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Uniform Asymptotic Expansions for Weber
Parabolic Cylinder Functions of Large Orders

F. W. ]J. Olver*
(April 6, 1959)
Expansions of solutions of the differential equation

1°w L
= —1)w,

are sought for large values of |u|, which are uniformly valid with respect to arg u and un-
restricted values of the complex variable £. Two types of expansion are found. Those of
the first type are in terms of elementary functions and are valid outside the neighborhoods
of the points {= 41, the turning points of the differential equation. The second are in
terms of Airy functions and hold in unbounded regions containing one of the turning points.

The special forms of the expansions when the variables are real are considered in detail,
and asymptotic expansions for the zeros of solutions of the differential equation are found
by reversion. Numerical examples are included.
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Part 1. Introduction
1. Introduction and General Summary

The purpose of this paper is to determine asymptotic expansions of solutions of the differ-
ential equation
2
d*w ’
——=pt(*—1)w (1.1)
(ltz M ) \
for large values of the complex parameter u which are uniformly valid with respect to arg u
and the complex variable f.
The immediate reason for this investigation is that the solutions of eq (1.1) are basic
functions in the theory of the asymptotic solution of the differential equation

2014
((]’,:fz{u‘p<t>+q(f) jw (1.2)

for large values of || in a region in which p(f) has two simple zeros, just as Airy functions are
*Present address: National Physical Laboratory, Teddington, Middlesex, England.
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basic functions in the theory of eq (1.2) in a region containing one simple zero of p(). A
knowledge of the uniform asymptotic behavior of the solutions of (1.1) is required in developing
the asymptotic theory of (1.2).

Equation (1.1) is of interest, however, in other connections, for example in the study of
wave motion inside or outside parabolic cylinders, and wave propagation in an inhomogeneous
atmosphere. Hermite polynomials of order n are expressible in terms of the solutions of the
equation when p?>=2n+1. Accordingly, for the sake of completeness many results are derived
in this paper which go beyond those needed for the immediate purpose stated in the preceding
paragraph.

The desired asymptotic expansions are obtained by application of the general theory of
the asymptotic solution of linear differential equations of the second order as developed by the
present writer in [9].) From the standpoint of the general theory, eq (1.1) is characterized
by having turning points at t=-1. Asymptotic expansions in terms of elementary functions
can be found in any region bounded away from these points and expansions of this kind are
obtained in part 2 by application of theorem A of [9].

In order to determine the behavior near the turning points, expansions in terms of Airy
functions need to be used. In part 3 these expansions are obtained by application of theorem
B of [9]; they are valid in unbounded ¢-regions which include one (but not both) of the turning
points. All combinations of u and ¢ are covered.

When the variables are real, eq (1.1) has important special solutions. Expansions of
these solutions are derived in part 4 from the results of parts 2 and 3. Also included in part 4
are numerical examples illustrating the powerful nature of the expansions.

In part 5 uniform asymptotic expansions for the zeros and associated values are obtained
by reversion and illustrated by numerical examples. Much of the analysis of this part and
some in earlier parts is similar to that used in [8] in the theory of Bessel functions of large
order, and advantage is taken of this analogy whenever possible.

Investigations of the asymptotic solution of eq (1.1) for large || have been made by
several writers. Their work on expansions in terms of elementary functions is described in
section 6 of part 2, and on expansions in terms of Airy functions in section 10 of part 3. At
this stage it suffices to remark that the expansions obtained in this paper include practically
all of the earlier results and extend them in various ways.

2. Relevant Properties of Parabolic Cylinder Functions and the Gamma Function

A comprehensive account of the properties of parabolic cylinder functions is given by
Miller in the Introduction to [4]. For the purpose of reference we collect here the properties
which will be required in this paper. We use Miller’s notation rather than that of Whittaker
[13] and adopt Miller’s choice of solutions when the variables are real.

The standard form of differential equation for the parabolic cylinder functions is

Z%U=<i 22—{—a>w. 2.1)

The principal solution U(a,z) is determined by the condition
Ua,z)~2"% 31  asz—>+ . (2.2)
It is an integral (entire) function of z and an integral function of @. 1In terms of Whittaker’s

notation D, (z) for parabolic cylinder functions and W, ,.(z) for the confluent hypergeometric
function, we have

U (,2) =Dy (z) =2- 372~ 3W 40y (% 22>~ 2.3)

! Figures in brackets indicate the literature references at the end of this paper.
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Other solutions of (2.1) are U(a,—z), U(—a,iz) and U(—a,—iz). The connection
formulas are

U(—a,+1iz)=(2m) =T (%+a>{e—f"<%"—l> Ua,+2)+e* 3D U(a,Fz)}, (2.4)

Ula,+2)=(2r) 4T (é—a>{e—”%"+%>(,f(—a, 1+ i2) 4D (—a, Fiz) ). 2.5)
For fixed @ and large |z|
Ula,z)=2"""%"1"{14-0(]z|™?} (larg 2| < zw— e>, (2.6)

where? the O is uniform with respect to arg z. Here and elsewhere e denotes an arbitrary
positive number which is independent of all other variables. From (2.4) and (2.6), we obtain

(27")]2 ~0—3%,122
F(%_I_a) 2" Ze {1+0(

Ula,—z)=e¢ @973 32(14-0(|2| ) }+ 2|7}, 2.7)

valid when —3rte<arg z<ir—e The same result with the sign of 7 changed holds when
—lrte<arg z<3m—e; the apparent discrepancy between the formulas in their common
region of validity is merely an example of the Stokes phenomenon.

Let the z-plane be divided into four sectors My, M,, M,, and Mj, defi arg z| <im,
ir<arg z<i4m, J|arg (—z)| <imand — }7<arg z<—im, respectively. Then eq (2.6) shows
that for large |z|, U(a,z) is exponentially small in M, and exponentially large in M; and M.
Equation (2.7) shows that U/ (a,z) is also exponentially large in M,, unless @ has one of the

values —%, —3, —3 ..., which case it is exponentially small. 1In fact in this event
U(—n—23%,—2)=(—)"U(—n—3%,2) (n=0,1,2, . .. ). (2.8)

The solutions U(a,+z), U(—a,+iz) clearly form a numerically satisfactory set in the
complex plane, because in each sector M; one of the solutions is exponentially small and at
least two others exponentially large. Accordingly, we may expect that a knowledge of the
asymptotic behavior of UU(a,z) for large |a| in the sector |arg z| <2z, or even the half-plane
larg z| <im, will enable us to determine the behavior of any solutmn of (2.1) over the whole
z-plane by use of connection formulas.

Solutions when the variables are real. There are two forms of eq (2.1) of importance when

the variables are real, namely
w1 ;

and

Wﬁ<a-—~ . >w (2.10)

in which @ and z are real. Equation (2.10) is obtained from (2.1) by setting z=ze—i= and
replacing a by 7a.

Real solutions of (2.9) are U(a,z) and U(a,—z) but they do not form a satisfactory pair
for all values of @; in particular they are linearly dependent when a=-—1%, —3 —3 .
The fundamental solutions are taken to be U(a,z) and V(a,z), where

V(a,x)=(1/x) I‘(%-{—a){sin ma-Uax)+ Ula,—z)}. (2.11)

—

2 Miller [4, p. 27], who is more concerned with asymptotic expansions fulfilling the uniqueness conditions of Watson [11] than the Poincaré
condition, gives the range |arg :|<§1r. The validity, in Poincaré’s sense, for the wider range is established in [14, p. 347].
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For all values of ¢, U(a,z) and V(a,z) are linearly independent. When a is negative it is often
convenient to use in place of V(a,x) its multiple U(a,z), given by

Ula,z) = T(%—a)V(a,m) =tan wa-U(a,x)+sec ma-Ula,—x). (2.12)

When a1 is a positive integer UU(a,z) is infinite.
Wronskian relations for these solutions are

WU (a,2),Ve,g))=CmE,  #{U(,),0 @)} =@mir G—a) 2.13)
The Hermite polynomials
w2 A" 2 :
Hy(x)=(=)"e" ¢ (2.14)
are related to the function U (a,z) by
H,(x)=2%"¥"[] (—n—%,x\@). (2.15)

For eq (2.10), the fundamental pair of real solutions is taken to be W(a,z) and W(a,—ux),
defined by

W(a,z)=(2k)tei™Re{ 3300 (ia,2e~ 1)}, (2.16)
W(a,—x)=(2/k) ¥t Im{e'F* 127 (ja,xe 37 ). (2.17)

where
E=Qtei—e,  1k=(4e)b et garg T (3+ia) (2.18)

The value of arg T'(3+1a) here is not the principal one but is determined by the conditions that
it is a continuous function of @ and equals a In a—a-+0(a™!) as @ —+ .

The Wronskian relation is
W Wia,a),Wia,—a) ) —1. (2.19)

Gamma function expansions. We shall need the asymptotic expansion of the function

I‘(%—{—z) and its reciprocal for large |z,  From Stirling’s series [5, chapter 9], we have

In I‘(%—{—z):% In 274z In z—2z2+Z(2), (2.20)
where ‘
e By L 11, 7 1 31 1
Z(2) T 9g(2s—1) 2B 24 z+2880 25 40320 z5+ co (larg z|<m—e¢) (2.21)

uniformly with respect to arg z, By denoting the Bernoulli polynomial of degree 2s. Hence
Iy <%+2> ~emter S (Jargz|<r—o), (2.22)

where the constants are determined by the asymptotic identity

> L exp(Z(2)}, (2.23)
$=0 <
or equivalently,
<R S’Ys = B29(%) _1_} & ’1.5\
=i 28+1 {; 28 223 ;} Zs) (224)
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Numerical calculation yields

- ! ol 1003 4027 -
Y=L M=—5p M= BTiigme0 T 30813120 (&)

Since Z(z) is an odd funetion of z, it follows from (2.23) that

© /ys @ . ’Y.\' . i
Z:} e ;}~1, (2.26)
s=0 © $=0 2
identically, and hence that
1 T Vs

SR N —)8 = g2 <mT—e¢). 2.27
rate) emi e (s : o

Part 2. Expansions in Terms of Elementary Functions
3. Asymptotic Solutions of the Differential Equation

In order to bring the differential eq (1.1) into the standard form required for the applica-
tion of theorem A of [9], we take new variables é=¢(f) and W (not the W(a,z) of sec. 2), defined

by
<d£> ={?—1, Il':(t"—l)% w (3.1)

(cf. [7] sec. 2).  Equation (1.1) then becomes

W
=l FOIW, (3.2)

where

2 1\~ «I _ 342
( )*(t '—‘1> 4 (tz_l) 4(,2_])3

(3.3)
For convenience we preseribe that é=0 when t=1. From the first of eqs (3.1) we then
obtain

t
g:f (-t di=3 t(*—1) -3 In{t 4 (2—1)%}, (3.4)
1

and on expansion

. = 1.3.5...(2s—1 ;
e=pe—jlnzi—t+1 [ BB (g, (3.5

Temporarily we suppose that the branches of the many-valued functions occurring in (3.4) and
(3.5) are positive when ¢ >1 and determined by continuity elsewhere. The relation

E(te=")=E(t) Fhim (3.6)

follows immediately from (3.5) when [t/ >>1, and thence by analytic continuation throughout
the t-plane cut along the join of t=—1 and t=-1.

The mapping of the t-plane, cut along the real axis from — to -1, is illustrated in figure 1.
The center diagram corresponds to the upper half of the #-plane and the right-hand diagram
to the lower half. They are of course conjugate to each other. Features of the mapping are
that the upper side of the real f-axis is mapped on three straight lines BA (Im £¢&=0, Re £>0),
AE (Re ¢&=0, 0>2Im é>—37), ED (Im é=—1%im, Re £>0), and that the positive imaginary
t-axis 1s mapped on the straight line OC (Im é=—1ix, Re £<0).

Next, we make the substitutions (cf. [9], sec. 1)

u=|u’, b=argu, f=e M (3.7)
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o'(in/a)

‘

c
t-plane &-plane (i) t-plane (i7)
Ficure 1. Mapping of the function £(1).

