary feed rotation.
Scale model tests have been completed and are
summarized [Kraus, 1958].

Bracewell [1958], in an important paper on radio
interferometry, derives the relation between spacing
of ground observation points and resolution of dis-
crete sources as a function of frequency. His
conclusions are that in the case of the sun, independ-
ent data are available only at points on the ground
separated by at least 100X. Bracewell [1957] has
also considered the design problems of cross interfer-
ometers using dishes as elements. Swarup and
Yang [1959] have also studied phasing problems for
cross interferometers at microwave frequencies. A
general theory in which switching antennas, such as
cross-arm types, may be included is covered under
Dynamic Antennas. An interesting scanning tech-
nique reported by Miller et al. [1958] uses a
linear array of dishes, each of which is fed by a helix.
Rotation of the helices produces phase shift and
consequent scanning of the beam. Scans of the order
of -£4 beamwidths have been obtained. Another
array for radio astronomy purposes consists of two
parallel line sources with Yagi elements [Gallagher,
1958].

Sletten et al. [1958a] have developed shunt slot
arrays for use as corrective line source feeds for para-

boloids.  These feeds allow an elevation fan beam
yet maintain well-focused narrow beam azimuth
patterns over the entire elevation interval. Another

use of a line source feed is for the 1000 ft diam
spherical reflector to be erected in Puerto Rico for

radar astronomy studies. This fixed bowl with
movable feed will allow wide angle scanning and is

being designed by AFCRC and Cornell. The bowl
should be useful at 21 em, and if the tolerances can
be achieved, this bowl will have at 21 ¢m the highest
gain of any antenna, over 68 db, allowing 2 db for
gain loss due to spherical aperture.  Also to be men-
tioned is the very low sidelobe parabolic horn de-
veloped at Bell Laboratories [Friis, May, 1958], with
first sidelobes below —40 db and back loves below
—70 db.

Array antennas. 'The previous triennium (1954
to 1956) saw completion of a very extensive program
on the properties and design of array antennas,
particularly waveguide slot arrays. This work is
reported in the 1957 Commission 6.3 report [Cot-
tony et al., 1959]. Efforts in the triennium 1957 to
1959 have been concentrated on extending both the
theory and practice to shapes other than planar,
and on new configurations, e.g., annular slot arrays
and arrays of unequally spaced elements. Goodrich,
Siegel, Chernin, et al. [1959] have summarized the
work bv U lllV(‘l%ltY of Michigan and Hughes Aircraft
Company authors on produung a pon(,ll beam from

enna design, paper pr esented at 1959 URSI fall meeting, San Diego, Calif,
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an array on a conical surface. Although this is also
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an electronic scanning problem, the conical surface
is the unique feature of the problem. The theoreti-
cal analysis of radiation from current distributions
on a cone used Geometrical Optics and Fock theory,
the latter being used in the shadow region. Physical
Optics was used to account for tip diffraction. A
more complete discussion of the analysis problem is
a paper by Goodrich et al. [1957]. A multiplicity of
array configurations were studied: axial, circum-
ferential, spiral, etc. The final design [Goodrich et
al., 1959] consisted of a stack of parallel plate trans-
mission lines, all coaxial with the cone and terminat-
ing on the conical surface. Excitation of the stacked
parallel plates was provided by a central slot array,
arranged to be sufficiently dispersive as to allow
elevation frequency scan. Azimuth scan was ac-
complished by a rotation of the central waveguide
feed structure. Other work on conical surface ele-
ments near the tip is by Held et al. [1958]. A paper
which concerns synthesis over a conical surface is by
Unz [1958].  Also investigated is the equivalence of
a slot array and a continuous current distribution
with particular application to a conical surface
[Mayes, James, 1958]. Other papers on synthesis
include a technique which uses multiple sets of ele-
ments in an interference or supergain fashion [Sletten
et al., 1957a] and strip sources [Mittra, 1959]. Wait
and Householder have extended the Tschebyscheff
array design of Dolph to an array of axial slots dis-
posed circumferentially about a circular eylinder
[Wait, Householder, 1959].

Secondary main beams of two-dimensional slot
arrays due to alternating inclination or displacement
of elements have been studied by Kurtz and Yee
[1957]. They treated the array as having virtual
elements consisting of a pair of adjacent elements;
all virtual elements were then alike. Also covered
in this paper is the successful use of baffles to reduce
the secondary beams.

As mentioned earlier, arrays of unequally spaced
elements constitute a promising configuration. D.
D. King and others ® have demonstrated that such
effects as amplitude taper (in an equally spaced
array) can be simulated with proper spacing. Ir-
regular spacing suppresses undesirable effects such
as secondary beams (usually caused by regular spac-
ing) and may reduce the number of elements needed.
This work is a continuation of earlier work of Unz.

A novel departure from the conventional array of
half-wave elements wherein the element and array
factors can be separated is given by Ronold King
[1959]. Here, an array of full-wave dipoles is con-
sidered and the pattern derived from an integral
equation of dipole current distributions. King shows
that the assumption of equal, sinusoidal current
distributions may produce appreciable errors in the
region of minor lobes. However, the extreme dif-
ficulty of synthesizing patterns will probably severely
restrict use of the analysis.

Constructional advantages over the rectangular
array are offered by the annular slot arrays developed

6 Steerable antenna focusing techniques, Electron. Comm., Inc., reports dur-
ing 1959 to Rome Air Development Center.
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by Kelly [1957].  Several rings of discrete slots are
fed by a single radial line, offering an extremely
simple vet flexible design. Excitation of the n=1
circumferential mode produces a beam in the normal
direction; the modes for n=0 and higher than n=1
produce nulls on the axis. Schell and Bouche [1958]
have developed a concentric loop array in which
the loops are large in wavelengths and in which two
feeds are used, allowing rotation of the pattern.

Some interesting developments have appeared in
arbitrarily polarized slot arrays. Hougardy and
Shanks [1958] have developed a linear array consist-
ing of crossed slots in a square waveguide fed with
two dominant orthogonal modes. Appropriate mi-
crowave plumbing allows the relative phase and
amplitude and hence radiated polarizations to be
adjusted. The annular arrays of Kelly [1959] above
an also be excited with two modes for variable
polariaztion. Hines and Upson [1958] have devel-
oped an interesting concept wherein a parallel plate
pillbox is fed with a line source guide containing
45° inclined slots. The spacing between guide and
mouth controls the polarization since the two modes
have different phase velocities.

