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A partial survey of cylindrical antenna theory pertaining to a tubular model with a
narrow gap is presented. The survey includes discussion of the theories of Hallén, King and

Middleton, Storm, and Zuhrt.
described.
of the Hallén equation.

cients are the unknowns of a system of linear equations.
matrix are given by a highly convergent series.
full wavelength antennas with half length to radius ratios of 60 and 500.

A conceptual relation between theory and experiment is
The latter part of the article is concerned with a new Fourier series solution
This solution is developed in such a way that the expansion coeffi-

The elements of the coeflicient
Numerical results are given for half and
These results

compare quite closely with those obtained from King-Middleton theory.

1. Introduction

Existing solutions to Hallén’s integral equation
for the current distribution on cylindrical antennas
fall into two main categories [1, 2]: 2

1. Iterative solutions which use an approxima-
tion to cylindrical antenna current as a starting
point. Successive iterations generate improvements
m the original assumption. Approximations are re-
quired at some stage in the process if tractable inte-
grals are to be obtained. The approximations are
not severe if A/a, the ratio of antenna half length to
radius, is large. Impedances obtained from itera-
tive solutions are in good agreement with experi-
ments performed on thin antennas. Although suc-
cessful, iterative solutions become laborious beyond
second or third order, and the approximations
become suspect in the case of thick structures.

2. Solutions in which the integral equation is con-
verted into a set of linear simultancous equations
with Fourier coefficients of the current distribution
as unknowns. Typical of these are the theories of
Storm and Zuhrt. (Strictly speaking, Zuhrt did
not solve Hallén’s integral equation, but one deriv-
able from a somewhat different point of view.)
Storm approximated matrix elements in his set of
equations so that his theory is limited to thin struc-
tures. In addition, Storm’s theory contains two
rather fundamental errors which, acting in concert,
produce fortuitous results. Zuhrt obtained matrix
elements by graphical integration, a sufficiently tedi-
ous process to limit his calculations to low order.
Neither of these solutions fully exploits the Fourier
series technique for obtaining the current distribution.

We have obtained a solution similar to Storm’s in
which computation of matrix elements can be easily
done with high accuracy even for //a ratios as low
as 8 or 10. Matrix inversion is easily accomplished
with modern digital computers so that solutions of

! Contribution from New Mexico State Univ., University Park, N. Mex.
This work was carried out under P.0. 15-0079 from Sandia Corp.
2 Figures in brackets indicate the literature references at the end of this paper.
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high order are feasible. We have carried out cal-
culations to 25th order for half and full wavelength
antennas with i/a ratios of 60 and 500r. Results
from the King-Middleton iterative solution com-
pare favorably to ours so that their work for i/a >
60 has been checked by comparison with an exact
theory.

Although this paper is principally concerned with
developing a Fourier series solution, a reasonably
complete treatment of iterative solutions is included
in an attempt to provide a self-contained account
of cylindrical antenna theory. KEven with this aim
in mind, the treatment of iterative solutions, as
well as the theories of Storm and Zuhrt, is sufficiently
involved that the reader is referred to the original
work for many of the details.

2. Statement of the Problem

Vector potential as a function of position, A(7),
is given in terms of a current distribution, J/(7), by
the expression

_ o — dkiT—Tg]
AO—4 | [[ 360 =z ave

The vector integration in (2.1) must be taken over
all sources of the vector potential field and it is this
requirement that causes a direct solution of a realistic
antenna problem to be exceedingly difficult. 1In the
case of a cylindrical antenna the integration would
have to include currents in the antenna, the feeding
transmission line, and the oscillator which supplies
power to the antenna-transmission line assembly.
Every possible combination of antenna, transmission
line and driving generator would have to be treated
as a special case and a mathematical solution of any
given case would by itself be formidable. An ideal-
ized problem can be extracted from this situation by
consideration of an extremely thin walled tube of
infinite conductivity with a narrow circumferential
gap corresponding to the antenna terminal zone.

(2.1)
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Choosing the conventional cylindrical coordinates,
(p, $,2), the antenna is defined by p=a and |z| <h.
pulol_\ hypothetical generator is assumed such
that the electric field in the cap is azimuthally
symmetric.  The voltage across the gap is defined by

Ve f Edzs 2.2)
gap

where £ is the z-component of electric field at p=a.
E, is zero outside the gap since the simplifying
assumption of perfectly conducting tube walls has
been made. If the gap width is decreased as V is
held constant, we must express £ by
E=—V5(2) for |z| <h, (2.3)
where 6 (2) is the usual delta function. Center-fed
models will be considered here although this restrie-
tion can be removed.
The value of electric field anywhere in space is
given by
E=—grad o—jwA, (2.4)
where & is the scalar potential.(Time dependence
proportional to ¢’¢’ is assumed in all of the relation-
ships used here.) Scalar potential can be found
from the Lorentz condition

d=-1 div A. (2.5)

WLE

The combination of a tubular model without end
caps and the assumption of a symmetric field leads

to the conclusion that only the z-component of A

1s different from zero since all of the current sources
on the tubular surface will be in the z-direction.
Equations (2.4) and (2.5) can be combined to give

S \
E=—1 (402 +k4), (2.6)

where the symbol A without the vector bar simply
stands for A,, and k*=cw?pe. In general A is a
function of both z and p. If the operator (0%2/0z2+4£?)
is applied to A (z, p) and then p is taken at the
antenna surface, we obtain

e

0?A,/02+k*A=—— Vi(2), (2.7)

an equation for the surface
valid for |z|<h. Solutions of the homogeneous
equation, 0? A,/0z2+k* A,=0, are simply cos kz, sin
kz, e or e~ . Linear combinations of these solu-

value of vector potential

tions may be used to build a solution to (2.7). Thus,

A=0C; cos kz-+D, sin k|z], (2.8)
iy A;=C; cos kz--Dye I (2.9
These solutions are completely equivalent. How-

ever, we prefer (2.9) as a basis for studying certain
plopertles of the infinite cylinder. D, and D, are

valuated by substituting these solutlons into (2.7)
and performing the indicated operations with due
account being taken of the discontinuous derivatives
of sin k|z| and =712, The results are D, = (w ueV) 27k

and Dy= (wueV)/2k. Then
A=0C, cos k2+% ;— sin k|z|, (2.10)
A=C; cos kz —}— b ‘ eIzl (2.11)

Since ¢~ 712l can be written as cos kz—7 sin kl|z|, it is
easily shown that (', = (', + wueV/2k. Kither expression
may be used, the choice between them being only a
matter of taste.

Under the assumptions being made, the current
distribution of the general formula (2.1) degenerates
to a surface distribution, K(z,). It must be borne
in mind that the tube has both inner and outer
surfaces, and K(z,) is the sum of current densities
on both surfaces. The field point, 7, can be taken
at the surface of the cylinder p=a so that an alternate
formula for A; is

£ [ xSy

where 7, ranges over the antenna surface during the
course of the integration.

