The Minimum of a Certain Linear Form

Karl Goldberg

(March 23, 1959)

The positive minimum of the integral linear form $L(x_1, \ldots, x_n) = a_1x_1 + \ldots + a_nx_n$ is found subject to the conditions $a_i > 0$ and $L(x_1, \ldots, x_n) \geq 2a_i x_i$ for $i = 1, 2, \ldots, n$.

Let $a_1 \leq a_2 \leq \ldots \leq a_n$ be $n \geq 3$ positive integers. We seek the positive minimum M of the linear form

$$L(x_1, x_2, \ldots, x_n) = a_1x_1 + a_2x_2 + \ldots + a_nx_n$$

over all non-negative integers x_1, x_2, \ldots, x_n such that

$$L(x_1, x_2, \ldots, x_n) \geq 2a_ix_i$$

(1) for all $i = 1, 2, \ldots, n$.

Let $[a_1, a_2]$ denote the least common multiple of a_1 and a_2.

For each $i = 3, 4, \ldots, n$, define r_i in the following way: If either a_1 or a_2 divides a_i, or if $a_1 = a_j$ for some $j \neq i$, set $r_i = 0$. Otherwise, let r_i be the minimum of the least non-negative residues modulo a_i of

$$a_2 - a_i, \quad 2a_2 - a_i, \ldots, \quad [(a_i - 1)/a_2]a_2 - a_i.$$

We shall prove

Theorem: M is the minimum of $2[a_1, a_2], \ 2a_3 + r_3, \ 2a_4 + r_4, \ldots, 2a_n + r_n$.

As a consequence we have the inequality

$$2a_3 + a_1 - 1 \geq M \geq 2a_2.$$

Also, if $L(x_1, x_2, \ldots, x_n) = M$, then at most three of the x_k are positive. At least two must be positive. If exactly two are positive, then either $x_i = [a_1, a_2]/a_1$ and $x_j = [a_1, a_2]/a_2$, or $x_i = a_i/a_1$ and $x_j = 1$, or $x_3 = a_3/a_2$ and $x_j = 1$, or $x_i = x_j = 1$ for some $j \geq 3$. If three of the x_k are positive, then both x_1 and x_2 are positive; the other positive x_i equals 1 and we have $x_i = -[(a_2x_2 - a_i)/a_1]$ for that i. Under any conditions M is achieved only with $x_i \leq 1$ for all $i \geq 3$. We shall prove all this.

M. Newman refers to our theorem in the case $n = 3$. We shall treat this case first.

We have $a_1 \leq a_2 \leq a_3$, and we want to find the positive minimum M of the linear form

$$L(x_1, x_2, x_3) = a_1x_1 + a_2x_2 + a_3x_3$$

over all non-negative integers x_1, x_2, x_3 satisfying

$$L(x_1, x_2, x_3) \geq 2a_ix_i \quad i = 1, 2, 3.$$

(2)

Let $x_i = -[(a_2 - a_3)/a_1]$. Because $a_2 \leq a_3$, x_i is non-negative. It satisfies

$$a_1 - 1 \geq a_2 - a_3 + a_3x_i \geq 0.$$

(3)

Because $a_1 \leq a_2$, this implies

$$a_3 \geq a_3 - (a_2 - a_1) - 1 \geq a_1x_i.$$

(4)

Now consider $L(x'_1, 1, 1) = a_3x'_1 + a_2 + a_3$. From (3) we have

$$2a_3 + a_1 - 1 \geq L(x'_1, 1, 1) \geq 2a_3.$$

(5)

We know that $2a_3 \geq 2a_2$, so that $L(x'_1, 1, 1) \geq 2a_3 \geq 2a_2$. Finally, (4) yields $L(x'_1, 1, 1) \geq 2a_3 \geq 2a_3$. This proves that $x_1 = x'_1, x_2 = x_3 = 1$ satisfies (2). It follows that the left-hand inequality in (5) holds for M:

$$2a_3 + a_1 - 1 \geq M.$$

(6)

From this point we assume that x_1, x_2, x_3 satisfy (2) and

$$L(x_1, x_2, x_3) = M.$$

Since $L(x_1, x_2, x_3) \geq 2a_3x_3$, we have from (6) and $a_5 \geq a_1$ that $x_3 = 0$ or $x_3 = 1$.

If $x_3 = 0$, then (2) implies $a_1x_1 = a_2x_2$. Under this condition the minimum value of $L(x_1, x_2, x_3)$ is $2[a_1, a_2]$, occurring for $x_1 = [a_1, a_2]/a_1$ and $x_2 = [a_1, a_2]/a_2$.