Although the emphasis has been on slot arrays,
one important development has arisen in the field
of dipole arrays. Sletten et al. [1957b] developed a
dipole array wherein the dipoles are coupled electro-
magnetically to a two-wire transmission line. The
shorted folded dipoles are in a plane parallel to the
line and are spaced as in an array. Coupling is
controlled by the angle and spacing between the
dipole and the line; an analysis of the coupling is
given by Seshadri and lizuka [1959]. This array
offers simplicity of construction in the UHF region
comparable to that of microwave slot arrays.
Cottony and others [1959] at the National Bureau of
Standards have fed a large corner reflector by a
collinear dipole line source, obtaining 40-db first side
lobes, with a narrow azimuth beam and a broad
elevation beam. The collinear array allows close
realization of the design values; the 40 db is better
than that obtained with waveguide slot arrays.

Electronic scanning. Electronic scanning of two-
dimensional slot arrays has been achieved in practice
by several means including frequency shift scanning
and dielectric and ferrite phase shifters. An array
which is scanned by frequency in one plane and by
dielectric stub phase shifters in the other plane is
described by Spradley [1958]. A serpentine (snake)
main feed guide couples energy to the branch guides,
allowing a small frequency swing to produce the
large phase progression needed for large scan angles.
Goodwin and Senf [1959] have developed a prototype
10,000-Me/s ferrite phase shifter scanning array
where a set of main line phase shifters produce
elevation scanning and a set of phase shifters, one
at each element, is used for azimuth scanning. All
phase shifters are relay programed, with a TV-type
raster scan. The term ‘“volumetric scanning’ has
been used to describe these arrays, and means that



the beam can be scanned in two planes so as to
sweep out a V()lmnv Gabriel et al [1.}.)1 1958]
have developed an “organ pipe scanner’” in which
a large lens is fed by a two-dimensional array of
horns which in turn is excited by a feed moving
across the matrix of waveguide ends. An improve-
ment on the use of ferrite phase shifters with attend-
ant nonlinearities is to use quadrature coils and pro-
gressive frequency harmonics to produce linear
progressive phase shifts [Clavin, 1959].

Another phase shifting device is the helical trom-
bone phase shifter of Stark [1957] where movable
double coupling loops are used. This device has
been very sucecessful in the UHK region. A general
investigation of beam scanning for large antennas
has been conducted at Stanford vaon(h Institute
[1958]. A technique which allows scanning to be
accomplished through amplitude variations rather
than through the usual phase front adjustments
has been pmpoqod [Sletten et al., 1958b]. However,
amplitude scanning is similar to a supergain phe-
nomenon 1in that d(l]d((‘nt elements operate with
fixed phase in an interferometric fashion to produce
a net small radiating current in the proper direction,
except exactly at broadside and end fire.

One of the most promising developments in the
electronic scanning tield is the ferrite excited slot
developed by Shanks [1959]. This is a radiating
element suitable for inclusion into two-dimensional
arrays, in which the phase and amplitude of the
element can be controlled. Slot coupling changes
result from a shifting and rotation of the field inside
the waveguide by means of two ferrite post irises.
This is an extension of the slot developed by Tang
which uses movable mechanical irises. Individual
control of each element will allow maximum flexi-
bility for both scanning and data processing type

antennas. Although nonlinearity is a severe pro-
graming problem, this d(\‘(lopmont offers great
promise. The end-fed array appears to incur serious

mutual impedance changes for Ln'gv scan angles.
Blasi and Elliott [1959] show that the changes of
mutual impedance for uniform amplitude linear
phase arrays make end feeding unsuitable due to
the change in coupling as the wave proceeds down
the feed line. However, corporate feeding does not
suffer from this disability. Another mvoetlgltlon
has shown that the popular cos 6 approximation for
effective aperture must be modified for large scan
angles. Bickmore [1958] has derived the correct
result which yields the end fire value in the limit
as 1t must. The cos 6 result is very good to a point
(typically 60°), beyond which the value drops rapidly
before entering the end fire region. Tolerances con-
tinue to be an important subject in antenna array
design.  Elliott [1958] has summarized the quanti-
tative eflects of mechanical and electrical tolerances.
Of these, translation errors in element position are
most important. The effect of random errors on
beam pointing has also been investigated [Rondi-
nelli, 1959]. A quality factor has been derived for
evaluating the system performance of search scan-

ning antennas, taking into account such things as
scan rate and hits per scan [Gardiner, 1957].

Considerable progress has been made in the re-
flector field. One of the most notable examples is
the parabolic torus antenna [Mavroides, Provencher,
1958]. A particularly interesting version of the
torus, developed by Barab et al. []().)h] of Melpar,
and }‘ldll(‘ll\, and Kadak [1‘)()(\] of Westinghouse, is
made of wires inclined at 45° so that an internal
rotating horn affords 360° scan. Another version
uses a ring array of dipoles outside the torus [Fulli-
love et al., 1959]. These devices should be appli-
:able to astronomy.

Li [1959] has shown that a spherical reflector can
be used for wide angle scanning with good side lobes
at a cost of gain. A typical gain loss for wide angle
scanning 18 9 db. This can be reduced below 2 db
using a corrective line source feed as mentioned
earlier. Another development in optical scanning
devices is the double-layer pillbox of Rotman [195¢ ]
The feed is placed in one layer with the mouth in
the other, with a consequent reduction of shadowing
and reflection, which in a single-layer pillbox is due
to energy reflected back into the feed. Also, aber-
rations can be corrected either in object or image
space. Zoned mirrors can be corrected to be coma-
[ree according to Geometrical Opties. This con-
clusion has been refined on the basis of diffraction
theory [Dasgupta, Lo, 1959]. Additional work on
mirror lenses for scanning has been done at the
Naval Research L.lbomtm\' [Marston, Brown, 1958].

An important gener: alization of symmetric 1(‘]1.5
design has been made by Morgan [1959] of BTL.
He has given a general solution for the spherically
symmetric lens with variable index of refraction
which includes Luneberg and Eaton lenses. Proctor
has given a design technique for constrained scanning
l(~nsvs 1.e., lenses in which the wave propagation
direction is constrained to be parallel to the beam
axis [Proctor, Rees, 1957].

Near zone studies. A focusing concept developed
by Bickmore has led to some interesting applications.
This allows optimum transfer of energy between
two unequal size apertures [Bickmore, 1957a].
Furthermore, it allows measurements with a narrow
beam antenna inside the Fresnel leglon with the
same resolution obtained in the far field region
[Bickmore, 1957b]. This is accomplished in a linear
array simply by introducing a slight spherical
curvature of the appropriate amount into the array.
In two-dimensional arrays, the requisite phase change
can be introduced into the phase shifter or feed
devices. With this technique, it has been possible
to measure far field patterns as near as 2 percent of
the normal distance 2D?%/\. Another technique for
measurement of far field patterns in the Fresnel
region is that of Cheng [1957]; this uses a defocused
primary source. Goodrich and Hiatt [1959] have
considered the transfer of energy from a point source
to a point sink using an ellipsoidal reflector. A
complete ellipsoid would yield according to scalar
theory 100 percent transfer. The focusing properties
of the ellipsoid are concomitantly studied. Harring-
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ton, Villeneuve and Hu [1959] and Harrington [1958]
investigated near field gain and derived a near field
synthesis technique. The near field gain study ob-
tained the widely used physical limitations on an-
tenna gain and @, originally derived by Chu, in a
different fashion. This interesting method expands
the antenna pattern in spherical harmonies and re-
lates the maximum gain to the number of harmonics
used. 'This is then heuristically related to physical
aperture size. For the synthesis problem, the trans-
form of the Fourier series for the aperture field is
matched point by point to the pattern transform,
over a surface in the near field; this is similar to
Woodward’s method. Both the Michigan work
(Goodrich) and the Syracuse University work
(Harrington et al) were supported by subcontract
from General Electric Company.