(the z here is not to be confused with the real variable of sec. 2). Then (3.2) becomes

2
d_I/‘_fz { u2+6—41’9l¢(6-2i0‘r) }I}[?’ (3.8)

da?
which has the form of eq (2.1) of [9]. The relationship between 2 and ¢ is given by
t
x:x(t):ﬁ“’s(t):e“"f (£2—1)3d¢; (3.9)
1

the z-map of the ¢-plane is obtained from the &map by rotation through an angle 26. The
function .7 is expressed in terms of ¢ by (3.3).  For large |z| we deduce from (3.3) and (3.5) that

3

. . 3 .
—4i0 g —21i6. ) b ’—416 =478 -
e 40 F (%) gt ~ 162

(3.10)
uniformly with respect to bounded arg z and bounded 6.

In consequence of the last result we could, if we wished, take the z-domain D(6) of [9],
section 2 to be the map of the t-plane cut along the real axis from —o to +1 with the circles
[t£1]<8" removed, ¢ being a fixed small positive number. The preliminary condition (2.2)
of [9] would then be satisfied with ¢=1. Greater regions of validity in the desired expansions
will result however, if we arrange that the boundaries of D(#) are parallel to the positive imag-
inary z-axis where possible. Accordingly, we shall now investigate what we shall call the
principal curves in the t-plane, namely the t-maps of the straight lines in the &plane passing
through A (¢=0) and E (¢=7F1ir) and inclined at an angle —260 to the imaginary &-axis.
In other words, the principal curves are the level curves of the function ¢ which pass through
t==+1.

Near t=1 we find from (3.9) that

3

2(t) ~% 2%e2i0(1— 1)1, (3.11)

Hence three principal curves emanate from ¢=1, and have as tangents the rays

alg(t—l):i%r—ge, w—%@.
Equation (3.6) shows that three principal curves also emanate from ¢t=—1.
For large [t| we have from (3.5)
1 2igp2 .
x(t)~§elt o (;]2)
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Hence the six principal curves are asymptotic to the four rays arg t= 41z —6, +3r—0.

Figure 2 illustrates the principal curves when 0 <6< wr. Those through A are the continuous
curves AP, AQ, AS when 0<{6< 4w, and AP, AQ, AR when jr<6<w. When 6=0, AQ
degenerates into the curve EQ plus the join AE, and when =147, AS, AR degenerate into
AE+ES, AE+ER, respectively. The principal curves through E are the images in the origin
of those through A; this can be verified by using the continuation formula (3.6).

We can now define the branch of the many-valued function £(f) which will be the most
convenient for our purposes. When 0<6<r we cut the ¢-plane along the principal curves
AQ and ER and select the branch of £(f) which is continuous in the cut plane and for which

g<o>:ii7r (0<0<), g(o—ow:%m 0=0). (3.13)

A A
Q,
— ,:_1/:"/ "Q 1
i §=
6 0 T\A
S \
e \\ |
e \\
AR
> =0\
= p
(c)e=2i1r |
(d)?‘rr<9<7r

Ficure 2. t-plane: principal curves and domains S(6).
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When —7<0<0 the cuts are taken to be the conjugates of those for —6, and the branch is
fixed by

g(O):-}I@r (—7<8<0), E(O-{—Oi):—iir 6=0). (3.14)

It is evident from (3.6) that (3.13) and (3.14) are consistent when 6=0. Henceforth we under-
stand & and £(t) to denote this branch. ¥or a given value of 0 (—x<0<w), £(f) is a single-
valued function of ¢ defined everywhere in the t-plane except when §=0 and ¢ lies in the shaded
region to the left of ER+EQ in figure 2(a). When ¢>1, £(¢) is positive provided that |6|<3r;
this result is false if 87<|6|< 7 for the cut AQ passes across the real axis as 8 passes through 2.

Let 2=x(t) now denote the branch ¢**£(¢). We then take the z-domain D(#) of [9],
section 2 to be the map of the function z(f) from which circles surrounding the points A and E
and of radius £ 6 have been removed, § being a fixed small positive number.

The map of z(f) has two sheets when §=0 and three sheets when 0<|0|<w. It is illustrated
in figure 3 for 6=0 and 0<#<iw. The passage from one sheet to another takes place across
the positive real axis and, when 0<8< 4, the join AE. The heavy lines correspond to the
cuts in the f-plane and are boundaries of D(8).

6=0 (i) 6=0 (ii)

s
0<8< szr(ii) 0< 8.< o i)

Ficure 3. a-plane: domains D(6) and G(6).
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The map of z(#) is clearly a single unbounded domain. In order to ensure that D(6) is a
single domain we have to impose the restriction |8 <m—e¢, omit sheet (iii) when |#|< e and make
6=2d(e) small enough. Otherwise, for example, the circle center E radius 16 would intersect
the boundary AQ.

Next, we define the z-domain G(6) required by [9], section 2 to be that part of the map of
x(t) which remains after removing all points at a distance less than 6 from its boundaries.
Sheet (iii) is again to be omitted when |§|<’e. The boundaries of G(6) are the dotted lines and
circular arcs of figure 3; their t-maps are the dotted curves of figure 2. Clearly when |0 <7—e,
G(0) is a single domain if 6=46(e) is small enough. We readily show that conditions (i) and
(i) of [9], section 2 are fulfilled (cf. [9], sec. 3(1)).

Following [9], section 2 further, we take ay(6) to be the point at infinity on the positive
real axis. We then find that Hy() =G(6). From theorem A it now follows that there exists a
solution W, of eq (3.8) such that for large positive values of

/(0r)

W~ e~ ”Z( R (reG(O), |0<r—e), (3.15)

uniformly with respect to z and 6. The coeflicients are given by the recurrence relation

Sa0,0)=— g SO0 [0 F 075 0,00, (3.16)

the path of integration lying in D(6).
If we now restore the variables u and & by means of eqs (3.7), and let

(&)= (—)'e*".750, 2), (3.17)
the relations (3.15) and (3.16) become
Vy~ew% i) O/(E (t e S(argu), |argu|<wr—e) (3.18)
as |u/—>w, where
Lo @ =y SO~ [ 704, . (3.19)

Here S(arg 1) =S(0) denotes the t-map of G(6); its boundaries are the dotted curves of figure 2.
It is of some interest to determine the asymptotic behavior of the boundaries of S(6).
Consider, for example, the dotted curve AQ,. Its equation may be written

t=(y—18)eE™20 (3.20)

where the real parameter y ranges from 0 to + . Reversion of (3.5) vields
:95—1—;— In 85—{—%—{—0(5‘1 In &) as |¢|— . (3.21)

When y is large, we may substitute (3.20) in (3.21) and thence obtain

. W (H_(os 26 In 8y+(os 260 (26 832/#) sin 20— 46+ {(ln y) } (3.22)

The corresponding equation of the principal curve AQ is of course obtained on setting §=0
in this result. Clearly the principal curve AQ and the dotted curve AQ; ultimately always lie
on the same side of their common asymptote, except when §=%=, in which event AQ is its own
asymptote.
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4. Identification of Solutions

The substitutions

1
a=—3 :“'2y Z:ﬂt\/‘?‘; (41)

&

transform eq (2.1) into (1.1). This result and the second of eqs (3.1) show that
H24ﬁ—0ﬂ7<—%mmh9> (4.2)

is a solution of (3.2). KEquation (2.2) shows that when u is fixed and {— e # this solution
becomes exponentially small. The same is true of the solution W, introduced in section 3,
provided that || is sufficiently large and |arg p| <7—¢; this can be seen from (3.18) and (3.5).
Since all solutions which are linearly independent of (4.2) are exponentially large in the same
circumstances, we see immediately that the solution (4.2) is a multiple of Ws.
Hence we have
1, o (E) .

U <—§ u ,ufv2>~g(u) —1)% ;} = (te Slargu), |argpu/<m—e¢) (4.3)
as |u|—> <, uniformly with respect to ¢ and arg u. The branch of (tz—l)%-‘ here and elsewhere is
understood to be continuous in S(arg w) and to be asymptotic to the principal value of vt as

i
t— e~ Similarly for the branch of (#—1)2 used later. The function g(w) is independent of ¢.
Its asymptotic expansion for large |u| can be found from the limiting form of the ratio of the
two sides of the relation (4.3) as t—>we 4 Thus with the aid of (2.2) and (3.5) we find that

SR 38 S (arg 4l <o —9 (4.4)
=
as |u|— o, uniformly with respect to arg u. Here

gs= lim &7 (§) as §—> o HE 4 (4.5)

That this limit exists and is independent of arg u can be seen from the lemma of [9], section 5.

The ¢, are not determined however until the arbitrary constants in the recurrence relation

(3.19) have been fixed, and we now consider how to do this in the most advantageous manner.
From (3.19), (3.3) and the first of (3.1), we obtain

11 dof 1 (342
5 72 1.1 = | ——— A dt. i
2(p—ni dt "8 @e—1i” “5)

=§7'/s+1=
Taking .«4=1, we find

= ——ti—-ﬁi—-i— constant (4.7)
T 24(2—1)t o '

3

A convenient value for this constant is zero, then .o has the form of a polynomial in ¢ divided

by (2—1)%,
The eq (4.7) suggests the substitution

A= 1)/ (—1)' (4.8)
in (4.6). This leads to the recurrence relation

(tz—l)ué(t)—"gstus(t):rs—l(t)y (49)
where

87,(t) = (38 +2)us(t) —12(s+ 1)trs—1 () +4(E—1)rs—1(?). (4.10)
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We can satisfy this relation by taking u,(f) to be a polynomial in ¢ of degree 3s which is an odd
or even function of ¢ according as s is odd or even. All the coeflicients are determined auto-
matically if s is odd, but there is a degree of freedom if s is even, since the left of eq (4.9)
vanishes when u, is a multiple of (t?—-l)gs. We remove this by making the coeflicient of the
highest power of ¢ vanish.

Thus we prescribe that u(¢) is a polynomial in ¢ of degree 3s (s odd), 3s—2 (s even, s>2).
With u,(t)=1 this condition determines the coefficients completely. Numerical calculation
based on (4.9) and (4.10) yields

w(t)=1,  w(t)=—68)/24,  uy(t)=(—9¢*+249¢2+145)/1152,

(4.11)
(1) = (— 40427+ 181897 — 282871 — 1 519956°—2 59290¢)/4 14720.
Hence
gm0 (=1,2,..), go=1, Gi=r) gem—nD2L | (4.12)
= =020 » =g 2 07360

An independent method of calculating the asymptotic expansion of ¢(x) for large p will be
given in section 5.

Frpansion for the derivative. Theorem A of [9] shows that the asymptotic series (4.3)
may be differentiated term by term with respect to . With the aid of the first of eqs (3.1)
we deduce that

U’(—é m,MWZ)~—L g(w) (EP—1)ke ™ > (teSargw), |argul<m—e) (4.13)
& $=0

ZA¢)
V2 u*s

as |u|— o, uniformly with respect to ¢ and arg u. Here, in the notation of Miller,

U’ (a,z) =0U(a,z)/0z.

The coefficients are given by

B ©=0(0)/E—1)¥, (4.14)
where
0o (&) =10, (1) i 11ty (8) =, (1). (4.15)

The first four v,(t) are

w(t)=1, v(t)=(>+68)/24, v.(t)=(15t"—327¢2—143)/1152,
(4.16)
v3(t) = (—40421°+ 1818917 — 363871542 384251 +2 59290¢)/4 14720.

5. Use of Connection Formulas

In this section we seek expansions which hold in the complement of the domain S(arg u),
Since U(a,z) is an integral function of @ it will clearly suffice to obtain a set of expansions which,
together with (4.3), cover the whole t-plane (except of course the neighborhoods of the points
t==1) when |arg u|<3%.