From now on $x_3 = 1$. From $M = a_1x_1 + a_2x_2 + a_3$ and (2), we have $M \geq 2a_3$. From (6) we have

$$2a_3 + a_1 - 1 \geq 2a_3 + a_1x_1 + (a_2x_2 - a_3),$$

from which it follows that $x_1 > 0$ implies $a_3 - 1 \geq a_2x_2$. If $x_1 = 0$, then (2) implies $a_2x_2 = a_3x_3$, so that $M = 2[a_2, a_3]$.

1. The preparation of this paper was supported in part by the Office of Naval Research.
But $2[a_2,a_3] > 2a_3 + a_1 - 1$ unless a_2 divides a_3. Thus $x_1 = 0$ is possible only if a_2 divides a_3, in which case $x_2 = a_3/a_2$ and $M = 2a_3$. Similarly $x_2 = 0$ is possible only if a_1 divides a_3, in which case $x_1 = a_3/a_1$ and $M = 2a_3$. Since a_3 divisible by either a_1 or a_2 leads to $M = 2a_3$, which is the best possible result with $x_3 = 1$, we may now assume that neither a_1 nor a_2 divides a_3 and that $x_1 x_2 > 0$.

With $x_1 > 0$ we must have $a_2 - 1 \geq a_3 x_2$. Fix x_2. We shall find that permissible value of x_1 which minimizes $L(x_1,x_2,x_3) = a_2 x_1 + a_3 x_2 + a_5$. Clearly this is the least positive value of x_1 satisfying (1). We have

$$L(x_1,x_2,x_3) = a_1 x_1 + (a_3 - a_2 x_2) + 2a_3 x_3 > 2a_3 x_2$$

for any value of x_1. The other inequalities require

$$a_5 + a_2 x_2 \geq x_1 \geq \frac{a_3 - a_2 x_2}{a_1}.$$

Since $2a_3 \geq 2a_3 > a_3$, there are values of x_1 satisfying these inequalities. The least such x_1 is the least integer greater than or equal to $(a_3 - a_2 x_2)/a_1$. This last quantity is positive. It can be written

$$x_1' = \lfloor \frac{a_3 - a_2 x_2}{a_1} \rfloor.$$

Let $r_3(x_2)$ be the least non-negative residue modulo a_1 of $a_3 x_2 - a_3$. Then $r_3(x_2) = a_3 x_2 - a_3 + a_1 x_1'$. It follows that

$$L(x_1',x_2,1) = 2a_3 + r_3(x_2).$$

We want the least of these values for x_3 lying between 1 and $[(a_3-1)/a_3]$. Under our assumptions on the divisibility of a_3, this is just $2a_3 + r_3$ with r_3 as defined in the theorem. This proves the theorem for $n = 3$.

Now assume $n > 3$. We have $a_1 \leq a_2 \leq \ldots \leq a_n$, and we want to find the positive minimum M of the linear form $L(x_1,x_2,\ldots,x_n)$ over all non-negative integers x_1,x_2,\ldots,x_n satisfying (1).

If x_1,x_2,x_3 satisfy (2), then $x_1,x_2,x_3,0,\ldots,0$ satisfy (1). Therefore our new M satisfies (6). Let

$$L(x_1,x_2,\ldots,x_n) = M.$$

Then

$$2a_3 + a_1 - 1 \geq a_1 x_1 + a_2 x_2 + a_3 x_3 + \ldots + a_n x_n$$

$$\geq a_1 (x_1 + x_2) + a_3 (x_3 + \ldots + x_n).$$

It follows that

$$x_3 + x_4 + \ldots + x_n \leq 2$$

and that $x_3 + x_4 + \ldots + x_n = 2$ requires $x_1 + x_2 = 0$. On the other hand,

$$3a_1 \geq 2a_3 + a_1 - 1 \geq L(x_1,x_2,\ldots,x_n) \geq 2a_3 x_3,$$

implies

$$x_i \leq 1, \quad i = 3,4,\ldots,n.$$

Assume $x_3 + x_4 + \ldots + x_n = 2$. Then $x_i = x_j = 1$ for some $i,j \geq 3$ and all other $x_k = 0$. Then (1) implies $a_i = a_j$ and $M = 2a_i$. Again this is the best possible result with $x_1 = 1$.

If $x_3 + x_4 + \ldots + x_n = 0$, then (1) implies $a_i x_i = a_2 x_2$. As before, this implies $M = 2a_1 a_2$.

If $x_3 + x_4 + \ldots + x_n = 1$, then $x_i = 1$ for some $i \geq 3$ and all other $x_k = 0$ for $k \geq 3$. The problem then reverts to the case $n = 3$ with a_i replacing a_3. Our previous arguments complete the proof of the theorem, and the statements in the subsequent paragraph.