Although the subject of Fresnel diffraction dates
to the nineteenth century, several interesting analyt-
ical techniques have appeared. Barrar and Wilcox
[1958] wused the Sommerfeld 1/7" expansion with
success n the Fresnel region.  Hu [1957] has applied
Fresnel approximations to the problem of coupling
between circular aperture antennas with tapered
illuminations. Hansen and Bailin [1959] have com-
puted circular aperture near field data by a computer
evaluation of a series derived from the exact field
formulation. This formulation produces angular
integrals independent of illumination and radial
integrals independent of source attitude. Results
are compared with various Fresnel formulas and
side lobe behavior in the Fresnel region. The side
lobe ratio may actually increase over the far field
value in some regions, as the side lobes decay more
rapidly than the main beam amplitude. How to
calculate safe radiation regions (safe against irre-
versible tissue damage) in the Fresnel region of
high power antennas has been shown by Bickmore
and Hansen [1959]. On-axis power density and
defocusing factors are given.

Antenna noise and breakdown. The advent of low
noise preamplifiers such as parametric amplifiers and
Masers has made the evaluation of antenna or radi-
ation noise temperature essential. Hansen [1959]
has made a survey of methods for finding the effec-
tive noise temperature of a microwave antenna.
Hogg [1959] gives the effect of oxygen and water
vapor absorption upon antenna temperature. De
Grasse et al. [1959] report very careful measure-
ments of antenna effective noise temperature at
5,600 Me/s using a parabolic horn antenna with
very low side and back lobes (see Friis, May, 1958).
A zenith temperature as low as 18 °K has been
achieved. At the other end of the frequency spec-
trum, the precipitation particle noise mechanism
for dielectric covered antennas has been shown by
Tanner [1957] to be an acquisition of charge upon
impact by individual precipitation particles. This
has resulted in the development of successful static
reduction devices. The space age has necessitated
a more careful study of antenna breakdown due to
high power and high altitudes. Chown et al. [1959]
report on the effects of breakdown upon VSWR,

pulse shape, power, and pattern. Linder and Steele
[1959] provide data for calculating breakdown for
various antenna configurations as a function of
frequency. An additional paper surveys the earlier
state of the art [Ashwell et al., 1957].

Summary. Antennas for radio astronomy are
advancing along two fronts: Mechanical design im-
provements allowing construction of larger single
aperture dish-type antennas; and switching or data
processing antenna systems wherein multiple anten-
nas are used to obtain some performance parameters
of a larger single aperture. The advance obtained
by the Mill’s Cross should be furthered by more
sophisticated systems. These are discussed further
in Dynamic Aniennas. The quasi-optical fixed re-
flector scanning devices such as the parabolic torus
should find use in the astronomy field.

In the array field, new techniques are needed for
feeding and constructing millimeter wavelength ar-
rays. Effort on nonconventional slot arrays such as
the radial line annular slot arrays should be extended
to other configurations.

The largest problems remaining in electronic scan-
ning arrays are how to obtain the requisite phase
shift, for arrays with all elements coupled together,
and how to simplify the components in data pro-
cessing arrays. The individually controlled element,
of which the ferrite slot is a prototype, appears to
offer most promise and should be broadly investi-
gated. Application of solid state circuitry to data
processing arrays, where various mixing or amplifying
functions could take place at each element without
severe space and weight penalties, represents another
promising area.

Focusing of antennas is most easily done in data
processing antennas, especially those of the time-
processing type.
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5. Small Aperture Antennas

Low gain antennas for air and space vehicles.
Antennas discussed in this section are primarily
simple element types such as loops, dipoles, and
slots. In general, boundary value prohlems, such
as dipoles over reactive surfaces, are covered in the
companion paper on Surface Waves. Ronold King
and others at Cruft Lab. have investigated loop
antennas carefully and have shown that the small
loop contains small electric multipoles as well as the
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magnetic dipole and that the loop equations reduce
to those for the folded dipole as the length approaches
zero [King, 1959; Prasad, 1959]. Small antennas
of both loop and dipole type have been treated by
Wheeler [1959, 1958a]. For small coils or small
loaded dipoles, the performance available is essen-
tially dependent upon length and volume and inde-

pendent of configuration within the two types.
()hn(\r [1957] has obtained an improved formulation
for series and shunt waveguide slots using a varia-

tional technique. Wall thickness is taken into
account by a microwave network. Shape of the
slot end 1s also considered. Radiation from the

end of a waveguide loaded with ferrite has been
attacked [Tyras, Held, 1958] in a manner similar to
an earlier paper of Angelakos.

Radiation from many types of cylindrical struc-
tures including wedges, cylinders, half planes, and
sheets has been covered in a book by Wait [1959a].
This work is an excellent compendium of the state
of the art and describes in detail the mathematical
techniques and solutions. Other papers include
slots on spheres [Mushiake, Webster, 1957], sphe-
roidal dipoles [Weeks, 1958; Flammer, 1957], and
radial dipoles on a circular eylinder [Levis, 1959].
Wait and collaborators have studied slotted circular
[Wait, 1957], elliptic [Wait, Mientka, 1959], and
dielectric coated [Wait, Conda, 1959] cylinders. The
circularly polarized element consisting of crossed
slots on a waveguide broad wall has been investigated
by Simmons [19 7]. The way in which a curved
and/or lossy surface effects an antenna pattern has
been studied by Wait and Conda [1958], using a
combination of residue series, Fock functions, and
geometrical optics. An electric monopole exciting
a finite cone has been studied by Adachi and Kou-
voumjian [1959]. Cruzan [1959] and Weeks [1957]
have treated the receiving loop antenna with a
ferrite core. The nnportant parameters for the
receiving loop are the area, number of turns, and
effective permeability [Wheeler, 1958b].  Polk [1959]
has studied ferrite loaded biconical dipole antennas
and shows, as predicted by Schelkunoff and Friis
[1952], that in general, effective length is decreased
by the addition of ferrite or dielectric loading except
for high loss supergain conditions which are un-
desirable. Grimes [1958] reaches similar conclu-
sions. A closely related subject is that of an antenna
immersed in a lossy medium. Wait [1959b, 1958]
shows that the field of a buried loop is essentially
that of a loop on the surface plus an exponential
attenuation with depth.