Several changes in notation are convenient at this |
point. The field point is (a, z, ¢) and the source
point has the coordinates (a, 2, ¢,). Only the
difference ¢— ¢, 1s of any significance because of the
azimuthal symmetry. Therefore, we may set ¢ to
zero, change ¢, to ¢ and indicate the angular inte-
gration as already performed. The quantity z, is
changed to ¢ so that the subscripts may be avoided
in future formulas. Total current 1s given by

L (§)=2r aK ({). The quantity lrg—u\l is replaced
simply by R.  With these changes '

ad zydey, (2~ 12)

-f 19— Ods (2.13)
where
T o= IkR
g(z— é“)—— e (2.14)
and
R=[4a? sin 2¢/2-+ (z— )7V (2.15)

We now have two formulas for the surface value
of vector potential. One has been derived from the
generic formula for vector potential in terms of cur-
rent sources by specializing to the geometry of the
problem wunder consideration. As such it is a
general formula for vector potential generated by a
¢-symmetric current in the z-direction on a tubular
conductor no matter what other conditions are to
be imposed on the problem. On the other hand,
(2.10) provides a vector potential which leads to the
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boundary values of electric field desired in the
present problem. If these expressions are equated,
an integral equation for the current distribution as-
sociated with the chosen boundary conditions results:

Odi=C cos kz

N REYE

4 )

(2.16)

It is convenient to multiply the previous equation
through by jk/wue and make the following definitions:

ke 17 o

WE

gk w

= WUE ir 47r

- () 2=

and

’7°1<r> -1(5).

No generality is lost by letting V=1. This com-
pletes the mathematical formulation of the problem.
We are to consider the solution of

+h 1 .
f F(©)g(z—O)di=C cos kz+= sin k||, 2| <h.
. 5
2.17)

The constant ('must be determined by the boundary
condition f (£A)=0.

There is no doubt that the integral equation cor-
responds exactly to the chosen model. It has already
been pointed out that the model does not correspond
to any physically realizable antenna. Physical
antennas may be either solid or tubular conductors,
and they may or may not be fed in such a way as to
preserve ¢-symmetry. Lack of symmetry (as
exemplified by a linear antenna fed by a two wire line)

can be rationalized to some extent if ka is small.
Howvvor the most serious point is the highly ideal-
ized nature of the generator region of the mathe-
matical model. The infinitesimal gap is really a short
circuit across which a hypothetical but finite voltage
has been impressed.  Thus, the input current and
admittance of the model are certainly infinite.

It is not immediately clear that an infinite ad-
mittance model can be managed mathematically in
such a way as to yield a physically significant finite
result. Wu and King have discussed this point in a
recent paper [3]. They have shown that the singu-
larity in /(z) near z=0 is logarithmic and of very
short range. Thus, according to Wu and King,
“since . the singularity actually gives a contri-
bution to the current distribution only in an exceed-
ingly small and physically meaningless distance of the
order of magnitude i exp (—1/ka),1t may, in principle
simply be subtracted out.” According to this line of
reasoning iterative solutions of the integral equation
are successful because they are started with a con-
tinuous approximating funection and are carried to
such low order that the singularity does not develop.

An important aspect of any theory is its relation-
ship to experiment. It is possible to avoid the in-
herent singularity in the current distribution which

is 2 solution to Hallén’s integral equation and obtain
a finite answer for the theoretical input admittance
to a cylindrical antenna. The finiteness of the result
does not, however, guarantee that it is physically
significant. Experimental antennas must be pro-
vided with a realistic terminal zone which is con-
nected to a transmission line of some sort. Measured
impedances are then complex combinations of
antenna and terminal zone effects. One way of
extricating these effects is to make a theoretical
correction for terminal zone effects on a sequence of
experimental impedances and extrapolate the cor-
rected data to the limit of a small terminal zone.
The residual impedance is then supposed to be char-
acteristic of the antenna itself and it is this idealized
inference from experiment rather than raw data
which is to be compared with theory.

An outline of a feasible experimental program will
be helpful at this point. Consider the experimental
arrangement shown in figure 1. Symmetry allows

| .‘-I—T

IMAGE |
antenna ol |
| | TO IMPEDANCE
| MEASURING

INSTRUMENTS

Fraure 1. Erpervmental model of a cylindrical antenna.
us to place a large ground plane at z=0 and simulate
half of a center fed antenna. Measuring instru-
ments are located below the ground plane so that the
antenna is shielded from extraneous interaction with
the apparatus. Appropriate measurements are made
so that the experimenter can determine Zz, the
equivalent impedance terminating the coaxial line.
It should be possible to relate /T to parameters of
the radial transmission line and to Z,(w), the input
impedance of a cylindrical antenna with gap width
2 w. If so, one should be able to calculate Z,(w)
given measurements of Z,. Z,(w) can be extra-
polated to obtain Z,(0). Z,(0) obtained in this way
is independent of the terminal configuration actually
used.  We will not attempt to give a mathematical
treatment of the experimental situation. It is suffi-
cient for our purposes to establish a conceptual
foundation for relating theory to experiment as a
prelude to subsequent theoretical development.
Consider now the sense in which a Fourier series
solution for 7(2z) “subtracts the singularity.” Since
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the unknown functionin (2.17) is even, it is developed
to finite order as

(2.18)

n=N
JO) =04 S5, cos nrih.

A procedure for determining the 7, will be exhibited
later. At this point it is sufficient to recall that the
sum of a finite number of terms of a Fourier series
fits the function being described in a least squares
sense.  Specifically,

+h
=[O —1 s 2.19)

is a minimum when the coefficients of fy({) are
Fourier coefficients. Intense, short range variations
cannot contribute appreciably to fy(¢) unless N is
made so large that even the singular behavior of
f(§) begins to develop.

A numerical estimate of the range of the singular-
ity is worthwhile at this point. Consider an antenna
for which kh=m/2 and h=60a. Then ka~.025 and
1/ka~40. Substitution of these numbers into the
range estimate of Wu and King leads to the conclu-
sion that a continuous function can fit the current
distribution except in a small distance equal to about
he . Even if the thickness is increased until A=10a
the singularity is important only over a range of
about ke %°~.0015h. Thus it can be seen that f(0)
as given by

n=N
+25 F,

n=1

=" (2.20)

will be apparently well-behaved in calculations of
practically feasible order even though theoretical
considerations indicate that the infinite series must
diverge.

An extraneous feature of the theoretical model
becomes apparent when it is compared to a proposed
experimental model. Current on the inner surface
of the theoretical model near the feed point is re-
placed by current associated with a realizable ter-
minal zone in the experimental model. If ka is
less than 2.61a, tube modes are below cutoff and
are rapidly damped out [4]. Formulas for removing
the inner current near z=0 from the total current,
which is a solution to the integral equation, will be
presented later. As might be expected, the correc-
tion makes a small difference in theoretical antenna
admittance.

