Space of k-Commutative Matrices

Marvin Marcus and N. A. Khan

(August 14, 1959)

Let $[A, X] = AX - XA$ and $[A, X]_k = [A, [A, X]_{k-1}]$. Those matrices X which "k-commute" with a fixed matrix A are investigated. In particular, the dimension of the null space of the linear transformation $T(X) = [A, X]_k$ when A is nonderogatory is determined.

1. Introduction

Let A be a fixed N-square complex matrix and let $[A, X] = AX - XA$, $[A, X]_k = [A, [A, X]_{k-1}]$. It is easily checked that

$$[A, X]_k = \sum_{s=0}^{k} (-1)^s \binom{k}{s} A^{k-s} XA^s. \quad (1.1)$$

It is clear that the set of X such that $[A, X]_k = 0$ is a linear subspace of the space M_N, of all N-square complex matrices. This subspace is denoted by $Q_k(A)$. In theorem 1 is determined the dimension of $Q_k(A)$ in terms of the degrees of the elementary divisors of A when there is exactly one elementary divisor for each eigenvalue. Let E_q denote the set of matrices in M_N with precisely q distinct eigenvalues. In theorem 2 it is shown that in case $k \geq 2(N-q) + 1$, then

$$\min \{ \dim Q_k(A) = R(Q+1)^2 + (q-R)Q^2 \}$$

where $N = qQ + R$, $0 \leq R < q$. The maximum is also found.

2. Results

Let T denote the linear transformation on M_N defined by $T(X) = [A, X]$ and we note that $T^n(X) = [A, X]_k$. With respect to the basis E_{ij} in M_N, ordered lexicographically, we check that T has the matrix representation $I_N \otimes A - A \otimes I_N$. The notation is the following: E_{ij} is the N-square matrix with 1 in position i, j, 0 elsewhere; $I_N \otimes A$ denotes the Kronecker product of the N-square identity matrix I_N with A. It is clear that one may assume A is in Jordan canonical form

$$A = \sum_{s=1}^{q} \cdot J_s, \quad (2.1)$$

where $\Sigma \cdot$ indicates direct sum and the J_s are the Jordan blocks corresponding to the distinct eigenvalues λ_s, $s = 1, \ldots, q$, of A. If $T_k(X) = 0$ and X is partitioned conformally with the partitioning (2.1) of A, Roth shows that

$$X = \sum_{s=1}^{q} \cdot X_s$$

where X_s is the same size as J_s, $s = 1, \ldots, q$. If further, each J_s is decomposed into a direct sum of companion matrices of the elementary divisors corresponding to λ_s, one may also effect a conformal partitioning of the corresponding X_s. It is also clear that one may take $\lambda_s = 0$ in examining the structure of X_s since $[J_s, X_s]$ remains invariant upon translation of J_s. We are thus reduced to considering the following situation in determining the dimension of $Q_k(A)$: Let

$$U = \sum_{i=1}^{l} \cdot U_{r_i}, \quad r_i \geq \ldots \geq r_1,$$

where U_{r_i} is an r_i-square auxiliary unit matrix, an unbroken line of 1's along the first super-diagonal 0's elsewhere, and suppose $[U, Y]_k = 0$. Partition Y conformally with U, $Y = (Y_{ij})$, $i, j = 1, \ldots, l$ where Y_{ij} is $r_i \times r_j$, and by (1.1)

$$\sum_{s=0}^{k} (-1)^s \binom{k}{s} U_{r_i}^s Y_{ij} U_{r_j}^s = 0 \quad i, j = 1, \ldots, l \quad (2.2)$$

is equivalent to $[U, Y]_k = 0$. The problem then is to determine the number of arbitrary parameters in each Y_{ij}.

Equation (2.2) for a fixed i, j represents a linear transformation mapping Y_{ij} into 0, and with respect to a suitably chosen basis this transformation has the matrix representation T_{ij} where

$$T_{ij} = (I_{r_i} \otimes U_{r_i} - U_{r_i} \otimes I_{r_i}). \quad (2.3)$$

To simplify the notation, put $r_i = n$, $r_j = m$ where it can be assumed without loss of generality that $n \geq m$. The similarity invariants of T_{ij} as computed by

Roth \(^{5} \) are \(f_{1}(x) = \ldots = f_{m-n}(x) = 1, \ f_{m-n+1}(x) = x^{\Delta+2p-1} - p = 1, \ldots, m \) and \(\Delta = n - m \). Hence \(T_{ij} \) is similar to the direct sum of the companion matrices of these nontrivial similarity invariants,

\[
T_{ij} \approx \sum_{p=1}^{m} C(x^{\Delta+2p-1}). \tag{2.4}
\]

The sizes of these companion matrices arranged in decreasing order are \(\Delta + 2m - 1, \ \Delta + 2m - 3, \ldots, \Delta + 3, \ \Delta + 1 \).