Air frame antennas using shunt or notch feeding
have been put on a sound engineering basis by
Tanner [1958].  This is a definitive paper and sum-
marizes these types of antennas. An investigation
similar to that by Infeld [1947] of a few years back
on the input admittance singularity of a dipole
antenna due to the delta function generator has
appeared [Wu, King, 1959]. 1In this paper, as in
Infeld, the admittance is separated into a gap

apa(nty term and a bounded term.

In the larger realm of antenna systems,
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a paper by Turner [1959] summarizes several
types of submarine communication antenna
systems. Antenna multicoupler systems, so im-

portant in LF and HE ranges where antenna effi-
ciencies are typically very low, have been extensively
studied in a series of reports from Stanford Research
Institute [Cline]. This seriesis an excellent summary
of the state of the art in exciting HE airframe or
satellite antennas.

Medium gain antennas.  Klopfenstein [1957] and
Woodward [1957] have carefully reinvestigated
corner reflectors with various dipole and apex angles
both from the sophisticated dvadic Green’s function
and from the image point of view. Cottony and
Wilson [1958] present excellent design curves; other
limited data also are available [Neff, Tillman, 1959].
Rhombic antennas of large size have also been
investigated in a paper by Decker [1959]. Whi('h
gives design for maximum gain. Design data for
helical antennas for lengths up to 10X has 1)(-91}
augmented by Maclean and Kouyoumjian [1959].
They applied Sensiper’s infinite helix solution and
obtained results valid up to a length of 10A. A
new and very interesting antenna configuration is
the trough waveguide invented by Rotman and
Oliner [1958]. A continuous trough waveguide is
suitable for end fire radiation and a periodic asym-
metrical design covers a number of radiation direc-
tions including broadside [Rotman, Cliner, 1959].
Although the transverse resonance method is best
applied to nonleaky structures, it has yielded good
values for propagation characteristics in this case.

An excellent survey of the printed technique is

given by MeDonough et al. [1957]. They cover
such different types as ladders, rhombies, cigars,
and capacity-coupled collinear arrays. Another

type of printed antenna is the sandwich wire antenna
of Rotman and Karas [1957, 1959]. This is an array
of undulating wire strips wherein each wire acts as
a quasi-discrete leaky radiator.

Evaluation. A most important paper on the effect
of satellite spin on radiation performance has been
contributed by Bolljahn [1958]. He shows that
when the satellite spin axis and the antenna axis are
not alined, the ground-received signal (with a CW
signal radiated) splits into three spectral components.
The variation of these with the geometry of the
configuration is derived.

The evaluation of aircraft and satellite antennas
has always been difficult, especially the comparison
of different types of antennas, since impedance,
pattern, and gain performance vary widely among
types and even among variations within each type.
This evaluation problem has now been satisfac-
torily solved by a series of papers. Lucke [1958]
uses a channel capacity formula to weight patterns
and impedances over frequency and space. Moore
[1958] compares the various rating schemes, the
three most important of which are the average
channel capacity method of Lucke, the radiation
pattern distribution function of Ellis, and the radi-
tion pattern efficiency method of Granger. He
shows that if carefully applied, all methods give



essentially similar results, and he therefore recom-
mends use of the simplest method, that is, the radia-
tion pattern efficiency technique. This defines the
quality in terms of the fraction of power radiated
in useful directions. Impedance compensation or
broadbanding of HF antennas has long been an art
without suitable boundaries. However, the broad-
banding potential of such antennas has now been
bounded by two important papers. Vassiliadis and
Tanner [1957] have approximated the impedance by
a rational algebraic function from which the broad-
banding capability is readily determined. Levis
[1957] has used a different approach, that of relating
the impedance bandwidth to the far field polarization
characteristics and to the stored energy. These
papers allow determination of the best broadbanding
available so that a bound can be placed on attempts
to realize this performance physically. A final paper
gives numerical integration computer techniques for
antenna pattern caleulations [Allen, 1959].

Summary. As the effect of the counterpoise shape
and size upon antenna radiation pattern and im-
pedance becomes better understood, it should be
possible to devise quasi-empirical synthesis tech-
niques which would allow optimum advantage to be
taken of this effect. The search for new and ad-
vantageous radiator configurations, e.g., the sand-
wich-wire, should continue.

The authors thank Mary lLee Buschkotter for
diligent effort in correcting and typing the manu-
script.
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A Bibliography on Coherence Theory

G. B. Parrent, Jr.*

The inadequacy of the concepts of complete co-
herence and complete incoherence for the description
of physically interesting phenomena was recognized
by Verdet in 1869 when he showed that sunlight
could produce fringes in a Young’s interference
experiment. After Verdet the development of
coherence theory before 1940 was associated with
the names of Von Laue [1907], Van Cittert [1935], and
F. Zernike [1937]. Each of these investigators
introduced his own, apparently different, formula-
tion of the theory—each formulation being well
suited to the problems considered by the particular
investigator. In [1951], H. H. Hopkins again re-
formulated the theory in a manner which was par-
ticularly suited to the treatment of imaging prob-
lems.  While each of these theories took account of
intermediate states (partial coherence), they each
suffered from one or more of the following restric-
tions: (1) They were applicable only to fields created
by incoherent sources; (2) they were applicable only
to nearly monochromatic fields; (3) they were formu-
lated in terms of undefined complex functions.

These shortcomings were all removed in the new
formulations of the theory of partial coherence
introduced independently by Wolf [1955], and by
Blanc-Lapierre and Dumontet [1955]. While these
formulations are equivalent, it is much more con-
venient to work with the definitions introduced by
Wolf. Working with the Wolf theory of partial
coherence, Parrent [1958-1960] has extended the
theory by finding several of the implications of the
formulation and existence theorems for the basic
functions of the theory and by showing how the
approximate propagation laws of earlier theories are
related to the solution of the wave equations that
describe the propagation of partially coherent radia-
tion. Using these theorems 1t was possible to formu-
late the imaging or mapping problem in a general and
rigorous way for partially coherent illumination of
arbitrary spectral width.

Thus, finally, the formulation and structure of a
rigorous theory of partial coherence for scalar fields
is complete enough to be considered as an available
tool for the solution of problems involving statistical
radiation. Part A of this bibliography provides a
reasonably complete survey of the principal works
on the subject.