Once the singularity near z=0 and the tube cur-
rent are understood and properly removed from the
theory the remaining possibilities for refinement are
somewhat limited and consist, for the most part, of
removing the assumption of an infinitesimally thin,
perfectly conducting tube. Such considerations
would be supererogatory in view of the many suec-
cesses of infinite conductivity models in electromag-
netic theory.

3. Solution for the Infinite Cylinder

In subsequent work the current distribution on a
finite antenna is expanded in a Fourier series. Such
an expansion cannot be valid for a function contain-
ing a singularity unless the singularity is integrable.
One expects that 7(z) is singular in the neighborhood
of the delta generator and that the nature of the
singularity is independent of antenna length. Tt
can be imagined that the current on a finite antenna
is composed of waves emanating from the feedpoint
and waves reflected from the ends of the antenna.
Only the outgoing waves are expected to be singular
at z=0 since they are directly associated with the
delta generator. It is instructive to consider the
case of the infinite cylinder before proceeding with
the solution for a finite antenna. This case can be
solved exactly in integral form and the Fourier
transform of the current identified from the solution.
Asymptotic behavior of the transform gives a clue
to the nature of /(z) near z=0 even for the finite
antenna.

Consider now the integral equation formed by
equating (2.11) and (2.13),

wpe ‘ o=zl

—f I(©)g(e—0)de=C, cos ke G.1)

If 7 becomes infinite there is no mechanism for
the formation of standing waves on the cylinder.
In that event (, may be set to zero. The integral
equation becomes

2 [ 10 9G—ds=Ve <o, (32

Solution of this equation is easy if we are armed
with the identities

g(e—)=—1 f Jo(Ba) H (Ba)e'=*Dda, (3.3)

and
y =0 ‘)keja-
k2] 7 ;
a . @rheh " Oy
The parameter 8 is given by
B=(k*—a)"2. (3.5)

Each integral is taken in the complex plane of «
along the real axis from — o to + « with a down-
ward identation at a=—#k and an upward indenta-
tion at a=+F.

The Fourier transform of 7(z) is

A 1 DaRCd )
== | 1es.

V&

(3.6)

This definition and the identities for g(z—¢) and

572



e Jead to

R A 4 + e 7%
I Jo(Ba) HE? (Ba) I () e7**do= flkv f ' 2(
J —o ‘\" 7I‘Z0 —© B
(3.7)
If (3.7) is to be true for all z,
A 4kV 1
I{o)=— : . 3.8
@)= 15r 7 BT Ba)HP (Ba) ©8)
Then the solution of (3.2) is
1@)—2’”/ ot (3.9)

. /82Jo(ﬁa)H‘°’ (Ba )

Since ¢/ is the only factor in the integrand contain-
ing an odd part, (3.9) becomes

4#17 WS

COS az

9=zl waeonpe) ™ G0
We have defined g as follows:
Bk —ad,
B=1B| for « <k and (3.11)
B=—j|B| for a>F.
Therefore, for large «
B=—ja. (3.12)

Certain identities involving cylindrical funections are
required:

Jo(—jaa)=I(—aa)=1I(aa),
2
HP (—jaa)= —H (jaa)= _.77; Ky(aa),
(3.13)

Iy(aa)- (@ra )W;and
Ky(aa)-(7/2aa)'? e~

For the definition of cosine transforms we take

7c(a)=\/72:rj;+ OO](2) cos a-zdz.

Equations (3.10) through (3.14) imply that, for
large «

(3.14)

j(a) 2

\/ZWkaVl (3.15)

Inspection of tables of cosine transforms [5] reveals
that when a function behaves as Inz for small z, its
cosine transform behaves as —vm/2 o' for large a.
It follows that for small enough z

AkaV
Zy

1(z)~— In kz- (3.16)

In the above expression k has been selected as a
multiplier for [z| to make the argument of the loga-
rithmic function a pure number. The asymptotic

behavior of T,(a) is of no help in deciding whether or
not k is a proper choice for this parameter. However,
ke seems attractive since it is given by k=2=/\, and
the wavelength is a natural unit of length in radia-
tion problems.

There is also a somewhat obscure reason for choos-
ing k as a parameter to convert |z| to nondimensional
form. Consider another version of (3.15) in which
the parameter £ is retained as « is allowed to become
large. As soon as « becomes greater than k, I,(«)
becomes a pure imaginary, Jl,(Ba) and H® (Ba) go
over to /,(|Bla) and (—2/57) K,(|8|a). Then using
asymptotic forms,

» 2\2rkaV 1
I(a>k)—>j Lg) @ (3.17)

I.(a) can now be regarded as having been separated
into two parts: I, (a<'k) which is zero il o>k and
I.(a>k) which is zero if a<k. Only fc(a>k) is of
interest at present since it is responsible for the singu-
larity in 7(z). Now I.(a>k) is asymptotically pro-
])mtlonal to the transform of the Neumann function,

Yio(kz). The latter contains a singular part which
is proportional to In & z.

[f the above arguments in favor of choosing (3.16)
for the form of the singularity are acceptable, we
can proceed with an estimate of the range over
which this expression is a good approximation to
antenna current. For this purpose we require an
estimate of /(z) outside the range in which the
logarithmic function is dominant. [t is difficult to
obtain such an estimate from (3.10). However, an
alternative argument can be constructed. It is
known that an expression of the form 7,, sin k(
is a fair approximation to current on a finite antenna
over most of its length. It is convenient, rather
than necessary, to use knowledge of the finite length
antenna in estimating the range of the singularity.
We now arbitrarcily establish the criterion that the
logarithmic function is to be used in the range
|z|<{n where 5 is given by

4]“”/ (3.18)

In kn~|7,|.

|1,,] is of the order of 0.01 when V=1. Z;is of
the order of 400. An order of magnitude estimate

for n is
A .
o e, (3.19)
7r
This is a small fraction of a wavelength even for

quite thick antennas. Moderately large changes in
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|7, do not affect this conclusion appreciably.

Further examination of this question would re-
quire analytic or numerical inversion of (3.10).
Either approach is apparently formidable.

4. Tterative Solutions for Finite Antennas

A brief discussion of iterative solutions is provided
here as background for the general reader. We are
primarily interested in presenting a critique of the
approach rather than compiling a report on the
voluminous literature of the cylindrical antenna
problem. Consequently, the presentation omits
many points which are essential to a detailed under-
standing of the iterative method. It does present a
few features which require comment by way of
justifying additional consideration of finite antenna
theory.

The first task is to cast eq (2.17) into a form
suitable for iteration. To that end the quantity

T =" fu, s (1)

is added and subtracted to the left hand side of
(2.17). It is convenient to abbreviate by letting

O cos kz-{—% sin k|z|=P(z2). (4.2)

With these changes and some elementary transpo-
sitions, (2.17) can be written

f—5{ Pe= U9aG-0—fEut, ol }-
(4.3)

Assuming that w(z, ¢) has been selected, a program
for obtaining a solution is:

1. Substitute an approximation to f(z) under the
integral on the right hand side of (4.3). Denote
this zeroth order approximation by f,(2). Carry out
the indicated integrations to obtain f; (z) and adjust
('so that f, (4+h)=0.