For convenience we introduce the notation U,=U;(#) (7=0, 1, 2, 3, 4) for the closed
domains into which the ¢-plane is divided by the principal curves defined in section 3. Figure 4
shows the enumeration of these regions when 0 <6<w. When —7<6<0 we define

U;0)=Uf(—0) (=0,24), Uu(O=Us(—90), Us6)=Ui(—0), (5.1)

where the star denotes the conjugate region. Then the boundaries of each region U,(6) vary
continuously with 6 in the interval (—mm).
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{a) 8=0

(b) 0< BT

(c)6=7% ) Z<o<m
Ficure 4. t-plane: domains U;(0).

The following relations, suggested by figure 4, are easily verified:

U —T0), U+ -0, Uo+in—00)]

] e (5.2)
U, (0+3m)=Us0), Us(o-+5m) =Us(6), |

J
U0+ m)=Uy(60), Ui(0+m)=Uy(6), Up(0+m)=Us(6),)

(5.3)

U3(0+7{'):U1(0), U4(0+7|'):U4(0).
\
\
\
\
\
\

v "\ e

: . i i Fiaure 5. t-plane

E :: ':A
-’ ': <0<9<%.,,>.
g [
o= |“ VO

The region formed by adding to U;(#) points whose z-maps (cf. fig. 3) are at a distance

less than & from the z-map of the boundary of U;(6) we shall denote by V,(6) or V;. Figure 5
llustrates for example V,(8), V,(6), and C{Vy(0)UV,(6) }, the complement of the union of V,(6)
and V,(8), when 0<60< 3.

of figure 2.

The boundaries are of the same character as the dotted curves
The first connection formula we use is

obtained from (2.5).

U(—gutpty2)=Cm)ir (5+5 u){ DU (G, —iuty2 DU (5 m,m\@)} ,

(5.4)
Replacing u by Fiu in (4.3), we have
1, . N I NP A1) 1 1 3
U<§M ,—l,ut\/2>~g(—?,u) —1Di ;U (—) e <t € S(ﬁ—-éﬂr) ——§7r+e<0§§7r— e>,

(5.5)
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U(Qu,wtﬁ)w(w) i( ot r/(s ( S<0+ ) 7r+e<0<11r—e> (5.6)

—1)% s=0

and from (4.4) and (4.12),

-—%r—{—eﬁ&ﬁéﬂ'——e

iy e DRt (1 Y 2 Al S
——éw—{—egﬂsaﬂ'—e

When [0| < 37—e¢, we can substitute (5.5) and (5.6) in (5.4). Care is required, however, because
at any given point in the f-plane the branches of é=£(t) and (2—1)* may not be the same in
the two formulas.

When 0<6< 27—e¢, S(6—27) is the complement of the region enclosed by “dotted curves”
surrounding the prine lpdl curves AS and ER of figures 2(a) and 2(b); S(6-+ %) is the comple-
ment of the region enclosed by dotted curves surrounding AP and EQ. To the right of
AP+AS, i.c., in Uy(6), the branches of £(¢) and (£2—1)* are the same in (5.5) and (5.6). Sub-
stitution of these formulas in (5.4) leads to a nugatory result, however, as we would expect,
since e+’ is exponentially large here whereas U(— 3p2, pty/2) is exponentially small.

In the central region between AP+AS and EQ+ER, i.e., in C(U,UU,), the two branches
of £(t) have opposite signs. Let

t=—inin (5.5), t=inin (5.6). (5.8)

Then 7 is real and positive when —1<t<1; from (3.4) we find
= (lt*lcos‘lt—lt(l—ﬁ)% (5.9)
2 2 . J.

The appropriate branches of (2—1)% and .<Z(¢) in (5.5) are given by
E—Di=et"1—e)Y,  oAE)=e 1, ()/1—1)% (5.10)

(cf. (4.8)), in which (1—#)% and (1—)%* have their principal values when —1<t< 1. For
(5.6) we change the sign of 7.
Carrying out the substitution, we obtain
/ 29 () ( )"z (1) 2 (=)"uge1 ()
U(—3u?, uty2) ~— ‘]f——A~ cos —1 ——sin 2 —
( 1% , ) (1—t) (# n ) 2 tg)da 13 ( n—zm ) ; (l—tz):;s+.2ﬂ4s+2
(5.11)

as |u|—>=, uniformly with respect to ¢ e C(V,UV.) and 6 in the interval (—3mr-¢, 3m—e). Here

() ~ (27r)~;l’(;—|—éy2)21“2_%e%“2ﬂ_5“2‘5{ 1—>) qi;iﬁ}
=il

§=0 M
b=t w—;{ S’ {1— "ff*.‘} (l6] < 3r—e
K = (%“z)s :g Rl [ I 2 )s

(5.12)
on substituting for I'(3+%u?) by means of (2.22).

The expansion (5.11) is one of the required formulas. Before leaving it we shall show that
7(wW)=g(u), and in the process obtain a new derivation of the coefficients in the asymptotic
expansion (4.4) for 1/g(u).

When e<6<1ir—e the principal curve AQ is included in the region of validity of (5.11);
this 1s easily proved by considering the z-map. On this curve py is positive. Let us set

n:nmz(m—l—i)%: (5.13)
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where m 1s a positive integer. Then (5.11) reduces to

T / m 2g(/~") = u2s(t7n)
U zﬂyﬂtm\2> ( ) (1—t2 %sgo 1_t2)3s as’ (514)

where ¢,, 1s the value of ¢ corresponding to n=n,,.

Now keep u fixed and let m—>w. Then t,—>wo ¢ @7

, and so from (2.7)

) L (@m) R B
U (=g 8, b2 Joee Bty y2) - BT W )Wk (515)
2 2
From (3.5) and the first of (5.8)
1, 1 1 .
Hence
¢ B n (ut, y/2) B (—)medmi T 1 91 TR iRy
¥ (Ut 4/2) T R~ (— e it it bt h bt gy
and substituting these results in (5.15), we obtain
. . o o) bobimuttdulg Ju? —u? .
(_)mgim—%u?2—%u~—%ﬂwﬁ—7{1+ T)ZBI"“(l_zlﬂzz; M }tmz, (5.17)
2 2

as the limiting form of the left-hand side of (5.14).
On the right of (5.14) we have

(A—t2r~e 82, un(t)[A—2)*—0 (s21)

(cf. (5.10), (4.5) and (4.12)). Comparing the two sides we see that

B a3 —1a 23 1. (2 Foaimit g gt —m 1
_(](,u.)ﬁz iu 18 il»‘,uyﬂ 2{§+( ) ;P(z_fuz) M (e<h< §7l'—€), (5'18)

where we use the symbol ~ to mean that the two sides of this relation have the same asymp-
totic expansion for large [ul.
We now substitute (2.27), with z=—1 42, in (5.18) and obtain

s~z et fL i b 2

Although this result has been proved on the assumption that e<6<}m—e, comparison with
(5.12) shows immediately that it holds in the range |8 <i 7—e¢, and that

1 I Vs Jos+1
PTG S S (R ) S

1dentically. Thence using (2.26) and changing the sign of u?, we find

2\ Jost1 -
{1+§0w+2}{ 3 2)8} 1. (5.21)

Multiplying this identity with (5.19), and comparing the result with (4.4) (remembering that
¢2s=0 if §>1), we see that we can take

G(w)=g(n) (5.22)
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in the expansion (5.11), as stated earlier.
We can express the coefficients ¢,;,; in terms of v,, by equating coefficients in (5.21): thus

. 9 e 2021
U= 71—24’ == Jry2—4y3= 2 07360°

on using (2.25). These values agree with those given in (4.12).
The expansion (5.11) is the first of our expansions for U (—% u?, uty2) in regions comple-
mentary to S(6). The corresponding expansion for the derivative is

U (=3, wty2) ~ B9 () (1=} [ sin (uta—1m) 33 (2ol

+cos(u? n——ﬂi it L) ] (5.23)

1__ tz)Bs«{-s 4842

valid under the same conditions as (5.11); the coefficients »,(¢) are given by (4.15) and (4.16).

A further expansion can be found by substituting (5.5) and (5.6) in (5.4) when ¢ lies in the
region (Uy) to the left of EQ-+ER. We shall not carry out this substitution however, because
the expansion so obtained is contained in a more general result (5.28), which we shall now derive.
As a preliminary we record the following relations in which the symbol ~ has the same meaning
asin (5.18).

glue'™) ~ " Dg(y)  (—rte<argu<—e), (5.24)

(21;-) —iw (32 +1)

3 s 1 1
(i 2 g(ue™2'™) ~2 cos ;mu*g(w) (larg u| <gr—e),
2 2 (5.25)

o~ ™ g () (e<arg u<mT—e).

We use the connection formula

2 2r)2 —l1r( Ly +“) 1 &
L (—* i ,‘—y.l\’2>_€ T(-3ut+D) U (-—-“ ,u. y ,u,ty/2>+ (—1%—_“_)—(<5 /.L?,—’L/.tl‘\'/2>7 (5.26)
3 2
obtained from (2.4). We may substitute the expansions (4.3) and (5.5) when

—irte <0<r—e

The branches of £(¢) are the same in both expansions when

CvUVUYy)  (0<0< 37)

(5.27)
teC(V,UVy) (—-ér—l—eSOSO, %WS@S#—&)'
Using (5.25) we obtain immediately
U( 3 p2,— ptyf > N —:](#—); [(sin é Tul+1 cos% 7r,u2) et Z_‘, '%ff)
(*—1)+ 4 - §=0 M
+2 cos l /(9

. (5.28)

teoViUVy) (3 7r—{-e§0§0>7

t e O(V,UV,UV,) (ogog %W—e),
o
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and

If .._l 2 __ >~ — Jimu? g(/"') I: —u2§ /(E) IR _\s '/S(E)]\
U 5 K wiy/2 e (t2—1)% sz) +e gz_,; = o
t e C(V,UV,U V) <e§0< 37) L (5.20)
t e O(V,UVy) (r<o<n—e).
L ~

The last result may be expressed in a form more pertinent to the range || <= by replacing
w by pe™ and using (5.24). This gives

0 (i) 2 [ 5 A5 0]

(5.30)
teC(V,UV,) (—é—wﬁ@ﬁ—e). J

Three further formulas, (5.28%), (5.29%), and (5.30%), can be derived immediately from
(5.28), (5.29), and (5.30), respectively, merely by changing the sign of i. They are valid with
the conditions

t e C(V,UV,UV,) (-% W—f—eSGSO);
> for (5.28%),

t e C(V,UV,) <O§0S%7r~e>7

teC(V,UV,) <-—7r+e§0§—% 7r>7
\for (5.29%),

L OVUVUYY)  (—gr<o<—c)

L e C(VoUVy) (e <0< % W), for (5.30%).

6. Summary of Expansions in Terms of Elementary Functions

The principal expansion of this kind is (4.3). It is valid for large |u| uniformly with respect
to arg p=0 and ¢t when —7+e <0< 7—e and ¢ lies in the unbounded domain S(8), the bound-
aries of which are the dotted curves illustrated in figure 2. The function £(f) is given by (3.4),
that branch being chosen which is continuous in S(f) and takes the value (3.13) or (3.14) at
the origin. The branch of (£2—1)% in (4.3) is continuous in S(6) and is asymptotic to the prin-
cipal value of yt as t—>we="  Both £(¢) and (t2——1);% are positive when ¢>1 and [0|<3r. The
coefficients .<Z(£) are given by (4.8) and (4.11), the branch of (2—1)%* being defined similarly.
The function ¢(u) is calculable from either of the asymptotic expansions

1 1u2+} 102 —du+} Gas

__g(mm R EES 6.1)
_____ 1,2 1,2

gy~ T {H" Zws} o

both of which are uniformly valid with respect to arg u in the interval (—=x-+e, 7—e). Here
g1, gs are given by (4.12); v1, 72, s, vs by (2.25).
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Expansions valid in regions complementary to S(6) are (5.11), (5.28), (5.29), (5.30),
(5.28%), (5.29%), and (5.30%).  When 0<#< 37 the expansions (5.28) and (5.29) between them
cover the principal curve ER of figure 2; expansions (5.28%) and (5.30%) cover the principal
curve AQ, except when 0<6<e and Re t>—1—4". The region of validity of (5.11) however
includes that part of AQ to the right of Re¢>—144§" when 0<§<e. Hence the expansions
we have obtained cover the whole t-plane (except of course the neighborhoods of the points
t=41) when 0<0<%x, and similarly also when —37<6<0.