The problem of discussing the behavior of, and
formulating a calculus for, the description of vector
fields is considerably more complex than the cor-
responding scalar problem. Consequently in this
area very little has been accomplished by comparison.
The general problem of discussing statistical vector
fields consists in two essential concepts: Partial co-

*Air Force Cambridge Research Center.

herence (the correlation between the disturbance at
two different points), and partial polarization (the
correlation of the various components at the same
point). Limiting our attention to a plane wave
eliminates coherence problems and isolates partial
polarization effects. Wolf has treated this class of
problems at some length in the last few years, and
recently Parrent and Roman have used the results
of Wolf’s work as a basis for constructing a matrix
calculus for the study of partial polarization effects.
Nonplane waves have not been extensively dis-
cussed as yet; however, Roman has succeeded in
generalizing the Stokes parameters to a set applicable
to nonplane waves. This is, of course, an important
first step in the understanding of this field. Part B
of this bibliography is an attempt to list the most
important papers related to the description of
statistical vector fields.
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A Bibliography of Automatic Antenna Data Processing

C. ]. Drane*

Many source detection applications have required
ever higher antenna resolving power to distinguish
distant sources from adjacent sources. In the optical
region, the limitation to the increase of resolution
has been the fluctuations existing in the earth’s
atmosphere. In the radio region, on the other
hand, the most immediately apparent limitation
to high resolution has been largely an economic
one, the high cost of materials, as well as the dif-
ficult problem of construction tolerance. Addi-
tionally, recent work by [Skinner, 1960] has brought
to light certain limitations on the gain and resolving
power of antennas used for the reception of ran-
domly varying signals due to statistical fluctuations
of the source distribution and/or of the intervening
medium characteristics.

In both the optical and radio regions interfero-
metric techniques of one sort or another have yielded
greater resolution than obtainable with equal size
dishes or mattress arrays. Conventional inter-
ferometry suffers from pattern ambiguity, but
diverse methods of data processing can be used to
overcome this ambiguity, and to optimize different
aspects of the antenna systems performance.

In view of the fact that the resolving power of an
interferometer is generally proportional to /N, where/
is the separation of interferometer elements while
A is the wavelength of radiation, it would seem that
one should either increase the separation (baseline)
or the frequency or both. To increase the frequency
without limit would be impractical, first because of
the decrease in source intensity with wavelength,
then because the construction of large antennas and
sensitive receivers is more difficult as the wave-
length decreases, and finally because one sometimes
wishes to study the diameter of a source as a function
of frequency. All of these reasons favor increasing
the interferometer baseline.

Mills [1952] describes a radio transmission link
as a means of increasing the baseline of the inter-
ferometer—and thus the resolution of this instrument
—with phase preserved in the following manner.
The received signal frequency at one element of the
interferometer is converted to a radiofrequency
which is transmitted along with the local oscillator
frequency over the same path to a receiver located
near the other element. This signal is then recon-
verted to the original frequency and combined with
the signal from the other antenna, the latter signal
having been delayed by an amount equivalent to the
propagation time across the radio hnk. There is,
however, a limitation on the length of this radio
link, which is introduced by the effect of turbulence
of the intervening medium on the phase stability
of the transmitted signal. When converting the

*Air Force Cambridge Research Center.

radio frequency signals at each antenna element of
the interferometer to a low frequency, transmitting
by a radio link one of these low-frequency signals
as an amplitude modulation of a radiofrequency
carrier, and cross-correlating the two low-frequency
signals, it has been shown [Brown & Twiss, 1954;
Brown et al., 1952] that several advantages arise.
The relative phase of the two low-frequency signals
is more easily preserved than that of the radio
frequency signals, and it is equal to the latter in
this particular arrangement. In view of this, the
baseline of this interferometer can be made much
larger, possibly indefinitely so by recording the
interferometer element signals separately on mag-
netic tape and cross-correlating later. The system
also happens to be less sensitive to ionospheric
disturbances. One disadvantage is that the antenna
yields information only about the amplitude dis-
tribution across the source. It is also relatively
insensitive to weak sources inasmuch as the signal-
to-noise ratio i proportional (F/(P,+ P,))?, whereas
for the usual interferometer it is proportional to
just Py/(P,+P,), where P;=power in source signal,
Pr.=receiver noise power, /2,=cosmic noise power.

To improve the detection of weak “point” sources
in the presence of much more intense extended
sources or continuous background radiation, Ryle
[1952] suggested the periodic introduction of a half
wavelength of cable into one of the antenna lines of
an interferometer. The interference pattern has
an alternating component in addition to a steady
component as a result of the alternately in-phase
and out-of-phase relationship between the two
antennas. Upon separating the alternating term
from the steady one by means of a phase-sensitive
detector, one can separate the background radiation
from the “point” sources. Additionally, this system
provides a means of more accurate determination of
the position of radio sources in such a way as to be
reasonably independent of rapid variations in the
intensity of the radiation. The improvement of the
ability to detect and localize weak signals by using
correlators has been investigated by Faran and
Hills [1952]. They have pointed out that in some
instances signal-to-noise ratios can be improved in
some interferometers, but by no more than 3 db,
while in others a decrease in this ratio is seen,
compared to a conventional antenna system. Any
disadvantage here may be offset in part at least by
the opportunity to use much higher gain recording
instruments after the correlator in view of the fact
that the amount of background noise does not.
contribute largely to the average output of the
correlator. They also suggest the possibility of
trading signal-processing time for physical antenna.
size.
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These systems previously described possess mul-
tiple principal lobes and are, hence, ambiguous when
several sources are present. By considering inter-
ferometer elements whose patterns differ essentially
from one another, unidirectional interferometer
patterns can be obtained. Ryle suggested that a
decrease in the solid angle of the principal lobe of
the reception pattern could be obtained without
necessarily increasing the total antenna area thus
permitting an increase in the number of detectable
sources. Mills and Little [1953] have emphasized
that the number of discrete sources with intensities
above the detectable threshold will normally greatly
exceed the number which may be separately re-
solved, so that one may attempt to design antennas
of increased resolving power but relatively low gain
that may lack very little of the usefulness of conven-
tional antennas, and cost a great deal less. They
have introduced a system consisting of two linear
arrays mutually perpendicular in the form of a cross,
such that phase centers are coincident. When the
technique of phase switching of the signal in one
antenna channel is coupled with synchronous de-
tection of the product of the fan-shaped patterns of
the two antennas, a pencil-shaped single-lobed pat-
tern is produced. Covington and Broten [1957]
have investigated an interferometer similarly com-
posed of two dissimilar linear antenna elements;
however, these are arranged along the same axis
end-to-end. The two elements, one a nonresonant
slotted waveguide array, the other a two-element
interferometer, are coupled by a rotary phase shifter,
to produce upon synchronous detection of the alter-
nating component in the radiation pattern a single-
lobed fan-shaped beam with a twofold increase in
resolving power in one plane over that of a uniform
array of equal dimension. To produce a nonam-
biguous radiation pattern, also with an economy of
the number of antenna elements, Band and Walsh
[1959] have used two linear additive arrays of uni-
formly spaced nondirectional elements—the common
spacing being different in each and greater than a
wavelength—as inputs to a correlator. Nonam-
biguity was also achieved by them when they re-
placed one of the linear arrays by a closely spaced or
continuous aperture antenna. These techniques
have resulted in the use of fewer elements, as well
as an improvement in signal-to-noise ratio over an
equivalent additive array. For reasons of stability
of the multiplication process, amplitude modulation
is imposed on the radio frequency signal. The
desired correlation signal is the output of an audio-
filter tuned to the modulation frequency and fol-
lowing the multiplier.