2. Repeat, using f; (2) to generate f; (2).
C so that fy (4+h)=0.

In principle this process may be continued indefi-
nitely with the formula for the Nth approximation
being

Readjust

1 2— ! ;i g—
1w =i5{ PO~ [ 0=

—fNﬂ(z)w(z,om} (4.4)

subject to fy(+h)=0, which defines Cy, the Nth
approximation to C.

Equation (4.4) is formally true for any w(z, ¢).
However, it will clearly be to the advantage of the
investigator to make a choice which results in rapid
convergence of the iterative process. This matter
is the raison d’etre of much of the literature of

linear antenna theory. A choice which leads to

manageable integrals 1s

= —_— l *
B e e

Then )

="
@)= o

The kernel ¢g(z-¢) as given by (2.14) and (2.15)
1s difficult to handle. A manageable but crude
approximation is

(4.5)

(4.6)

g‘fk‘lz‘ﬁ

g(z— )=

If g(=-¢) is approximated to this order it is ap-

propriate to approximate wy(2-¢) to the same order

when it is used in the integrals on the right hand

Vsli‘?e of (4.4), but not in the calculation of ¥y(z).
1e1n

1
fN(<> :m

5)— O R P 1 )
{ro-], =1 ) o

becomes the fundamental equation of the iterative
program. KEquation (4.8) has been used by Hallén
mn the investigation of linear antenna theory [6].
Equation (4.8) can be criticized on two counts.
First, the approximation involved in replacing £
by simpy |[2-¢| is quite severe. Secondly, w(z{)
was chosen for its simplicity rather than according
to the requirement that the iterative program
produce good results in low order. King and
Middleton improved the iterative procedure out-
lined above in that they used a kernel distance

1/2
o]

This is a better approximation to 72 than is the
quantity [z-¢/.

The second modification introduced by King and
Middleton comes from considering the combination
of integrals on the right hand side of (4.3). Denote
these by

(4.9)

0= 90— @10

((z) can be rewritten as

Q= [ UO—TEWEge—ode @)

A W (z ¢) which makes the integrand of (4.11)
vanish 1s

W (2, ©)=f ()/f(2). (4.12)
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Of course, one cannot know the desired W(z, ¢)
because f(z) is not yet known. One can, however,
approximate W(z, ¢) by making use of a fair low
order approximation to f(z). A suitable choice of
f(z) in this case is the sinusoidal approximation to
antenna current.?
Instead of W (z, ) King and Middleton introduce
sin k(h—|¢))

sin k(h—

Bl (4.13)

k(2 §)=
with the attendant

no ¢ —JkR
V() = f Wiz, ) Cpode (414)
—h V]

Using these definitions the interative program is
based on

v () —fa-1(2)Wk(z, )

| ’—[lr (lg}- (4.15)

Equations (4.8) and (4.15) are not quite the forms
used by Hallén and King-Middleton in their compu-
tational programs. To appreciate the need for some
unplovvm(\nt consider the boundary condition
f(+h)=0 applied to (4.4) from which (4.8) and
(4.15) were developed. The result of applying the
boundary condition is

=P [ gt (4.10)

(The term involving fy_; (z) drops out because
the boundary condition is applied at each iteration.)
Now, P(h) contains C' cos kh and if kh=m/2, the
constant O disappears completely and (4.16) cannot
be satisfied. A revision of the theory to overcome
this defect can be made by subtracting (4.16) from
(4.4) to obtain

1 5 " X
fv(2)=w{P(c)—l W+ [ dva(©g—0)de

— [ U= —frs(0Ce, Ol - @)

The condition fy (4+h)=0 is always automatically
satisfied by (4.17). Equation (4.16) is forced to hold
for all NV so that € is determined by

0=PO)— [ K@gl-0de @19

A zeroth order approximation which satisfies
boundary conditions can be obtained directly from

3 A choice of f(2) to serve in constructing W(z, ¢) and ¢ () need not influence the
choice of fo(z) which is used to start the interative process.

(4.17) by omitting the integrals. Then

P(2)—P(h),

fo(2)= 00 (4.19)

Additional notation and definitions may be in-
vented so that the result of the iterative process can
be cast into series form. The series can be designed
to lead off with f, (2) as given by (4.19). A suffi-
cient basis for the remaining part of our discussion
has been displayed at this point.

A noteworthy criticism of the use of R, has been
present by Gans [7]. Gans correctly points out that

“h 1 e
J (;) —— d(*( cos kz+5 sin kfz|  (4.20)
J —h &
i1s not a true equation because the right hand side
has discontinuous derivatives in z whereas the

derivatives of the left hand side are continuous.
Hallén claims immunity from Gans’ criticism on
the grounds that he uses the distance [z—¢|. It
seems to us that this practice raises another diffi-
culty. A development similar to that used in exam-
ining the singularity in f(¢) shows that g(z—¢) is
l()gdlithnlic near z—(=0. The approximate kernel
|z—¢| 7t exp (—7jk|z—¢|) has an entirely different kind
of singularity. It is extremely doubtful if the Hallén
th(‘(ny develops a solution to the original integral
equation.
lTh('so constderations lead to a definite statement
that

f(2) #Lim fy(2) (4.21)
Noow

where fy(z) 1s taken from either the Hallén or King
Middleton form of the theory and f(z) is the correct
solution of (4.3). Even though one is compelled to
this conclusion, it is completely irrelevant because
it is entirely possible for

F(@)=fu(2)

in low order. If any confusion exists about this
matter it is because many writers (including some
authors of senior and graduate level texts) begin
their discussion directly with eq (4.20). The only
correct procedure is to formulate a problem which is
soluble in principle and to introduce judicious
approximations as needed during the course of
solution.

Tterative solutions have the disadvantage that they
become tedious in second and third order even if
approximations are made. High-order solutions with
approximate kernels are not even desirable as they
may have nothing to do with the original problem.
When all is considered, one needs to know over what
range of antenna pammetels such solutions can be
used with confidence. Obviously, the kernels used
in Hallén and King-Middleton theory approximate
¢(z—¢) over a range comparable to antenna length
only if A/a is large. The point at which these theories

(4.22)

575



break down is somewhat arbitrary since it must
depend upon an arbitrarily selected amount of tol-
erable error.