The branches of the functions &, #—1)% and .o7,(¢) in (5.28), (5.29), (5.30), and the con-
jugate results are the same as in (4.3), and the function g(x) again has the asymptotic expansions
(6.1) and (6.2).

In (5.11) 7(u) is identical with g(u), and n=n(¢) is given by (5.9). The branch of the latter
function is continuous in the region of validity of (5.11) and positive when —1<¢<_1; the same
is true of the branches of (1—)% and (1—)%.

The expansions for the derivative U (—3u? wuty2) corresponding to (4.3) and (5.11) are
(4.13) and (5.23) respectively, the coefficients Z (&) and »,(t) being given by (4.14) to (4.16).
The derivative expansions corresponding to (5.28) to (5.30%) have not been recorded, but they
can be deduced immediately by use of the formal identities

d pinzf /(g) e 2
— i 1 +p 2)
dt (12—1)4 =0 e —=a e 5= o(q:)

20,

(6.3)

and are valid under the same conditions as the parent formulas.

Uniform asymptotic expansions of solutions of eq (1.1) for large |u| and unbounded ¢
have previously been given by Watson [12], Schwid [10], and Darwin [1].

Watson applies the method of steepest descents to integral representations of

(2)=U <—7a/—;—, 2)

and obtains a set of asymptotic expansions for the function D,(2¢yn) when |n| is large and
larg n| <% m—e¢, which cover the whole ¢-plane other than the neighborhoods of the points
¢=-+1. For each expansion the {-region of validity 1s fixed, unlike the regions obtained
in the present paper which are permitted to depend on arg n. For example, the region of
validity of Watson’s expansion analogous to our principal expansion (4.3) is

U (l Tr> Uy, (%) (e—1]> ).

This is, as we would expect, the region common to S(arg u) as arg u varies over the interval
(—3rte tr—e).

Schwid applies the methods of Langer for the asymptotic solution of differential equations
and his results resemble those we have obtained. The main differences are that Schwid confines
attention to the regions Re >0 and |arg u|< 3w, gives only the leading terms in each expansion
and identifies the asymptotic solutions by considering their behavior at ¢=0 rather than t=eco.

Schwid’s results apply to the even and odd solutions of the differential equation. An
effect of carrying out the identification at t=0 is that the error term in the asymptotic repre-
sentation of each of these solutions is obtained essentially in the form

M0 (|u =)+ 0(|u|~?) (6.4)

in the present notation. If we try to deduce from these results the asymptotic form of the
function U7 (—%u?, pty2) by means of connection formulas, the error term will necessarily also
be of the form (6.4). Accordingly, a nugatory result will be obtained in the region (Ug(arg u))
in which U (—3p?% uty2) is exponentially sm Indeed, the proof given on page
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358 of Schwid’s paper of the fact that the error term in the asymptotic expression for the Her-
mite polynomials is of the form e=#*#0(|u|~?) instead of (6.4) is false. The mistake is apparently
due to overlooking the fact that the O’s are functions of the independent variable as well as of
the parameter pu.
Darwin develops series solutions of the eq (2.10), and in [4] Miller applies the same methods
to eq (2.1). The results are typified by the series
NG

U(a,z)z{—(zf—i exp {—0—— In X—l—Z (—)® Slg‘;s} (6.5)

for negative @ and real positive z, in which

X=y(z+4a), le fz Xdz,
2 2V (—a)

and ds, is a polynomial in z of degree 3s if s is odd, or s if s is even. KExplicit expressions for
ds, ds, . . . , dyy are given on page 68 of [4].

The series (6.5) is derived by purely formal methods from the differential equation with-
out any investigation of its asymptotic nature. Applying the substitutions e=—3u? and
z=ut+/2 we find that X:p(t2—1)%‘/2 and 6= u2£(t), in the notation of sections 3 and 4. Next,
replacing {I'(3—a)} ={I'(3+3u2)}* by its asymptotic expansion for large positive u (cf.
(2.22)) and expanding exp { > (—)*ds, X~} in descending powers of X?, we find that the series
(6.5) reduces to the form (4.3). Hence (6.5) must be a uniform asymptotic expansion for
large |a| of the same character as (4.3).

Darwin remarks that the explicit expressions for the coefficients dy, are simpler in form
and easier to calculate than the expressions for the coefficients in series of the form (4.3).
This 1s indeed true, but we cannot however regard the form (6.5) as being entirely superior
to (4.3); it does not, for example, lead to convenient forms of expansion when we differentiate
with respect to z

Part 3. Expansions in Terms of Airy Functions
7. Asymptotic Solutions of the Differential Equation

In this section we seek to apply theorem B of [9] to the differential eq (1.1). The prelimi-
nary step is to take new variables {=¢(#) and W, defined by

dg L (de\E =1\
§<d>_t2 L IL<dt> w—< ¢ )”’ (7.1)

(cf. [7], sec. 2). Equation (1.1) then becomes

W
rra ={uir+F() }W, (7.2)
where
dt 3 d dtN-2) 5 g0 @P+42) )

on reduction (cf. (3.3)).
The first of eqs (7.1) may be integrated to give

g“f—J (12—1)3% :~t(t2 1)%—%—1n{t+(t2—1)%}, (7.4)

on specifying that (=0 when {=1. In terms of the variable & of section 3,

ci=t. (7.5)

W | N
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An essential difference between the functions £(¢) and (¢) is that the former has a branch
point at t=1, whereas the latter is analytic at this point. Both functions have branch points
at t=—1. The branch of ¢(¢) which will be the most convenient for our purposes depends on
f=arg u. We define it to be positive when ¢ >1 and continuous in the ¢-plane cut along the
principal curve ER of figure 2 when 0< <, along the curve conjugate to ER when—r< <0,
or along EQ and ER when §=0. This determines {(#) uniquely everywhere except in the
region (U,(0)) to the left of EQ+ER when 6=0.
Following [9], section 1, we make the further substitutions

u=|pl?, 6=argy, (=e % (7.6)

Equation (7.2) then becomes
dQVV 2 —8ig o —4i0 i
dzzz{u zt+e 3F(e~3"2) } W. (7.7)

The mapping of the {-plane on the z-plane is conveniently carried out by using z(#) (defined
n sec. 3) as an intermediate variable; in terms of z

2%, (7.8)

In our first application of theorem B to eq (7.7) we make a cut in the z-plane along the
part of the level curve of the function exp (2z%) which joins the point E of affix— (37)%¢3¢ and
corresponding to t=—1, to the point at infinity on the negative real z-axis. Such a join can
be made when [0] <37 (cf. [7], fig. 2).

Frgure 6. z-plane: domawins

/3
92 A / 46/3

a,(8) D () and G(0) <;o]g%,,hé>.

Figure 6 illustrates the mapping, the lettering corresponding to figures 2 and 3. The cut
is the heavy curve EQ. The principal curves through A are mapped on the rays arg 2= + 7
and 7; the principal curves through E are mapped on the two sides of the cut EQ and the
remaining part of the level curve of exp (2z%) passing through E. Cut in this way, the z-plane
is mapped on the complement of the domain U,(8) (see fig. 4) in the ¢-plane.

When |8 <37—e¢, we take the z-domain D(8) of [9], section 9, to be the cut plane with the
circle center E and radius %6 removed, 6 being the fixed small positive number introduced in
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section 3. Then F(e #?2) is regular in D(f) (including z=0), and the condition (9.2) of [9]
is satisfied with ¢=32 because
1

e—gieF(e—ng) = __6422

(7.9)
as |z|—>= , uniformly with respect to bounded arg z and bounded 6; this result follows from (7.3),
(7.5), and (3.5).

We take the z-domain G(6) required by [9], section 9, to be the complement of the map of
the t-domain V,(#), defined in section 5. The boundaries of G(8) are the dotted curves sur-
rounding the cut EQ in figure 6. All the preliminary conditions of [9], section 9, are then
satisfied if 6==6(e) is taken to be small enough.

Taking the point a;(8) of [9], section 9 to be at infinity on the positive real axis, we find
H,(0)=G(#). Hence from theorem B, a solution W, of (7.7) exists, such that for large positive
values of u

A, (0 z) Al (u3z) iBs(B,z)

u’s’ s=0 U

W, ~Ai( uaz)z‘, (z cG®), || g% 7r—e>

uniformly with respect to z and 6, the coefficients A4(6, z) and By(6,z) being given by recurrence
relations derived from eqs (9.12) and (9.13) of [9]. When the variables u and { are restored,
this result becomes

WinAiwin 33 2404 Ai’ﬁ(‘ff) IS (7.10)

as |u|—=, when
Le OV, (6) and —3 7r+e§05%7r—e, (7.11)

where Aq({)=constant and

B0y 7| H—AU0+F© A0 s
0 (s=0,12,...), (7.12)

Aea§)=—5 Bi©O+;5 | FOB.0)dg

the paths of integration lying in the map of CU,(6).

A second application of theorem B can be made to the differential eq (7.7) by taking the
cut in the z-plane for the function (¢~ #"2) to be the part of the level curve of exp (22z%) joining
E to S, the point at infinity on arg z=—3%m. This join is possible if 0 <6 <w; the corresponding
t-domain 1s then CU;(6).

With similar analysis, again taking a,(6) to be the point z=--«, we may show that a
solution of eq (7.2) exists having the right-hand side of (7.10) as its asymptotic expansion for
large |u|, uniformly valid with respect to ¢ and 6 when

teCV3(0) and e<O<7m—e. (7.13)

The coefficients A,(¢) and B,(¢) are again given by (7.12), the paths of integration now lying
in the map of CU;(6).

By considering the limiting behavior as {—>w ¢ 1 we see that when <8 <ir—e¢, the ratio
of the new solution to W is independent of ¢ and has an asymptotic expansion for large |u|
identically equal to unity. Hence the expansion (7.10) for W, holds with the conditions (7.13).
Similar analysis, or an appeal to symmetry, shows that this expansion also holds with the further

conditions
teOV,(0) and —r+e <0< —e. (7.14)
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We can combine the three t-regions of validity into a single region T(6), given by
Cv,, CV,UCV,, CV,, CV,UCV,, CV,,

according as 0 lies in the respective intervals

(7.15)
1 1 1 1
(—r+e,— §W+€), (—'2‘7I'+€,—€), (_6, 6)7 (6,57!'_‘6), (§1r—e,1r—e).

T(0) is illustrated in figure 7 for 0 <6<7—e¢; T(—0) is the conjugate of T(f). The dotted curves
are of the same character as the dotted curves of figure 2; their z-maps parallel the z-maps
of the principal curves through E at a distance é away. T(0) is the unshaded domain bounded
by the dotted curves.

Collecting together the results of this section, we have shown that there exists a solution
W, of the differential eq (7.2) whose asymptotic expansion for large |u| is given by (7.10) and
is uniformly valid with respect to ¢ e T(6) and 6 in the interval (—=x+em—e). The functions
C(t),F(¢), A(¢) and By({) are given by (7.4), (7.3), and (7.12), and are regular when ¢ ¢ T(6).

(a)0<b< € (b) e<b<

Ficure 7. t-plane: domains T (6).

8. Identification of Solutions

From (4.1) and the second of eqs (7.1), we see that

W= ( _1> — [.L,ut\/o) (8.1)

satisfies the differential eq (7.2). When g is fixed and ¢— o¢ ~%€# this solution becomes ex-
ponentially small. If |u| is sufficiently large and |arg u| <7—¢, the solution W, of section 7 is

also exponentially small in the same circumstances, for from (7.4) we have i~@%t and
4 . .
so u8{—>-+4 . Hence the two solutions are linearly dependent. Accordingly,

U (=g uttn2 ) ~h( (%) [Ai () 35 4 “ L i S ity (8.2)

as |u|— o, uniformly with respect to ¢ e T(arg ) and arg px in the interval (—n-f¢ m—e€).