Berman and Clay [1957] have considered non-
uniformly-spaced omnidirectional detectors whose
outputs are selectively multiplied together and time
averaged according to a preseribed plan, such that
a directional pattern results that is equivalent to
that of a linear additive array of a larger number
of elements. Here, too, the length of the multi-
plicative array often turns out to be half that of the

equivalent one.

A comparison between the arrays of Faran and
Hill and those of Berman and Clay has been made
by Fakley [1959] for three applications: (a) The de-
tection of a “point” source in a noisy background;
(b) the resolution of two closely spaced point sources;
and (c¢) the measurement of intensity distribution
across an extended source. It was shown that the
type of arrays described by Berman and Clay for
four receiving elements, under idealized conditions,
has no particular advantage over the other for the
applications mentioned. It was also suggested that
this conclusion could be extended to arrays consisting
of more than four elements.

Drane [1959] has studied the coupling of a direc-
tional array with nonuniformly spaced omnidirec-
tional elements after the fashion of Berman and Clay,
but modified by the addition of continuously rotating
phase shifters selectively used in conjunction with
synchronous detection to yield nonambiguous radia-
tion patterns. The suggested application has been
to the tracking of moving targets which can be
considered essentially “point” sources. Walsh and
Band [1960] have also investigated such systems.

Time can be used as a degree of freedom supple-
mentary to the three dimesions of space to achieve
greater flexibility in the design of antennas. For
example, it has been shown by Shanks and Bickmore
[1959] that, in general, by periodic modulation of one
or more of the antenna parameters (phase distribu-
tion, physical size, frequency, etc.) one obtains a
temporally fluctuating radiation pattern. This pat-
tern can be analyzed as an infinite sum of harmonies,
and associated with each such frequency channel is
a characteristic spatial distribution. They have
applied such techniques to multipattern operation,
simultaneous scanning [Shanks, 1959a], and sidelobe
suppression [Shanks, 1959b].

Barber [1958] points out that on interpreting the
“compound interferometer’ of Covington and Broten
as an array of essentially omnidirectional elementary
detectors, two widely spaced ones forming the simple
interferometer with several closely and uniformly
spaced elements comprising the slotted waveguide,
the receiving pattern can be considered the sum of
all possible mean products of one element of the
interferometer and one element of the long array.
He suggests that one can also obtain the same mem-
bers of the sum with several other configurations, all
consisting essentially of two arrays in a line each
having uniformly spaced elements of common spacing
different from the other array of the configuration.
The system with the fewest number of elements (for
constant overall length) is that in which the number
of detectors of one array differs from that of the other
by at most unity. Covington and Broten [1958]
have extended their system in just this fashion by
adding two elements separated from each other and
the extreme element of the simple interferometer by
a distance equal to the length of the long array, i.e.,
by the separation of the interferometer elements.
To ensure that all necessary signal products are ob-
tained appropriate switches are used. It is to be
noted that since the length of the long array remained
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the same, the resolving power was doubled, but the
analytical properties of the radiation pattern re-
mained unchanged. In the system discussed by
Drane the overall length is extended not by producing
two different but uniformly spaced arrays, but by
using a uniformly and closely spaced array (to
simulate the continuous array), another array whose
interelement spacing increases in accordance with a
geometric progression, as well as appropriately
placed frequency shifters. Dausin, Niebuhr, and
Nilsson [1959] while examining the problem of the
reception of wideband signals have arrived at just
such an “optimum” spacing on considering elemental
arrays of variable spacing with the elements coupled
by matched filters.

The work of Kock and Stone [1958] on the equiva-
~ lence between dimensional properties of antennas
- and frequency content of signal in the production of
a given response is in essential agreement with the
results of Dausin, Niebuhr, and Nilsson for multi-
element arrays, wide-band sources, and with those
of Covington and Broten, Drane, Walsh, and Band
for complex interferometric arrays and monochro-
matic sources (artificially made multifrequency).
. They have shown that in a detection system antenna
size and space complexity can be reduced for the
detection of wide-band (continuous or discrete spec-
trum) signals by using a two-receiver cross-correla-
tion antenna system. With such a system direc-
tional patterns equivalent to those characteristic of

multielement, additive,” narrow-band arrays are
obtainable. Here, there exists the limitation im-

posed by the requirement that the antennas used in
the interferometer complex be fairly broadband.
White, Ball, and Deckett [1959] have made a com-
- prehensive study of nonlinear antennas of the various
types considered above, comparing each one with
linear antennas. They have found that the per-
formance of any nonlinear antenna in the presence of
continuous interference is inferior to a linear one in
the same environment. Power gain and directivity
of the nonlinear antenna are likewise generally in-
ferior to those of the linear antenna. By artificially
broadbanding the transmitted signal or confining the

application to low-duty-cycle transmission these
disadvantages may be made less significant. How-

ever, a nonlinear antenna of the space-coincidence
type is described to provide a spatial selectivity not
" obtainable with a linear antenna.
We have been talking about situations in which it
may be said that the data processing is done essen-
" tially automatically by the antenna system. Much
work has been done and thoroughly discussed in the
literature [Astia AD117067, 1957; Bracewell &
_Robert, 1954; Arsac, 1957] on the subject of the
extraction of information about and reconstruction
of the source intensity distribution from a knowledge
of the information actually received by a conven-
tional antenna, as well as of the properties (shape
and aperture field distribution) peculiar to the
antenna itself. Here, the term space-frequency—
periodic spatial intensity distribution—is introduced.
“In both the optical and radio regions the receptor

558460—60——11

acts effectively as a low pass space frequency filter
whose cutoff frequency is proportional to the physical
extent of the receptor’s aperture. This provides a
distinet limitation to the extent to which the source
characteristics may be reconstructed from the signal
distribution actually observed.
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Progress During the Past Three Years In Surface and

Leaky Wave Antennas
F. ]. Zucker*

This summary report begins where the previous URSI report on traveling wave antennas
[Cottony and others, 1959] left off. The bibliography partially overlaps that in the previous
reference: papers that were previously listed as reports, but have since appeared in the open
literature, are listed here again with their journal references [Pease, 1958; Plummer, 1958;
Hansen, 1957; Hougardy and Hansen, 1958; Plummer and Hansen, 1957; Friedman and
Williams, 1958; Weeks, 1957; Goldstone and Oliner, 1959; Elliott, 1957; Kelley and Elliot,
1957; Hines and Upson, 1958].