5. Fourier Series Solutions of Storm and
Zuhrt

One disadvantage of the iterative solutions dis-
cussed in section 1 is that they become extremely
tedious beyond second or third order. Storm at-
tempted to invent a theory which could be extended
to higher order [8]. Unfortunately, he introduced
the kernel distance R;=[a*+ (z—¢)?]"? and studied

*h o kB 1.
J f(f)ng“: (' cos k25 sin klz]  (5.1)
—h 1

which has, in fact, no solution at all. “Solutions”
to (5.1) are physically meaningful only if they apply
to sufficiently thin antennas and if they are re-
stricted to low order. In addition, Storm’s theory
contains fundamental errors which invalidate his
solution no matter what kernel distance is used.
Storm expands the unknown function in the form

f(&)=Bsin k(h—|¢)+ ﬁi‘_?’n cos (2n-+1)x¢/2h. (5.2)

Since f(¢) 1s an even function the expansion also
represents f(¢) in the range—h < ¢ <0.

Following Storm, we seek to determine the co-
efficients B and F, of the above expansion. The
result of substituting (5.2) into (5.1) is

n=N
My(2)B+ > S,(2)Fa=C cos Ic2+-;~ sinklz], (5.3)
0

n=

where
no o~ kR
JIO(S)ZI,,,SIHk<h_m)l_f1d§’ (5.4)
(" @nl)wg e )
S, (2)= f_hcc,o e 69)

The integrals in (54) and (5.5) are somewhat
difficult to evaluate unless approximations are made.
Storm replaces the kernel with [z— ¢/~ exp (—jk|z—
¢|) outside the range z—5a<¢<z+5a. Inside this
range he replaces the kernel by [a*4 (z— ()22
These ranges are ambiguous if 2z 1s within 5a of the
ends of the antenna since ¢ must also be restricted
to the range —h<{<h. Presumably we are not to
consider values of z too close to the ends of the
antenna in what follows. Once the approximations
are made, the integrations required in (5.4) and (5.5)
can be performed in terms of elementary functions.
We shall omit the details and return to considera-
tion of (5.3).

Storm explicitly satisfies (5.3) at N+2 points and
obtains N+2 equations in N-+2 unknowns which

TaBLE 1

kh Storm: 5 point

King-Middleton
calculation

Zru=81.5+j 43.4
Zxu=1000—j 1350

™2 Z,=81.5+j 44.5
™ Z.=1162—j 1354

are B, O, and N of the F,. He has performed cal-
culations with N=0, 1, 2, and 3 for both full and
half wavelength antennas with A/a=904. The
agreement with King-Middleton iterative theory is
remarkable. A comparison between the impedances
from the latter theory with those from Storm’s
five-point calculation i1s made in table 1. King-
Middleton data used in this comparison are second
order except for the resistance in the half wavelength
case which is third order.

In spite of the success of Storm’s calculation, his
theory breaks down in higher order or for smaller
hja ratios. The difficulties are made more evident
if we specify the unknown function by the expansion

J5)=5 wiNA" — W+7§VF’% cos M,
n=0 e Qh

(5.6)

where the A4, are the first NV terms of an expansion
of sin k(h—|¢]). As such the A4, are known ex-
plicitly. It is clear that (5.6) approaches (5.2) as
N becomes large. If (5.6) is used for f(¢), (5.4) must
be changed to

e — JkRy

h
Mo(z):BJ_h =

n=N
{ nf_‘,:OA,, cos@’k;}iﬂg dg.
(5.7)
The new

The definition of S,(z) does not change.
equation to be satisfied is

n=N
Mi(2) B+ZO S,(2)F,=C cos kz—}—% sink|z]. (5.8)

Set aside, for the moment, the question of how
is to be determined and consider the solution in terms
of C. A set of linear simultaneous equations for the
unknowns B, I, Fy, . . . Fy is obtained by satis-
fying (5.8) at (N-+1) values of z. The matrix of
coefficients is

M(z) So(21) Si(z1) Sy (2)
M(2.) So(22) Si(2) Sy (22)
M(,)(ZN) So(zn) Si(zx) Sy (2x)
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By comparing (5.5) and (5.7), one sees that the
M{(z,) are linear combinations of the S,(z,). The
determinant of the above matrix is identically zero
for any N. If the left hand column is replaced by
My(z,) so that all of B sin k(h—|¢|) is used, the de-
terminant of the matrix must approach zero as N
becomes large. No high order solution can be ob-
tained unless one of the unknowns is assigned an
arbitrary value. A likely candidate for the assign-
ment is B which can be selected from the elementary
induced emf theory according to B=(jZ/4m)1,.

Evidently, Storm did not become aware of these
difficulties because he included ' among the un-
knowns. If this is done and the matrix is augmented
by appropriate bordering elements, a system of
equations with an unique solution for every N results.
However, the value of (" which is obtained may not
be the correct one. Storm’s expansion for f(z) is
identically zero at the boundaries. If the coeflicients,
F,, of that expansion are calculated in terms of a
spurious (' it may happen that the expansion (for
large N) does not approach zero at the boundaries
even though it is identically zero at z=4+h. The
only way out of this dilemma is to expand the current
in functions which are not identically zero at z= +4
and then use the boundary condition f(+4)=0 to
determine (.

An actual calculation to support these criticisms is
worthwhile. In performing the calculation we used
the theory of the next section which is equivalent to
a corrected version of Storm’s theory even though
several of the technical details are quite different.
Storm was followed to the extent that f({) was ex-
panded in the set {cos (2n-+1)7¢/2h}, and ' was
treated as an independent unknown. A structure
with h/a=60 was selected for study. The results
are shown in ficure 2 which displays the real and
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Ficure 2. Impedance versus order of solution (Storm’s pro-

cedure).

imaginary parts of antenna impedance as a function
of the order of solution. Corresponding values of
are shown in figure 3. The result of mistreating the
parameter (' is easily observed from these curves.
We have conjectured that the amplitude of oscilla-
tion in the results may decrease with increasing /i/a.
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Ficure 3.  The parameter C versus order of solution (Storm’s

procedure).

If this is so it explains why Storm obtained good
results with a defective theory.

Zuhrt considered the problem of developing 7(z)
in a Fourier series from a somewhat different point
of view [9]. Instead of considering a single isolated
antenna, he formulated a boundary value problem
for an infinite collinear array of such antennas
spaced along the z-axis with centers at z= 4+ nd, where
d>h. Each unit is center-driven by a potential
V,=(—1)"V, impressed across a gap of finite width.
Ultimately he allows d to approac ch infinity and the
gap width to become small. In this limit only the
center unit remains and his theory represents the
simple tubular model. This approach is unneces-
sarily intricate. Zuhrt’s final equation can be de-
rived directly from the Hallén integral equation.
Equation (3.3) may be written

9(z=5)=—j | Tu(Ba) HEP (Ba) cos a(z—3)da:
0
(5.9)
The term cos a(z—¢) in tho integrand can be ex-
panded and the term sin «a z sin af omitted since

f(¢) is even for a center-fed antenna. Therefore, we
can consider

fh F(OK(z,0)di=C cos kz—i—}; sin k|z|,
—h &
(5.10)
where
Kz,0)=—9 fm Jo(Ba) HP (Ba) cos az cos afdy.
0
(5.11)