This is the fundamental expansion in terms of Airy functions. In order to determine the
function h(w), we first fix the arbitrary constants of integration in the recurrence relations
(7.12) by specifying the conditions

A (H=1% lim 4,(5)=0 (s=1,2,...). (8.3)

HEX
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We now examine the limiting form of the ratio of the two sides of the relation (8.2) ast— c¢=omex
With the aid of (2.2), (3.5), (7.5), (8.3), and the asymptotic forms

Ai ()~ r B udn) Tie M, AT ()~ —F m R (i) R
(c¢f. [8], appendix), we find that 1/h(x) has the asymptotic expansion

1 _%%2%_22”{'622 = hs
HM—) ~r *2 M (- 5 <1_§0W (Ia’rg#ls.’r_e) (8.4)

as |u| —o, uniformly valid with respect to arg u, where
hy=Tim { ¢B,(¢) }. (8.5)
[§loe

An alternative form of expansion, not involving the quantities A, may be found as follows.

Suppose that e<6< $m—e. The principal curve AQ is then included in the domain T(6).
On this curve p® ¢ is negative (cf. fig. 6). It us set

c=¢n=n"ta, (8.6)

where a,, is the mth negative zero of the function Ai’. Then (8.2) becomes

/1 W ng s A
U (=g #smtm2 )~ ) (52 ) A @) 252252, (8.7)

in which 7,, denotes the value of # corresponding to {=¢,. Now keep u fixed and let m—w,

so that t—>o¢ 3™, Then from [8], appendix, we have

a;=—{—?§w<4m—3>}§ (140}, Ai@)= (=) (—a) T {140}, 89)

and from (7.5) and (3.5)
tz,,—lnztm=§ S5 +0(| ta]?. (8.9)

Substituting in (2.7) by means of these equations, we find that the limiting form of the left-
hand side of (8.7) is minus the expression (5.17), with ¢,, defined of course as in the present sec-
tion. On the other hand, the limiting form of the right of (8.7) is

—4. ’

hm)(" “’") ()=t (—al) ~E~ (—)mtr b ()5}

(cf. (8.3) and (8.8)). Comparing the two sides we find that 37— * x~% A(u) has the same asymp-
totic expansion for large |u| as the right-hand side of the relation (5.18). Hence we obtain

h(p)~2m% u8 §(u) ~27% ¥ g (u), (8.10)

where (), g(p) are defined in sections 4 and 5; g(u) has the asymptotic expansions (6.1) and
(6.2) for large |u|. Although (8.10) has been proved on the assumption that e<arg u<j}7—e¢,
(8.4) shows that 1/A(x), and hence also A(n), possesses a single asymptotic expansion over the
range |arg u| <w—e. Therefore (8.10) must also hold over this wider range of arg .
Substituting (8.10) in (8.2), we obtain the final form of the fundamental expansion, given by

U (—g wwtv2)~2rbudg G (5) " [ At 23 2404 A “j‘”;Bm (8.11)

“

as |u/—>, uniformly with respect to ¢ e T(arg p), arg p in the interval (—z+e, m—e).
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The coefficients A (¢) and B(¢) appearing in (8.11) are determined by the recurrence
relations (7.12) and the conditions (8.3). Explicit expressions can be found by the method
used in [8], section 6 for the determination of the coefficients in the uniform expansions of Bessel
functions of large order. We take ¢ to be fixed and positive, and let y—>-4o. The Airy func-
tions appearing in (8.11) can then be expanded in their asymptotic series for large positive
arguments and the result compared with (4.3). Thus we derive the expressions

28 =i 0 2541 5
As(f):mEzo bud "y, (8),  $2B(5)=— Z‘, ™" Ay (B) (8.12)

m=0

(cf. [8], (6.6)), where .o7,(§) is defined in section 4, ay=1 and

Analytic continuation shows that eqs (8.12) hold for all values of ¢.
We note from (8.10), (8.4), and (6.1) that
he=lm{{B,() }=—gas 1 (s=0,1,...), (8.14)

[floe
where g is given by (4.12) and (5.21).

Frpansion for the derivative.  'The expansion (8.11) may be differentiated term by term with
respect to ¢; this is a consequence of theorem B.  With the aid of the first of eqs (7.1), we find
that

07 (=1 2, g2 )~ 0 00 FAIGED o 0.0) D, (()
U( 2u2, ,uty2> R i S:ZU 35“)2 (8.15)

as |u|—o, uniformly with respect to ¢ € T(arg x) and arg w in the interval (—=z-tem—e).
Here we have used the notation

(5 V(Y
o ({) ‘_<t2—1> w(([‘(' (8.16)
The coefficients Cy(¢) and Dy(¢) are expressed in terms of A,(¢) and B,(¢) by the equations

Co(O)=x(OA(D)+Ai() +¢Bo(5),  Di(©)=A:(0)+Xx(§)Bo-1(0)+Bi-1(5), (8.17)
(ef. [8], (6.10)), where

Y

o) 1t 1=2t{e(5)}°

MO=50 w2 oyt % e
Explicitly,
) 2341 S 2 Sms
§—§CS(§):—mZ=0 bmg-—f gg2s—m+1($), Ds(f):mzzo (Lm§ o %2s—m(£); (819)

(cf. [8], (6.12)), where Z,,(£) is given by (4.14) to (4.16), and a,, b,, by (8.13).

9. Use of Connection Formulas

In this section we seek expansions which hold in Z-regions complementary to T(arg x) when
larg u| <% 7 (cf. sec 5).
In (8.11) replace u by we'™.  Then using (5.24) we obtain

1 . T L2 RN %
l] ('—6 “2,_#t\/2>~27r§611r(§#2 G)M3‘{/(:u'> (f}%]>

><|:Ai (fﬂ’moZAm = (j it W)Z :| (9.1)
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when
—r+ el —e¢, t e TO+m). (9.2)

In particular, we see from (7.15) and (5.3) that (9.1) holds when

;—SGS—G, t € OVy(8-+m)=CV,(6). (9.3)
Similarly,

U <_§ ,UZ,“IJt\/2> ’\’27!'76_“'(7"2 a)ﬂ%g(u) <t2£ 1

l:Al G ?s‘)Z‘,Am A]e(eam"ij MEO:I (9.4)

_31‘—’”'3" $=0

when

m, t e CV5(6). (9.5)

The expansions (9.1) and (9.4) are of course the expansions for U(—3iu? uiy/2) in terms
of Airy functions valid at the turning point t=—1. Combined with (8.11) they cover the
whole of the t-plane when e<|[0| <%} 7

When [6|<e we cannot expect to be able to represent the function U(—%u? uty2) in
V,(6)=CT(6) by means of a single Airy function, because as [{|— in this region U (—Lu? uty2)
becomes exponentially small or exponentially large according as u? is or is not an odd positive
integer (cf. (2.7)).

To deal with this remaining case we use the connection formula

g ) . g % g""(z“2+1) s o
T M, T MUY — o : G D) v T 1L__1,2) v
U 5K wty/2 )—sin o U p. uty/2 )= @ 2“) 2 u?,—ut/2

) e“"(z“'?‘i‘z)
(2) I‘ %_L 2) U<2 My /L,ut\/2> (96)

obtained in an obvious manner from (5.26). Replacing u by ue™** in (8.11) and using the first
of eqs (5.25), we find

—ix (3x2+1) 1 Laxi 1
<2> f_(__*_ ( ’u,_wtw/2>~27rfe ,u, coS = 7l';l. g (w) <t2 1

><[A1 @ uin 3

sm A1( i) B0

We substitute this result and its conjugate form on the right of (9.6), and on the left we sub-
stitute (8.11). Using the eq [3]

Bi (ut ) =647 i (e 1) b Ai (e 3y,

and its differentiated form, we obtain

<—-§,u ,—-ut\/2>~21r7/ﬁq(ﬂ) <t2 ) I:sm = T {Al (uto) Z A (f) Al (,i;.?ﬁ') io ,u( )}

J1% 8§=

+COS%7F,U,2 {Bl(,u. g_) Z e(g‘) Bi’ (Mff) :DO M g')}] (9'7)

This is valid when [fl<ir—e in the f-region common to the domains T(6), T(§—} =), and
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T+t 7). Using (7.15) and (5.2), we see that this means (9.7) is valid when
!BIS% T—E, teCVy(0). (9.8)

This is the required result. We note that when w? is an odd integer the terms in Bi, Bi’
in (9.7) vanish, as we require from a consideration of the behavior of UV (—3u? uty2) as [t|—
in the sector V,(6). We may also verify without difficulty that (9.7) agrees with (9.1) and
(9.4) in their common t-regions of validity when —ir+e<0< —e and e<O<ir—e, respectively.

10. Summary of Expansions in Terms of Airy Functions

The fundamental expansion of this kind is (8.11). It is valid for large |u| uniformly
with respect to §=arg u and ¢, when —7r+e<0<m—e and ¢ lies in the domain T(#), defined
by (7.15) and illustrated in figure 7. The function g(x) is calculable from either of the asymp-
totic expansions (6.1) and (6.2). The function ¢(¢) is given by (7.4), that branch being chosen
which is continuous in T(#) and positive when ¢ >1; similarly the branch of {¢/(#2—1)}% is con-
tinuous in T(f) and positive when ¢ >1. The coeflicients A;(¢) and B(¢) are given by eqs
(8.12); they satisfy the recurrence relations (7.12) and the eqs (8.3). They are regular func-
tions of ¢ in the {-map of T(f) and real when ¢ lies on the real axis to the right of the point
of affix — (37)%.

Other asymptotic expansions for UU(—3u?, wty2) are (9.1), (9.4), and (9.7); they are
valid with the conditions (9.3), (9.5), and (9.8), respectively. The combination of these
expansions and (8.11) covers the whole t-plane when [0 < 3.

The expansion for the derivative U/ (—3u?, uty2) corresponding to (8.11) is (8.15), and
holds under the same conditions. The coefficients C(¢) and D(¢) are given by (8.17) and
(8.19). The derivative expansions corresponding to (9.1), (9.4), and (9.7) are not recorded,
but they can be obtained immediately by analogy with (8.15). They are valid under the
same conditions as the parent formulas.

Approximations for parabolic cylinder functions of large orders which hold in regions
containing one of the turning points have been given by Watson ([12], sec. 17), Schwid ([10],
sec. 6), Erdélyi, Kennedy, and McGregor (2], and Kazarinoff [15].

Watson derives asymptotic expansions in terms of elementary functions for the functions
D,(z+2yn)=U(—n—1%, 2+2yn) as |n|—>c, with the conditions |arg n|< 3w and z=o(|n|"%).
In the present notation these conditions correspond to |arg u|< trandtF1=o0(|u/~?). Watson’s
expansions are analogous to Meissel’s expansions for Bessel functions of large order and may
be obtained from the present uniform expansions by suitable re-expansion (cf. [S], sec. 6).

Schwid gives approximations in terms of Bessel functions of order one-third (Airy func-
tions) which are valid in the neighborhood t—1=0(|u|™%) as |u|->«, using the present notation.
This neighborhood is complementary to the region of validity of Schwid’s approximations
in terms of elementary functions, described in section 6. No investigation is made of the
validity of the Bessel function approximations outside the neighborhood.

The approach of Erdélyi, Kennedy, and McGregor is similar to the one we have used.
These writers obtain a set of asymptotic approximations in terms of Airy functions, to solu-
tions of eq (1.1) when u and ¢ are both complex (using the present notation). The results
are contained in those given in the present paper; the principal ways in which they have been
extended and improved upon are as follows.

First, the approximations apply to fixed values of arg u, no investigation is made of their
uniform validity with respect to arg u.

Secondly, the approximations are established with the condition |arg u|<im; outside this
interval connection formulas are to be used. This leads to complexity in the number of results;
eleven are given compared with the four we have found to be sufficient.

Finally, only the leading terms of the asymptotic expansions are found; no terms involving
the first derivative of the Airy functions appear in the approximations. An effect of this is
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to exclude regions in the ¢-plane containing the zeros of the Airy functions. No special treat-
ment of such regions is required in the present theory.