Now, if \(k \geq \Delta + 2p - 1 \), then \((C(x^{\Delta+2p-1}))^{k} = 0 \). If \(k < \Delta + 2p - 1 \), then

\[
\rho(\{C(x^{\Delta+2p-1})\}^{k}) = \Delta + 2p - 1 - k,
\]

where \(\rho \) denotes rank.

Let \(\eta \) denote nullity.

Lemma 1: (a) \(\eta(T_{ij}^{k}) = km \) if \(1 \leq k < \Delta \),

(b) \(\eta(T_{ij}^{k}) = km - \left(\frac{k-\Delta}{2}\right)^{2} + C \) if \(\Delta \leq k < m + n - 1 \),

(c) \(\eta(T_{ij}^{k}) = mn \) if \(k \geq m + n - 1 \),

where \(C \) is 0 or 1/4 according as \(k - \Delta \) is even or odd.

Proof:

(a) \(1 \leq k < \Delta \).

Then

\[
\rho(T_{ij}^{k}) = \sum_{p=1}^{m} (\Delta + 2p - 1 - k) = mn - mk,
\]

and

\[
\eta(T_{ij}^{k}) = mk.
\]

(b) \(\Delta \leq k < m + n - 1 \).

Assume \(k - \Delta \) is odd and observe that the size of the \((m - (k - \Delta + 1)/2)\)th companion matrix in (2.4) is

\[
\Delta + 2m - \left(2\left(m - \frac{k - \Delta + 1}{2}\right) - 1\right) = k + 2,
\]

and the size of the next companion matrix is \(k \). Hence,

\[
\rho(T_{ij}^{k}) = (\Delta + 2m - 1 - k) + (\Delta + 2m - 3 - k) + \ldots + (k + 2 - k).
\]

The last term in this sum is the rank of the \(k \)th power of the \((m - (k - \Delta + 1)/2)\)th companion matrix

\[
\rho(T_{ij}^{k}) = \left(\frac{2m - k + \Delta - 1}{2}\right) \left(\frac{2m - k + \Delta + 1}{2}\right)
= \left(m - \frac{(k - \Delta)}{2}\right)^{2} - \frac{1}{4}.
\]

In case \(k - \Delta \) is even, it is observed that the size of the \((m - (k - \Delta)/2)\)th companion matrix in (2.4) is \(k + 1 \). Also the size of the next companion matrix is \(k - 1 \). Hence,

\[
\rho(T_{ij}^{k}) = (\Delta + 2m - 1 - k) + (\Delta + 2m - 3 - k) + \ldots + (k + 1 - k)
= \left(m - \frac{(k - \Delta)}{2}\right)^{2}.
\]

Hence, in either case

\[
\eta(T_{ij}^{k}) = mn - \rho(T_{ij}^{k}) = mn - \left(m - \frac{(k - \Delta)}{2}\right)^{2} + C
= mk - \left(\frac{k - \Delta}{2}\right)^{2} + C
\]

where \(C \) is 0 or 1/4 depending on whether \(k - \Delta \) is even or odd.

(c) \(k \geq m + n - 1 \).

Then

\[
\{C(x^{\Delta+2m-1})\}^{k} = 0
\]

and

\[
\eta(T_{ij}^{k}) = mn.
\]

Theorem 1. Assume \(A \) is \(N \)-square with distinct eigenvalues \(\lambda_{1}, \ldots, \lambda_{q} \) and let \((x - \lambda_{j})^{q_{j}} \) be the elementary divisors of \(A \), \(j = 1, \ldots, q \), \(\epsilon_{1} \geq \epsilon_{2} \geq \ldots \geq \epsilon_{q} \). Partition the integers \(1, \ldots, q \) so that

\[
\epsilon_{1} = \ldots > \epsilon_{q_{1}} > \epsilon_{q_{1}+1} = \ldots = \epsilon_{q_{2}} > \ldots > \epsilon_{q_{2}+1} = \ldots = \epsilon_{q}.
\]

Then

(i) \(\dim \Omega_{s}(A) = kN - \epsilon_{s} \left(\frac{k^{2}}{4} - C\right) \) if \(k < 2\epsilon_{q} - 1 \),

(ii) \(\dim \Omega_{s}(A) = k \sum_{j=1}^{\epsilon_{s}} \epsilon_{j} + \sum_{j=\epsilon_{s}+1}^{q} \epsilon_{j} - q_{j-1} \left(\frac{k^{2}}{4} - C\right) \) if \(2\epsilon_{q} - 1 \leq k < 2\epsilon_{q-1} - 1 \),

(iii) \(\dim \Omega_{s}(A) = \sum_{j=1}^{q} \epsilon_{j} \) if \(k \geq 2\epsilon_{q} - 1 \), where \(C \) is 0 or 1/4 according as \(k \) is even or odd.