Applying the operator L,=0%/0z°+k* to both sides

of (5.10), one obtains

f_"h J(OLK(z,8)di=ks(z). (5.12)
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Now expand f({) as

n=N
f(&)=2_ F, cos Hng, (5.13)
n=0
where
@t Dr_p, (5.14)

2h

Substituting the assumed current expansion into
(5.12), one obtains

i{ | cos HJL;K(Z,S“)(I?} F=ks(2). (5.15)
n=0 -h

Now multiply both sides of (5.15) by cos H,z, and
integrate on z over the range —h<z<h to obtain

n=N 1 ("

> ~J cos H ,zdz

n=0 k —h
h
f oo II,Lg“LzK(z,g“)dg“}Fﬂzl. (5.16)
—h

Equation (5.16) generates an infinite set of linear
simultaneous equations as the indexing parameter,
p, is allowed to range from zero to infinity. The
coefficients are given by

h h
ZM:% th cos H, Zdsz cos H,¢L.K(z,0)d¢.  (5.17)

Further reduction is accomplished by substituting
(5.11) for K(z, ¢) and carrying out the indicated
operations. When this is done,

Zﬂn:_4j(_ 1)p+anI{n

fm Jo(Ba) HP (Ba) (k*—a?) cos? ak o
0 (H2—o?) (H2—a%) @

(5.18)

This is the same as Zuhrt’s formula except for
trivial differences in notation.

Zuhrt obtains an Nth order theory by truncating
the infinite scheme at Nth order. The integral
which defines the matrix elements is difficult to
evaluate. Zuhrt resolves this difficulty by resorting
to graphical integration. Kach coefficient has a real
and an imaginary part, so that an Nth order theory
requires 2N? graphical integrations, a formidable
amount of labor even for small N.

6. Further Development of Fourier Series
Solutions

The kernel of Hallén’s integral equation,

T — JkR

(4

1
g(z—§)=% _W*R—ddn (6.1)
where

R=[4a’sin? ¢/2+ (z— {)?]"/?, (6.2)

represents the radiation at any value of z on a

cylinder of radius @ from a ring source of radius
a located at . As such it is meaningful in the
entire domain — »<_z<_ + », However, theintegral
equation is valid only on the range —h <z <-+4h and
operations on the source coordinate, ¢, are restricted
to the same range. Hence, a special expansion of
g(z—¢) for —h<z,;<-+h is desirable. A frontal
attack on the problem of obtaining such an expansion
has been made by Bohn in an investigation of a
theoretical model which is quite different from the
one used here [10]. The point of interest at present
is his method of handling ¢(z—¢) which is the kernel
of an integral equation occurring in his theory.
In our notation Bohn’s expansion is

n=o m=

ga— =10 > Gl rEi=mesim

n=-o m=-w

(6.3)

for —h<z,t<+h, where the coefficients of the
Fourier series are given by

1 h h .
Gnm:m\f \ f ’{/(5— é‘)e“](n”/himw/mdz{]f.

(6.4)
Substituting (5.9) for g(z—¢), (6.4) becomes
l+m
Gnm: _2Jh2J
Jo(Ba) HP® (Ba) sin (nm— ah) sin (mr—ah)da. 6.5)

(nr—ah) (mm—ah)

This expression exhibits the difficulties involved
in a direct attack. The reader will appreciate that
the integration is not trivial. Bohn evaluates (6.5)
approximately by means of ingenious distortions of
the contour of integration. Details will be omitted
here, it being sufficient for our purpose to note that
no investigator to date has been able to obtain the
exact coeflicients of a double Fourier series repre-
sentation of g(z—¢).

Fortunately, it is possible to avoid the double
Fourier series representation entirely. It is only
necessary to make use of the fact that z and ¢ enter
only as the square of their difference. Thus, g(z—¢)
is not a general function of (z, {). To proceed, let

E=(2—9).

If z and ¢ are separately in the range —h <z, <h,
then ¢ is in the range —2h<E<2h. Since ¢(§)
contains only £, a cosine series in the range 0 to
2h will suffice. Thus, we seek an expansion of the
form

(6.6)

9(8) Z%-i-miw D,, cos mm§/2h, for 0<£<2h. (6.7)
m=1
The fundamental formula for any coefficient is

il 2h
D’":ﬁﬁ g(&) cos mmk/2hdt. (6.8)
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Direct integration of (6.8) is difficult. An indirect

method can be constructed by writing

g(& =918+ 9:(8),

where ¢,(§)=g(¢) in the range 0 <¢<2h, and is zero
outside this range, ¢,(£) is equal to zero in the range
0<t<2h, and is identical to ¢(&) in the range

(6.9)

2h<g< w. Transposition of (6.9) gives

91 (&) =9(&)—g2(8). (6.10)
The symbolic cosine transform of (6.10) is

G(a) =0 (a)— G, (). (6.11)

_ The transform of g;(§) and its inverse are given by

S [(*2n
G, (oz):\/ij g1 (§) cos akdg, (6.12)
0
and -
g, (&) :\/%f “ G, (a) cos atda. (6.13)
0

Comparison of (6.12) and (6.8) shows that the
coefficients of the cosine series expansion for g, (&)
are simply proportional to sample values of its
cosine transform, ¢ («). Thus,

1 | L mm . [ mm
D= 3Lo ()50}

G(a) can be immediately identified from (5.9) as

(6.14)

Gle)=—] \/ 7:; Jo(Ba) H? (Ba). (6.15)

Incidentally, an asymptotic expansion of G(a) shows
that, for small £ g(&)~In & Since the singularity
in g(&) is no worse than logarithmic, the integrals
defining the D, exist.

Determination of @y(«) is tedious but not difficult.
The definition of Gy(a) is

Q. (a)=\/ % L: g (%) cos atd, (6.16)

which can be expanded in a highly convergent
infinite series. If, for convenience, we set

y'=4a* sin® ¢/2 (6.17)
and
w=y*/E, (6.18)
(6.1) becomes
s s L (F e—jkf\‘/ijrﬁé . 0172
g@>y) =g | (s,
(6.19)

When appropriate expansions of the integrand are
made and the ¢-integration is performed, there

results
— JkE T2 2
g(g?>yz)=% [1—%&—%—. : :I (6.20)

The above expression is to be used when £>2h.
The parameter £ is of the same order as 1/h. There-
fore the terms retained in the square bracket are of
order (a/h)’. 'The first omitted term is of order
(a/h)*.  We shall now omit all of (6.20) except the
first term. It is not difficult to restore the small
correction terms later.

With this omission, (6.16) becomes

19 (™ o= ke S
G2 L e ig‘l“,?%/g_ 6.21)

Sine and cosine integral functions are defined by

Y Tgin z = @
sito= 2z
0 -1 2 .