Kazarinoft’s paper (which has appeared since the present paper was written) contains
a brief investigation of the extension of the results of Erdélyi, Kennedy, and MecGregor to
include uniformity with respect to arg u and higher terms in the asymptotic expansions. The
results are rather more complicated and less complete than those given here.

Part 4. Results for Real Variables

In this part we suppose g, t, @, and z to denote real variables except where otherwise indi-
cated; u 1s always large and positive. The variable z is not to be confused with the complex
function z(¢) introduced in parts 2 and 3.

11. The Equation w’'= (1 r*4-a) w

The principal solutions of this equation are U(a,z), U(a,—x), V(a,x), and U(a,z), defined
in section 2.

(1) @ positive. When a — + o the differential equation has no turning points on the
real r-axis. The expansions of greatest interest are therefore those in terms of elementary
functions, and we shall not consider the forms of the Airy expansions.

In (4.3) replace w,t by 1u, —1t, respectively. Then using (4.8), we obtain

or2E(—it)

(—P—1)

1 T
U (w?, i '2>~(( ohim
o Kty g (pe®™) (1) u

as u — 4. In the complex plane the region of validity of this expansion is ¢2"S(1r), and
from figure 2(c) it is clear that this region includes the whole of the real ¢-axis.

We have now to interpret the branches of the various functions.

From (6.1) and (6.2) we derive

9(uedm) = APV ), (11.2)

where the function g(p) is real and has the expansions

1 1,241 1,2 1911 N o ¢

—g(—ﬂ)~2 4#2+4€ red #2M2+2 1_’8;0#1\'1‘1-’}’ (]]'3)
= 1,2.1 19 19 1 & s Ys

e s S 1.4)

as u — +o. Comparison of (11.4) with (2.27) shows incidentally that

1 1.2 1,2 1.2 1
Pk Lk Pk L L

T3

I Tt B (11.5)

where the symbol ~ is defined in section 5.

Next, when ¢ lies on the negative imaginary axis of figure 2(c¢), £(¢) lies on the straight line
0’C’ shown in the third diagram of figure 1. Hence

H(—it) =y in—E(0), (11.6)
where E(t) is positive when 1 >0. From (3.4) we find

(1) In {413, (11.7)

P —

- ‘ .
)= (e1)hie=

0
the branches here baving their principal values.
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Lastly, we have

(—t—1)i=e (241t (=== i 1) (11.8)

where the functions on the right have their principal values.
Substituting in (11.1) by means of (11.2), (11.6), (11.8), and the relation

Ty (1) =i%uy(—it), (11.9)
we obtain the required result in real form, given by

e—uEO =2 Y (t) 1
(r241)t & 1)k

uniformly with respect to 7. Explicit expressions for the coefficients (), obtained from (4.11),
are

U(é /ﬁ,#tx/2>~§(u) (— o <t< ), (11.10)

Toh=1, W@)=(—B—68)/24,  Wy(t)=(9t*+2492—145)/1152,

Ty(t) = (40424 181894 +28287£ — 1 51995¢*+2 59290¢) /4 14720. ok
The corresponding result for the derivative is
(%ﬁ,ut~/2)~~‘/% 9w (1) ke~ u?emio‘, (tL—f—(tl))’fs - (11.12)
valid with the same conditions. Here
v,(t) =1°0,(—1t). (11.13)
Explicitly, '
=1, 7,{O)=(—B+6)/24, n(t)=(—15t—3272+143)/1152, .

7(t) = (4042 + 18189¢+ 363877+ 2 384256 — 2 59200¢)/4 14720,
(cf. (4.13) to (4.16)).

Since U(a,x) and U(a,—z) comprise a satisfactory pair of solutions of the differential
equation when a is positive, it is unnecessary to give the corresponding expansions for the
solutions V(a,z) and U(a,z).

(1) a negative; expansions in terms of elementary functions. For t>1-46, the expansion of
U(—%u2, pty/2) is given in real form by (4.3)°. In this expansion g(u) is calculable from (6.1),
(6.2), or the relation

g (w2 T3 3=k | ol Tk - 71‘(14— ,L> (11.15)

and £, .oZ(£), by use of (3.4), (4.8), and (4.11), all fractional powers now taking their principal
values.

When —1+46<¢<1—34, the expansion of U(—%u?, uty2) is given by (5.11). Here §(u) is
identical with ¢g(u) and 7 is given by (5.9).

For the remaining part of the real axis we have the expansion (5.28). In the present
circumstances the function £(¢) is positive and bounded away from zero. Hence the contribu-
tion of the series i cos dmu?- e~ S A (E)u=* is always asymptotically negligible compared
with that of 2 cos Jru?-e#% > (—)%.c/(&)u=*. Thus (5.28) reduces to

U —§,u.,——p.t\/ )N(t;}l 2008%#;12-6“25;:()(—)” (E)-}—Sln;r _“252 /(E)] (11.16)

3 For convenience the symbol &’ of parts 2 and 3, denoting an arbitrary fixed positive number, is replaced here by é.
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valid when t>146. The functions ¢(u), £ and.oZ(¢) are the same as in (4.3), discussed above.

The corresponding expansions for the second solution U/(a, z) are of interest, particularly
when 2>0. It is not possible to obtain them trivially by substituting in the connection formula
(2.12) the expansions we have just obtained for U(a, ) and U(a,—z), because although can-
cellation of terms in the asymptotic series takes place, we cannot assert immediately that the
remainder terms implied in these series also cancel. To put the results on a sound basis we
substitute the expansions (5.5) and (5.6) in the formula

T (=gt utv2 )= @m0 (g ) [ O 0 (Gt —iut2 )70 0 (Gt iury2) |

(11.17)
obtained from (2.5) and (2.12).

When t>1-+6 the branches of £(f) and .o4(£) in both expansions are the principal ones.
With the aid of the relation

@m)ir (%Jr%u) e TIOAY g (e i) g (), (11.18)

proved by use of (2.22), (5.7), (5.20), and (6.2), we deduce that

<“‘5 In ,uf\2>~°.}(u i (EHE “—)—; ;e (t>149). (11.19)

When —1-+6<t<1—4, we interpret the branches of the many-valued functions by use
of (5.8) and (5.10). With the aid of (11.18) we obtain on reduction

2/(#) (—)*uz (T) © (= u2s+1(t)
(_2”’ 2> 0s (u* 77+47f)2—‘i)7m sin (u* ﬂ+47)gm )
(11.20)

valid when —1+46<t<1—56.

The expansions for the derivatives corresponding to the expansions obtained in this sub-
section can be written down immediately by use of (6.3), or by analogy with (5.23).

(i) @ negative; expansions in terms of Airy functions. For t>—1-46 the expansions of
U(—% w2 uty2) and U(— L w2, —uty2) are given by (8.11) and (9.7), respectively. In these
expansions ((f) is given by (7.4) and is real when ¢ >—1; a more convenient form of this relation

when —1<t<1 18

_( ;)7_f (1_t2)mt—5 s—‘tjlz-t(l—t?)%:n(t) (11.21)

(cf. (5.9)). The coefficients A,(¢) and B,(¢) are real and given by (8.12), (8.13), and (4.8)*
An expansion for the solution U(a,z) may be derived by use of (11.17), as in the case of
the exponential-type expansions. The result is

O (— g2 )~ 2rhig(u(5 ) [ Biuis) S0 BSOS BAO, - 11.99)

valid when > —1--6. _

The corresponding expansion for U’(—34u®uty2) may be written down by analogy with
(8.15).

(iv)  Hermite polynomials of large degree. Expansions for the Hermite polynomial H,(z)

4 More convenient expressions when —1<¢<1 are given by (13.4) and (13.5).
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when 7 is large can be obtained from the results in subsections (ii) and (iii) above by use of
the equation

1 1.9:2 1
H ooy (ut) :zi"z—a'ez""'((—;)- u?,m\@)- (11.23)

Thus (4.3) and (5.11) yield expansions which hold uniformly in the ranges #> (14-6) (2n+1)3
and —(1—8)(2n+1)3 <z <(1—8)(2n+ 1)%, respectively. An expansion uniformly valid through-
out the range z>—(1—6)(2n+1)* is furnished by the Airy expansion (8.11).

12. The Equation w''=(a—fz*)w

(1) a positive; expansions in terms of elementary functions. From (2.16), (2.17) and (2.18),
we have

1 it L , 1 i(1 . . _1.
k_ﬂV(% ;/.2,,u,t\/2>+2kfw (§ pz,—,u.l‘\‘2>=276%”“261(2¢2+%’r)[/‘ (é e i’”,uh@); (12.1)

k=Q14em)i—ed™  ehiti=y { r <—i~+; M)/lr (é+§ hﬁ) } (12.2)

k=%e‘%"“2+0(e"%"“”), e¥r=¢ 4“‘( 2)"“{]+()(# 2} (12.3)

where

For large u,

In (4.3) replace u by we ™. Then we obtain

(1)

: : : (12.4
(ﬁ_]); =0 (t'.’_l)—'zs \ )

| R 1 1
U <5 iu?,e ATty 2)“’!}(#6 i) =5
2 It

as u—-+4 o. The t-region of validity of this expansion, S(—im), includes the segments ¢>1--6
and —1-+6<t<1—56 of the real axis (cf. fig. 2(b)).
When u—+ o, we have from (12.2) and (2.22)

()';i¢’~()_21“2< > [ 5 ]
$=0 27#)

the choice of ambiguous sign on taking the square root being resolved by use of (12.3). From
(6.1)

s (12.5)

= ll( U’-)s

1

(/(,u(’,_‘l’"i) Ngiiuz—qe;}iﬂgeéri—%ruzlu—{—,1‘#2— {,(1 _+_7‘L)—1’ (12.6)

where the symbol L denotes the asymptotic series

Ei )* Jos+1, (12.7)

4s+2
8

Further from (5.21), with u replaced by uei™, we have

& 2 _144L

—il= : 2
DY v T sl ey i)
Introducing a function /(u), defined by
L) =2¥ebm’d ey (ye=iri), (12.9)
and using (12.5), (12.6) and (12.8), we find that
2% /14+4iL\31+4L)-3 1 2 1
I(u) ~ —1( : : P U S 12.10
) pi\1—iL/ [1—1iL 1+’LL u? (14123 ( )
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Thus [(u) 1s a real function, having an asymptotic expansion of the form

2% =
W~ g ust o (12.11)
uZs=0 M
From (12.10), (12.7), and (4.12), we find
1 3 16123

ly=1, llz—% gi=— (12.12)

2 st =" 5ag 13190°
We are now in a position to combine (12.1) with (12.4).  When ¢>1-5 each of the func-
tions £(t), (2—1)% and (2—1)* is positive. Substituting by means of (12.9) and the first of
(12.3), and equating real and imaginary parts, we find
Yo z"’l‘zl(#)

Wt~ ] eos Gt am 33 —sin (e 3 e

=0 (7 =0 (12— 3s+7'u4s+2
(12.13)

2t ™ (u)

W 1 2,— t//2 a
(3m uty2) (t2—1)

[Sln (Wt 1) Z‘, LJ%s(t—i—{-cos (WE+4m) Z M ;

(t2 1)3s+7 4542
(12.14)

uniformly with respect to ¢ when ¢t > 1+46. The function /(u) is calculable from (12.11).
When —1+46< t <1—25 the appropriate branches of £ and (2—1)% are given by é=—in and
(t2——1)%:e%”(1——t2)%, where 7 is the real function (5.9) and (1—)% is positive. Hence we derive

l(p. 6“2” > )sua(t) 1 -
Wil = 92 Y~ 2) e _ —
(2'“' suty 2> o gme (1— t2)%3 5 (—146<t<1-9). (12.15)

The expansions for the derivatives corresponding to (12.13), (12.14), and (12.15) may be
obtained by term-by-term differentiation with respect to ¢ (cf. (5.23) and (4.13)).

It may be noted that (12.13), (12.14), and (12.15) are respectively equivalent to the formal
series (317), (318) and (324) given on pages 84 and 85 of [4] (cf. sec. 6).