Proof: Since there is only one elementary divisor of \(A \) for each eigenvalue of \(A \) it may be assumed, as in (2.1), that

\[
A = \sum_{s=1}^{q} J_s,
\]

where \(J_s = \lambda_s J_s + U_s, \quad U_s \) the \(\epsilon \)-square auxiliary unit matrix, \(s = 1, \ldots, q \). Then, if \(X \) is contained in \(\Omega_k(A) \),

\[
X = \sum_{s=1}^{q} X_s,
\]

where \(X_s \) is \(\epsilon \)-square, \(s = 1, \ldots, q \). By lemma 1 we know that the number of arbitrary parameters in \(X_s \) is (by putting \(m = n = \epsilon_s \))

\[
\begin{align*}
&\text{(b)} \quad n_s = \epsilon_s k - \frac{k^2}{4} + C & \text{if } k < 2 \epsilon_s - 1, \\
&\text{(c)} \quad \epsilon_s^2 & \text{if } k \geq 2 \epsilon_s - 1.
\end{align*}
\]

Consider (i) first: \(k < 2 \epsilon_s - 1 \). Then \(k < 2 \epsilon_j - 1 \) \(j = 1, \ldots, l \), and hence \(X \), has \(n_s \) arbitrary parameters in it. There are \(q_s = q_{s-1} \) values of \(s \) such that \(n_s = n_{q_s} \) (\(q_0 = 0 \) for convenience). Hence,

\[
\dim \Omega_k(A) = \sum_{s=1}^{q} n_s = \sum_{s=1}^{l} (q_s - q_{s-1}) n_{q_s}
\]

\[
= \sum_{s=1}^{l} (q_s - q_{s-1}) \left(k \epsilon_s - \frac{k^2}{4} + C \right)
\]

\[
= k \sum_{s=1}^{l} (q_s - q_{s-1}) \epsilon_s - q \left(\frac{k^2}{4} - C \right)
\]

\[
= k \sum_{j=1}^{q} \epsilon_j - q \left(\frac{k^2}{4} - C \right)
\]

\[
= kNq - q \left(\frac{k^2}{4} - C \right).
\]

Next assume that (ii) \(2 \epsilon_s - 1 \leq k < 2 \epsilon_s - 1 \).

In this case \(n_s = \epsilon_s^2 \), \(\sigma = t, \ldots, l \) and \(n_s = k \epsilon_s - \frac{k^2}{4} + C, \quad s = 1, \ldots, t - 1 \). Hence,

\[
\dim \Omega_k(A) = \sum_{s=1}^{t} (q_s - q_{s-1}) n_s + \sum_{s=t}^{l} (q_s - q_{s-1}) \epsilon_s^2
\]

\[
= k \sum_{s=1}^{t-1} \epsilon_s + \sum_{s=t}^{l} \epsilon_s^2 - q t_1 - \left(\frac{k^2}{4} - C \right).
\]

If (iii) \(k \geq 2 \epsilon_j - 1 \), then \(k \geq 2 \epsilon_j - 1 \) for \(j = 1, \ldots, q \) and

\[
\dim \Omega_k(A) = \sum_{s=1}^{q} \epsilon_s^2.
\]

In case there is more than one elementary divisor corresponding to a particular eigenvalue there does not seem to be any simple formula for \(\dim \Omega_k(A) \) in terms of the degrees of the elementary divisors of \(A \). However, by repeated use of lemma 1, it is possible to compute \(\dim \Omega_k(A) \) for any particular \(A \). For example, if

\[
A = \begin{pmatrix}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{pmatrix} + \begin{pmatrix}
\frac{2}{2} & \frac{1}{1} \\
0 & 2
\end{pmatrix} + (2),
\]

then \(\dim \Omega_k(A) = 37 \) for \(k = 3 \).