With the above, a few trigonometric identities, and
a few elementary changes of variable, the integration
of (6.21) follows almost by definition, it being only
necessary to exercise a little care depending on
whether a<’k or a >k. The case of a=Fk will require
special attention.  We have

Gg(a<z«)g*\/ %{(,‘i[(k—HaZh,l £ Oi[(k—a)2h]

+jm—jSil(k+a)2h]|—jSi[(k—a)2h]}-
(6.23)

G-_)(a>k)zv\/% {Cil(a+k)2h]+ Ci[(a—Fk)2A)]

— i Si[(at-k)2h]+jSi[(a—k)2R]}-  (6.24)

It is convenient to rewrite G'(«) from (6.15) separ-
ately for the cases a<lk and a>k. Let |8|=0b. The
phase of 8 has been defined so that =0 it a<k and
B=—jb it a>k. Then

Ga<ll)=—j @ Jo(ba) Hi® (ba), (6.25)

and

G(a>k) =\/% Iy(ba)Ky(ba). (6.26)

Now Gy(a<k), Gi(a>k), Gla<k), G(a>k) are
all singular at a=Fk. In the first two functions the
singularity comes from the cosine integral function,
in the last two H,® (ba) and K,(ba) become singular.
Since these functions are to be sampled at the points
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mw/2h, the singularities apparently give trouble if
h=mN/4. Actually we are concerned only with the
difference G(a)— Gy(a) and this turns out to be finite
and independent of whether a approaches k from
above or below. The special formula required for
the a=Fk case 1s found from combining (6.23), (6.25)
and making use of small argument formulas for the
various functions involved. The latter are tabulated
for the reader’s convenience.
For small z,

Jo(r)~1, Si(x)>~0,

Hg,w(m)zlﬂ%ln 72—90 G @)=Iniy = (620

The logarithmic singularities subtract off in G'(a)—
(y(a) and one obtains

G (a=Fk)~ -];; { In ;%Jr i (4kh) — S (4kR) }

V2
(6.28)

The same result can be obtained by using (6.24),
(6.26), and the small argument formulas for /y(ba)
and Ky(ba).

The degree of approximation in the above formulas
may be improved by calculating the cosine trans-
forms of the correction terms in (6.20). The next
term to be included is

T\ () = —jka? \/ f

which reduces to trigonometric functions, sine in-
tegral functions and cosine integral functions. All
higher order correction terms may be similarly
treated.

Thus, an expansion of g(z—¢) in the form (6.7)
can be achieved and the coefficients can be calculated
with any desired degree of accuracy. It will be con-
venient in what follows to re-define I, so that the
leading term can be included under the summation
sign. If this is done

eos atdé,  (6.29)

ge— )= > Dylcos mrz/2h cos mui/2h
m=0
+-sin mwz/2h sin ma¢/2h].  (6.30)

The sine terms are not needed in the treatment of a
center-fed antenna. We are then led to consider

h
f f(¢) K(z2,¢) de=C cos Icz—l—%sin klz], (6.31)
—n
where
K(z,0)=3: D, cos m = 2/2h cos mr ¢/2h, (6.32)
m=0

subject to f(£h)=0.

We now expand f({) as

§)~Z F, cosnw ¢/h

n=0

(6.33)

and substitute into (6.31). After the ¢ integration,

m’Y nm

cos mmwz/2h=C cos kz—}—% sin klz], (6.34)

h
'y,,,,L:QI cosnm ¢fheosmam ¢2hde. (6.35) 7

An infinite set of linear simultaneous equations is
obtained by multiplying both sides of (6.34) by

{cos (2p+1)wz/2h} and integrating on z from —h
to +h. The result is
2 iz D Nl —C 0y, (6.36)
where
f cos [(2p-+ Dwz/2h] cos [mmz/2h)dz,
(6.37)
= J cos kz cos [(2p+ Dwz/2h)dz (6.38)
and
f sin kz cos [(2p-+1)mz/2h]dz (6.39)
Equation (6.36) can be written
31, F=Crytv,, (6.40)
n=0
where
:2:0 DyYumBom. (6.41)

If (6.41) were actually an infinite sum, many terms
would be required to satisfactorily appronmate each
T',, and the theory would be laborious except in low
order. However, (6.41) contains only two nonzero
terms! To appreciate this fact consider the set of
functions {cos(mmz/2h)} which appear in the expan-
sion of K(z, {). These functions are complete on
0<2z<2h. They appeared in the theory because we
expanded a function of (z—¢). Clearly since m is
either even or odd, this basic set of functions can be
divided into two subsets { cos mwz/h} and {cos(2m-+1)
7wz/2h}. Both of the subsets are complete and
orthogonal on the range where they are actually
used. In a sense we can refer to (6.32) as an over-
complete expansion of K(z,¢). Therefore, the sum-
mation in (6.41) can be broken into two parts, one
for m even, the other for m odd, and reduced to

Fzzn:h[BZJ:L’nDQn+7m20+1D2p+1]- (6-42)
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The set of equations generated by (6.40) as p
ranges from zero to infinity can be cast in matrix
form as

TF=Cr+v, (6.43)

where T'is a matrix of the I',,; F, 7, and » are column
vectors.

The method of obtaining simultaneous equations
from (6.34) used here is formally equivalent to any
other method which might be used. Consider mul-
tiplying (6.34) by X, (z) and integrating on z from
v. —h to h, where X, (2) is arbitrary. Now X, (2) can

be expanded in the set {cos (2p-+1)wz/2h} so that
the set of equations obtained by using X, (2) is a
linear combination of the equations reprosentod by
(6.43). An Nth order colocation scheme is equiva-
lent to choosing X, (2) from a set of N delta functions,
8(z—z,) with p=1,2,3, . . . . , N.

The formal solution of (6.43) in terms of T'"! is
simply

F=0T"%r41T"%. (6.44)

We have not been able to discover a general form for
I'~'. Consequently, it has been necessary to trun-
ate the system of equations to finite order and invert
finite matrices using digital computer methods.*
This procedure is a cause of some concern in that
there are apparently no mathematical theorems
which justify the assumption that a sequence of
such inverses converges to the inverse of the infinite
matrix. However, there is evidence that the pro-
cedure being used here produces the correct solution
of Hallén’s integral equation. First of all, we have
examined sequences of finite inverses up to 25th order
for h/a=60 and kh=m/2. These are well-behaved
and stable. For a rough definition of stability, we
shall say that a stable Nth order inverse has been
found if the elements of an Nth order matrix formed
by truncating the inverse matrix of an (N-+M)th
order solution do not change appreciably as M is
increased. M will be referred to as the stability
margin.  For the problem at hand our work indi-
cates that M~3.

The results obtained for
thoroughly reasonable when
obtained by other methods. From a pragmatic
point of view there seems to be sufficient evidence
that the matrix inversion procedure does indeed
produce a finite number of terms of the correct
solution to the original integral equation.