(1) a positive; expansions in terms of Airy functions. In (8.11) replace u by pe ™. Then
we obtain

1 —ixi 1r
U (3 intetetuty2 )22 e gtuat (5

X[Ai(e ) 33 (- A(§)+ - lf”i(—)ﬁ%} (12.16)

/,ﬁ =0 »

The t-region of validity of this expansion, T(— %), includes the segment ¢>—1-46 (cf. fig.
7(b)). Now from [3]

2687 Ai (¢~ 3wt e) =Bi (—put) +4 A (—utp). (12.17)

Hence substituting (12.16) in (12.1) and equating real parts, we find, with the aid of (12.9)
and the first of (12.3),

(o TS Tty o SO0 o 0O

Ll
24 ’u

valid when t>—1-6. The corresponding expansion for the derivative is
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2e 47”‘2

W <5 ’”t\/‘?) RN 1‘2—1>

B 55 oy L4 utn 5 o 2] azao)

$=0

(cf. (8.15)).
The expansion for the second solution may be obtained by equating imaginary parts.
This gives

(G otz )~ TE (8 ity 3 (D AL D 5 BT

u3 =0 M

(12.20)

However, this result is only proved in this way for £>1, i.e., non-negative values of {. This
is because the error term on truncating the series inside the square brackets at the mth terms is

{Bi (—ut0)+i A (—pt) }Ou=*) + (B (— ) +i AT’ (=0 } (L[ H) 710 (un=Y).

When ¢ is negative the terms in Bi and Bi” cannot be absorbed in the terms in Ai and Ai” be-
cause they are exponentially larger.

That (12.20) 4s valid in the wider range t>—1-46 can be proved as follows. In (8.11)
replace u by wet™.  Then we obtain

1. : ) )
U (6 in?, e 4™ uiv?) ~2rteimiybg (uet™) (tz_l

A(s“) Al( o)
MB

= 28] a2

><[Ai<—m pICOL

valid when ¢ e T(3 m)and so including ¢>—1+46 (cf. fig. 7). Equation (12.1), with ¢ replaced
by —t, shows that the left-hand side equals

9~ dmyi(ertin) [k‘*’fW (;)1— uz,—pt\/2>+ik%W (é - ,wz)] : (12.22)

Also from (6.1) and (12.7) we derive

)

g(uegwi) ~27}Iip2——}€-}mp m«l-*n-,ﬂ —%in? "7(1—}—7[4) 1
et i (e~ i)
=2~ bedmmiGertim () (12.23)
(ef. (12.6) and (12.9)). The expansion (12.20) may now be obtained by substituting (12.22)
and (12.23) in (12.21), equating real parts and using the first of (12.3).
(i1i) @ negative.  When a is negative the differential equation has no turning points on the

real axis and we may confine our attention to the exponential-type expansions.
From (2.16), (2.17) and (2.18), we have

4 W(—-% K .ut\/2>+ ik} W(—é MQ,—,utw/2>=2%e_§”“2e"(%*”2+§") U(—% it e ulv/2>’ (12.24)
where
k=(14e™™) i =140(7 ), (12.25)
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and

e¥itr— 1 { r (%—% ’M)/ | r G—% o};f)‘ }7=e%"“2 (%ﬁ)_%i‘ﬂ {1+0(w™™} (12.26)

(ef. (12.2)and(12.3)). . _
In (4.3) replace u, t by uei™, te” " respectively. Then we obtain

— p2¢ (—it)

=

The region of validity of this expansion, ¢*™S(ir), includes the whole of the real f-axis; this is
clear from figures 2(b), 3(iii) and 1.

Substituting (12.25), (12.26), and (12.27) in (12.24) in the manner of (i) and (ii) and
determining the branches of the many-valued functions, we obtain finally

1(w)
(124+1)%

U(——— it e 1”‘p.tx/2>~g(yﬂ’”) g (—iys =101 (12.27)

(—2—1)F"

cos (wE+ 1) Z(ﬁi&(t—)

W (_ %/”'2)/‘t\/2) ~ _|_1)3s 1s

: B = ) Mg i1 (1)
—sin (u2e-+1r) ZJW ) (12.28)
uniformly when —o << ». Here t=%(t) and u,(¢) are given by (11.7), (11.9), and (11.11),
and [(u) is calculable from (12.11).
The corresponding expansion for the derivative is

W (—hattn?) ~— 210 () sin (4 1m) 35 70

+cos (u2E+1r) 2 % ; (12.29)

vs(t) being given by (11.13) and (11.14).
13. Numerical Examples

Here we illustrate the use of the Airy-type expansions by two examples. It may be
remarked that applications would be greatly facilitated by the preparation of suitable numerical
tables of the functions g(u), I(x), £(8), {¢/(E—1)}% and A,(&), By(©), Oy(¢), Dy(¢) (s=0,1, . . ).
In the present examples these functions are calculated directly from formulas given in this
paper.

It will appear from the examples that the early coeflicients in the expansions decrease
in magnitude as s increases. This property, shared with uniform asymptotic expansions for
Bessel functions of large order ([8], sec. 6), makes the expansions well suited to numerical work.

Example 1. To evaluate W(a,+z), W (a,4+2) for a=8, 2=7.

We use the expansions (12.18), (12.19), and (12.20). Here

p=4,  t=T/(4y2)=1.23743 6867.
Hence

2304 —4.05527 596 X 107, (13.1)
and from (12.11), (12.12)

l(u)~(2%/2) (1-0.00000 3391-0.00000 0006+ . . .)=0.59460 1538,

so that
mudl(n)=1.67296 798. (13.2)
Next, from (7.4) we have
g-%zz t(tZ—l)%~—:—i- In{t+ (2—1)%}=0.16932 9581.
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Hence
¢=0.30607 0793, ¢¥=0.55323 6652, {{/(2—1)}1=0.87122 5817. (13.3)

From (4.8) and (4.11) we compute
=1, A4=-—0.59504 451, .4=2.92479 70, .oh=—26.48264 7,

and from (8.13)

o=l a—=> a,—389 g, 30085

T Y 274608’ 376635527
7 455 95095

b=l bi=—gp b=ge08’ " Go3s52

Substitution in (8.12) yields
A($)=1, Ai(§)=—0.00649 0, B,(5)=—0.03637 97, By({)=0.01202.
Next, we have u?i=1.94342 840, and by interpolation in table VII of [3]
Bi(—pfe)=—0.39524 090,  Bi’(—puf¢)=0.32386 134,
Ai(—uf)=0.26162 602,  Ai’(—ui¢)=0.59097 966.
The content of the square brackets on the right of (12.18) is accordingly

—0.39524 090(1-+0.00002 535+ . . .)+4-$0.32386 134(—0.03637 97—0.00004 70+ . . .)
= —0.39554 353.

Substituting this value and (13.1), (13.2), (13.3) in (12.18), we obtain

1.67296 798 <0.87122 5817 <0.39554 353
4.05527 596 < 10° o

W(8,7)=— —0.14216 485>10-°.
Similarly,
W(8,—7)=1.67296 798 <0.87122 5817 <X 0.26109 871 x4.05527 596 X 10°=1.54327 57 < 10°.
For the derivatives, we have first

2
3

2~ 23y 8] (u) =1.87784 306.
From (4.14) and (4.16), we compute

D=1, % =1.00283 725, H,=——3.52326 59, H3=29.91942 3,
and thence from (8.19)

Co(£)=—0.07833 70, C,(¢)=0.00971, Dy(¢)=1, Di({)=0.00760 4.

Hence
1.87784 306 <0.31897 315

W8, 1) =— 105527 506 5 10°0.87122 5g17— — 0-16953 6131077,

~ 1.87784 306<0.59419 143 X4.05527 596 > 10°

S 5
0.87192 5817 =5.19368 20>10°.

W’ (8,—17)

The results of this example agree adequately with the entries given in [4], table I.
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Ezample 2. To evaluate the Hermite polynomial H,(z) for n=10, z=4 by means of the
expansion (8.11).

Here (cf. (11.23))
p==+21=4.58257 569,  t=4/y21=0.87287 1561.
From (6.1) and (4.12)
1/g(1) ~255¢525(21)=3(140.00198 4127 —0.00000 1052+ . . .)=2.11580 149X 10~2,

and hence

21 b () =2.78291 471 XX 108,
Next, from (11.21)
(—f)%=2 cos“lt—g t (1—12) *=0.06286 6477.
Hence

¢=—0.15810 5174, (—{)?=0.39762 4413, {/(t2—1)}£=0.90271 123.

When ¢ is negative, real forms of equations (8.12) and (4.8) are

% N 1 2841 —3m —
As(é“)=(—)st=:,)bm(—s“)_"’"' hs ~ms (=) *Bs($)=(—)"1 mzzoaﬂ—s‘) * Shs-my1, (13.4)
where
A=, (t)/1—1) ¥ (13.5)

In the present example we find

=1, A=—1.63978 319, .4=21.19031 25, .F=—>516.52363,
and thence

Ao(H)=1, Ai()=—0.01024 3, By(¢)=—0.04317 57, B,(s)=0.0166.
Next, uf¢=—1.20344 324. Interpolation in table I of [3], yields
Ai(ptp)=0.52582 209,  Ai’(ut¢)=0.10920 810.
Substituting these results in (8.11), we obtain
U(—2, 4/2)=2.78291 471X 10°X0.90271 123X 0.52572 856=1.32071 865X 10°,
and thence using (11.23)
Hiy(4) =256 U(—Q—;, 4«2): 1.25984 223X 10°.

The exact value of this polynomial, computed from explicit expressions given on page 75
of [4], is 1259 84224.

Part 5. Zeros and Associated Values
14. Zeros of Ul(a, z), U'(a, 2), Ula, z), and v’ (a, z)

() @ negative;—2(1—6)y(—a)<z<2y(—a). Let the sth real zeros, counted in de-
scending order away from the point z=2/(—a), of the functions U(a,z), U’ (a,z), Ul(a,z), and
U7 (a,2) be denoted by u, o, U}, a5 and i, ,, respectively.

The expansion (8.11) is of exactly the same form as the expansion (4.24) of [8]. The
analysis of section 7 of that paper is therefore immediately applicable, and we find

o ~2h | )+ 2 ] (14.1)

2
wt u
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as p=+/(—2a)—+ =, s fixed. Here
a=u"ta, (14.2)

a, denoting the sth negative zero of the function Ai and not to be confused with the a,, of (8.13).

The coefficients p, (¢) are given by

po(O)=t(&), pO=a(H) (), Z)z(s“):az(f)t'(s“)-l-% {an(O) }27(0), ooy (143)

where t(¢) 1s the function inverse to ¢(t), defined by (11.21), and the «,(¢) are given by rela-
tions of the form of (7.13) of [8]. Explicitly,
5
(14.4
The corresponding expansion for the associated value U’(a,u, ;) can be found by sub-
stituting (14.1) in (8.15). More convenient expressions for the coefficients are obtained how-
ever, if we substitute instead in the equation

U'(auas)—:}:("ﬂ')“{ <~—a>} < ([:;:” (14.5)

obtained from eq (2.15) of [6] and the second of (2.13) in the present paper. This yields the
required result in the form

U'tan )~ { 0 (g ) v v [ 14520 (146
where
_ 11
Y(¢) =300 ( ¢ (14.7)
and the coeflicients 7°,(¢) satisfy the asymptotic identity
—2 5
[+ 50 v e 5 28 (14.8)
Thus
1 ’ ’
Pi(§)=—5 (¥(©) ' (2), Pz(?)‘* R N(s‘)}zpz(s“)- (14.9)
Explicitly, ) i
Pl(g'):t_IOt —6+ ot + 5 (14.10)

48(2—1)°  96(£2—1)¥¢t " 64agd

For the zeros of the derivatives of the parabolic eylinder functions, we may show by
similar analysis that

U, s ~27p [Qo(ﬁ)‘*‘%‘l‘%%‘ . ,], (14.11)
where
B=n"ta;, (14.12)

WO=1E),  GO=BOVE),  GO=AOO)+y BOF@, .., (1413)

and the §,(¢) are given by eq (7.22) of [8].
The equation corresponding to (14.5) is

b g ) 1 3 1, \-3/ dul,\-}
U ((I/,U/a.s)— + (27!') {F (E—(I)} <'—(l'—z ’ll/az'3> _W> ) (1414)
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and from 1t we derive
Ulayuy )~ {I‘(l-l—% ;ﬁ)} *Ai(a))9(8) [1+2 LG (14.15)
MG &

in which the coeflicients satisfy the identity

[HZQ(Q N [{Zq,m} ][qu (14.16)

For the function {7(a,z2), the expansions corresponding to (14.1), (14.6), (14.11), and
(14.15) are obtained on replacing the symbols I/, u, Ai, and a, by U, 4, Bi, and b,, respectively.