Though both surface and leaky wave antennas belong to the general class of traveling
wave radiators, they differ essentially in radiation mechanism, design principles, and per-
formance characteristics. Surface waves are guided by the real or artificial dielectric
structure along which they travel, and radiate only at discontinuities; usually there is just
one of these, the termination. The total antenna pattern, which is endfire, is formed by
superposition of terminal radiation and direct radiation from the feed. Beam shaping possi-
bilities are limited. This type of radiator is nevertheless important whenever antenna
height (as of a dish) must be traded for length. Leaky waves, by contrast, radiate continu-
ously as they travel along the aperture, and very precise pattern control can be achieved.
The beam is non-endfire and can be scanned over wide angles with negligible pattern

deterioration.

1. Surface Wave Antennas

The excitation of surface waves, a problem that
received considerable attention in the period before
1957 [Cottony and others, 1959; Friedman and
Williams, 1958], was further examined. Wait [1957;
1958] gave a unified treatment of surface wave
excitation by a dipole over diversely modified inter-
faces. While it had been known previously that
efficiency of excitation depends on endfire directivity
of the feed [Kay and Zucker, 1959], Brown now
shows [1959] in a paper with interesting design im-
plications that in the absence of supergaining, the
efficiency of a source is limited to a maximum value
that is a function of its physical size. In continua-
tion of earlier work, Reynolds and Sigelman [1959]
report that very clean sin £/¢ patterns are obtainable
by using feeds that are distributed over the first
third of the antenna length. Turning our attention
to more specific structures, we find a precise analysis,
using Wiener-Hopf techniques, of the launching of
TM surface waves by a parallel plate waveguide
(Angulo and Chang [1959a]). Duncan [1958] gives a
Sommerfeld-type treatment of the excitation of
dielectric rods; the mode he considers (lowest TM)
is not that used in antenna applications, but this is
the first time that the excitation problem on a rod
has been tackled at all. In a paper of considerable
practical interest, DuHamel and Duncan [1958]
measure the efficiency with which diverse slot and
wire feeds excite the HE;; mode on a rod.

The terminal discontinuity of a dielectric slab
was examined in detail by Angulo [1957], who used
variational techniques to find the terminal impedance
and stationary phase methods for the radiation
pattern. Angulo and Chang [1959b] calculated the
terminal impedance of the lowest TM mode on a
dielectric rod, Arbel [1959] analyzed the terminated

*Air Force Cambridge Research Center,

dielectric disk, and Kay [1959] gave a detailed
description using Wiener-Hopf methods, of discon-
tinuities on reactive surfaces, including the terminal
discontinuity. He calculated and plotted radiation
fields and the surface wave reflection and transmis-
sion coefficients.

The radiation mechanism of surface wave anten-
nas can be viewed in two ways: As the superposition
of radiation from two quasi-point sources—the feed
and the terminal discontinuity—or as the Fourier
integral over the current distribution along the
antenna structure. As one finds them discussed in
the literature, these two approaches lead to pattern
calculations and design recommendations that partly
contradict each other. Zucker [1958] showed, for a
simple case, what approximations are involved in
deriving each from the rigorous Green’s function
formulation and indicated how the two approaches
are reconciled by taking these approximations into
account. Schlesinger and Vigants [1959] improved
the conventional aperture integration approach and
were able to predict the pattern of dielectric rods
with higher accuracy than before. Kay [1960]
examined the near field of Yagis experimentally and
gave physical details that connect the two
approaches.

Optimum design principles of surface wave antennas |
are still largely based on cut-and-try methods.
Ehrenspeck and Poehler [1959] showed how the
Hansen-Woodyard condition for optimum gain must
be modified for surface wave antennas, and Ehren-
speck and Kearns [1957] used parasitic side rows to
suppress the sidelobe level of a Yagi to 30 db.
Bandwidths of 2:1 were achieved with polyrods by
Parker and Anderson [1957]. Optimum design
principles based on this and earlier work were col-
lected for systematic presentation in the Handbook
of Antenna Engineering [Zucker, 1960].

One approach to pattern control is to place radiating
discontinuities at discrete intervals along a surface
wave antenna, for example by spiking a polyrod with
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short pieces of wire, coupling being controlled by the
depth and angle of insertion [Duncan and DuHamel,
1957]. A Goubau wire was similarly spiked [Scheibe,
1958]. A two-dimensional slot array excited by the
surface wave on a dielectric image line, was shown
by Cooper et al. [1958] to be capable of producing a
broadside, endfire, or sidefire pattern, depending on
the arrangement of the slots.

A second approach to pattern control consists in
the use of wvariable impedance surfaces. Felsen
[1957; 1959] gave the first rigorous solution to a
problem of this type: he showed that on a surface
with linearly increasing admittance (impedance) a
TM (TE) surface wave propagates at the velocity of
light with cylindrically spreading phase front, and
without loss in total energy. This result is a key to
the understanding of long tapered sections on surface
wave antennas. Oliner and Hessel [1957] performed
a detailed modal analysis of sinusoidally varying
impedance sheets, showing that for periods shorter
than about half a wavelength the surface supports
a wave that is wholly trapped, while longer periods
produce a leaky wave. An exact procedure for the
design of an interface that supports a prescribed
spectrum of waves (a “modulated” surface wave)
has been given by Bolljahn [1959]. This important
group of papers is the bridge between earlier work
on surface wave modulation [Cottony and others,
1959], which did not concern itself with physical
realizability, and the ultimate goal, which is pattern
control—including the generation of non-endfire
beams—with parasitically excited antenna structures.

A third approach to pattern control employs a
distributed feed that is coupled to the antenna along
its entire length. In continuation of earlier work
Cottony and others [1959], Weeks [1957], and Giarcla
[1959] analyzed this problem in terms of coupled
waveguide theory and obtained experimental results
on a 40 X long Yagi coupled to a two-wire line. It
is, however, doubtful whether practically useful
means for independently controlling phase and am-
plitude along the structure can ever be found in this
way.

Turning now to more specific structures, we find
that the dielectric rod continues receiving attention.
Kornhauser [1959] gives general results on the modal
characteristics of rods of very general cross sections,
and Mickey and Chadwick [1958] worked with rods
of dielectric constants up to 165, which are very
much thinner than polyrods (though just as long, for
equal pattern performance). Reggia, Spencer, et al.
[1957] excited arrays of ferrimagnetic rods inserted

- 1n a cavity or the narrow wall of a waveguide, and

show diverse arrangements for rapid switching, turn-
ing the plane of polarization, lobing, etc. Work on
broadband polyrods [Parker and Anderson, 1957] has

. already been mentioned.