If the elements of the inverse of an Nth order
truncation of T' are designated as /), the numerical
solution is

finite antennas are
compared to results

F, ((*)—Z HY,(Cr,+v,). (6.45)

4 Numerical inversion of the required matrices was accomplished on the IBM
650, using a library program furnished by IBM Corporation.
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The Nth approximation to f(z) given by the
computational program is

Ve :T;: F,(O) cos (nrz/h). (6.46)

The leading terms of (6.46) are not a good approxi-
mation to antenna current. C mmoquvntly, this
representation is slowly convergent. To improve
convergence a good low order approximation to f(2)
was chosen, and expanded in a series

n=N

z(z2)=>. X, cos (nwz/h).

n=0

(6.47)

Candidates for the role of z(z) are the classical
sinusoidal distribution, the zeroth order approxi-
mation from an iterative solution, the King-Middle-
ton modified zeroth order approximation, or a new
low order approximation by R. W. P. King referred
to by its author as the “quasi-zeroth order approxi-
mation” [11].  'We have used the latter. Once the
choice has been made and X, have been calculated,
(6.46) is modified to read

Fe@)=2 <>+z\[r (C)—X,] cos (nwz/h).

(6.48)

When the boundary condition f(h)=0 is imposed,
one obtains an Nth order approximation to ' from

n=N

Z [I"n<0) e

n=0

By letting N=0, 1, 2, . .
generate a sequence,

X,] (—1)*=0. (6.49)

, N, (6.49) can be used to

v(h '1; (‘Ey 9 (VA\' (6'50>
Now an Nth order solution should be regarded as
the first NV terms of a solution of infinite order, only
the latter solution involves the Fourier series for
The Fourier series is unique and logically it
must be in terms of ',. The most direct method
of determining ', is to plot the above sequence
versus 1/n and extrapolate. Unfortunately, the
sequence of (' values obtained from the boundary
condition oscillates and the extrapolation is subject
to large error. This difficulty can be overcome by
applying a Ceasaro transformation to the sequence
of € values to form a new sequence which converges
to the same limit. The transformed sequence plots
a smooth curve against 1/n, the extrapolated limit
of which is taken to be ('_. A graph of a typical
treatment of (V'is shown in ﬁwmo 4.

Our final expression for f(z) is

In(2)=a(z )+Z F,(C.)—X,] cos (nwz/h)-

(6.51)
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This expression does not quite satisly the boundary
condition f(+h)=0. However, except for trunca-
tion errors which affect only the last two or three of
the F, appreciably, it represents an estimate of the
first N terms of a solution of infinite order. Readers
who may prefer an expression which satisfies the
boundary condition exactly in Nth order should be
reminded once again that a finite number of terms
of a Fourier series provides a least squares best fit
over the entire range of the function being repre-
sented. This type of fit is to be preferred over one
which is identically equal to the function at one
point.
The admittance of the antenna is now simply

47 n=N i
i {r(ﬂ)—l— S IF(C) X } (6.52)

The function f(¢) 1s proportional to the sum of the
currents on both the inner and outer surfaces of the
tubular conductor. It was pointed out earlier that
only the current on the outer surface and not the
tube current is to be associated with the experimen-
tal admittance of the antenna.

The generic expression for the vector potential at
a field point (p, ¢, z) when py=a is

h
::i%.flh1<f)9(P@;a$?d§) (6.53)
where g(p, z; a, ¢) is given by either
1 L2
9oz, 0)=g, fA T (6.54)
with
R=[p*+a*—2pa cos ¢+ (z—{)?]'”? (6.55)
or
g(pyz;w)f):_jﬁ JO(ﬁa)Héz) (Bp) CcOS a(z—f)({a'
(6.56)

As a consequence of the ¢-symmetry, only the
¢-component of H is different from zero, and is
given by

e —i >A,/op- (6.57)

The surface current density on the outer surface of
the tube is obtained from the boundary condition

X H=K, and the current distribution along the
outer surface is
1 *h
1@ 4 | 100G 659
TN I=h
where

P, 2, c)--—mz[ 90,238, ;)] (6.59)

If g(p,z;a,¢) 1s expanded in the Fourier series

7°(p,z;a, g“)—mZ‘,mD,,L cos EL% — | <h,

m=

(6.60)

the coefficients D)), may be determined by the same
procedure used in expanding the kernel of Hallén’s

equation. Omitting details, the D), are given by
sample values of
G ()= —jBacy(Ba) H (Ba)

(Ob a(z—)ded(z _<)}
p= a+

+{mf.f (6.61)

where R is given by (6.55). ‘
This leads to the following expression for Fourier
coefficients of the exterior current:

1= —DO {j x(¢) cos (mxi/2h)dE

cos (nw{/h) cos (mm/2h)d¢ }
(6.62)

n=N h
+5 1h-X) f

7. Results

We have applied the theory to half and full

wavelength antennas with A/a=60 and 500,
respectively. In each case the calculations were

performed at 25th order. Correction terms from
(6.30) were included in the calculation so that each
matrix element is accurate to one part in 10°
Graphs of total current and plots of total admit-
tance versus order are shown (figs. 5 to 12). In
the latter graphs, an nth order admittance is ob-
tained by using the first n terms of a 25th order
solution.

Comparison of these results with those of the
King-Middleton theory in terms of impedance are
shown in table 2

I\mg—\hddleton impedances in table 2 were ob-
tained by graphical interpolation of tables given in
reference [2]. Resistances of the half wavelength
structures are from third order solutions. Other
quantities from King-Middleton theory are second
order. Our own Z; for the full wavelength antenna
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with 4 /a=60 is obtained by extrapolating the current | 2.2x10? T | T
graph to z=0. The current distribution on a full SUSCEPTANCE
wavelength structure does not have zero slope at the .
origin as do the cosine terms used to describe it. '
Consequently, many cosine terms are required for 2
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Freure 12. Admittance versus order of solution: kh=m,
h/a=500 .

It can be seen from table 2 that the amount of
disagreement between this theory and the King-
Middleton theory is only about two percent. One
may expect disagreement of this order or less over the
entire range of h/a>60.

TABLE 2

kh hla Zr ] VA ZEM

|
(2 60 91.4+j 38.6 | 92.54j 40.6 91.44j 41.5
T 60 205 —j 382 205 —j 380 206 —i 380
/2 500 = 79.7—j 42,9 | 80.3—j 43.4
™ 500 = 1646 —j 1768 | 1625 —j 1744

It can be seen from the graphs of admittance versus
order that, except for thick full wavelength struc-
tures, 25 terms are excessive for h/a>60. Thus, a
great deal of margin for the study of thicker antennas
is inherent in 25th order solutions. Studies of full
wavelength antennas with 2/a< 60 will require more
than 25 terms or further modification of some of the
technical details of the theory.

The authors express their appreciation to T. R.
Ferguson for his assistance in the caleulations, to
Walter Haas for the computer programs and to R. M.
Conkling for fruitful discussions during the prepara-
tion of this paper.
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