Next are determined the largest and smallest values that \(\dim \Omega_k(A) \) may take on as \(A \) varies over \(E_q \), the set of matrices with precisely \(q \) distinct eigenvalues, under the condition that \(k \geq 2 (N - q) + 1 \).

Lemma 2. If \(\epsilon_1 \geq \ldots \geq \epsilon_q \) are positive integers satisfying

\[
\sum_{j=1}^{q} \epsilon_j = N = qQ + R, \quad 0 \leq R < q,
\]

then

\[
R(Q+1)^2 + (q - R)Q^2 \leq \sum_{j=1}^{q} \epsilon_j^2 \leq (N - q + 1)^2 + (q - 1).
\]

The lower bound is achieved for

\[
\epsilon_1 = \ldots = \epsilon_R = Q + 1, \quad \epsilon_{R+1} = \ldots = \epsilon_q = Q,
\]

and the upper bound is achieved for

\[
\epsilon_1 = N - q + 1 \quad \text{and} \quad \epsilon_2 = \ldots = \epsilon_q = 1.
\]

Proof. The lower inequality is proved by induction on \(R \). In case \(R = 0 \), then \(N/q = Q \), and if \(\epsilon_1, \ldots, \epsilon_q \) are regarded as continuous variables, then \(\sum_{j=1}^{q} \epsilon_j^2 \) has a minimum for \(\epsilon_j = Q, \quad j = 1, \ldots, q \). Now suppose the result is true for all remainders obtained by dividing \(N \) by \(q \) that are less than \(R \). We first claim that there exists an integer \(i < q \) such that \(\epsilon_i \geq \epsilon_{i+1} \) and \(\epsilon_i \geq Q + 1 \). Clearly the set of integers \(j \) such that \(\epsilon_j \geq Q + 1 \) is nonempty otherwise (since \(R > 0 \)),

\[
\sum_{j=1}^{q} \epsilon_j \leq qQ < N.
\]

Let \(i \) be the largest integer \(j \) such that \(\epsilon_j \geq Q + 1 \); then if \(i \) were \(q \), \(\epsilon_i \geq \ldots \geq \epsilon_q \geq Q + 1 \) and

\[
\sum_{j=1}^{q} \epsilon_j \geq q(Q+1) > N.
\]
Hence $i < q$ and from the definition of i, $e_i \geq e_{i+1}$.

Let $\mu_j = e_j$, $j \neq i$ and $\mu_i = e_i - 1$. Then $\mu_1 \geq \ldots \geq \mu_q$, $\mu_1 + \ldots + \mu_q = N - 1 = Qq + R - 1$, and by induction

$$\sum_{j=1}^{q} \mu_j^2 \geq (R-1)(Q+1)^2 + (q - (R-1))Q^2 = R(Q+1)^2 + (q-R)Q^2 + (Q^2 - (Q+1)^2).$$

Now

$$\sum_{j=1}^{q} \mu_j^2 = \sum_{j=1}^{q} e_j^2 - 2Q + 1,$$

and thus,

$$\sum_{j=1}^{q} e_j^2 \geq R(Q+1)^2 + (q-R)Q^2 + 2(Q^2 - (Q+1)^2).$$

Since $\epsilon_i \geq Q+1$, the proof is complete. The upper bound is easily obtained.

Theorem 2. If $k \geq 2(N-q) + 1$, then

$$\min \, \dim G_k(A) = R(Q+1)^2 + (q-R)Q^2$$

and

$$\max \, \dim G_k(A) = (N-q+1)^2 + q - 1,$$

where $N = qQ + R$, $0 \leq R < q$.

Proof. Let $A \in E_q$ and suppose $e_1 \geq \ldots \geq e_q$ are such integers that e_j is the sum of the degrees of all elementary divisors of A corresponding to λ_j, $j = 1, \ldots , q$.

Then

$$\sum_{j=1}^{q} e_j = N,$$

and hence, $e_i \leq N - q + 1$ and $2e_i - 1 \leq k$. Thus k is at least $2q-1$ where q is the degree of any elementary divisor of A. From lemma 1 one may check in this case that $\min \, \dim G_k(A)$ may be evaluated by confining A to those matrices having precisely one elementary divisor for each eigenvalue. Hence $(x - \lambda_j)e_j$ may be taken as the elementary divisors of A, $j = 1, \ldots , q$. By theorem 1 if $A \in E_q$,

$$\dim G_k(A) = \sum_{j=1}^{q} e_j^2,$$

and the results follow from lemma 2.

WASHINGTON, D.C. (Paper 64B1–21)