(i1) @ megative; other zeros. Since the zeros of the function Ai are all real and negative, it
follows from (8.11) that for all sufficiently large positive values of the parameter u, the zeros of
U(—3u? wpty2) in the t-domain T(0) (the unshaded region of fig. 7(a)), all lie in the interval
—1<t<1. This is also true of the zeros of the derived function U’(—%u? uty2). The func-
tion U/ (—3u2uty2) and its derivative however, have complex zeros in this region corresponding
to the complex zeros of Bi and Bi” (cf. [8], appendix).

In the complementary region C'T(0) the distribution of the zeros of U(—%u® uty2) can
be investigated by reversion of the expansion (9.7). The situation is more complicated; the
pattern of the zeros depends largely upon the non-integer part of $u*. It should be noted that
expansions of zeros in the interval —1<t<1 of fixed enumeration, counted away from ¢=—1,
come within this category.

(ii1) @ complex. The extension of the results of this section to general values of @ presents
no difficulty. Wereadily see, for example, that when e <arg u <7—ethe zeros of U(—%u2, uty/2)in
the t-domain T(arg u) are asymptotically close to the principal curve AQ, illustrated in figure 4.

15. Zeros of W(a,x) and W’(a,x)

We denote the sth posm\ e zeros of the functions W(a,z), W’ (a,z), W(a,—z) and W’ (a,—z),
by w,, s, Wy 5, W, and W, ;, respectively.
(i) @ positive. Writing u=+/(2a) and

a:l"'-%b.v; B:l"_%b;y (15'1)

where b, and b; are the sth negative zeros of Bi and Bi’” respectively, we find by reversion of
(12.18) and (12.20)

’w/L.x’\’2;u [])0(— ) 1)] +]))< 0() 5 @ .:Iy (152)
1 17177 ~1 1 15, Z ,1’,(—0{) _
I (4., ,) ~ —2~ e ud Bi (b)) ¥(—a) [1+§(_) —a) ] (15.3)
/ 1 0(—=B) | ¢:(—B) ] -
~22 = e e e oo P .
w a, 8 M [q ( B) “ + ,LL (10 4)
oI W(a,w, ) ~2trdut Bi (b)p(—B) [1+§'_°1 (_)TWJ, (15.5)

as a— -+ o, uniformly with respect to s. Here ¢(¢), (), p.(¢), P.(0), ¢.(¢) and Q.(¢) are the
functions defined in section 14(i).

With a, 8 given by (14.2) and (14.12) instead of (15.1) and Bi, b replaced by Ai, a, the
right-hand sides of (15.2), (15.3), (15.4), and (15.5) are the corresponding expansions of w,, ,
— 2= bW (@, —, ), Wa, s and 272" W (a, —w, ,), respectively.
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(11) @ negative. Lt pu=+/(—2a), and

t—r(¥) (15.6)

be the function inverse to E(t), defined by (11.7). Then by reversion of the expansion (12.28),
we find

I: + T)+02(T) ] (15.7)

as a—— o, uniformly with respect to s. Here

T:T{—(s‘?)"}, (15.8)
u

and the leading coefficients are given by the formulas

467

5679424774291 +°—2520 7'3—|—37807.
24(2+1)?

SIS 5760 (21 1)°

(1) =

(15.9)

The expansion of the associated value of the derivative can be obtained by substitution
of (15.7) in the equation

W (a,w, )=+t <‘h‘l’: S>_7 (15.10)

obtained from eq (2.15) of [6] and (2.19). Thence we derive

L, (T)

W’ (@, ) ~(—)2 4k (12 1) [1+ Z (15.11)
where
1 ) -
EI(T):%;—(—}?_T'_Z—B?’ Eu(r) :1127 °—|—4897'8—9283755)?;%?—?—017;—%8046072»—7020. (15.12)
In a similar manner we obtain from (12.29)
[ +f1(T TRE M(T) : ] (15.13)

where now

T—T{(‘“’;—f)”}, (15.14)

and
=67 _ 567°+247 774651 7°+26407°—3420 7 -
fl(T)—m’ fa(n)= 5760 (2 1)5 . (15.15)
Finally, from
1 _% ’ _%
Wia,wy) =xt (juwii—a) (L), (15.16)
we find
Wea,wp,)~(=y2tud @t 14 550 (15.17)
where 7 is again given by (15.14), and
—972+6 _ —11271°—47978—14254-257257*— 675007°+ 7380 -
F (T) 48( 2+1)3 ’ F2(7->'—' 23040(72+1)6 (1:,).18)

If in the right-hand sides of (15.7) and (15.11) we take the value (15.14) for 7 instead
of (15.8), we obtain the asymptotic expansions of w, ; and — W' (a,—w, ;), respectively. Sim-
ilarly the right-hand sides of (15.13) and (15.17) with 7 given by (15.8) are the expansions
of w, ; and — W(a,—w, ).
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1t may be noticed that some of the numerical coefficients occurring in the expressions
(14.4) and (14.10) for the coefficients in the reverted Airy-type expansions are the same as
those in the expressions (15.9) and (15.12) pertaining to the reverted exponential-type expan-
sions. This is no mere coincidence; we may expect that by suitable re-expansion of the reverted
Airy forms, and subsequent comparison with exponential-type expansions obtained by reversion
of (5.11), we shall obtain explicit expressions for the coefficients p, and P, in terms of the
e, and F, respectively, analogous to the formulas (8.12). Similarly for ¢, and @..

16. Numerical Examples

Frample 1. To compute the smallest positive zero of W(10,z) and the corresponding
W’ (10,z).

We use (15.2) and (15.3) with u=+20=4.47213595, s=1. Entering table V of [3],
we find ‘

by=—1.17371 322, Bi’(b,) =0.60195 789.
Hence
{=—a=—u"%h;=0.15929 7392.

The value of ¢ is given by

'S

t(t?—1)¥—In {t4+ (12— 1)} == ¢$=0.08477 1864.

.

(O8]

Solving this equation by successive approximation, using Newton’s rule, we find

t=1.12489 6229=1p,(—a),
and thence from (14.4)
pr(—a)=0.02960 04.
Hence

w10,1~2%><4.47213 595(1.12489 6229-0.00007 4001+ . . . )=7.11400 040.
For the derivative, we compute from (14.7) and (14.10)
1(—a)=¢(—a)=0.88019 8053,  Pi(—a)=0.00942 2.

Substitution in (15.3) then yields

—3 1

17 (20)770.60195 789
€™ 0.88019 8053

W’ (10, w50 ) ~ — 2 (1—0.00002 356+ . . . )——1.39416 865107,

By inverse and direct interpolation in table I1T of [4], we find
Wio 1 =7.11400 000, W’ (10,wy0.1) = —1.39416 86 X107

The discrepancy in the values of w,,; is undoubtedly due to neglect of the third term of the
asymptotic series.

Example 2. To compute the fifth positive zero of W/(—10,2) and the corresponding
W(—10,z).

We use (15.13) and (15.17). From (15.14), (15.6), and (11.7) we see that the appropri-
ate value of 7 satisfies

(1) In{r4 (1241)3} =2E=2(5— 1 )n/20 =1.49225 6510.

Solving by successive approximation, we find

r=0.69390 0720,  (+*+1)}=1.21716 8110,
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and thence from (15.15)

Si(r)=—0.07269 508, fo(7)=—0.03321.
Thus

wl10,5~2%><4.47213 595(0.69390 0720—0.00018 1738 —0.00000 0208+ . . . )=4.38746 276.
From (15.18) we compute

Fi(r)=0.00919 198,  F,(r)=—0.07882,
and thence

W(—10,w" 10 5) ~—2%(20)~%(1.21716 8110)~%(1-+0.00002 2980 —0.00000 0493+ . . .)
——0.50972 3297.

The results of this example agree with values obtained by interpolation in table I1T of [4].
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Diffraction of electromagnetic waves by smooth
obstacles for grazing angles, J. R. Wait and A. M.
Conda, J. Research NBS 63D, No. 2, 18 (1959).

The diffraction of electromagnetic waves by a convex cylin-
drical surface is considered. Attention is confined primarily
to the region near the light-shadow boundary. The complex-
integral representation for the field is utilized to obtain a
correction to the Kirchoff theory. Numerical results are
presented which illustrate the influence of surface curvature
and polarization on the diffraction pattern. Good agreement
with the experimental results of Bachynski and Neugebauer
i§dobt§.ined. The effect of finite conductivity is also con-
sidered.

Path antenna gain in an exponential atmosphere,
W. J. Hartman and R. E. Wilkerson, J. Research
NBS 63D, No. 3, 273 (1959).

The problem of determining path antenna gain is treated here
in greater detail than previously. The method used here takes
into account for the first time the exponential decrease of the
gradient of refractive index with height, and a scattering cross
section inversely proportional to the fifth power of the scatter-
ing angle. Results are given for all combinations of beam-
widths and path geometry, assuming that symmetrical beams
are used on both ends of the path and that atmospheric
turbulence is isotropic. The result appears as a function of
both of the beamwidths, in addition to other parameters, and
thus the loss in gain cannot be determined independently for
the transmitting and receiving antennas. The values of the
loss in gain are generally lower than the previous estimates for
which a comparison is possible.

Pattern synthesis for slotted-cylinder antennas,
J.R. Wait and James Householder, JJ. Resecarch NBS
63D, No. 3, 303 (1959).

The radiation from a cylinder excited by an array of axial slots
is discussed. A procedure for synthesizing a given radiation
pattern is developed with particular attention being paid to a
Tchebyscheff type pattern. Specifying the side lobe level and
the width of the main beam, the required source distributions
are computed for a number of cases. The effect of using a
finite number of slot elements to approximate the continuous
source distribution is also considered.

Convexity of the field of a linear transformation,
A. J. Goldman and M. Marcus, Can. Math. Bul. 2,
No. 1, 15 (1959).

The field F(A) of a linear transformation A of unitary n-space
U, is the set of complex numbers z= (Az,z), where z ranges
over the unit sphere in U,. The convexity of F(A4) (as a
subset of the z-plane) is proved by a simple inductive argument
which reduces the essential computations to the case n=2.

Graphical diagnosis of interlaboratory test results,
W. J. Youden, Ind. Qual. Control XV, No. 11, 1
(1959).

This analysis of interlaboratory test results depends upon the
availability from a number of laboratories of a single test
result for each of two materials. The two results from each
laboratory are used to plot a point using the z-axis for one
material and the y-axis for the other. The resulting configura-
tion of the points from the several laboratories permits deduc-
tions on the prevalence and extent of laboratory bias, the
presence of sampling variation and the occurrence of blunders.
In addition the graph provides an estimate of the precision of
the test procedure results.

The calculation of the field in a homogeneous
conductor with a wavy interface, J. R. Wait, Proc.
IRE 47, 1155 (1959).

The field at any depth in a homogeneous conductor with a
wavy interface is calculated. For purposes of illustration, the
field above the interface is taken to be a uniform plane wave
traveling in the horizontal direction.

Lower bounds for eigenvalues with application to
the helium atom, N. W. Bazley, Proc. Nat. Acad.
Sei. U.S. 45, No. 6, 850 (1959).

Let A be a self-adjoint operator with domain D in a Hilbert
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(=1, . . ., k) are k discrete eigenvectors of A4 and if p;=(a’)"!
Z.—(izl, . . ., k) exist then one can substantially improve the
lower bounds. The theory is applied to helium atom operator.
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