The relation between the phase velocity of a sur-
face wave on a Yagi and the height, diameter, and
spacing of the elements was found experimentally in
[}%hrenspeck and Poehler, 1959], supplementary data
being furnished by Frost [1957] and Spector [1958].
Sengupta [1959], using a loaded transmission line

model, and Serracchioli and Levis [1959], using an
approximate coupled element approach, calculated
these relations theoretically; their results agree quite
well with the experimental data. Very long Yagis
are treated in Kay, [1960], and twisted Yagis (for
circular polarization) in Reynolds and Sigelman,
[1959].

A number of new structures were examined. Hyne-
man and Hougardy [1958] invented an array of con-
tiguous below-cutoff waveguides with closely-spaced,
nonresonant, transverse slots. Sengupta [1958] dis-
cussed a zigzag antenna, and Querido [1958] gave an
approximate treatment of the fakir’s bed antenna
(array of pins).

Area sources permit scanning in azimuth. Gold-
stone and Oliner [1959b] pointed out a general rela-
tion for surface waves that travel obliquely across a
corrugated surface, supplementing earlier work
[Hougardy and Hansen, 1958] on the scanning of
such an antenna. Walter [1957] obtains 360° scan
from a dielectric sheet Luneberg lens whose elevation
pattern is shaped by the surface wave.

Volume arrays of endfire line sources have diverse
applications. Ehrenspeck and Kearns [1959] used a
Yagi-Adcock arrangement for satellite tracking.
Kamen and Bogner [1959] are interested in the ad-
vantages, under certain circumstances, of arrays of
cigar or Yagi antennas over dishes and have built
several satellite tracking and communication arrays
of this type. An interesting new structure, called
the backfire antenna [Ehrenspeck, 1960], looks like a
Yagi with a large flat reflector at the end opposite
the feed, and produces gains up to 6 db above that
of an equal-length surface wave line source.

The influence of a finite ground plane on the pat-
tern of an endfire surface-wave antenna has been
considered by Wait and Conda. The model they
used was a conducting half-plane which itself could
be located in the interface of an imperfectly con-
ducting half-space [Wait and Conda, 1958]. The
main effect of the truncation is to tilt the beam
upward and to degrade the side lobe level.

Another related problem, treated by Cullen [1960],
is the excitation of a corrugated cylinder by an axial
slot. He showed for certain combinations of cylinder
dimensions and surface impedance that a very pure
cos m¢ pattern may be produced. This work has
been extended by Wait and Conda [1960] who also
treated elliptic cylinders with a nonuniform distribu-
tion of surface impedance.

2. Leaky Wave Antennas

Earlier work by Marcuvitz [[RE Trans., 1959] and
Barone [IRE Trans., 1959] has clarified the manner
in which leaky waves, in spite of their nonspectral
nature, enter in the description of the total field of a
source above an interface. Barone and Hessel [1958]
continue this work for the case of an electric line
source over a dielectric slab.

To calculate the parameters of leaky waves,
Goldstone and Oliner [1959a; 1958] introduce a
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perturbation procedure that is very much simpler
than solving directly the complicated transcendental
equations that arise in these problems.

Attention has focused principally on four groups
of leaky wave structures. The asymmetric trough
waveguide was analyzed by Rotman and Oliner [1959],
and applications were made by Rotman and Nau-
mann [1958] that include positioning the beam in the
broadside region by periodically reversing the deep
and shallow side of the trough. Unlike conventional
slot antennas, the periodically asymmetric trough
guide can be scanned through broadside.

The transverse wire grid antenna developed by
Honey [1959] has excellent frequency scanning
properties (no beam deterioration from 30° to 70°
off endfire), and allows precise pattern control. It
has been used as an X-band area source [Honey,
1959], as a millimeter waveline source [Honey, 1960],
as an area source curved on a cylindrical surface
[Shimizu and Honey, 1960], and as a flat center-fed
disk [Hill and Held, 1958].

Jones and Shimizu [1959] designed an area array
of thick transverse slots which, in contrast to the wire
orid, is vertically polarized. Hyneman [1959] gave
a careful treatment of closely-spaced transverse slots
in thin-walled rectangular waveguide. Earlier work
on the “serrated’” waveguide [Elliot, 1957; Kelly and
Elliot, 1957] had treated the thick-walled case.

The longslot in waveguide, which had received
much attention in Cottony and others [1959], was
examined by Nishida [1959a] for the case when it is
covered by a thin dielectric sheet. Nishida also
analyzed the effect on leaky wave phase velocity
and attenuation of coupling two parallel long slots
in a plane [Nishida, 1959b] or on a cylinder [Nishida,
1959¢].

As in the case of surface wave antennas, feeds can
be designed for leaky waves that couple along the
entire length of structure. The advantage in this
instance is that the initial section of the leaky wave
antenna would not have to carry as much power as 1t
must when fed from one end. Barkson [1957], with
this goal in mind though confining himself to a
shielded case, analyzed the coupling of rectangular
waveguides through a common broad wall with non-
resonant transverse slots.  MacPhie [1959] examined
a radiating coupled structure, and by varying the
coupling region achieved mechanical beam scanning.

3. Assessment and Predictions

Although the launching of surface waves, and their
radiation from the terminal discontinuity, have each
been separately analyzed in considerable detail, the
combined and much more difficult problem of a
source exciting an impedance structure of finite
length has not yet been tackled. This ought to
be done.

Attempts will probably be made to place the
optimum design of surface wave antennas on a firm
theoretical basis. Now that rigorous results are
available on tapered impedance surfaces, for example,
there is hope that an explanation can be found for the

cut-and-dry rule that, for maximum gain, the taper
should be short, for minimum sidelobes longer, and
for wide bandwidth as long as the antenna itself.

Antenna structures that combine broadside aper-
ture and endfire line source features (such as the
backfire antenna) will receive attention. An effort
should be made to synthesize artificial or natural
dielectriecs with more broadband dispersion charac-
teristics than those of present structures.

Variable impedance surfaces will be wused in
attempts to diversify the pattern potentialities of
surface wave antennas. Structures that permit
independent control of amplitude and phase along
the aperture are especially needed if modulation
techniques are to become a practical reality.

The principal item of unfinished business in the
theory of leaky wave antennas is the solution of a
source problem over a complex impedance interface,
on which the leaky wave—unlike i the case of the
dielectric slab previously considered—is the dominant
part of the total field.

An interesting problem that could be examined is
the synthesis of complex impedance interfaces whose
dispersion is such as to result in some prescribed
variation of scan angle with frequency. Alterna-
tively, the dispersion could perhaps be controlled
(ferroelectrically or mechanically) to allow programed
scanning. Scanning through broadside with peri-
odically asymmetric structures will no doubt be fully
exploited.
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